Dionisis Philippas 
email: dionisis.philippas@essca.fr.
  
Catalin Dragomirescu-Gaina 
email: catalinflorinel.dragomirescugaina@unicatt.it.
  
Emilios Galariotis 
email: egalariotis@audencia.com.
  
Chasing the 'green bandwagon' in times of uncertainty

Keywords: dynamic herding, pricing dynamics, green energy, crude oil. JEL classification: C24, G14, G15, Q40

la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

An increasing number of institutional investors are divesting1 from fossil fuel stocks and shifting billions of dollars into alternative assets belonging to a new sector, which claims to promote a green (i.e. environmental-friendly) investment agenda (Kaminker and Steward, 2012). Attracted by the allure of wide media coverage, many smaller investors are jumping onto this same bandwagon for fear of missing out on an investment opportunity that seems to align better with the ongoing shifts in social preferences [START_REF] Bassen | Climate information in retail investors' decision-making: Evidence from a choice experiment[END_REF]. According to Morningstar, net inflows into the sustainable sector during 2019 stand at USD 20.6 bn., which is nearly four times the USD 5.5 bn. record that was registered for the previous year. 2 A trending market can enable investors to gain more from trading rather than from acting on their private information signals, particularly when prices do not efficiently incorporate all available information. This raises the probability of information cascades, speculative bubbles and herding behaviour [START_REF] Cipriani | Herd behavior and contagion in financial markets[END_REF]. In mid-2000, a trending market in German renewable energy stocks led to speculative patterns, which only worked to amplify the market collapse after a shift in government policies [START_REF] Bohl | From hero to zero: Evidence of performance reversal and speculative bubbles in German renewable energy stocks[END_REF]. Because herding is usually associated with information frictions and volatility spikes, its impact on financial markets and prices can be substantial and persistent [START_REF] Dasgupta | Institutional trade persistence and long-term equity returns[END_REF][START_REF] Schmitt | Herding behaviour and volatility clustering in financial markets[END_REF].

Energy markets are currently lying at the crossroads between operating with an old technology that relies heavily on fossil fuels, and embracing a new, greener one. As with every technological transition, this implies higher levels of risk as well as uncertainty, so investors face bigger challenges regarding their strategic portfolio allocations to different energy asset classes. 3Our aim here is to analyse changes in investors' group behaviour with respect to U.S. energy equities on the back of the ongoing greening in investment preferences, whose shifts can contribute to large market fluctuations, especially when reacting to changes in policies, social attitudes, or information sets. Consequently, we outline policy directions that might help investors in energy equities to navigate through wide swings in uncertainty and overcome the existing information barriers that characterise green energy investing today.

Given the growing hype around climate change topics, investors considering green asset allocations should account for potential price distortions that are known to arise in markets characterised by informational frictions and barriers. In the case of green investing, access to relevant information is often costly or limited due to the high uncertainty surrounding the longterm economic viability prospects of many green technologies (Kaminker and Steward, 2012).

As long as this type of uncertainty prevails, investing in an old technology (i.e. oil-dependent assets) can be regarded as less risky4 than investing in a new (i.e. green) technology. This happens because information frictions increase uncertainty that delays the necessary learning process of identifying the most profitable market opportunities evaluated in risk-adjusted terms.

A different but equally important type of uncertainty arises from regulations and government policies that greatly impact on the innovation process on which the economic success of these new (particularly green) technologies depends upon. Where public financial institutions invest in higher risk technologies, they create a direction for change that can help reducing this uncertainty [START_REF] Mazzucato | Public financing of innovation: new questions[END_REF]2018). Wustenhagen and Menichetti (2012), [START_REF] Andersson | Hedging climate risk[END_REF], and [START_REF] Pliousis | A multicriteria assessment approach to the energy trilemma[END_REF] discuss in detail how changes in various government policies and regulations affect the trade-offs associated with investing in the green energy sector.

Our broader approach on uncertainty allows us to disentangle between drivers of changes in behaviour (i.e. social learning) originating from asset-specific sources. With different motivations to hold different assets, changes in information type, availability and cost can have a great impact on investors' behaviour. Green assets are considered for portfolio diversification motives (Miralles-Quiros and Miralles-Quiros, 2019) and as a way to attract more client inflows.

Different motives apply to crude oil portfolio allocations, particularly in the current social context in which awareness on social, environmental and governance (ESG) criteria and climate change have increased substantially. 5 Crude oil allocations serve investors in other ways, and thus can affect their behaviour for different reasons. For example, [START_REF] Andersson | Hedging climate risk[END_REF], [START_REF] Batten | Addressing COP21 using a stock and oil market integration index[END_REF] and [START_REF] Engle | Hedging climate change news[END_REF] suggest risk management techniques to hedge climate-related risks with allocations to crude oil, along with (global) stocks. For [START_REF] Chkili | Instabilities in the relationships and hedging strategies between crude oil and US stock markets: do long memory and asymmetry matter?[END_REF] and [START_REF] Omar | Diversifying away the risk of war and crossborder political crisis[END_REF], crude oil can serve as a hedge against uncertainty stemming from the (geo-)political realm.

With no certainty regarding the long-term prospects of the new green technologies and 5 Much of the current hype in green investing seems to be driven by the idea that renewable assets can be a substitute for fossils, neglecting therefore any possible technologic complementarity (e.g. due to an intermittent provision of energy from some renewable sources). Yet, neglecting only adds to the information noise that investors must deal with in their investment decisions. [START_REF] Bassen | Climate information in retail investors' decision-making: Evidence from a choice experiment[END_REF] provide experimental evidence on how presentation format and climate label designs can nudge retail investors into more climate-friendly investments. We thank an anonymous reviewer for pointing to us the importance of complementarity between the two technologies. without a coherent global policy response (to which the United States withdrawal from the Paris climate accord is the latest proof), the efficiency of the financial markets remains key to directing our society's responses to climate-related challenges (Kaminker and Steward, 2012). We frame this problem from the perspective of investors in energy equity markets, for whom market efficiency represents a first-order concern. The danger is that investors' own behavioural biases interact with this multidimensional uncertainty, complicating the social learning process and raising market volatility that further obscures price discovery [START_REF] Avery | Multidimensional uncertainty and herd behavior in financial markets[END_REF]. 6 Within a market environment characterised by costly or limited information and constant regulatory challenges, this multidimensional uncertainty affects investors' allocations to U.S. energy equities. But what type of new information do investors trading in energy equity markets need to learn before they can abandon an established investment strategy into oil-dependent assets and start chasing for newer, greener opportunities? Herding 7 arises when individuals choose to suppress their own private information and instead mimic the actions of others [START_REF] Bikhchandani | A theory of fads, fashion, custom, and cultural change as informational cascades[END_REF]. This change in behaviour, implying social learning, can lead to higher market volatility, deviations of prices from their fundamental values, and thereby asset booms and busts [START_REF] Avery | Multidimensional uncertainty and herd behavior in financial markets[END_REF][START_REF] Schmitt | Herding behaviour and volatility clustering in financial markets[END_REF]. Our set of energy equities belongs to some of the biggest oil and gas companies, not only in U.S., but globally (e.g. 6 Avery and Zemsky (1998) discuss financial investors' herding behaviour in relation with three main types of uncertainty. The first type refers to price signals that bring in value uncertainty but do not foster herding behaviour.

The second type refers to event uncertainty, which makes herding possible but is also supportive for price discovery.

The third type, the proportion of informed versus uninformed investors, denotes composition uncertainty, which works by incentivising herding behaviour that obscures rather than supports price discovery. 7 A 2015 survey conducted by the CFA Institute amongst professional portfolio managers places herding on top of a list featuring several behavioural biases that can affect market outcomes.

Source: https://blogs.cfainstitute.org/investor/2015/08/06/the-herding-mentality-behavioral-finance-and-investorbiases.

Chevron, Exxon Mobil, ConocoPhillips), so the market implications of mispricing are potentially large. Some of these companies are already positioning themselves as leaders in the transition towards greener energy sources [START_REF] Pickl | The renewable energy strategies of oil majors-From oil to energy?[END_REF], but investors can be faster in shifting their desired portfolio allocations towards greener assets. Although we focus exclusively on financial investors' behaviour, herding is an overarching phenomenon with substantial consequences on various energy market segments. 8 Our empirical results show evidence that investors as a group herd more in response to positive shocks in crude oil returns but not to shocks in crude oil volatility. Therefore, investing in an old technology requires little besides information on its returns. In contrast, investors in energy equity markets herd less in response to positive green volatility shocks but not to shocks in green returns. Therefore, opting for a newer technology requires a better information set. To some extent, one can interpret this difference in responses along the narrow line separating rational from irrational herding, particularly when investors face structural market (or policy) changes that can trigger sizable portfolio reallocations [START_REF] Devenow | Rational herding in financial economics[END_REF][START_REF] Avery | Multidimensional uncertainty and herd behavior in financial markets[END_REF].

Our findings offer new evidence in support for recent theories where volatility spikes might shift investors' attention [START_REF] Kacperczyk | A rational theory of mutual funds' attention allocation[END_REF][START_REF] Andrei | Dynamic attention behavior under return predictability[END_REF] and thus incentivise social learning in a positive way by reducing herding incidence. We therefore suggest a new interpretation for herding as a temporary failure by investors in energy equity markets to allocate attention towards the most information-revealing sources. From this perspective, it is important 8 For example, managers' herding behaviour can have positive effects, like speeding up innovation adoption in reference to cutting CO2 emissions [START_REF] Egmond | Target group segmentation makes sense: If one sheep leaps over the ditch, all the rest will follow[END_REF]. It can also lead to overinvestment in firms operating in the renewable energy sector, resulting in financial vulnerability and requiring strong policy interventions from the government [START_REF] Bohl | From hero to zero: Evidence of performance reversal and speculative bubbles in German renewable energy stocks[END_REF]Zhang et al., 2016). that policymakers minimize the uncertainty flow stemming from the policy realm, given its higher portfolio impact today, on the back of raising allocations towards greener assets.

The rest of this paper is organised as follows. Section 2 details the dataset used in the analysis.

Section 3 describes the empirical methodology and Section 4 discusses the main results. Section 5 concludes with policy implications. More detailed results of our analyses are provided in the accompanying Supplement.

DATA

Our dataset brings together several different sources, which we discuss in detail in this section.

The full sample spans from January 2011 to December 2018, covering several events with potential impact on the US energy industry, including a series of declarations and political actions by President Trump on the Iranian nuclear deal, OPEC agreements with Russia to limit oil supply, political upheaval in the Middle East related to the Syrian war, and so on. All our indicators are constructed as weekly averages of daily observations to balance the higher frequency needed for identifying herding behaviour with the lower frequency at which strategic portfolio reallocations occur (i.e. in sync with phases of the economic cycle or swings in risk appetite; see [START_REF] Batten | Addressing COP21 using a stock and oil market integration index[END_REF]). Herding behaviour is more likely to be identified with highfrequency data, but (intra-) daily figures would capture too much of the trading noise. Moreover, significant changes in the strategic reallocations (e.g. from oil-related to green energy assets) are not visible on a high frequency basis. Our results should be viewed, therefore, as being rather conservative in terms of herding detection. 9 9 While possible extensions of our analysis can consider different frequencies and uncover stronger herding behaviour, the link between strategic portfolio allocations and herding might also weaken, along with the policy implications of such an analysis.

We examine herding behaviour by focusing on the U.S. energy sector as represented in the S&P 500 Index. Data on closing prices for all the 31 constituents of this sector come from Thomson Reuters Eikon. Yet, to adequately explain changes in investors' behaviour towards energy equities, we need a broader perspective that includes information sources spanning beyond the immediate investable universe of these investors, considered as a group. This is an essential aspect of our approach because in large markets, such as the U.S., imperfect information aggregation, which is central to explaining information cascades in the herding literature, can only arise due to strong information barriers and exogenous frictions.

At the end of 2018, the S&P energy sector had a market representation of 5.3% in the total S&P 500 index, which was significantly down from its high of 14.3% reached in March 2009. In general, the market valuation share is a function of the capitalisation of the constituent stocks, which may depend on the economic cycle, geopolitics, risk appetite, and so on. Empirical research shows that the energy sector's performance mainly depends on the oil price [START_REF] Baffes | The great plunge in oil prices: Causes, consequences, and policy responses[END_REF][START_REF] Ahmadi | Global oil market and the US stock returns[END_REF][START_REF] Gkillas | International announcements and WTI crude oil futures: A case study of the 2008 global financial crisis[END_REF], which is the most relevant reference as well as a leading indicator of the global economic cycle. We use the average weekly spot prices of the WTI crude oil as the main proxy for investments in oil-dependent energy assets in the following sections.

To reflect the performance of green assets, we rely on various available indexes, which can be separated in two broad groups. First, we use 16 green Exchange Traded Funds (ETFs), which are some of the most representative ETFs in this sector and are traded on the New York Stock Exchange and Nasdaq. 10 The ETFs are an attractive option for investors because they offer diversification benefits and indirect access to (illiquid or inaccessible) international equities or exotic asset classes. ETFs generally have low fees, high transparency and liquidity, and trade similarly to stocks (i.e. throughout the day), meaning that investors can employ leverage and/or short selling to take advantage of market moves in real time. Several empirical papers focusing on the energy sector use green ETFs to study the transition to a low-carbon economy [START_REF] Andersson | Hedging climate risk[END_REF][START_REF] Miralles-Quiros | Are alternative energies a real alternative for investors?[END_REF]. To summarise the performance of the 16 ETFs with a single aggregate indicator, we use returns derived from an equally weighted (in US dollar terms) portfolio based on all 16 ETFs. For robustness, we derive a time-series of synthetic returns from the first principal component of the weekly returns of the 16 ETFs. 11 As additional robustness checks, we use four indexes that are commonly employed in empirical studies on financial aspects of climate change [START_REF] Rahdari | Designing a general set of sustainability indicators at the corporate level[END_REF]. These indexes are available from Thomson Reuters Eikon and serve to monitor the financial performance of companies, whose investing and operating principles are sensitive to environmental and climaterelated risks. Two of the four indexes are based on the S&P500 -the leading U.S. stock market index, but with different allocations: (i) the S&P500 ESG Index over-(under-)weights companies that have high (low) ESG scores; and, (ii) the S&P500 Carbon Efficient Index over-(under-)weights companies with a low (high) carbon footprint. The last two indexes are: (iii) the S&P Global Clean Energy Index, which provides investors with exposures to 30 global companies with businesses in clean energy production and equipment; and (iv) the S&P Global Water Index, which tracks a portfolio of about 50 global companies that do water-related businesses in utilities, infrastructure, and equipment.

To proxy for general sources of information frictions that might be relevant to understanding information cascades and herding in the U.S. energy sector, we use the CBOE Volatility index (VIX), and the Economic Policy Uncertainty (EPU) index12 that was developed in [START_REF] Baker | Measuring economic policy uncertainty[END_REF] and can be viewed as a proxy for Knightian uncertainty. VIX is a traded index and the most widely used indicator of financial risk in the empirical literature, and therefore a relevant proxy for information frictions. EPU is a composite index based on the frequency of some relevant keywords appearing in leading U.S. newspapers and available as a daily time-series. To refine the content of the index, several categorical sub-indexes that pertain to different policy domains (e.g. fiscal, trade etc.) are available. As a robustness check for the more general EPU index, we use the EPU Regulation index which includes several climate-and regulation-related terms, such as carbon tax, drilling restrictions, offshore drilling, pollution controls, environmental restrictions, Clean Air Act, and Clean Water Act.

Finally, we capture asset-specific sources of information frictions by looking at the returns and conditional volatilities of oil and green assets. For investors, returns convey information that is relevant from a short-term perspective, particularly in trending markets, while volatility proxies carry information about the medium-to long-term portfolio implications. For each asset, we derive its conditional volatility from a GARCH (1,1) model specified in weekly returns, allowing us to capture the forward-looking dynamic of volatility. While volatility can be measured in different ways, most of these measures are backward-looking and/or less predictable and hence less relevant to explain changes in behaviour, which inevitably entails some form of persistence in information processing.

EMPIRICAL DESIGN

This section derives a dynamic herding metric that can effectively summarise the relevant changes in investors' behaviour towards energy equities, from a time perspective. We then propose a non-parametric analysis to check the properties of this metric in relation with a wide set of determinants, encompassing various information sources and frictions. Finally, we employ a multivariate analysis to examine herding behaviour in a context where investors in energy equities face two outside options when dealing with policy-and climate-related challenges: allocate more funds to crude oil or to green energy assets.

Dynamic herding detection as a metric

The common approach in the empirical literature to detect herding towards the market consensus has followed the seminal paper of [START_REF] Chang | An examination of herd behavior in equity markets: An international perspective[END_REF]. 13 This literature uses the crosssectional absolute deviation (CSAD) as a proxy for the asset's return dispersion:

= ∑ , -, -1 (1)
where , is the return of asset at time , , is the return at time on the market portfolio constructed as an equally-weighted portfolio of all the assets traded on that market, which in our case is the U.S. energy equity sector. [START_REF] Chang | An examination of herd behavior in equity markets: An international perspective[END_REF] demonstrate that in the presence of herding, the linear relationship that capital asset pricing models (CAPM) predict between the dispersion of individual asset returns and the market portfolio return would be violated. Herding behaviour introduces nonlinearities because some investors may fail to differentiate among individual assets and thus trade closer to 13 Alternative model specifications and extensions are included in [START_REF] Chiang | An empirical analysis of herd behavior in global stock markets[END_REF] who add spill-overs from international markets, [START_REF] Galariotis | Herding on fundamental information: A comparative study[END_REF] and Hwang and Salmon (2014) who separate between fundamental and non-fundamental factors, [START_REF] Demirer | Does the stock market drive herd behavior in commodity futures markets?[END_REF] who include volatility persistency.

the market consensus (i.e. low CSAD values) when faced with extreme market moves (i.e. extreme values). Therefore, herding can be detected in the following model:

= + , + , + (2) 
where , denotes the absolute value of market returns, , denotes the squared market returns, , and are coefficients to be estimated, and is an error term.

The mathematical derivation of Eq. ( 2) implies that the first derivative of CSAD with respect to the market portfolio return is a constant term, while the second derivative is null. 14 Therefore, in the absence of herding, the CAPM-based model predicts that variations in market returns (in either direction) should be linearly associated with CSAD; that is, there must be a positive and statistically significant coefficient. If herding exists, then investors will ignore private information and switch from following their own strategies to following the market consensus, thus pulling individual asset returns towards the market returns. This type of behaviour occurs in the non-linear relationship between CSAD and squared market returns, and it is reflected in a statistically significant and negative coefficient [START_REF] Chang | An examination of herd behavior in equity markets: An international perspective[END_REF].

Some of the main issues associated with the herding model given in Eq. ( 2) stem from the fact that herding has repeatedly been shown to be market-dependent, non-linear, asymmetric and therefore time-varying. Given these characteristics, we can relax the constant coefficient assumption implicit in Eq. ( 2) and employ a Kalman filter to estimate it. We only allow to be time-varying and we keep the other two coefficients as time-invariant to reflect the linear 14 Under the CAPM, the expected cross-sectional absolute deviation of stock returns (ECSAD) at t can be expressed as = ( ) ∑ -, , -!, , from which we can derive:
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relationship between CSAD and market returns embedded in the CAPM theory. We re-specify Eq. ( 2) in state-space form as a system: 0123 45 0 36 5 0 : = ′ + ′ , + , , + 3

(3) 2 5 3 36 5 0 : , = , 9 + : where 3 ~<(0, = ), ′ and ′ are coefficients, while : ~<(0, = > ). The filtered time-varying , will be denoted as our dynamic herding metric in the rest of this paper because it reflects the time-varying nature of the non-linear relation between cross-sectional dispersion and market extreme returns, , . A continuous and time-varying herding metric provides more insights without additional a-priori assumptions that impose a rigid model structure during its estimation.

Therefore, estimating a time-varying , balances the need for a dynamic herding proxy with the mathematical consistency of the original model proposed by [START_REF] Chang | An examination of herd behavior in equity markets: An international perspective[END_REF].15 

Non-parametric analysis

In this subsection, we explore the properties of the dynamic herding metric using the nonparametric filter introduced by Ratto and Pagano (2010), denoted as ANOVA, which combines a Kalman filter with a fixed interval smoothing. Intuitively, any model output denoted as ? can be seen as a mapping on a set of inputs, @ , = @ , , @ , , … . Allowing for both first-order and second-order interactions between these inputs, the output can be specified as:

? = B(C ) = B + B D@ , E + B D@ , E + B F D@ , * @ , E + ⋯ (4)
where B are unknown functions of the inputs @ , that need to be identified. In our case, we let ?

be the dynamic herding metric, and then analyse a wide set of explanatory inputs, @ , that encompass both general and asset-specific information sources and frictions.

The main advantages of this filter come from the ease of interpreting its results, improved fitness, and the flexibility of the estimation approach. Using this filter, we are able to expose the inputs (and inputs' non-linear interactions) that make the biggest contribution to explaining the time-series characteristics of herding metric. While the ANOVA filter can offer a model-free characterisation of the herding metric, the strength of the interactions can suggest an endogeneity potential between output and inputs.

A multivariate analysis of herding

Much of the empirical literature uses volatility metrics to proxy for information frictions, which influence strongly on herding behaviour in theoretical models [START_REF] Bikhchandani | Does herding affect volatility? Implications for the Spanish stock market[END_REF]. Using an intraday measure of herding intensity, Blasco et al. (2012) find that herding impacts positively on the volatility of Spanish stocks. However, [START_REF] Holmes | Herding in a concentrated market: a question of intent[END_REF] show that market volatility impacts negatively on herding, while BenSaida (2017) find evidence from U.S.

that herding reduces aggregate volatility due to the presence of inactive stocks. Given this lack of consensus on the transmission links between herding and volatility, we propose an unrestricted vector autoregressive (VAR) model that can naturally account for any (bi-)directional influences.

The VAR model allows for an unrestricted interaction between herding and the other information proxies, exposing the most important linkages, while at the same time remaining flexible in including a larger number of variables without compromising on its inference efficiency. Hence, our main insights are based on unrestricted VAR models, which include partial Granger causality tests and impulse response analysis.

Without loss of generality, consider a multivariate process IJ K L of dimension . An unrestricted VAR formulation specifies the dynamics of J K as:

M(N)J = (5)
where N is the lag operator, M is a polynomial matrix in the lag operator, M(0) = O being the identity matrix, ( ) = 0 and a variance-covariance matrix 45 ( ) = P with dimension × . In our application, = 3 and we specify the endogenous vector J as having the general form:

J = -, , B3 3 5S T UV, , 5223 _2X3Y Z Y T UV, ′ (6) 
where the dynamic herding metric is taken with a negative sign in the VAR model to facilitate interpretation, implying that an increase in -, reflects more (not less) herding. The component B3 3 5S T UV denotes general information proxies (i.e. VIX and EPU), which are included as a way to filter out market-related and policy-related dynamics, and thus better identify assetspecific information frictions. By 5223 _2X3Y Z Y T UV , we refer to oil-related and green-related returns and their conditional volatility proxies. By including both general and asset-specific components, we aim to capture all the relevant sources of information frictions that affect herding behaviour. Therefore, we seek to understand herding in a broader market context where investors are facing two investment strategies, i.e. oil versus green assets. We also fill a gap in the literature by including Knightian uncertainty, a broader concept encompassing volatility, while also paying particular attention to uncover the main interactions between herding and various proxies of information frictions.

Even if we are only interested in analysing the main interactions between these groups of variables, there is still a risk that our VAR model does not include all the relevant variables. To account for any exogenous and latent (endogenous) factors that can produce inaccurate causal inferences in a multivariate setting, we apply the partial Granger causality (GC) approach set in the time domain [START_REF] Philippas | Exposing volatility spillovers: A comparative analysis based on vector autoregressive models[END_REF]. 16 This approach allows us to isolate all traces of common exogenous and latent factors, assuming they all have simultaneous effects on all the observed components of the system.

Based on specification (6), we estimate several unrestricted VAR models that differ along the set of proxies used to reflect information components. We perform standard checks on each model's stability and then derive the generalised impulse response functions (GIRFs) to a onestandard deviation shock at time on expected values of J at horizon + ℎ [START_REF] Koop | Impulse response analysis in nonlinear multivariate models[END_REF][START_REF] Pesaran | Generalized impulse response analysis in linear multivariate models[END_REF]. Using GIRFs in our case is more appropriate given that it is hard to use other decomposition methods that impose a-priori restrictions, e.g. on contemporaneous responses (thus effectively enforcing a specific ordering or sequencing) in a VAR model featuring fast-moving variables.

EMPIRICAL RESULTS

Individual returns of the constituent shares of the S&P 500 Energy Index are computed by taking the log-differences of the weekly average price levels. The equally-weighted market portfolio returns are calculated as a simple average of all stocks' returns, at a weekly frequency. CSAD is then computed using Eq. ( 1) based on weekly stocks' returns.

4.1 Dynamic herding as metric 16 More technical details are provided in Appendix B in the Supplement.

To derive the dynamic herding metric, we apply a Kalman filter to the state-space specification of the herding model from Eq. (3). 17 Figure 1 displays the time-varying , along with a confidence interval set at +/-2 standard deviations.

Figure 1. 'Dynamic herding metric', S&P 500 Energy Index and spot WTI oil prices 17 The preliminary OLS estimate of in Eq. ( 2) was found to be positive and statistically insignificant, offering no evidence of herding behaviour within the constituent stocks of the S&P 500 Energy Index. Estimation by Maximum Likelihood of Eq. ( 3) leads to statistically significant ′ and ′ that are very close to the previous OLS estimates of and from Eq. ( 2). These results are not reported to save space, but are available by request from the authors.

Notes:

The figure displays the estimate of dynamic herding metric, i.e. , , as a solid black line along with a confidence interval of +/-2 standard deviations depicted in grey. The upper panel includes the S&P 500 Energy Index in red, while the bottom panel includes the crude oil prices in USD/barrel in red.

At this point, it is important to see our metric reflecting real market phenomena rather than being a statistical construct. The dynamic herding metric is seen to display mostly negative values, except for some short periods of time concentrated at the end of 2015 and beginning of 2016. It has highly negative values during most of 2013 and 2014, which coincides with a time period when the energy market was peaking, and the oil prices were hovering above 100 USD per barrel. Overall, this suggests herding in U.S. energy equities is more prevalent during rising (or peak) energy equities and oil prices, an observation that seems to confirm previous findings in [START_REF] Brunetti | Herding and speculation in the crude oil market[END_REF][START_REF] Benmabrouk | Cross herding between American industries and the oil market[END_REF][START_REF] Benmabrouk | Cross herding between American industries and the oil market[END_REF].

The literature has converged around several explanations for the abrupt fall in oil prices in the late 2014, among which: the U.S. shale boom, a global economic slowdown (led by China and the Eurozone), production ramp-ups in several countries, and OPEC shifts in market strategy (see [START_REF] Behar | OPEC vs US shale: Analyzing the shift to a market-share strategy[END_REF]. Leaving global factors aside, the most important domestic driver for U.S. investors appears to be related to developments in the oil shale industry. Given the overlaps observed in Figure 1 between the oil price, energy equities and our herding metric, it looks highly probable that investors in U.S. energy equities were in a rush to profit from the boom in U.S. shale oil in late 2013 and early 2014, making thus irrational and herding behaviour more likely to be observed [START_REF] Teti | Effects of oil price fall on the betas in the Unconventional Oil & Gas Industry[END_REF]. However, a more causal analysis would be required before drawing definite conclusions.

Non-parametric filter

Armed with a dynamic herding metric that can efficiently summarise investors' group behaviour, we must now frame our research questions in a wider market context where portfolio allocations span the entire investable universe, ranging from oil to green assets. We employ the ANOVA non-parametric filter and consider two different sets of determinants that reflect information frictions relevant for investors in U.S. energy equities. The first input set includes VIX and EPU (in logs), along with weekly returns for the WTI crude oil and the green assets proxy. The second set of inputs replaces returns with conditional volatilities of the two alternative investments considered, but keeps both VIX and EPU indices as general information sources. As green proxy, we use the equally-weighted portfolio built out of 16 green ETFs, denoted as ETF_EQW, while for oil we reserve the CRUDEOIL label.

Results are displayed in Table 1. Main effects are computed as percentage of variance explained by the first-order terms, while second-order effects reflect the percentage of variance explained by the interactions. Total effects include both the first-and the second-order effects. 

Notes:

The table presents the percentage of variance in the 'dynamic herding metric' explained by each input, its interactions and the total explained by all inputs in each of the two sets.

The first observation we derive from Table 1 is that conditional volatilities perform better than returns at explaining the time-series properties of our herding metric. The second observation is that interactions between the inputs improve the model fit significantly, especially when conditional volatilities are used as inputs. Taken together, these observations suggest a more complex relationship between information proxies and herding, whereby the presence of strong interactions hints at undetected endogeneity within the model variables.

Herding in a multivariate framework

To address the main research questions, we seek to understand herding in a broader market context, though still centred on U.S. energy equity segment which comprises some of the biggest energy companies in the world. Energy equity markets are at the crossroads of the current energy transition phase between the old and the new. Within the energy sector, and with given portfolio constraints derived from strategic decisions, investors might steer their allocations towards more or less greener assets. Such shifts in portfolio allocations can have large price impacts, depending on investors' learning behaviour in response to changes in policies and regulations, perceived social attitudes, market trends etc. All these possible sources of information frictions might affect investors' behaviour in the energy equities market segment. Given the lack of consensus in the empirical literature and the strong interactions uncovered in previous sub-sections, we set up an unrestricted VAR model including: (i) herding (which here we proxy using the negative of the dynamic metric), (ii) two asset-specific information proxies (i.e. one for each investment option), and (iii) two general information proxies, for which we use (log) VIX and (log) EPU. Depending on the asset-specific information considered, we estimate one VAR model for returns and one VAR model for conditional volatilities. We first apply the partial GC tests to get an overview of the existing causality influences, and then perform the impulse response analysis.

Three main findings emerge from Table 2, which reports the partial GC test results. First, oil returns do Granger-cause herding in energy equities, in contrast to oil conditional volatility.

Second, green assets' conditional volatility Granger-causes herding but not the green returns.

Finally, VIX Granger-causes both oil and green assets' returns but not their conditional volatilities. 

Notes:

The table presents the results for partial GC. The first column displays the "senders" while the first row displays the "receivers". Each cell displays the label "Yes" whenever we cannot reject the existence of Granger causality (using 10% as a confidence level) and "No" otherwise, with the p-value in parenthesis.

In terms of identification, we follow [START_REF] Koop | Impulse response analysis in nonlinear multivariate models[END_REF], and [START_REF] Pesaran | Generalized impulse response analysis in linear multivariate models[END_REF] and employ generalised impulse responses, or GIRFs, to derive our main insights. Our GIRFs only provide the average impact expected after a shock to the multivariate system (6). [START_REF] Kilian | Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market[END_REF] and [START_REF] Bastianin | How does stock market volatility react to oil price shocks?[END_REF] employ structural identification methods to study oil and market volatility in VAR model's settings. In contrast, we focus on understanding what type of information sources might be more relevant for investors who must cope with their own behavioural biases, which usually get amplified during periods of market turmoil. Two main results emerge from the analysis of GIRFs, confirming previous insights from the partial GC tests. We find that herding does not respond to shocks in green returns, but increases in response to positive shocks in oil returns. With oil portraying an investment strategy into an industry reliant on old production technologies, no more than information on returns is required.

Our dynamic herding metric responds (albeit with a lag that reflects learning process) only to shocks in green (but not oil) volatility, which can be best related to the medium-and long-term prospects and the quality of the information set available for green assets and technologies.

The evidence we provide in Figure 2 implies that unexpected negative oil returns and/or positive spikes in green volatility might reduce herding intensity among investors in energy equities. These results offer a perspective on what type of information is required to resolve uncertainty and ease information frictions that are conducive to herding in the first place. [START_REF] Kacperczyk | A rational theory of mutual funds' attention allocation[END_REF] and [START_REF] Andrei | Dynamic attention behavior under return predictability[END_REF] suggest that skilled investors allocate more attention and thus prefer to learn more about the most uncertain outcomes. In our case, high volatility in green assets could incentivise (at least) some investors to learn more about 'greener opportunities'. As the group of investors following the market consensus becomes smaller now, the incidence of herding behaviour would obviously reduce. From this perspective, we can interpret herding as a temporary failure in allocating attention. In other words, neglecting alternative, though valuable, information sources for the sake of following others reduces market efficiency, as well as profit opportunities. While much of the previous literature suggests that higher volatility drives more herding, we uncover an opposite transmission channel, where higher volatility pushes (at least those skilled) investors towards more learning and therefore less herding. 18 This can have implications for cross-market efficiency, whereby the information quality in one market can affect investors' group behaviour in other markets.

Appendix C in the Supplement includes the full set of GIRF from the two VAR models discussed above. They provide additional evidence in line with the partial GC insights where we observe that green assets (but not oil) are sensitive to policy uncertainty. We find that unexpected shocks in EPU lead to higher volatility and lower returns in the case of green assets but not in the case of crude oil. At the same time, unexpected VIX shocks drive higher volatility and lower returns in both oil and green assets. Policy uncertainty is therefore a better indicator than financial risk proxies, such as VIX, in reflecting the multidimensional nature of risks associated with green investing.

ESG criteria are gaining in popularity among investors and companies alike. However, despite this euphoria, 8 of the 10 biggest ESG funds in the United States report substantial equity shares in big oil companies (e.g. ExxonMobil). Our findings help to explain this (seemingly) puzzling allocation strategy by providing empirical evidence for the lack of sensitivity for crude oil to policy uncertainty shocks, which instead highly affect green portfolio allocations. This result is in line with the recent discussion from [START_REF] Andersson | Hedging climate risk[END_REF], [START_REF] Batten | Addressing COP21 using a stock and oil market integration index[END_REF] and [START_REF] Engle | Hedging climate change news[END_REF] regarding the role of oil allocations for financial portfolios that aim to reduce climaterelated risks.

While our analysis can have its drawbacks, several extensions remain possible. Future studies can employ different datasets, at a different frequency, or covering a different sample -e.g.

extended to more recent periods to include the COVID-19 pandemic. Different herding metrics to allow for stochastic volatility can also be employed with different results and policy implications.

Robustness checks

To overcome concerns regarding our specifications, we implement a series of robustness checks to the multivariate framework, which we report in detail in the Supplement. In all these cases, results are similar. We first replace the equally-weighted ETFs portfolio (our benchmark for green assets) with each of the green proxies discussed in the data section. Next, we use futures oil prices instead of spot prices, since Avery and Zemsky (1998) claim that derivatives are better at reflecting multidimensional uncertainty. We also replace EPU with one of its domain-specific sub-indexes i.e. EPU-Regulation, which is more relevant for the green sector given the strong feedbacks between policy regulation, innovation and investing [START_REF] Mazzucato | Financing renewable energy: Who is financing what and why it matters[END_REF].

Lastly, we extend our VAR model with a new variable to reflect mass media coverage of climate-related topics -an indicator that complements the market information available to investors from returns or volatility proxies. Based on data from Fernández-Reyes et al. ( 2020), we find a negative response of herding to a positive shock in media coverage. This new result aligns with our previous discussion about the quality of the information required by investors in green assets.

CONCLUSIONS AND POLICY IMPLICATIONS

The current hype growing around green energy investing poses substantial challenges for investors trading in U.S. energy equity markets. Whether and how these investors as a group learn to deal with different information frictions, to navigate through wide swings in market risk appetite and uncertainty, and to deal with sudden changes in energy policies and regulations, is of great importance for their investment choices.

We derive a metric of dynamic herding in energy equities towards the market consensus based on the time-varying version of herding detection model [START_REF] Chang | An examination of herd behavior in equity markets: An international perspective[END_REF]. We then set up a VAR model and use tools such as partial Granger Causality tests and impulse responses to draw conclusions on how herding interacts with energy equities' returns, policy uncertainty and volatility proxies. We find that herding among investors in U.S. energy equities responds to green volatility shocks but not to green return shocks. In contrast, herding responds to shocks in oil returns but not in oil volatility. Therefore, opting for strategies that invests in assets reliant on old technologies would require little besides information on returns, but newer investment opportunities require a better information set. Consequently, the better information quality needed to alter behaviour of investors' in energy equity markets with respect to greener opportunities shows that the old discussion on rational versus irrational herding in the face of structural market changes remains relevant today [START_REF] Devenow | Rational herding in financial economics[END_REF][START_REF] Avery | Multidimensional uncertainty and herd behavior in financial markets[END_REF].

Our findings that crude oil allocations are largely insensitive to policy uncertainty shocks suggest a possible hedging strategy similar to those proposed in [START_REF] Andersson | Hedging climate risk[END_REF], and [START_REF] Batten | Addressing COP21 using a stock and oil market integration index[END_REF]. However, this strategy would run against current market trends favouring greener allocations, which we have seen that, unfortunately, might amplify portfolios' vulnerability in the face of sudden policy changes and uncertainty spikes emerging from the policy realm.

Policymakers should reduce policy uncertainty that can stimulate irrational herding behaviour among investors, with negative consequences on energy equity market valuations and mispricing dynamics. There are many ways to achieve this goal, including better transparency of the policy decision-making process, or better engagement with all relevant stakeholders before substantial policy changes are decided. By contrast, high policy uncertainty would incentivise firms to engage in lobbying to gain government support or collect more information on future policy initiatives, leading to a situation that profits the insiders and creates more information frictions, asset bubbles and mispricing. 19Speculative episodes and irrational behaviour usually feed on easy money and large credit availability. While green bonds (both private and institutional) issuance has increased several times over the last decade, providing thus ample investment opportunities, there is a lack of adequate regulatory tools to properly address climate-related risks in general. In this context, investors should welcome the recent admission from the Federal Reserve, in its November 2020 report on financial stability, 20 that it is considering climate change as a potential threat to the stability of the U.S. financial system and that an evaluation process is underway; meanwhile, ECB is moving ahead and planning for its 2022 stress testing exercise to include climate change risk in the evaluation. Apart from central bankers, policymakers would often reverse course due to fiscal constraints and/or political motivations (e.g. U.S. withdrawal from the Paris accord). A better outcome can be achieved if such high transparency (i.e. low policy uncertainty) displayed by central banks (and financial institutions) would be matched by political and regulatory authorities that oversee the energy sector -the key responsible for a large part of critical infrastructure.
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 2 Partial Granger Causality influences

	Component	→ Herding	→ VIX	→ EPU	→ Crude Oil (returns)	→ ETF EQW (returns)
	Herding→	-	Yes (0.0544)	No (0.1960)	Yes (0.0118)		No (0.3356)
	VIX→	No (0.1116)	-	Yes (0.02531)	Yes (0.0011)		Yes (0.0029)
	EPU→	No (0.8113)	Yes (0.000)	-	No (0.79914)		No (0.7389)
	Crude Oil (returns)→	Yes (0.0447)	Yes (0.0002)	Yes (0.0009)	-		Yes (0.0071)
	ETF EQW (returns)→	No (0.5081)	Yes (0.0203)	No (0.9989)	No (0.3684)		-
	Component	→ Herding	→ VIX	→ EPU	→ Crude Oil (volatility)	→ ETF EQW (volatility)
	Herding→	-	Yes (0.0544)	No (0.1960)	No (0.9988)		No (0.998)
	VIX→	No (0.1116)	-	Yes (0.0253)	No (0.9988)		No (0.998)
	EPU→	No (0.8113)	Yes (0.000)	-	No (0.9988)		No (0.998)
	Crude Oil (volatility)→	No (0.9988)	Yes (0.0003)	No (0.997)	-		Yes (0.000)
	ETF EQW (volatility)→	Yes (0.0090)	Yes (0.000)	Yes (0.000)	No (0.998)		-

As of December

2019, various institutions ranging from NGOs, educational institutions to corporations have publicly announced and committed to divest from at least one type of fossil fuel almost $11.94 trillion. Source: http://gofossilfree.org/commitments, accessed on February 20, 2020.2 Source: "Sustainable Fund Flows in 2019 Smash Previous Records", Morningstar, January 10, 2020, see https://www.morningstar.com/articles/961765/sustainable-fund-flows-in-2019-smash-previous-records.

Many institutional investors (representing the biggest investors in energy equity markets) operate under tight mandates, which often imply tracking a benchmark index with low appetite for large variations in the optimal portfolio weights. Our analysis proceeds under the assumption of a fixed allocation to energy assets, and although extensions to including all asset classes remain possible, this is beyond the scope of the present paper.

During the transition to a low-carbon economy, green investing entails dealing with higher uncertainty, not just higher risks.Thoma and Chenet (2017) differentiate between uncertainty and risk when discussing the financial implications of climate change.

The data source is Bloomberg. More details regarding the green ETFs used in this paper are provided in TableA1, in the Supplement.

The main goal of principal component analysis (PCA) in our case is to summarize the 16 green ETFs returns with a smaller set of linear combinations. Since the correlation between the returns of any two ETFs in our list is above 0.4 and statistically significant, the PCA is an efficient aggregation tool.

Data and methodological details are available from www.policyuncertainty.com.[START_REF] Baker | Measuring economic policy uncertainty[END_REF] show that EPU is orthogonal to market volatility and risk indexes such as VIX, despite some overlaps and correlation.

We differentiate from other alternatives(Chiang et al., 2013;[START_REF] Balcilar | Does speculation in the oil market drive investor herding in emerging stock markets?[END_REF]) that estimate herding models with time-varying coefficients. Using complex estimation techniques that allow all parameters to be time-varying might compromise on estimation efficiency, while imposing too much of a rigid structure on the estimated herding proxy, which can bias the subsequent analysis.

Similarly, in Bikhchandani and Sharma (2000) the arrival of better-informed investors can break the information cascade and reduce herding incidence.

Many firms from the U.S. oil and gas industry are engaged in lobbying activities. Although lobbying can be an optimal response to policy uncertainty by firms and their managers, we have focussed our analysis only on investors' behaviour, since in their case market efficiency is a first-order concern.

Source: https://www.federalreserve.gov/publications/financial-stability-report.htm.
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