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Abstract

Context

Motor Imagery based Brain-Computer Interfaces (MI-BCIs) enable their users to interact

with digital technologies, e.g., neuroprosthesis, by performing motor imagery tasks only, e.g.,

imagining hand movements, while their brain activity is recorded. To control MI-BCIs, users

must train to control their brain activity. During such training, experimenters have a funda-

mental role, e.g., they motivate participants. However, their influence had never been formally

assessed for MI-BCI user training. In other fields, e.g., social psychology, experimenters’

gender was found to influence experimental outcomes, e.g., behavioural or neurophysiological

measures.

Objective

Our aim was to evaluate if the experimenters’ gender influenced MI-BCI user training out-

comes, i.e., performances and user-experience.

Methods

We performed an experiment involving 6 experimenters (3 women) each training 5 women

and 5 men (60 participants) to perform right versus left hand MI-BCI tasks over one session.

We then studied the training outcomes, i.e., MI-BCI performances and user-experience, ac-

cording to the experimenters’ and subjects’ gender.

Results

A significant interaction between experimenters’ and participants’ gender was found on the

evolution of trial-wise performances. Another interaction was found between participants’

tension and experimenters’ gender on the average performances.

Conclusion

Experimenters’ gender could influence MI-BCI performances depending on participants’

gender and tension.
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Significance

Experimenters’ influence on MI-BCI user training outcomes should be better controlled, as-

sessed and reported to further benefit from it while preventing any bias.

Keywords

1. Brain-Computer Interfaces

2. Mental imagery

3. User training

4. Experimenter influence

5. Gender
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1 Introduction

Motor Imagery based Brain-Computer Interfaces (MI-BCIs) enable their users to send com-

mands to external digital devices by performing motor imagery tasks only, e.g., imagining

hands or feet movements, while their brain activity is being recorded [9]. The system has to

estimate the motor imagery task that the users perform from the variations occurring in their

brain activity, often recorded using electroencephalography (EEG).

The MI-BCI technology has promising medical applications. For instance, BCIs based on

motor imagery and motor attempt were used for motor rehabilitation after stroke [1, 52]. They

can also be used to control interfaces of communication [2], which is particularly useful for

patients with limited or complete loss of the functional ability to communicate caused by a

severe loss of voluntary muscular control [2]. MI-BCIs are also used for non-medical applica-

tions. For instance, they represent a new tool to control video-games [20].

1.1 Brain-Computer Interfaces user training

Before being operational, MI-BCIs require that both the computer and the user learn during

dedicated training phases [9]. On the one hand, the computer must learn to recognize the

variations occurring in users’ brain activity while they perform the different mental-imagery

tasks. On the other hand, the users must learn to produce a stable and distinguishable pattern

of brain activity for each of the commands that they wish to send to the computer [27]. Both

the computer training and the user training are highly interdependent but the user and the

computer are generally trained separately, which probably partly explain the lack of reliability

of the system [35].

This current lack of reliability of the system limits the development of MI-BCI applications.

Indeed, 10 to 30% of naive users cannot control MI-BCIs, even after some training [30]. There

are several lines of research aiming at improving the efficiency of MI-BCIs. Most focus on

the improvement of machine learning methods, see, e.g., [17, 23]. A few also focus on the

improvement of the user training. Indeed, it has been shown both theoretically and exper-

imentally that current user training approaches may not allow all users to acquire the skills

necessary to use MI-BCIs [15, 25].

During their training, users train to control a feedback representing what the computer recog-
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nizes of the mental task that they are performing. A feedback is an information which is pro-

vided to a learner regarding aspects of the performance or understanding of the task/skills to

learn [12]. It is a fundamental component of the MI-BCI training [25]. Several research were

led in order to improve the feedback [37], for instance by using more realistic cues [34, 47].

Users could need specific feedback characteristics depending on their profile [37]. For in-

stance, previous results indicate that “tensed” and “non-autonomous” people (based on the

dimensions of the 16PF5 psychometric questionnaire [7]) are disadvantaged when controlling

BCIs [16]. Interestingly, “non-autonomous” people are persons who rather learn in a social

context [7]. “Tensed” people might also benefit from a reassuring social presence and emo-

tional feedback.

In a previous BCI experiment, we analysed the influence of a learning companion, i.e., a type

of educational agents which can provide a complex form of social presence and emotional

feedback in a controlled environment. During this last experiment, we designed, implemented

and tested the first artificial learning companion dedicated to BCI user training [38]. This

learning companion was called PEANUT for Personalized Emotional Agent for Neurotech-

nology User Training (see Figure 1). In between two trials, PEANUT provided the learn-

ers with social presence and emotional feedback through interventions that were composed

of both spoken sentences and displayed facial expressions. The interventions were selected

based on the current and previous performances of the learner. We found that such learning

companion had a differential impact on the participants’ performances depending on their

autonomy. Also, the presence of a learning companion influenced how the participants felt

about their ability to learn and memorize how to use a BCI, which is a dimension of the user

experience that we assessed. Thus, we found that a learning companion providing a complex

form of social presence and emotional feedback could influence BCI user training outcomes,

i.e., performances and user-experience.

1.2 Role of experimenters

Very little is known regarding the most prevalent and complex source of social presence and

emotional feedback during experiments which originates from the human supervision (e.g.,

experimenter or caregiver). In experimental settings, experimenters present BCIs to the learn-

ers, ensure the smooth progress of the experiment and might also have an influence on users’
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Figure 1: A participant training to perform mental tasks on the right with PEANUT, the first learning
companion dedicated to MI-BCI user training, on the left.

states. For instance, in a clinical study, Hammer et al. report “we tried to keep the subjects

motivated and attentive by providing non-alcoholic beverages, sweets and fresh air” [11]. It

has been shown that users’ states (e.g., motivation, attention) can influence the accuracy of

MI-BCI classification [11]. However, the influence that experimenters might have on users’

states and BCI training outcomes remains unknown and was not formally investigated. Only

very few studies in clinical BCI-based motor rehabilitation post-stroke acknowledge and ex-

plicit the role of the therapists, without formally assessing their influence [29, 36, 46].

Rosenthal, who was part of the first in social psychology to stress the importance of studying

the influence of experimenters, describes experimenters as “imperfect tools” [44]. Indeed, the

literature from different fields states that experimenters may consciously or unconsciously

affect their results. Experimenters can influence participants’ responses, behaviour and per-

formances via direct and/or indirect interactions [45]. There are several types of possible

experimenter-related influence, one of them being psychosocial factors. Stereotyped peo-

ple tend to behave in a stereotype-consistent way [53]. For example, elderly people tend to

walk more slowly or to have impaired memory performances if they feel stereotyped [53].

The “experimenter demand effect” is another example of experimenter-related influence. It

can occur when participants unconsciously try to fit the appropriate image reflected by the

experimenter’s behaviour and therefore want to please and assist the experimenters in ob-

taining their expected results [44]. These different influences can be modulated through the

experimenters’ own characteristics (e.g., gender, age, ethnicity and professional status) and/or
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behaviour (e.g., gaze, touch and verbal interactions) [44].

Among experimenters’ characteristics modulating their influence, one of the most prevalent

seems to be the gender. Previous experiments often report a simple effect of the experimenters’

gender or an interaction between experimenters’ and participants’ gender on experimental

outcomes [21, 44, 48]. Indeed, many cultural stereotypes are gender-based. One of which

is that women have weaker math abilities than men. In previous experiments, Spencer et al.

found that depending on women being told that difficult maths tests were respectively gender-

dependent or independent, they did underperform or not compared to men participants [48].

In the neurofeedback field where users are trained to control their brain activity, Wood and

Kober found that experimenters could have a differential impact on neurofeedback training

depending on three parameters : experimenters’ gender, participants’ gender and participants’

level of locus of control in dealing with new technologies [54]. They relate this difference of

performances to psychosocial factors.

An interaction between the experimenter’s and the participant’s gender can also modulate

the experimenter demand effect. For instance, when participants are instructed by an exper-

imenter from the opposite sex, they seem more likely to act in ways that confirm the experi-

menter’s hypothesis [32]. Also, neurophysiological responses associated with defensiveness,

i.e., the aim to avoid being criticised, is associated with greater relative left frontal activation

in the presence of experimenters from the opposite sex compared to experimenters from the

same sex [18]. Thus, an interaction of experimenters’ and participants’ gender can influence

experimental outcomes, including neurological responses measured using EEG [8, 18].

1.3 Research hypotheses

Literature in the field has identified direct factors that affect user learning (e.g., motivation,

attention), although there influence is still understudied. In order to improve BCI reliabil-

ity, it is thus highly relevant to identify, control and manipulate the factors affecting users’

states. Among these many factors (e.g., instructions, feedback or exercise design) our liter-

ature review presented above suggests that the experimental environment may have a major

influence, notably experimenters [42]. Despite the central role that experimenters have in BCI

experimental process and the literature regarding the impact of social presence and emotional

feedback, no studies had yet been led to evaluate their influence on MI-BCI experimental
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outcomes, i.e., performances and user-training.

Experimenter’s profile includes many aspects such as age or personality. As described in Sec-

tion 1.2, literature from other fields suggests that one of the most prevalent characteristics

modulating experimenters’ influence seems to be the gender. Indeed, experimental outcomes

(including neurological responses) may be significantly influenced by gender-related factors.

Such impact might differ depending on the profile of the participants and experimenters.

Therefore, based on the literature, we formulated the following hypotheses:

• (H1 - MI-BCI performances) MI-BCI performances undergo a gender-related influ-

ence of experimenters, possibly modulated by users’ gender.

• (H2 - User experience) User experience undergo a gender-related influence of experi-

menters, possibly modulated by users’ gender.

• (H3 - Experimenters’ and participants’ profile) These effects are modulated by ex-

perimenters’ and participants’ profile.

The remainder of this paper is organized as follows. In Section 2 -Materials & methods-,

we provide information regarding the implementation of the experimental protocol that en-

abled us to test these hypotheses. Then, in Section 3 -Results- and in Section 4 -Discussion-,

we respectively report and discuss the results from our experiment1. Finally, in Section 5 -

Conclusions and Prospects-, we offer a conclusion on the matter as well as ideas and recom-

mendations for future research.

2 Materials & methods

2.1 Participants

Sixty healthy MI-BCI naïve participants (29 women ; age 19-59, M = 29, SD = 9.32) com-

pleted the study. None of them reported a history of neurological or psychiatric disorder. Six
1Preliminary results regarding the interaction of experimenters’ and participants’ gender

on the evolution of MI-BCI performances were previously published in a short conference
paper presented at the 8th International BCI Conference [43]. Here we present additional and
more complete results regarding potential confounding factors such as motor-related artefacts.
We also present for the first time results related to the participants’ psychological profile that
provide first leads toward a better understanding of this experimenters’ influence. Finally, we
also provide new user-experience related results.

8



Experimenters’ Influence on MI-BCI User Training, L. Pillette, A. Roc, B. N’Kaoua, F. Lotte

experimenters conducted the study (3 women ; age 23-37, M = 29.2, SD = 5.6) among whom

two (1 woman) were experienced in BCI experimentation, having conducted more than 100

hours of EEG-based BCI experiments, and four were beginners (2 women) who were trained

to perform a BCI experiment beforehand. All beginner experimenters were trained in a repro-

ducible way by the experienced experimenters. Each experimenter was randomly assigned to

10 participants (5 women and 5 men) that they had never met before the session. All exper-

imenters had the same ethnicity, i.e., Caucasian white native french, and were asked to wear

their usual work clothing (casual, not extravagant, not sexualized). This choice was made

in order to investigate the potential influence of experimenters in usual BCI experimental

settings.

Our study was conducted in accordance with the relevant guidelines for ethical research ac-

cording to the Declaration of Helsinki. Both participants and experimenters gave informed

consent before participating in the study. In order to avoid biased behaviour, this study was

conducted using a deception strategy, partially masking the purpose of the study. Participants

were told that the study aimed at understanding which factors (unspecified) could influence

BCI outcomes, i.e., performances and/or user experience. Experimenters were aware of the

goal of the study. The study has been reviewed and approved by Inria’s ethics committee, the

COERLE (Approval number: 2018-13).

2.2 Experimental protocol

Each participant completed one session of 2 hours with a MI-BCI. During this session, partic-

ipants were first asked to read and sign the consent form and complete several questionnaires

(see the following Subsection 2.3 -Questionnaires-), which took around 20 min. Once the

EEG cap (see Subsection 2.4 -EEG Recordings & Signal Processing-) was placed on their

head, the participants performed six 7-minutes runs during which they had to learn to per-

form two MI tasks with the BCI, i.e., imagine right or left hand movements (around 60 min,

including breaks between the runs). Finally, the participants were asked to fill the post-session

questionnaires, the EEG cap was uninstalled and a debriefing was made (around 15 min).

The Graz training protocol was used [35]. It is divided into two steps: first, the training of

the system and second, the training of the user. The first two runs were used as calibration in

order to provide to the system examples of EEG patterns associated with each of the MI tasks.
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During the first two runs, as the classifier was not yet trained to recognize the mental tasks be-

ing performed by the user, it could not provide a consistent feedback. In order to limit biases

with the other runs, e.g., EEG changes due to visual processing differences between runs, the

user was provided with an equivalent sham feedback, i.e., a blue bar randomly appearing and

varying in length. These two steps and their respective runs are visually depicted in Figure 2.

Figure 2: The BCI session included 6 runs divided into two steps: (1) data acquisition to train the
system (2 runs) and (2) user training (4 runs). After Run 2, the classifier is trained on the data acquired
during the two first runs.

During each run, participants had to perform 40 trials (20 per MI-task, presented in a ran-

dom order), each trial lasted 8s. At t = 0s, a cross was displayed on the screen. At t = 2s, an

acoustic signal announced the appearance of a red arrow, which appeared one second later (at

t = 3s) and remained displayed for 1.25s. The arrow pointed in the direction of the task to be

performed, namely left or right to imagine a movement of the left or right hand. Participants

are instructed to start performing the corresponding MI-task as soon as the arrow appeared,

and to keep doing so until the cross disappeared. Finally, from t = 4.25s, a visual feedback

was continuously provided in the shape of a blue bar, the length of which varied according

to the BCI classifier output. Only positive feedback was displayed, i.e., the feedback was

provided only when the instruction matched the recognized task. The feedback was provided

for 3.75s and was updated at 16Hz, using a 1s sliding window. After 8 seconds, the screen

turned black again until the beginning of the next trial. The participant could then rest for a

few seconds. The timeline of a trial is shown in Figure 3.

Following the recommendations from the literature, the participants were encouraged to per-

form a kinesthetic imagination [31] and to choose their own mental imagery strategies [19],

e.g., imagining waving at someone or playing the piano. Participants were instructed to find a

strategy for each MI task so that the system would display the longest possible feedback bar.
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Figure 3: Timeline of a trial.

Instructions were written in advance and read by the experimenters so that all the participants

started with the same standardized information. As they would have been in any standard

BCI experiment, the experimenters were free to interact with the participants before, during

and after the experiment, e.g., seating and/or standing. They were in charge of welcoming

participants in the lab, showing them the way to the experimental room, making them sign

the consent form, explaining them what would happen during the whole experiment, setting

up the EEG cap on them, asking them to fill-in various questionnaires, calibrating the BCI

system and making it run for the participants, answering questions that the participants may

have, providing them with water if they required some, removing the cap and debriefing with

the participant at the end of the experiment. Experimenters were only asked not to reveal the

aim of the experiment before its very end.

2.3 Questionnaires

As stated in the introduction, the personality and the cognitive profile of participants and ex-

perimenters can respectively influence BCI performances and the experimenter bias [37].

Therefore, we assessed the personality and the cognitive profile of both the participants and

the experimenters. The 5th edition of the 16 Personality Factors (16PF5), i.e., a validated

psychometric questionnaire to assess different aspects of people’s personality and cognitive

profile was filled by both experimenters and participants [7]. This questionnaire identifies 16

primary factors of personality, including tension and autonomy. Participants also completed a

mental rotation test measuring their spatial abilities [51].

The participants also filled pre and post experiment questionnaires especially developed for

BCI purpose by Hakoun et al. These questionnaires assessed the participants’ states and the

user-experience [3, 13]. Based on validated questionnaires, it determines five dimensions of

the user-state and/or the user-experience. Three dimensions, i.e., the mood, mindfulness and
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motivational states, were assessed pre and post training. The evolution of the participant’s

states provides an information regarding the user-experience. Two dimensions, i.e., the cog-

nitive load (amount of cognitive process required to control the MI-BCI system) and the sense

of agency (feeling of control of the participant over the feedback provided by the MI-BCI)

assessed the user-experience post-training.

2.4 EEG Recordings & Signal Processing

To record the EEG signals, 27 active scalp electrodes, referenced to the left earlobe, were

used (Fz, FCz, Cz, CPz, Pz, C1, C3, C5, C2, C4, C6, F4, FC2, FC4, FC6, CP2, CP4, CP6, P4,

F3, FC1, FC3, FC5, CP1, CP3, CP5, P3, 10-20 system). The electromyographic (EMG) ac-

tivity of the hands was recorded using two active electrodes located 2.5cm below the skinfold

on each wrists. The electrooculographic (EOG) activity of one eye was recorded using three

active electrodes. Two of them were located below and above the eye and one was located

on the side. They aimed at recording vertical and horizontal movements of the eye. Physio-

logical signals were measured using a g.USBAmp (g.tec, Austria), sampled at 256 Hz, and

processed online using OpenViBE 2.1.0 [41]. To classify the two MI tasks from EEG data,

we used participant-specific spectral and spatial filters. To do so, we used the now standard

algorithms proposed by Blankertz et al. in [5]. More precisely, from the EEG signals recorded

during the calibration runs, we first identified a participant-specific discriminant frequency

band using the heuristic algorithm proposed in [5] (Algorithm 1 of that paper). Roughly, this

algorithm selects the frequency band whose power in the sensorimotor channels maximally

correlates with the class labels. Here we used channels C3 & C4 after spatial filtering with a

Laplacian filter as sensorimotor channels, as recommended in [5]. The algorithm selected a

discriminant frequency band within the interval from 5 Hz to 35 Hz, with 0.5Hz large bins.

Once this discriminant frequency band automatically identified, we filtered EEG signals in

that band using a Butterworth filter of order 5.

Then, still has recommended in [5], we used the Common Spatial Pattern (CSP) algorithm

[40], in order to optimize 3 pairs of spatial filters, still using the data from the two calibration

runs. Such spatially filtered EEG signals should thus have a band power which is maximally

different between the two MI conditions. We then computed the band power of these spatially

filtered signals by squaring the EEG signals, averaging them over a 1 second sliding window

12



Experimenters’ Influence on MI-BCI User Training, L. Pillette, A. Roc, B. N’Kaoua, F. Lotte

(with 1/16th second between consecutive windows), and log-transforming the results. This led

to 6 different features per time window, which were used as input to a Linear Discriminant

Analysis (LDA) classifier [24]. As mentioned above, this LDA was calibrated on the data

from the two calibration runs. These filters and classifier were then applied on the subsequent

runs to provide online feedback. It should be noted that this BCI design and EEG signal pro-

cessing is a rather standard approach, that has been used in numerous previous experiments

by various laboratories, see, e.g., [4, 5, 14].

2.5 Variables, Factors & Statistical analyses

As presented in the introduction, our experiment aimed at testing three different hypothesis.

In the following Subsections we present the variables, factors and statistical analyses used

to test each of these hypotheses. The statistical analyses mostly consist of ANOVAs, that are

considered as robust against the normality assumption. To the best of our knowledge, no other

non parametric test enabled to perform the analysis that we were interested in. Spearman or

Pearson correlations were also obtained depending on the distribution of the data collected

(assessed using Shapiro-Wilk tests).

2.5.1 H1 - MI-BCI performances

To test our first hypothesis (H1), i.e., MI-BCI performances undergo a gender-related influ-

ence of experimenters, possibly modulated by users’ gender, two measures of performance

were used.

The first performance metric we used is the online Trial-wise Accuracy (TAcc). This metric

is computed by first summing the (signed) LDA classifier outputs (distance to the separating

hyperplane) over all epochs (1s long epochs, with 15/16 s overlap between consecutive win-

dows) during the trial feedback period. If this sum sign matched the required trial label, i.e.,

negative for left hand MI and positive for right hand MI, then the trial was considered as cor-

rectly classified, otherwise it was not. The TAcc for each run was estimated as the percentage

of trials considered as correctly classified using this approach. TAcc is the default accuracy

measure provided online in the MI-BCI scenarios of OpenViBE, and the only performance

metric that the experimenters were seeing online. It should be noted that this metric takes into

account the classifier output and is thus also related to the feedback bar length as it is propor-
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tional to the classifier output. Our participants were instructed to train to obtain not only a

correct classification, but also a feedback bar as long as possible, the TAcc metrics thus take

into account both aspects. Offline, we also computed the Epoch-wise Accuracy (EAcc) as the

percentage of epochs (1s long time windows) from the feedback periods that were correctly

classified. Thus, this metric only considers whether the classification was correct, but not the

feedback bar length as it does not take into account the classifier output. However, it does

reflect how often EEG epochs were correctly classified, and thus how often the subjects re-

ceived correct positive feedback. It is also a rather standard classification performance metrics

in BCI Machine Learning [49], we thus also provide it for reference.

These two measures of MI-BCI performances over the series of 4 user-training runs, i.e.,

“Run”, were then used in two 3-way repeated measures mixed ANOVAs with “ExpGender”,

“ParGender” and “Run” as independent variables and the repeated measures of performance

over the runs, i.e., TAcc or EAcc, as dependent variable. The results are reported in Subsec-

tion 3.1 -H1 - MI-BCI performances-.

2.5.2 H2 - User experience

Second, we wanted to assess the potential impact of the experimenters’ and participants’ gen-

der on the user experience (H2). The user experience is defined by the two percentages pro-

vided by the questionnaire of Hakoun et al. [3, 13] regarding the amount of cognitive load and

sense of agency felt during the training. It is also defined by the evolution of mood, mindful-

ness and motivation of the participants between the beginning and end of the training. This

evolution is assessed by subtracting the measure post training to the measure pre training,

both assessed in percent. The higher the percentages are, the more participants increased their

reported levels of positive emotions and calm, mindfulness, motivation, cognitive load and

sense of agency.

These five measures of user experience were then used in five 2-way ANOVAs or ANCOVAs,

one per dimension, with “ExpGender" and “ParGender” as independent variables and either

the measure of cognitive load, sense of agency, mood, mindfulness or motivation as depen-

dent variable. Performances averaged over all runs, i.e., TAcc or EAcc, were used as covariate

if they were correlated to the dependent variable. The results are reported in Subsection 3.2

-H2 - User experience-.
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2.5.3 H3 - Experimenters’ and participants’ profile

Finally, we wanted to know if other characteristics of the experimenters’ and/or participants’

profile than the gender could provide first elements of comprehension regarding the potential

difference in MI-BCI performances or user-experience (H3). We focused on characteristics

of the profile that were shown to have an influence on BCI performances in previous studies,

i.e., mental rotation scores (MRS), tension and autonomy [16]. Participants with low MRS

[51], tensed and/or non-autonomous (both measured using the 16PF5 questionnaire [7]) were

shown to have lower BCI performances than the others [16].

The groups formed by experimenters’ and participants’ gender did not have similar MRS and

autonomy. Thus, we assessed the influence of these two measures on the results obtained for

H1 using the same ANOVAs that were used to test the hypothesis (two 3-way repeated mea-

sures mixed ANOVAs with “ExpGender”, “ParGender” and “Run” as independent variables

and the repeated measures of performance over the runs, i.e., TAcc or EAcc, as dependent

variable) and the autonomy, i.e., “Autonomy”, or the mental rotation score, i.e., “MRS”, of

the participants as covariate. The results are reported in Annex B -Details regarding the analy-

ses on the potential influence of MRS and autonomy differences in participant groups-.

Then, we focused on the potential influence of the tension. We separated the participants into

two groups depending on their tension “ParTension”. The threshold between high and low

tension was defined using the median tension score (i.e., median of 6, low and high tension

respectively corresponding to scores of [1, 5] and [6, 10], 10 being the maximum). We per-

formed two 3-way ANOVAs with “ParTension", “ExpGender" and “ParGender” as indepen-

dent variables and one of the measures of performance averaged over all runs, i.e., TAcc or

EAcc, as dependent variable. The results are reported in Subsection 3.3 -H3 - Experimenters’

and participants’ profile-.

3 Results

Among the 60 participants, 1 participant did not complete all of the four runs of participant

training due to a technical issue and 3 outperformed the others (by more than two SDs) both

in term of TAcc (respectively, outliers Ms1 = 98.13, Ms2 = 98.13, Ms3 = 99.38 ; Mgrp = 62.78%,

SDgrp = 16.2) and EAcc (outliers Ms1 = 88.94, Ms2 = 90.36, Ms3 = 94.51 ; Mgrp = 59.33%,
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SDgrp = 12.3). Thus, the following analyses are based on the results of 56 participants (27

women).

The automatically selected and subject-specific discriminant frequency bands used to classify

the two MI tasks from EEG data were in the range of 16.4 ± 7.78 Hz to 19.58 ± 7.44 Hz

with an average length of 3.17 ± 2.99 Hz (see Subsection 2.4 -EEG Recordings & Signal

Processing-).

Before it all, we verified that groups formed by participants’ gender, i.e., “ParGender”, and

experimenters’ gender, i.e., “ExpGender”, had comparable profiles. To check that groups

were comparable, we ran 2-way ANOVAs with “ExpGender” and ”ParGender” as indepen-

dent variables and either MRS, tension or autonomy as dependent variable.

Results indicate that groups are comparable in terms of tension. Though, participants’ gender

influence their MRS [F(1, 52) = 17.47, p ≤ 10−3, η2 = .25]. Men (Mmen = 0.07, SD = 0.02)

had higher MRS than women (Mwomen = 0.05, SD = 0.02), which is in accordance with the

literature [22]. Furthermore, participants training with men or women experimenters did not

have the same level of autonomy [F(1, 52) = 4.01, p = .05, η2 = .07]. Participants training

with men experimenters (MmenExp = 6.35, SD = 1.74) were more autonomous than partici-

pants training with women experimenters (MwomenExp = 5.67, SD = 1.66). As the autonomy

and MRS of participants was found to influence their BCI performances [16], we controlled

for the potential influence of these variables in our subsequent analyses (see Appendix B -

Details regarding the analyses on the potential influence of MRS and autonomy differences in

participant groups-).

In the following sections, we report the results of the analyses presented in Section 2.5 that we

performed to test each of our hypotheses.

3.1 H1 - MI-BCI performances

We started by testing the H1 hypothesis, i.e., MI-BCI performances undergo a gender-related

influence of experimenters, possibly modulated by users’ gender. As stated in 2.5.1 -H1 -

MI-BCI performances-, we performed two 3-way repeated measures mixed ANOVAs with

“ExpGender”, “ParGender” and “Run” as independent variables and the repeated measures

of performance over the runs, i.e., TAcc or EAcc, as dependent variable.

First, we performed such ANOVA using the TAcc. After correction of sphericity using the
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Huynh-Feldt method (ε = 0.92), the results revealed no simple effect of “Run” [F(2.8, 144) =

1.81, p = .15, η2 = .03], “ExpGender” [F(1, 52) = 0.54, p = .47, η2 = .01] nor “ParGender”

[F(1, 52) = 0.09, p = .76, η2 = .01]. They also revealed no interaction of “Run*ExpGender”

[F(2.8, 144) = 0.08, p = .96, η2 = 10−2] nor “ParGender*ExpGender” [F(1,52) = 0.60, p =

.44, η2 = .01]. Though, the “Run*ParGender” interaction was significant [F(2.8, 144) =

5.98, p = .001, η2 = .1]. Figure 4 represents the evolution of the participants’ TAcc depending

on their gender.

Figure 4: TAcc evolution depending on participants’ gender.

A significant “Run*ParGender*ExpGender” interaction was found as well [F(2.8, 144) =

3.46, p = .02, η2 = .06]. Figure 5 represents the participants’ TAcc evolution depending on the

experimenters’ and participants’ gender.

Next, we performed this same analysis using the EAcc. After correction of sphericity using

the Huynh-Feldt method (ε = 0.8), the results revealed no simple effect of “Run” [F(2.4, 125)

= 1.53, p = .22, η2 = .03], “ExpGender” [F(1, 52) = 0.26, p = .61, η2 ≤ 0.01] and “Par-

Gender” [F(1, 52) = 0.23, p = .64, η2 ≤ 0.01]. They revealed no interaction of “Run*Par-

Gender” [F(2.4, 125) = 1.92, p = .14, η2 = .04], “Run* ExpGender” [F(2.4, 125) = 0.23, p =

.83, η2 = 0.01] nor “ParGender*ExpGender” [F(1, 52) = 0.92, p = .34, η2 = .02]. Finally, the

interaction of “Run*ParGender*ExpGender” [F(2.4, 125) = 1.38, p = .26, η2 = .03] was not
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Figure 5: TAcc evolution depending on the experimenters’ and participants’ gender.

significant either.

We controlled for the potential influence of the most common artefact sources, i.e., electroocu-

lography (EOG) and electromyography (EMG) [10], on our performances measures, i.e.,

TAcc and EAcc, in additional analyses that are presented in Appendix A -Details regard-

ing the analyses on the potential influence of artefact sources-. These analyses did not reveal

an influence of EOG or EMG artefacts that could have affected the EEG-based BCI perfor-

mances.

We also controlled for the potential influence of MRS and autonomy differences in partic-

ipant groups formed using the participants’ and experimenters’ gender. These analyses are

presented in Appendix B -Details regarding the analyses on the potential influence of MRS

and autonomy differences in participant groups- and did not reveal any potential bias from

MRS and autonomy differences in participant groups.

3.2 H2 - User experience

Then, we tested the H2 hypothesis, i.e., user experience undergo a gender-related influence of

experimenters, possibly modulated by users’ gender. As stated in 2.5.1 -H1 - MI-BCI per-

formances-, we analysed the influence of participants’ and experimenters’ gender on five
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indicators of user-experience, i.e., mood, mindfulness, motivation, cognitive load and sense

of agency.

First, we checked if the performances had an impact on the reported user-experience mea-

sures. We found that the sense of agency post training was positively correlated to both the

TAcc [Spearman correlation, r(56) = .38, p < 10−2] and EAcc [Spearman correlation, r(56) =

.34, p = .01] metrics.

Then, we performed five 2-way ANOVAs or ANCOVAs, one per dimension, with “ExpGen-

der" and “ParGender” as independent variables and either the measure of cognitive load,

sense of agency, mood, mindfulness or motivation as dependent variable. Performances av-

eraged over all runs, i.e., TAcc or EAcc, were used as covariate if they were correlated to the

dependent variable.

We did not find any significant single effect or interaction including the experimenters’ gender

for the cognitive load, sense of agency, mood, mindfulness or motivation (see Appendix C).

We only found a significant influence of “ParGender” [F(1, 52) = 6.23, p = .02, η2 = .11]

on the difference of mindfulness post and pre training. Overall, men participants had a

decrease of mindfulness (MmindfulnessMen = -8.33 ± 3.01) whereas women participants had

an increase of mindfulness (MmindfulnessWomen = 2.5 ± 3.12) over the session.

3.3 H3 - Experimenters’ and participants’ profile

As presented in the introduction, a previous study has shown that participants’ autonomy and

tension both respectively correlate positively and negatively with BCI performances [16]. As

there were differences in autonomy between the participant groups formed by experimenters’

and participants’ gender, we analysed the potential influence of participants’ autonomy in spe-

cific analyses whose results are presented in Appendix B -Details regarding the analyses on

the potential influence of MRS and autonomy differences in participant groups-. These anal-

yses did not reveal any potential influence of the differences in autonomy and MRS on our

results. Thus, in this Section, we only focused on the tension to perform analyses related to

the psychological profile of the participants and experimenters. High tension scores computed

from the 16PF5 questionnaire indicate highly tensed, impatient and frustrated personalities

whereas low scores indicate relaxed, patient and composed personalities.
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3.3.1 Assessing the influence of participants’ tension

We checked if an influence of participants’ tension could be found in our results by perform-

ing an analysis of correlation between participants’ tension and our measures of performance.

It revealed a negative correlation between participants’ tension and both the TAcc [Spear-

man correlation, r(56) = -.39, p < 10−2] and EAcc [Spearman correlation, r(56) = -.29, p

= .03] metrics, which is in accordance with previous results [16].

Therefore, we investigated if the tension could explain the differences of performances’ de-

pending on the participants’ and experimenters’ gender. As stated in 2.5.1 -H1 - MI-BCI per-

formances-, we performed two 3-way ANOVAs with “ParTension", “ExpGender" and “Par-

Gender” as independent variables and one of the measures of performance averaged over all

runs, i.e., TAcc or EAcc, as dependent variable.

When using the TAcc as a measure of performance, we did not find any simple effect of “Exp-

Gender” [F(1, 48) = 1.51, p = .23, η2 = .03], nor “ParGender” [F(1, 48) = 1.72, p = .2, η2 =

.04]. Though, a trend toward a weak impact of “ParTension” was found [F(1, 48) = 3.8, p =

.06, η2 = .07]. No interactions were found for “ExpGender*ParGender” [F(1,48) < 10−3, p =

1, η2 < 10−3], “ParTension*ParGender” [F(1, 48) = 0.18, p = .67, η2 < 10−2], “ParTension*Exp-

Gender*ParGender” [F(1, 48) = 0.47, p = .5, η2 = .01]. Though a significant and strong

interaction was found between “ParTension*ExpGender” [F(1, 48) = 18.94, p < 10−3, η2

= .28].

When using the EAcc as measure of performance we did not find any simple effect of “Exp-

Gender” [F(1, 48) = 1.12, p = .3, η2 = .02], nor “ParGender” [F(1, 48) = 2.59, p = .11, η2 =

.05]. Though, a weak but significant impact of “ParTension” was found [F(1, 48) = 4.43, p

= .04, η2 = .08]. No interactions were found for “ExpGender*ParGender” [F(1, 48) = 0.02,

p = .89, η2 < 10−3], “ParTension*ParGender” [F(1, 48) = 0.1, p = .75, η2 < 10−2], “ParTen-

sion*ExpGender* ParGender” [F(1, 48) = 0.72, p = .1, η2 = .02]. Though, a significant in-

teraction was found between “ParTension*ExpGender” [F(1, 48) = 21.98, p < 10−3, η2 =

.31].

Figure 6 represents the average performances of participants with tensed and non-tensed per-

sonalities when taking into account the gender of their experimenters. Non-tensed participants

seem to have higher performances, i.e., TAcc and EAcc, when training with women exper-

imenters while tensed participants seem to have higher performances, i.e., TAcc and EAcc,

20



Experimenters’ Influence on MI-BCI User Training, L. Pillette, A. Roc, B. N’Kaoua, F. Lotte

when training with men experimenters.

Figure 6: Estimated mean performances depending on participants’ tension and experimenters’ gender.

3.3.2 Assessing the influence of experimenters’ tension

Previous results found that a similarity between participants’ and experimenters’ profile could

lead to higher bias in experimental results [44]. As participants’ level of tension had a signif-

icant impact on their results, we analysed the potential influence of the level of tension of our

experimenters. The tension score in the personality of the three men and three women experi-

menters were respectively of [5, 5 and 7] and [3, 4 and 5], indicating a higher level of tension

among men experimenters than among women experimenters. Therefore, we investigated

further to know if the influence of the experimenters’ came from a psychosocial factor related

to their gender or from their level of tension which was higher among men experimenters than

women participants.

We checked if, independently of gender, there was of correlation between the tension of the

experimenter and the performances of the participants. We did not find any correlation of the

experimenters’ tension with the TAcc [Spearman correlation, r(56) = .03, p = .83], nor with

the EAcc [Spearman correlation, r(56) = .11, p = .44].
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3.4 Summary of the results

Hypothesis Analyses Significant results

H1-
MI-BCI

performances

3-way repeated measures mixed ANOVA
with “ExpGender”, “ParGender” and
“Run” as independent variables and the
repeated measures of TAcc performance
over the runs as dependent variable

“Run*ParGender”
[F(2.8, 144) = 5.98, p = .001, η2 = .1]
“Run*ParGender*ExpGender”
[F(2.8, 144) = 3.46, p = .02, η2 = .06]

H2-
User experience

2-way ANOVA with “ExpGender*
ParGender” as independent variables and
the measure of mindfulness as dependent
variable

“ParGender”
[F(1, 52) = 6.23, p = .02, η2 = .11]

H3-
Experimenters’

and participants’
profile

Spearman correlation

Negative correlation between participants’ tension
and both TAcc
[Spearman correlation, r(56) = -.39, p < 10−2]
and EAcc
[Spearman correlation, r(56) = -.29, p = .03]

3-way ANOVA with “ParTension",
“ExpGender", “ParGender” as independent
variables and the TAcc measures of
performance averaged over all runs as
dependent variable

“ParTension*ExpGender”
[F(1, 48) = 18.94, p < 10−3, η2 = .28]

3-way ANOVA with “ParTension*
ExpGender*ParGender” as independent
variables and the EAcc measures of
performance averaged over all runs as
dependent variable

“ParTension”
[F(1, 48) = 4.43, p = .04, η2 = .08]
“ParTension*ExpGender”
[F(1, 48) = 21.98, p < 10−3, η2 = .31]

Table 1: Summary of the significant results per hypothesis.

4 Discussion

In the following Subsections, we discuss the results obtained for each of our hypothesis.

4.1 H1 - MI-BCI performances

To test the H1 hypothesis, i.e., MI-BCI performances undergo a gender-related influence of

experimenters, possibly modulated by users’ gender, we used two metrics of performances.

The TAcc, which represented what the participants were instructed to improve during train-

ing, and the EAcc, a traditional measure of BCI performances. We did not find a single influ-

ence of the experimenters’ and/or participants’ gender on these performances. Though, we

found a significantly different evolution across runs of the TAcc between men and women

participants (see Figure 4). Women participants seemed to start the training with already good

TAcc, which decreased during the second run and increased again during the last run. Men

participants, however, started with rather low TAcc and then drastically improved during the

second run and then stagnated to reach slightly higher final TAcc than women.
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In addition, experimenters’ gender seemed to have an influence on this previous interaction.

Indeed, the evolution of the TAcc appears to depend on participants’ and experimenters’ gen-

der (see Figure 5). We found the same tendency for men participants to start with lower TAcc

at the beginning of the session independently of the experimenter’s gender. However, men

seemed to start with drastically lower TAcc when they were training with men experimenters.

They also seemed to have higher TAcc throughout the session when they were training with

women experimenters. Women participants seemed to start with higher TAcc when training

with men experimenters, though their TAcc tended to drop throughout the session. However,

when training with women experimenters, they seemed to have a great increase in TAcc dur-

ing the last run. In social psychology, Nichols and Maner found that participants who are

instructed by an opposite-sex experimenter tend to confirm the experimenter’s expectation

regarding the experimental results [32]. The initial performances (during R3) are consistent

with their findings. However, this does not seem to hold true for the evolution of the partici-

pants’ performances.

Interestingly enough, our results regarding the impact of participants’ and experimenters’

gender do not match those of a recently published neurofeedback study [54]. We do concur

on the fact that an interaction of participants’ and experimenters’ gender influences perfor-

mances. Though, Wood and Kober found that the combination of women participants training

with women experimenters hampered the training outcomes of the participants [54]. They ob-

served no learning effect in this group. The influence of the participants’ tension found in our

results might partly explain this difference of results. In their article, they found a strong and

significant positive correlation between the locus of control in dealing with technology, i.e.,

the level of control that people feel that they have over the control of a technology, and the

performances of women participants training with women experimenters. We did not assess

this trait of our participants, thus the difference in results might also arise from a difference in

the locus of control of our women participants. Even though the locus of control of our par-

ticipants was not assessed, we assessed the sense of agency they felt toward the feedback that

their were provided with during the training. We did not observe any gender influence over

the sense of agency reported by our participants. Overall, our analysis of the user-experience

metrics only revealed an influence of participants’ gender on the evolution of the mindfulness

metric. Men participants tended to have a decrease of mindfulness over the session, when
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women participants tended to increase their level of mindfulness. Also, Wood and Kober do

not report controlling for the prior acquaintanceship between their participants and experi-

menters [54]. Rosenthal found that this could modulate the bias induced by experimenters

mostly between men experimenters and women participants [44]. Another explanation of the

differences found between our two studies would be that, as stated by Wood and Kober, by

asking their participants to fill a questionnaire regarding their locus of control in dealing with

technology, they might have activated a stereotype bias [54]. Such stereotype was not acti-

vated in our study. Finally, the protocol used by Wood and Kober was a neurofeedback one

aiming at up-regulating the sensorimotor rhythm, and not a two-commands MI-BCI training.

This most possibly also contributes to the differences of results obtained.

Current results do not seem to be biased by the mental rotation scores nor the autonomy of the

participants. Indeed, the same analysis that led us to these conclusions were run with these

variables as covariate. Results do not reveal any impact of these variables, and revealed the

same significant effect as mentioned above. Artefacts potentially arising from eye or hand

movements did not seem to bias of our results either.

4.2 H2 - User experience

Our results did not indicate any influence related to the gender of the experimenter on the par-

ticipants’ user experience. Such influence could have been expected based on previous results

indicating that a social presence and an emotional feedback provided through the use of a

learning companion impacted one dimension of the user experience, i.e., how the participants

felt about their ability to learn and memorize how to use a MI-BCI. Further experiments using

different metrics of the user experience might provide more insight on the potential influence

of experimenters on the user experience.

4.3 H3 - Experimenters’ and participants’ profile

When investigating the influence of the tension of the participants on these results, we found

results that tend to be in accordance with the ones of Jeunet et al. [16]. Participants with tensed

personality trait tend to have lower performances than non-tensed participants. An influence

of participants anxiety was already found in early researches on regulation of alpha [50]. Our

results revealed that the influence of the participants’ tension on MI-BCI performances seems
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to be modulated by the gender of the experimenter. Tensed and non tensed participants had

better performances when training respectively with men experimenters and women experi-

menters. This result might provide a first lead toward understanding the interaction between

experimenters’ and participants’ influence on MI-BCI performances. We did not find any sig-

nificant influence of experimenters’ tension on participants’ performances. In the future, test-

ing whether a similarity of experimenters’ and participants’ psychological profiles could lead

to higher potential bias in the results would be of interest. In studies on social psychology,

Rosenthal found that participants were more likely to respond to experimenters’ expectancy

when their level of anxiety was similar to their experimenter’s level of anxiety [44]. He hy-

pothesised that a similarity of experimenters’ and participants’ psychological profiles could

lead to higher potential bias in the results. We can make the same hypothesis as Rosenthal

to explain our results as men experimenters in our study had higher scores of tension than

women experimenters [44]. Non-tensed participants might have been more inclined to re-

spond to women experimenters’ expectancy, i.e., to have high MI-BCI performances, who

also tended not to be tensed. Tensed participants, however, might have been more inclined

to respond to men experimenters’ expectancy who also tended to be tensed. The number of

participants did not enable to perform an analysis of both the experimenters’ and participants’

gender and tension at once, as the number of participants per group would have been too low.

Furthermore, experimenters’ level of tension was highly dependent on their gender. Larger

scaled experiments with a greater number of experimenters would provide insight on this

hypothesis.

4.4 Limitations

While this study does provide first insights on the interaction between experimenters’ and par-

ticipants’ gender, future studies are needed to further explore it and explore its unknown long

term influence. Studies with a larger number of experimenters and participants might provide

more information regarding the underlying factors of this gender influence. For instance, it

could confirm or disprove the interaction between experimenters’ gender and participants’

tension. If confirmed, our hypothesis regarding the beneficial similarity between the level of

tension in participants’ and experimenters’ personality could be assessed.

Furthermore, our results might be explained by other factors. Indeed, inter-experimenter vari-
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ability other than gender (e.g., teaching competence), intra-experimenter variability (e.g.,

appearance and outfit, fatigue, expectations), inter- and intra-participants variability (e.g.,

attractiveness, or motivation) - plus the interaction’s characteristics (e.g., physical proximity,

use of humour, familiarity, verbal and non-verbal communication, quantity of interaction, etc.)

were not analysed. Indeed, many of these variables are very difficult to measure formally

and objectively. Moreover, we were already measuring various aspects of the users and ex-

perimenters personality and states, using validated questionnaires, and the experiment was

already long. Thus, measuring these additional factors would have required to remove some

of the factors actually measured (to keep a reasonable experiment duration), which, according

to the literature, were the one with the most influence, at least theoretically. In summary, our

study shows an interaction between experimenters and participants on the evolution of MI-

BCI performances. This interaction seems related to the experimenters’ and participants’

gender. However, future experiments should confirm and provide more insights regarding this

interaction.

5 Conclusions and Prospects

In this paper, we investigated the presence of an experimenters’ and participants’ gender in-

teraction on MI-BCI training outcomes, i.e., performances and user-experience. We led this

work in response to the fact that previous BCI experiments indicated an influence of social

presence and emotional feedback on BCI user training. Experimenters are the main source of

such presence and feedback during BCI user training. Though, their impact on the MI-BCI

user training outcomes remained unassessed. Also, results from different fields indicate that

an interaction between experimenters’ and participants’ gender is likely to influence experi-

mental outcome. Therefore, we asked 6 experimenters to each train 5 women and 5 men (60

participants in total) to perform right versus left hand motor imagery-BCI control over one

session.

We did find an interaction between experimenters’ and participants’ gender on the evolution

of trial-wise accuracy over a session. Furthermore, participants’ mean performances were

influenced by an interaction of the experimenters’ gender and level of tension in participants’

personality. No single effect or interaction related to the experimenters could be found on the
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user-experience.

Our results highlight the need for research methods that formally take into account a greater

amount of influencing factors (such as the experimenter) emerging from the experimental pro-

tocol and its context. For instance, the instructions that participants are provided with regard-

ing the strategies they should adopt to perform mental-imagery tasks, are rarely formalized or

mentioned in papers. Furthermore, most published experimental studies do not report taking

into account the potential influence of experimenters. Both the literature and experimental

results indicate that experimenter-related factors might explain part of the between-subject

and/or between-study variability and contribute to the improvement and adaptation of MI-BCI

training.

We argue that in the future the influence of experimenters should be considered carefully

while designing and reporting experimental protocols. Such consideration would benefit many

fields, in particular the Human Computer Interface and the BCI ones. A better understand-

ing of the experimenters’ influence could particularly lead to an improvement of MI-BCIs

as they rely on a long and tedious user training during which experimenters have an impor-

tant role. Other BCIs paradigms, such as P300-based BCIs2, do not have such user training.

However, regardless of the BCI paradigm or even field, during experimental studies assessing

experimenter-unrelated factors and while experimenters’ influence is not well understood,

the bias that can arise from experimenters should be limited and controlled. Double-blind

methods, in which neither the experimenters nor the participants know the group in which

the participant is included, do limit the experimenter related bias. They are already used in

clinical research. It would be worth applying similar methods in non-clinical experiments.

It should be noted that hiring research assistants to perform the experiments might not be

a solution to limit experimenter-related bias. Indeed, it was shown that experimenters can

unconsciously transmit their bias to their research assistants [44]. The literature suggests sev-

eral other solutions to limit and control the potential bias arising from the experimenter [28,

45]. These methods include: monitoring participant-experimenter interaction, increasing the

number and diversity of data collectors, pre-testing the method and controlling expectancy,

providing an extensive training for administrators/ data collectors, monitoring and standard-
2P300-based BCIs rely on the elicitation of a characteristic neurophysiological response,

i.e., the P300, following the presentation of an expected and unpredictable stimulus that the
participants attend to.
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izing the behaviour of experimenters with detailed protocol and pre-written instructions for

the participant, and statistically controlling for bias. The use of learning companions, such

as PEANUT (see Figure 1) [38], could also limit the experimenters’ role while providing the

important social presence and emotional feedback in a more reproducible form [39].

In conclusion, social presence and emotional feedback are meant to increase the effort, mo-

tivation and engagement of the participants throughout the learning. As any feedback, they

must be carefully studied as they can be double-edged. On the one hand, they can benefit the

learning outcome, depending on the participants’ profile [6, 26, 33, 38]. On the other hand,

as any feedback, they can have a detrimental impact on the user training and the reliability of

experimental results when they are incorrectly designed and assessed [54].
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Appendix

A Details regarding the analyses on the potential influence of artefact

sources

Because brain signals are really small in amplitude and EEG suffers from very low signal

to noise ratio (SNR), i.e., high vulnerability to artefact sources, we controlled for the most

common artefact sources, i.e., electrooculography (EOG) and electromyography (EMG) [10].

The aim was to check if specific patterns could be found in EOG or EMG signals that could

have affected MI classification by the BCI. The presence of such task-specific patterns could

have confounded the measured MI-BCI performances. We thus wanted to assess how much

EMG or EOG artefacts could have affected the recorded EEG signals and influenced the MI-

BCI classification output and accuracy. To do so, we computed two metrics per source of

potential artefacts.

First, we looked at left vs right MI classification accuracy, i.e., TAcc and EAcc, based on

EOG or EMG signals, using a classifier built on the calibration runs. This was computed us-

ing CSP/LDA calibrated on the EOG or EMG signals only from the two calibration runs,

filtered in the participant-specific discriminant frequency band. Note that we used the same

frequency band as for the online experiment since only task-related EMG and EOG variations

occurring in the same frequency band as the one used by the EEG-BCI classifier could have

affected this classifier output, and therefore the resulting BCI accuracy. The resulting classi-

fier was then applied on the subsequent runs to obtain a measure of EOG or EMG accuracy

per run. The accuracies based on such calibration run can reflect the presence of task-specific

EMG or EOG artefacts in EEG signals, during both the calibration and the training phases,

which might have influenced online EEG-based BCI performances.

Second, the run-specific left vs right MI EOG or EMG accuracies were computed using a

cross-validation method. EOG or EMG data only from each run, filtered in the participant-

specific discriminant frequency band, were divided into five subsets of data. The CSP and

an LDA were successively calibrated on four sets and tested on the remaining one. The run-

specific EOG or EMG metric is the mean classification accuracy obtained for the five subsets

for each of the runs. The run-specific accuracies reflect the presence of task-specific EOG or
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EMG artefacts that could have affected online EEG-based BCI performance, during each run.

The results of these analyses are presented in the sections below.

A.1 Checking the influence of EMG artefacts

We first assessed whether EMG artefacts, or real unsolicited hand movements from our partic-

ipants, could have had an impact on our main results, i.e., the interactions we found between

the evolution of trial-wise accuracy and experimenters’ and participants’ gender that we ob-

tained with an EEG-based classification accuracy.

We inspected the potential relation between mean EEG-based classification accuracies, i.e.,

TAcc and EAcc, and EMG-based classification accuracies, i.e., calibration runs based and

run specific, by performing analyses of correlation. We did not find any correlation between

the mean calibration runs based EMG accuracy and the mean TAcc [Spearman correlation,

r(54) = -.2, p = .15] nor with the mean EAcc [Spearman correlation, r(52) = -.15, p = .29]. No

correlation could be found either between the mean run specific EMG accuracy and the TAcc

[Spearman correlation, r(53) = -.1, p = .49] nor the EAcc [Spearman correlation, r(51) = -.86,

p = .55].

A.2 Checking the influence of EOG artefacts

Similarly to the previous section, we inspected if EOG artefacts or eye movements performed

by our participants could have had an impact on our main results that we obtained with EEG-

based classification accuracies.

We inspected the potential relation between mean performances, i.e., TAcc and EAcc, and

EOG-based classification accuracies, i.e., calibration runs based and run specific, by perform-

ing analyses of correlation. We did not find any correlation between the mean calibration

runs based EOG accuracy and the mean TAcc [Spearman correlation, r(54) = -.23, p = .11]

nor with the mean EAcc [Spearman correlation, r(52) = -.17, p = .22]. Though, a significant

correlation could be found between the mean run specific EOG accuracy and both the TAcc

[Spearman correlation, r(56) = .31, p = .02] and the EAcc [Spearman correlation, r(54) = .36,

p < 10−2].

We hypothesized that these significant correlations resulted from EEG acquisitions from the

electrodes positioned to measure EOG. Indeed, when the same analysis was performed us-
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ing cross-validation on data filtered on EOG frequency band, i.e., 0.5-4Hz, we did not find

any correlation with the mean TAcc [Spearman correlation, r(54) = .05, p = .73] nor with the

mean EAcc [Spearman correlation, r(52) = .12, p = .39].

B Details regarding the analyses on the potential influence of MRS and

autonomy differences in participant groups

As stated in Section 3 -Results-, the groups of participants formed using the participants’

and experimenters’ gender had differences in terms of mental rotation scores and autonomy.

Therefore, we studied the potential impact of these differences on the results presented in

Section 3.1 -H1 - MI-BCI performances-.

We ran our same main analyses than in this section (two 3-way repeated measures mixed

ANOVAs with “ExpGender”, “ParGender” and “Run” as independent variables and the

repeated measures of performance over the runs, i.e., TAcc or EAcc, as dependent variable)

using the autonomy, i.e., “Autonomy”, or the mental rotation score, i.e., “MRS”, of the par-

ticipants as covariate. When performing the analysis on the TAcc we found no impact of the

autonomy (“Autonomy” [F(1, 51) = 0.26, p = .61, η2 < 10−2], “Autonomy*Run” [F(2.48,

126.6) = 0.81, p = .47, η2 = .02]) nor of the mental rotation score (“MRS” [F(1, 51) = 1.75, p

= .19, η2 = .03], “MRS*Run” [F(2.47, 125.79) = 1.52, p = .22, η2 = .03]). When investigating

the EAcc we did not find any single effect or interaction of the autonomy (“Autonomy” [F(1,

51) = 0.44, p = .51, η2 = 10−2], “Autonomy*Run” [F(2.1, 107.14) = 1.46, p = .24, η2 = .03])

nor of the mental rotation score (“MRS” [F(1, 51) = 1.05, p = .31, η2 = .02], “MRs*Run”

[F(2.18, 111.18) = 1.35, p = .27, η2 = .03]) either.

C Details regarding the analyses on the potential influence of experi-

menters’ gender on the user-experience

We analysed the influence of experimenters’ and participants’ gender on the five dimensions

of the user-experience, i.e., mood, mindfulness, motivation, cognitive load and sense of agency.

First, we checked if the performances had an impact on the reported user-experience mea-

sures. We found that both the TAcc [Spearman correlation, r(56) = .38, p < 10−2] and EAcc

37



Experimenters’ Influence on MI-BCI User Training, L. Pillette, A. Roc, B. N’Kaoua, F. Lotte

[Spearman correlation, r(56) = .34, p = .01] metrics were positively correlated to the sense of

agency post training.

Therefore, we performed five 2-way ANOVAs or ANCOVAs, one per dimension, with “Exp-

Gender*ParGender” as independent variables and either the measure of cognitive load, sense

of agency, mood, mindfulness or motivation as dependent variable. Performances averaged

over all runs, i.e., TAcc or EAcc, were used as covariate if they were correlated to the depen-

dent variable.

No influence was found on the cognitive load reported post training of “ExpGender” [F(1,

52) = 1.65, p = .2, η2 = .03], “ParGender” [F(1, 52) = 2.89, p = .1, η2 = .05] nor “ExpGen-

der*ParGender” [F(1, 52) = 0.05, p=0.95, η2 < 10−3].

No influence was found on the sense of agency of “ExpGender” [F(1, 52) = 0.03, p = .85, η2

= 10−3], “ParGender” [F(1, 52) = 0.01, p = .92, η2 < 10−3] nor “ExpGender* ParGender”

[F(1, 56) = 0.44, p = .51, η2 < 10−2] using the TAcc as covariable. Neither was there any

influence found with the EAcc as covariable of “ExpGender” [F(1, 56) = 0.08, p = .78, η2

= 10−2], “ParGender” [F(1, 52) = 10−3, p = .97, η2 < 10−3] nor “ExpGender* ParGender”

[F(1, 52) = 0.52, p = .47, η2 = .01].

No influence was found on the difference of mood reported post and pre training of “ExpGen-

der” [F(1, 52) = 0.06, p = .81, η2 = 10−3], “ParGender” [F(1, 52) < 10−2, p = .93, η2 < 10−3]

nor “ExpGender*ParGender”[F(1, 52) = 0.13, p = .72, η2 < 10−2].

No influence was found on the difference of mindfulness reported post and pre training of

“ExpGender” [F(1, 52) = 0.04, p = .85, η2 = 10−3] or “ExpGender*ParGender” [F(1, 52)

= 0.92, p = .34, η2 = .02]. Though, a significant impact of “ParGender” [F(1, 52) = 6.23, p

= .02, η2 = .11] was found. Overall, men participants had a decrease of mindfulness (Mmind-

fulnessMen = -8.33, SD = 3.01) whereas women participants had an increase (Mmindfulness-

Women = 2.5, SD = 3.12) of mindfulness over the session.

No influence was found on the difference of motivation reported post and pre training of “Exp-

Gender” [F(1, 52) = 0.63, p = .43, η2 = .01], “ParGender” [F(1, 52) = 0.78, p = .38, η2 =

.02] nor “ExpGender*ParGender” [F(1, 52) = 0.97, p = .33, η2 = .02].
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