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Abstract
Using atomistic computer simulations we determine the roughness and topographical features of

melt-formed (MS) and fracture surfaces (FS) of oxide glasses. We find that the topography of the

MS is described well by the frozen capillary wave theory. The FS are significant rougher than the

MS and depend strongly on glass composition. The height-height correlation function for the FS

shows an unexpected logarithmic dependence on distance, in contrast to the power-law found in

experiments. We thus conclude that on length scales less than 10 nm FS are not self-affine fractals.

1

ar
X

iv
:2

00
7.

07
47

4v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  1

5 
Ju

l 2
02

0



Surface roughness plays a crucial role for the functional properties of a material, including

friction [1, 2], adhesion [3] and transport properties [4]. Understanding the nature and

modifying this roughness is thus of great practical importance. In comparison with the

surfaces of crystalline materials, the surfaces of amorphous materials such as glasses has

received much less attention since the disorder renders the probing and characterization of

such systems difficult [5–10]. Since a glass is an out of equilibrium system, the properties

of its surface depends on the process by which it has been produced. Usually one considers

two types of pristine (i.e., without post-processing) glass surfaces: i) Melt-formed surfaces

(MS) which result from cooling a liquid with a free surface to the solid state and ii) Fracture

surfaces (FS) resulting from a mechanical failure.

The topography of a MS is often described using the concept of a frozen liquid inter-

face [11, 12], i.e., upon cooling the sample, the capillary waves at the surface freeze at a

temperature T0. Thus the roughness of a pristine MS is predicted to be σ =
√
kBT0/γ, where

σ is the standard deviation of the surface height fluctuation, kB is Boltzmann’s constant,

and γ is the surface tension at T0. Atomic force microscope (AFM) experiments on oxide

glass surfaces have shown that this prediction works well if one uses for T0 the glass tran-

sition temperature [13–15]. This theoretical framework also predicts that the height-height

correlation function

∆z(r) =
√〈

[z(r + x)− z(r)]2
〉
x

, (1)

which gives the height difference between two points separated by a distance r along a

direction x, increases like (∆z)2 ∝ ln r. This logarithmic dependence was validated experi-

mentally with r ranging from around 10 nm to 1000 nm [13]. However, for r < 10 nm the

dependence on r is basically unknown.

Describing the topography of the FS is more difficult than that for the MS since the

former results from a highly non-linear process which involves a complex interplay between

heterogeneities in the composition, microstructure, and mechanical properties present in

a glass (see, e.g. [16–18] for reviews). Experimental studies of oxide glasses have shown

that the roughness of the FS depends strongly on the composition [14, 19, 20] and is larger

than the one found in MS [14]. AFM measurements have given evidence that the FS of

various materials can be described as self-affine fractals [21], i.e., the height-height correlation

function scales like ∆z ∝ rζ . Here ζ is the roughness (or Hurst) exponent which was found to

2



depend on the fracture mode, the length scale considered, and the material [19, 20, 22–24].

However, whether this self-affine description for the FS holds also down to the nanometer

scale is still an open question since at such small scales the finite size of the probing tip

severely restricts the spatial resolution [25–27].

Here, using large scale atomistic simulations, we provide quantitative insight into the

topographical features of oxide glasses for the length scales ranging from a few Angströms to

several tens of nanometers. In particular we analyze the morphology, roughness, symmetry,

and statistical scaling of the MS and FS, i.e., surfaces which have very distinct manufacturing

histories.

We investigate two archetypical compositions for oxide glasses, namely pure SiO2 and bi-

nary Na2O-xSiO2, with x = 3, 4, 5, 7, 10, and 20. The atomic interactions are described

by a two-body effective potential (SHIK) [28, 29] which has been shown to give a re-

liable description of the structural, mechanical and surface properties of sodium silicate

glasses [30, 31]. Our samples contain typically 2.3×106 atoms, corresponding to box sizes of

around 20 nm×30 nm×50 nm (in the x, y, and z directions, respectively). Periodic boundary

conditions were applied in the x and y directions while in the z-direction we introduced (in

the melt) two free surfaces. The samples were melted and equilibrated at a high temperature

(composition dependent) and then cooled down to 300 K under zero pressure. In the follow-

ing we will refer to these two surfaces, generated by the melt-quench procedure, as MS. The

glass samples were then subjected to an uniaxial tension with a strain rate of 0.5 ns−1 in the

y-direction until complete fracture occurred, creating thus two FS. The surface atoms were

identified by using a well-established geometric method [32] which allows thus to study the

topographical features of the surfaces. More details on the sample preparation and surface

construction are given in the Supplemental Material (SM).

Figure 1 shows the (color coded) height fluctuations of the surfaces for three representa-

tives compositions: Silica, NS10 (≈9% Na2O), and NS3 (25% Na2O). The top and bottom

panels are for the MS and FS, respectively and the z = 0 level has been determined such

that the mean of the fluctuations is zero. For the MS, panels (a-c), one recognizes that the

amplitude of these height fluctuations seems to be independent of the composition, and that

also the spatial extent of the structures are independent of the Na2O content. In contrast

to this, the FS, panels (d-f), show height fluctuations that are larger than the ones for the

MS and clearly grow in amplitude and extent if the concentration of Na2O increases. Also
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Figure 1. Surface morphology. Melt-formed surfaces (a-c) and fracture surfaces (d-f) for three

representative glass compositions. For the FS, the crack propagates in the negative y-direction and

the crack front is parallel to the x-direction. From left to right the compositions are silica, NS10,

and NS3, respectively.

one recognizes that the surfaces seem to be anisotropic and in the following we will quantify

these observations.

Figures 2(a) and (b) show the distribution of the surface height z for different glass

compositions. For the MS, panel (a), we find that this distribution is basically independent

of the composition, in agreement with the snapshots shown in Fig. 1. In contrast to this,

the distribution for the FS shows a clear dependence on the composition in that it becomes

wider with increasing Na2O concentration (i.e., smaller x). The change of the surface height

distribution is directly related to the surface roughness σ, which is defined as the standard

deviation of height fluctuations. (Note that σ of the FS is basically independent of the

distance from the fracture origin, see Fig. S1.) Figure 2(c) shows σ as a function of the mole

concentration of Na2O. For the MS, σ is around 0.25 nm for silica and 0.23 nm for NS3,

thus showing indeed a very mild dependence on the composition. This observation is likely

related to the fact that the MS are rich in Na [31], i.e. a species that plastifies the glass, thus
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allowing to smooth out even small irregularities. Using the capillary wave theory mentioned

above it is possible to estimate the roughness of the MS from the surface tension, and for

the case of silica one finds σ ≈ 0.26 nm (data point labelled “intrinsic”) [14], in very good

agreement with our simulation result.

-1 -0.5 0 0.5 1

z (nm)

0.0

0.5

1.0

1.5

2.0

P
D

F

Silica
NS10
NS07
NS05
NS03

-3 -2 -1 0 1 2 3

z (nm)

0.0

0.2

0.4

0.6

0.8

1.0

P
D

F

Silica
NS10
NS07
NS05
NS03

(a) MS (b) FS

Glass Vacuum

0 5 10 15 20 25

Na
2
O (mol-%)

0.2

0.4

0.6

0.8

σ
 (

n
m

) FS

MS

FS

MS

(c) (d)

Exp. FS

Exp. MS
Intrinsic

0 5 10 15 20 25

Na
2
O (mol-%)

-0.4

-0.2

0.0

0.2

0.4

γ
1

Figure 2. (a) and (b): Surface height distribution as a function of the composition. The mean

surface height
〈
z
〉
is equal to zero. Heights with z > 0 point towards the vacuum. (c) Roughness

of the surfaces. The dashed lines are linear fits to the data. Experimental data are from Ref. [14].

The triangle corresponds to the intrinsic roughness of silica surface as estimated from the theory

of frozen capillary waves. (d) Skewness of the surface height distribution.
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The roughness of the FS is higher than the one for the MS, in agreement with the

qualitative impression given by Fig. 1, and shows a clear dependence on the Na2O content

in that it increases from ≈ 0.42 nm for silica to ≈ 0.82 nm for NS3. The increase of σ with

Na2O concentration can be rationalized by the fact that, with the addition of Na, the glass

becomes increasing ductile when subjected to mechanical loading [30, 33, 34]. This increase

of ductility originates from the enhanced heterogeneities in the micro-structure and the local

plasticity of the glass, leading to a rougher fracture surface [35, 36]. (See Fig. S2(a) for the

dependence of σ on the strain rate.)

Also included in the graph are the experimental values of the roughness for silica glass

surfaces as obtained from AFM measurements [14]. One observes that these experimental

data are somewhat below our simulation values and the theoretical prediction (for the MS).

This discrepancy might be due to the insufficient spatial resolution of this experimental

technique (see also the discussion below).

A further property of interest is the symmetry of the surfaces, which can be quantified by

the skewness γ1 of the surface height distribution. The question of interest is whether or not

the two sides of the surface (facing the vacuum/facing the glass) are statistically equivalent.

Figure 2(d) shows that the MS have a negative γ1, i.e. there are more deep holes than high

protrusions, while for the FS γ1 is positive, i.e. there are more high protrusions than deep

holes. The result for the FS is coherent with the view that during the fracture process

the breaking of bridges or chain-like structures gives rise to a spiky surface. Note that a

non-vanishing γ1 indicates that the capillary wave theory cannot be strictly valid since this

approach predicts γ1 = 0. (See Fig. S3 for the surface properties at elevated temperatures.)

To characterize the structure of the surfaces on larger scales it is useful to look at the

height-height correlation function defined in Eq. (1). Figure 3(a) shows (∆z)2 as a function of

r for the MS of silica and NS3. Two (orthogonal) directions are considered and, as expected,

they give the same result, indicating that the MS is isotropic. Moreover, we note that the

curves for silica are slightly above the ones for NS3, indicating that the MS of silica is a bit

rougher than the one of NS3, in agreement with Fig. 2(c). One also observes that (∆z)2

increases logarithmically with r, in agreement with the prediction of the frozen capillary

wave approach [11]. Since AFM experiments on MS have found the same r-dependence for

r ≥ 10 nm [13], we can conclude that this theory gives a reliable description for length scales

that range from the atomic (sub-nanometer) to the micrometer scale.
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Figure 3. (a) and (b): Surface height correlation function (linear-log scale) for the MS (a) and FS

(b). (c) and (d): Same data as in (a) and (b) but on log-log scale. Note that the ordinates for the

left and right panels are not the same. The labels x and y correspond to the direction parallel to

the crack front and the direction of crack growth, respectively.

For the FS, Fig. 3(b), we find that ∆z(r) (no square!) shows a linear increase with

ln r, thus a dependence that is very different from the one found for the MS. In this case

the roughness depends on the direction in which it is measured. The curve for the x-

direction (parallel to the crack front) is about 15% higher than the one for the y-direction

(orthogonal to the crack front), irrespective of glass composition. In addition, the slope of the

linear regime depends not only on the composition but also on the probing direction. This

results indicate that the FS is anisotropic, and its roughness depends on the composition,
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in agreement the experimental findings on the FS of oxide glasses [19, 20, 24]. Note that at

large r all of the curves tend to saturate, a behavior that is most likely related to the fact

that the sample is finite and hence fluctuations are bounded. The parameters obtained from

a logarithmic fit to the small r data in panels (a) and (b), as well as for other compositions,

are shown in Fig. S4. We also confirmed that the strain rate used for the fracture simulation

has only a weak effect on these parameters [Fig. S2(b)].

In Fig. 3(c) and (d) we show on log-log scale the same data as plotted in Fig. 3(a) and

(b), respectively. It is evident that this type of presentation of the data does not rectify it,

demonstrating that on the length scales we have explored the height-height correlation is

not given by a power-law, i.e. neither surface has the characteristics of a fractal. Instead, the

ln r-dependence we find for the FS is in qualitative agreement with theoretical and numer-

ical studies on the fracture surface of heterogeneous materials (mode I fracture, i.e. tensile

loading) [37, 38].

Our finding that the FS cannot be described as a self-affine fractal on the length scales

we have considered is at odds with AFM measurements that have reported a power-law

dependence of ∆z(r) down to the scale of 1 nm [20, 24]. To elucidate the origin of this

discrepancy one has to recall that the size of an AFM tip is finite which limits the lateral

resolution of the measurements [25, 26] and can induces biases in the characterization of the

surface [27].

In order to investigate the effect of spatial resolution we have convoluted our FS with a

two-dimensional Gaussian filter [39] of width ω (see SM) and then recalculated the height-

height correlation function for this smoothed surface. In Fig. 4 we show for the case of the

FS of silica the resulting correlation functions for different values of ω. The curve ω = 0

corresponds to the original (non-smoothed) data. We find that with increasing ω the value

of ∆z decreases significantly since the convolution irons out the deep holes/high spikes.

Surprisingly, we note that at small r the convoluted signal can be described well with a

power-law, and that the r-range in which this functional form is observed increases with

ω while the exponent ζ is independent of w. For ω = 2.8 nm, the correlation function of

the convoluted surface in the y-direction [Fig. 4(a)] matches very well the AFM data by

Ponson et al. [24]. The exponent of the power-law is ζ ≈ 0.8, i.e. the claimed “universal”

roughness exponent found in previous experimental studies [16, 20, 23, 24]. The data in the

x−direction, panel (b), shows qualitatively the same variation as the ones in the y−direction.
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However, we find that one needs to apply stronger smoothing to match quantitatively the

convoluted surfaces with the experimental ones, a result that is related to the fact that the

FS is anisotropic and the surface profile in the direction parallel to the crack front is rougher

than the one in the y−direction. These results indicate that the power-law observed in

experiments on the scale of a few nanometers might be an artifact of insufficient resolution

of the surface measurements and that in reality the correlation function takes higher values

than that extracted from AFM studies.
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Figure 4. Influence of spatial resolution on the surface height correlation for the FS of SiO2. (a)

and (b) are for the direction orthogonal and parallel to the crack front, respectively. A Gaussian

filter (width ω) was applied to smooth the surface. The curves labeled ω = 0 correspond to the

original data. Also included are experimental data from AFM measurements of fracture surfaces

produced by sub-critical crack propagation [20, 24].

In conclusion, the results of this work reveal how the topographical features of glass sur-

faces reflect the way they have been produced. While melt-formed surfaces can be described

in a satisfactory manner by means of frozen capillary waves, surfaces originating from a

fracture process exhibit a logarithmic growth of the height-height correlation, a result that

so far has not been obtained from microscopic calculations. A recent atomistic simulation

study of metal-based materials (in both crystalline and amorphous forms) has found that

compression-induced rough surfaces are self-affine on the length scale of 1-100 nm, a result
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that was attributed to atomic-scale fluctuations in plastic flow [40]. Together with our sim-

ulation results one thus can conclude that, for amorphous solids, the surface topography on

small length scales depends strongly on the manufacturing history and the type of material

considered. Further research exploring how material composition and deformation mode

affects the surface topography will thus be very valuable.
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Roughness and scaling properties of oxide glass surfaces
at the nanoscale
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1Laboratoire Charles Coulomb (L2C), University of Montpellier and CNRS, F-34095 Mont-

pellier, France

In this Supplemental Material, we provide information regarding the following points:

1) Details of the simulation and sample preparation, 2) Details of the procedure used for

constructing the surfaces, 3) Test whether roughness depends on the distance to origin of

the fracture, 4) Influence of strain rate and temperature on surface topography, 5) Extracted

parameters from the height-height correlation function, 6) Details on the surface smoothing.

1. Simulation details and sample preparation

We consider glasses with the composition SiO2 and Na2O-xSiO2, NSx, with x =

3, 4, 5, 7, 10, and 20. Approximately 2, 300, 000 atoms were placed randomly in the sim-

ulation box which had a fixed volume determined by the experimental value of glass density

at room temperature [41]. Using periodic boundary conditions in three dimensions these

samples were first melted and equilibrated at 6000 K for 80 ps in the canonical ensemble

(NV T ) and then cooled and equilibrated at a lower temperature T1 (still in liquid state) for

another 160 ps. The temperature T1 ranges from 3000 K for SiO2 to 2000 K for NS3 (25

mole% Na2O), see Ref. [31, 36] for details. Subsequently we cut the sample orthogonal to

the z−axis, and added an empty space, thus creating two free surfaces i.e. the sample had

the geometry of a slab. Periodic boundary conditions were applied in all three directions.

In order to ensure that the two free surfaces do not interact with each other, the thickness

of the vacuum layer varied from 6 nm for silica to 14 nm for NS3. These samples were then

equilibrated at T1 for 1.6 ns, a time span that is sufficient to allow the reconstruction of

the surfaces and the equilibration of the interior of the samples. Subsequently the liquid

samples were cooled via a two-stage quenching: A cooling rate of γ1 = 0.125 K/ps was used

to quench the samples from T1 to a temperature T2 and a faster cooling rate γ2 = 0.375 K/ps
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to cool them from T2 to 300 K. Finally, the samples were annealed at 300 K for 800 ps. The

temperature T2 at which the cooling rate changes was chosen to be at least 200 K below

the simulation glass transition temperature Tg, i.e., depending on composition, 1500 K

≥ T2 ≥ 800 K, see Refs. [31, 36] for details. At T2, we also switched the simulation ensemble

from NV T to NPT (at zero pressure) so that the generated glass samples were not under

macroscopic stress at room temperature.

After the glass samples were prepared we introduced on one of its free surfaces a “scratch”

in the form of a triangular notch spanning the sample in the y-direction of width and depth

of 3 nm and 2 nm, respectively. Subsequently we applied to the sample a strain, with a

constant rate=0.5 ns−1, until it broke. Due to the presence of the notch, the place at which

the fracture initiated could be changed at will. More details can be found in Ref. [36].

The interaction between the atoms are given by a pairwise effective potential proposed

by Sundararaman et al. (SHIK) [28, 29], which has been found to give a good quantitative

description of the bulk and surface properties of sodo-silicate glasses [30, 31]. Its functional

form is given by

V (rij) =
qiqje

2

4πε0rij
+ Aije

−rij/Bij − Cij
r6ij

, (2)

where rij is the distance between two atoms of species i and j. This potential uses partial

charges qi for different atomic species: The charges for Si and Na are, respectively, fixed

at 1.7755e and 0.5497e, while the charge of O depends on composition and is given by

requesting charge neutrality of the sample, i.e.,

qO =
(1− y)qSi + 2yqNa

2− y
, (3)

where y is the molar concentration of Na2O, i.e., y = (1 + x)−1. The other parameters of

the potential, Aij, Bij and Cij, occurring in Eq. (2) are given in Refs. [28, 29]. Note that,

following Ref. [28], the Coulombic part in Eq. (2) was treated via the Wolf method.

Temperature and pressure were controlled using a Nosé-Hoover thermostat and baro-

stat [42–44]. All simulations were carried out using the Large-scale Atomic/Molecular Mas-

sively Parallel Simulator software (LAMMPS) [45] with a time step of 1.6 fs.

The results presented in this manuscript correspond to one melt-quench sample for each

composition. However, we emphasize that the system sizes considered in this study are
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sufficiently large to make sample-to-sample fluctuations negligible. For the MS, the results

for the two surfaces on the top and bottom sides of the glass sample were averaged. For the

FS, twelve surfaces, resulting from six independent fracture (by changing the location of the

notch), were averaged. The error bars were estimated as the standard error of the mean of

the samples.

2. Identifying the surface

In order to have a reliable description of the surface one needs a method that allows to map

the positions of the atoms onto a well-defined mathematical surface. The algorithm that we

use for constructing this surface mesh is based on the alpha-shape method of Edelsbrunner

and Mücke [32]. It starts with the Delaunay tetrahedrization of the input point set, i.e.

the atoms in the sample. From the resulting tetrahedra, all tessellation elements are then

evaluated by comparing their circumspheres to a reference probe sphere that has a radius

Rα. The elements (with circumsphere radius R) which satisfy R < Rα are classified as solid,

and the union of all solid Delaunay elements defines the geometric shape of the atomistic

solid. A robust realization of this algorithm is implemented in OVITO [46].

It is important to mention that the probe sphere radius Rα is the length scale which

determines how many details and small features of the solid’s geometric shape are resolved.

To construct the geometric surfaces for the glass samples, we use Rα = 3.2 Å , i.e., the

typical distance between neighboring Si atoms. This choice allows to resolve fine surface

features and avoids artificial holes in the constructed surfaces. We note, however, that a

small change of Rα (e.g. ±0.5 Å) will not alter significantly the results presented in the

manuscript, see Refs. [31, 36] for details. Finally, we mention that for the FS we have not

used for the analysis the parts of the surface that are closer than ≈ 5 nm to the top/bottom

MS in order to avoid the influence of these surfaces onto the properties of the FS.

Once the geometric surface is constructed, i.e., the mesh points of the surface are iden-

tified, we first fit a plane to the set of mesh points using a least squares fitting procedure.

Finally, a linear interpolation is applied to the triangular mesh to obtain a uniform quadratic

grid which is subsequently used to determine the morphology and roughness of the surface.
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3. Dependence of roughness on the distance from the fracture origin

Since the formation of the FS is a strongly out-of-equilibirum process it could be that

the roughness depends on the distance the crack has propagated from its origin, i.e., the

notch. To test for this possibility we have divided the surface into four segments along the

y-direction, i.e., in the direction the crack propagated, see Fig. S1(a). For each of these

segments we have determined the roughness σ and in Fig. S1(b) we show for selected glass

compositions the value of σ in these segments. The graph shows that within the accuracy

of the data there is no dependence on the segment number, i.e., on the distance from the

fracture origin.
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Figure S1. (a) Height map z(x, y) of a fracture surface of the NS3 glass. The surface is divided into

4 equal segments along the crack propagation direction. (b) Roughness σ of the surface segments

along the crack propagation direction for three different glass compositions.

4. Dependence of roughness and topography on strain rate and temperature

The results in the main text have been obtained for a strain rate of 0.5 ns−1. Since it is

well known that the properties of glasses depend on the production history [47], it can be

expected that also the properties of the fracture surface will depend on these details. One

key parameter for the fracture process is the strain rate, ε̇, used to deform the sample and

in Fig. S2(a) we show for the case of silica the roughness σ as a function of this parameter.

16



One sees that for high rates the roughness is about a factor of two higher than the σ we

obtain for ε̇ = 0.5 ns−1. This result is reasonable since a high rate will not allow the crack to

find energetically favorable pathways and hence results in a surface that is rough. However,

once ε̇ is lowered to 0.5 ns−1, σ is basically independent of the strain rate and hence we can

conclude that the roughness we present in the main text should correspond to the case of

real experiments on dynamic fracture.

A similar conclusion can be reached for the topography of the surface since, see Fig. S2(b),

the height-height correlation functions for the intermediate and low strain rates are basically

identical.
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Figure S2. Influence of strain rate on the roughness and scaling property of the fracture surface for

the case of silica. The data are plotted on linear-log scale. In panel (b), x and y correspond to the

direction parallel to the crack front (dashed lines) and the direction of crack growth (solid lines),

respectively.

A further important parameter that influences the topography of a surface is the temper-

ature. The results presented in the main text are for the temperature T = 300 K. In Fig. S3

we show how the roughness and the skewness γ1 depend on the temperature at which the

surfaces are probed. To get this data for the MS we used the configurations obtained during

the quench procedure. For the FS we annealed the samples at 600-800 K (NS3-silica) for

160 ps before we cooled them down in a step-wise manner to the temperatures of interest.

At each T we annealed the samples for 160 ps before starting to strain them until fracture
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occurred.

The figure shows that for the case of the MS, panel (a), the roughness of the silica

surface is basically independent of T , i.e. increasing temperature does not allow the surface

to fluctuate with significantly larger amplitudes. This result is reasonable in view of the

strong bonds present in this kind of glass. In contrast to this we find for NS3 a significant

T−dependence in the roughness, although the absolute change is small (10%). This result

is likely related to the fact that the mobility of the Na atoms depends strongly on T , thus

allowing for a significant softening of the network structure.
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Figure S3. Effect of temperature on surface properties. Upper and lower panels are for the MS

and FS, respectively. (a) and (c): T−dependence of surface roughness. Vertical dashed lines in

(a) indicates the Tg of the silica and NS3 glasses. (b) and (d): The skewness characterizes the

asymmetric property of the surfaces.
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Also included in the graph are the estimated values for the glass transition temperature Tg

(vertical dashed lines). Naively one can expect that below Tg the topography of the surface

is given by the thermal (harmonic) fluctuation of the atoms around their average positions,

i.e., a T 1/2 dependence. The NS3 data clearly shows that this view is too simplistic since, as

mentioned above, a change of T leads to a modification of the local elastic constants and as

a consequence the T−dependence of σ is much stronger than expected for a purely harmonic

system.

Panel (b) shows that temperature does not really affect the skewness of the distribution,

i.e. the fact that the surface has more deep cavities than high peaks is independent of T .

Only for the case of NS3 we find at intermediate and high T a slight increase of γ1, i.e.,

at these high temperatures the system becomes sufficiently soft that the distribution of the

fluctuation becomes symmetric since the sample starts to liquify.

For the case of the FS, panel (c), we see that neither silica nor NS3 show a significant

T -dependence of σ. This observation is coherent with the observation, Ref. [36], that during

the fracture process the local temperature of the system close to the crack front is so high

(because of the breaking of the bonds) that for the resulting surface it is irrelevant at which

temperature the fracture happens. In agreement with this argument we find that also the

skewness of the height distribution, panel (d), is independent of T .

5. Parameters describing the height-height correlation function

In the main text we have shown that the functional form describing the height-height

correlation function ∆z(r) depends on the type of surface considered: [∆z(r)]2 = A ln(r/λ)

for the MS and ∆z(r) = A ln(r/λ) for the FS, see Fig. 3. In Fig. S4 we show how the

prefactor A and the length scale λ depend on the composition of the glass. Panel (a) shows

the prefactor A of the logarithmic dependence for the case of the MS. Although the scattering

of the data is substantial, there is good evidence that A has a maximum at intermediate

concentrations of Na. One possibility to rationalize this observation is to recall that within

the frozen capillary wave theory this prefactor is given by [13]

A =
kBTf
πγ

, (4)

where γ is the surface tension. The freezing temperature Tf decreases with increasing Na
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concentration, and it can be expected that the surface tension does the same. Hence γ−1 is

an increasing function of the Na2O concentration and thus it is not unreasonable (although

not guaranteed) that the product of these two factors give a maximum at intermediate values

of the Na2O content.
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Figure S4. Parameters of the logarithmic fit to the height correlation function of the surfaces at

300 K. (a) and (b) are for the MS, and (c) and (d) are for the FS. The fitting was performed only

for the data at r < 1 nm, see Fig. 3. The expressions used for the fit are given in the graphs as well.

x and y corresponds to the direction parallel to the crack front and the direction of crack growth,

respectively. The lines in (b) and (d) are linear fits to the data sets.

Panel (b) shows the compositional dependence of the length scale λ and we see that with

increasing Na2O the length scale increases weakly. This observation agrees with the idea of

the capillary wave theory which identifies λ as the smallest length scales over which one can
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use this approach. Since it is well known that systems containing Na have a more complex

structure than pure silica, because of the presence of ion-conducting channels [48–50], we

can expect that this minimum wave-length is larger for NS3 than for silica, rationalizing the

observed trend in panel (b).

For the case of the FS, panels (c) and (d), we find that the prefactor A as well as the

length scale λ increase significantly (by more than 50%) in the x-range considered. Al-

though we have no explanation why, for both quantities, this dependence is linear in the

Na concentration, this qualitative trend is reasonable since an increasing Na content will

increase the plasticity of the system and hence allow for a height-height correlation that has

a larger amplitude and extents to larger distances.

6. Smoothing of the surface

In the main text we have presented the results on the height-height correlation function

once the surface fluctuations were smoothed by convoluting them with a 2D Gaussian. To do

this smoothing of the surface defined by points that are on the quadratic grid we proceeded

as follows: The weight function is given by

f(r) =
1

2πω2
e−

r2

2ω2 , (5)

where r =
√

(x− x0)2 + (y − y0)2 is the in-plane distance from a given grid point (x, y)

to the reference grid point (x0, y0), and ω controls the shape of the weight function. We

consider only the grid points with r < 2ω. Thus the smoothed surface height z′(x0, y0) is

given by

z′(x0, y0) =

∑N
i=1 z(xi, yi)f(ri)∑N

i=1 f(ri)
, (6)

where N is the number of grid points that satisfy r < 2ω. By varying the value of ω, different

levels of smoothing can be applied to the original surface and thus the influence of spatial

resolution on the surface properties can be investigated.
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