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TIGHT RISK BOUND FOR HIGH DIMENSIONAL TIME SERIES COMPLETION

PIERRE ALQUIER, NICOLAS MARIE†, AND AMÉLIE ROSIER�

Abstract. Initially designed for independent datas, low-rank matrix completion was successfully ap-
plied in many domains to the reconstruction of partially observed high-dimensional time series. However,
there is a lack of theory to support the application of these methods to dependent datas. In this paper,
we propose a general model for multivariate, partially observed time series. We show that the least-
square method with a rank penalty leads to reconstruction error of the same order as for independent
datas. Moreover, when the time series has some additional properties such as periodicity or smoothness,
the rate can actually be faster than in the independent case.
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1. Introduction

Low-rank matrix completion methods were studied in depth in the past 10 years. This was partly
motivated by the popularity of the Netflix prize [9] in the machine learning community. The first theo-
retical papers on the topic covered matrix recovery from a few entries observed exactly [13, 14, 25]. The
same problem was studied with noisy observations in [11, 12, 26, 22]. The minimax rate of estimation
was derived by [29]. Since then, many estimators and many variants of this problem were studied in the
statistical literature, see [40, 27, 31, 28, 36, 44, 17, 15, 4, 34, 35] for instance.
High-dimensional time series often have strong correlation, and it is thus natural to assume that the ma-
trix that contains such a series is low-rank (exactly, or approximately). Many econometrics models are
designed to generate series with such a structure. For example, the factor model studied in [30, 32, 33, 21,
16, 23] can be interpreted as a high-dimensional autoregressive (AR) process with a low-rank transition
matrix. This model (and variants) was used and studied in signal processing [8] and statistics [40, 1].
Other papers focused on a simpler model where the series is represented by a deterministic low-rank
trend matrix plus some possibly correlated noise. This model was used by [48] to perform prediction,
and studied in [3].
It is thus tempting to use low-rank matrix completion algorithms to recover partially observed high-
dimensional time series, and this was indeed done in many applications: [47, 45, 19] used low-rank matrix
completion to reconstruct data from multiple sensors. Similar techniques were used by [38, 37] to recover
the electricity consumption of many households from partial observations, by [5] on panel data in econom-
ics, and by [41, 7] for policy evaluation. Some algorithms were proposed to take into account the temporal
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updates of the observations (see [43]). However, it is important to note that 1) all the aforementioned
theory on matrix completion, for example [29], was only developed for independent observations, and 2)
most papers using these techniques on time series did not provide any theoretical justification that it can
be used on dependent observations. One must however mention that [20] obtained theoretical results for
univariate time series prediction by embedding the time series into a Hankel matrix and using low-rank
matrix completion.
In this paper, we study low-rank matrix completion for partially observed high-dimensional time series
that indeed exhibit a temporal dependence. We provide a risk bound showing for the reconstruction of
a rank-k matrix, and a model selection procedure for the case where the rank k is unknown. Under the
assumption that the univariate series are φ-mixing, we prove that we can reconstruct the matrix with a
similar error than in the i.i.d case in [29]. If, moreover, the time series has some additional properties, as
the ones studied in [3] (periodicity or smoothness), the error can even be smaller than in the i.i.d case.
This is confirmed by a short simulation study.
From a technical point of view, we start by a reduction of the matrix completion problem to a structured
regression problem as in [36]. But on the contrary to [36], we have here dependent observations. We thus
follow the technique of [2] to obtain risk bounds for dependent observations. In [2], it is shown that one
can obtain risk bounds for dependent observations that are similar to the risk bounds for independent
observations under a φ-mixing assumption, using Samson’s version of Bernstein inequality [42]. For model
selection, we follow the guidelines of [39]: we introduce a penalty proportional to the rank. Using the
previous risk bounds, we show that this leads to an optimal rank selection. The implementation of our
procedure is based on the R package softImpute [24].
The paper is organized as follows. In Section 2, we introduce our model, and the notations used through-
out the paper. In Section 3, we provide the risk analysis when the rank k is known. We then describe our
rank selection procedure in Section 4 and show that it satisfies a sharp oracle inequality. The numerical
experiments are in Section 5. All the proofs are gathered in Section 6.

2. Setting of the problem and notations

Consider d, T ∈ N∗ and a d × T random matrix M. Assume that the rows M1,., . . . ,Md,. are time
series and that Y1, . . . , Yn are n ∈ {1, . . . , d× T} noisy entries of the matrix M:

(1) Yi = trace(X∗iM) + ξi ; i ∈ {1, . . . , n},

where X1, . . . ,Xn are i.i.d random matrices distributed on

X := {eRd(j)eRT (t)∗ ; 1 6 j 6 d and 1 6 t 6 T},

and ξ1, . . . , ξn are i.i.d. centered random variables, with standard deviation σξ > 0, such that Xi and ξi are
independent for every i ∈ {1, . . . , n}. Let us now describe the time series structure of each M1,., . . . ,Md,..
We assume that each series Mj,. can be decomposed as a deterministic component Θ0

j,. plus some random
noise εj,.. The noise can exhibit some temporal dependence: εj,t will not be independent from εj,t′ in
general. Moreover, as discussed in [3], Θ0

j,. can have some more structure: Θ0
j,. = T0

j,.Λ for some known
matrix Λ. Examples of such structures (smoothness, periodicity) are discussed below. This gives:

(2)
{

M = Θ0 + ε
Θ0 = T0Λ

,

where ε is a d× T random matrix having i.i.d. and centered rows, Λ ∈ Mτ,T (C) (τ 6 T ) is known and
T0 is an unknown element ofMd,τ (R) such that

(3) sup
j,t
|T0

j,t| 6
m0

mΛτ
with m0 > 0 and mΛ = sup

t1,t2

|Λt1,t2 |.

Note that this leads to
sup
j,t
|Θ0

j,t| 6 m0.

We now make the additional assumption that the deterministic component is low-rank, reflecting the
strong correlation between the different series. Precisely, we assume that T0 is of rank k ∈ {1, . . . , d∧T}:
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T0 = U0V0 with U0 ∈Md,k(R) and V0 ∈Mk,τ (R). The rows of the matrix V0 may be understood as
latent factors. By Equations (1) and (2), for any i ∈ {1, . . . , n},

(4) Yi = trace(X∗iΘ
0) + ξi

with ξi := trace(X∗i ε) + ξi. It is reasonable to assume that Xi and ξi, which are random terms related
to the observation instrument, are independent to ε, which is the stochastic component of the observed
process. Then, since ξi is a centered random variable and ε is a centered random matrix,

E(ξi) = E(〈Xi, ε〉F ) + E(ξi) =

d∑
j=1

T∑
t=1

E((Xi)j,t)E(εj,t) = 0.

This legitimates to consider the following least-square estimator of the matrix Θ0:

(5)

{
Θ̂k,τ = T̂k,τΛ

T̂k,τ ∈ arg min
T∈Sk,τ

rn(TΛ) ,

where Sk,τ is a subset of

Md,k,τ :=

{
UV ; (U,V) ∈Md,k(R)×Mk,τ (R) s.t. sup

j,`
|Uj,`| 6

√
m0

kτmΛ
and sup

`,t
|V`,t| 6

√
m0

kτmΛ

}
,

and

rn(A) :=
1

n

n∑
i=1

(Yi − 〈Xi,A〉F )2 ; ∀A ∈Md,T (R).

Remark 2.1. In many cases, we will simply take Sk,τ = Md,k,τ . However, in many applications, it is
natural to impose stronger constraints on the estimators. For example, in nonnegative matrix factoriza-
tion, we would have Sk,τ = {UV ; (U,V) ∈ Md,k,τ s.t. ∀j, `, t, Uj,` > 0 and V`,t > 0} (see e.g. [38]).
So for now, we only assume Sk,τ ⊂Md,k,τ . Later, we will specify some sets Sk,τ .

Let us conclude this section with two examples of matrices Λ corresponding to usual time series struc-
tures. On the one hand, if the trend of the multivalued time series M is τ -periodic, with T ∈ τN∗, one
can take Λ = (Iτ | · · · |Iτ ), and then mΛ = 1. On the other hand, assume that for any j ∈ {1, . . . , d}, the
trend of Mj,. is a sample on {0, 1/T, 2/T, . . . , 1} of a function fj : [0, 1]→ R belonging to a Hilbert space
H. In this case, if (en)n∈Z is a Hilbert basis of H, one can take Λ = (en(t/T ))(n,t)∈{−N,...,N}×{1,...,T}.
For instance, if fj ∈ L2([0, 1];R), a natural choice is the Fourier basis en(t) = e2iπnt/T , and then mΛ = 1.
Such a setting will result in smooth trends.

Notations and basic definitions. Throughout the paper, Md,T (R) is equipped with the Fröbénius
scalar product

〈., .〉F : (A,B) ∈Md,T (R)2 7−→ trace(A∗B) =
∑
j,t

Aj,tBj,t

or with the spectral norm

‖.‖op : A ∈Md,T (R) 7−→ sup
‖x‖=1

‖Ax‖ = σ1(A).

Let us finally remind the definition of the φ-mixing condition on stochastic processes. Given two σ-
algebras A and B, we define the φ-mixing coefficient between A and B by

φ(A,B) := sup {|P(B)− P(B|A)| ; (A,B) ∈ A× B, P(A) 6= 0} .

When A and B are independent, φ(A,B) = 0, more generally, this coefficient measure how dependent A
and B are. Given a process (Zt)t∈N, we define its φ-mixing coefficients by

φZ(i) := sup {φ(A,B) ; t ∈ Z, A ∈ σ(Xh, h 6 t), B ∈ σ(X`, ` > t+ i)} .

Some properties and examples of applications of φ-mixing coefficients can be found in [18].
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3. Risk bound on T̂k,τ

First of all, since X1, . . . ,Xn are i.i.d X -valued random matrices, there exists a probability measure
Π on X such that

PXi = Π ; ∀i ∈ {1, . . . , n}.
In addition to the two norms on Md,T (R) introduced above, let us consider the scalar product 〈., .〉F,Π
defined onMd,T (R) by

〈A,B〉F,Π :=

∫
Md,T (R)

〈X,A〉F 〈X,B〉FΠ(dX) ; ∀A,B ∈Md,T (R).

Remarks:
(1) For any deterministic d× T matrices A and B,

〈A,B〉F,Π = E(〈A,B〉n)

where 〈., .〉n is the empirical scalar product onMd,T (R) defined by

〈A,B〉n :=
1

n

n∑
i=1

〈Xi,A〉F 〈Xi,B〉F .

However, note that this relationship between 〈., .〉F,Π and 〈., .〉n doesn’t hold anymore when A
and B are random matrices.

(2) Note that if the sampling distribution Π is uniform, then ‖.‖2F,Π = (dT )−1‖.‖2F .
Notation. For every i ∈ {1, . . . , n}, let χi be the couple of coordinates of the nonzero element of Xi,
which is a E-valued random variable with E = {1, . . . , d} × {1, . . . , T}.

In the sequel, ε, ξ1, . . . , ξn and X1, . . . ,Xn fulfill the following additional conditions.

Assumption 3.1. The rows of ε are independent and identically distributed. There is a process (εt)t∈Z
such that each εj,. has the same distribution than (ε1, . . . , εT ), and such that

Φε := 1 +

n∑
i=1

φε(i)
1/2 <∞.

Assumption 3.2. There exists a deterministic constant mε > 0 such that

sup
j,t
|εj,t| 6 mε.

Moreover, there exist two deterministic constants cξ, vξ > 0 such that

sup
i

E(ξ2
i ) 6 vξ

and, for every q > 3,

sup
i

E(|ξi|q) 6
vξc

q−2
ξ q!

2
.

This assumption means that the εj,t’s are bounded, and that the ξi’s are sub-exponential random vari-
ables. Sub-exponential random variables include bounded and Gaussian variables as special cases. Note
that this is the assumption made on the noise for the matrix completion in the i.i.d. framework in the
papers mentioned above [36, 29]. The boundedness of the εj,t’s can be seen as quite restrictive. However,
we are not aware of any way to avoid this assumption in this setting. Indeed, it allows to apply Samson’s
concentration inequality for φ-mixing processes (see Samson [42]). In [2], the authors prove sharp spar-
sity inequalities under a similar assumption, using Samson’s inequality. They also show that the other
concentration inequalities known for time series lead to slow rates of convergence.

Assumption 3.3. There is a constant cΠ > 0 such that

Π({eRd(j)eRT (t)∗}) 6 cΠ
dT

; ∀(j, t) ∈ E .
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Note that when the sampling distribution Π is uniform, Assumption 3.3 is trivially satisfied with cΠ = 1.

Theorem 3.4. Let α ∈ (0, 1). Under Assumptions 3.1, 3.2 and 3.3, if n > max(d, τ), then

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + c3.4

[
k(d+ τ)

log(n)

n
+

1

n
log

(
4

α

)]
with probability larger than 1−α, where c3.4 is a constant depending only on m0, vξ, cξ, mε, mΛ, Φε and
cΠ.

Actually, from the proof of the theorem, we know c3.4 explicitly. Indeed,

c3.4 = 5c6.4,1 + 72m0cξ + 9c6.4,2
m0

mΛ

where c6.4,1 and c6.4,2 are constants (explicitly given in Theorem 6.4 in Section 6) depending themselves
only on m0, vξ, cξ, mε, mΛ, Φε and cΠ.

Remarks:
(1) Note that another classic way to formulate the risk bound in Theorem 3.4 is that for every s > 0,

with probability larger than 1− e−s,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + c3.4

[
k(d+ τ)

log(n)

n
+
s

n

]
.

(2) The φ-mixing assumption (Assumption 3.1) is known to be restrictive, we refer the reader to [18]
where it is compared to other mixing conditions. Some examples are provided in Examples 7,
8 and 9 in [2], including stationary AR processes with a noise that has a density with respect
to the Lebesgue measure on a compact interval. Interestingly, [2] also discusses weaker notions
of dependence. Under these conditions, we could here apply the inequalities used in [2], but it
is important to note that this would prevent us from taking λ of the order of n in the proof of
Proposition 6.1. In other words, this would deteriorate the rates of convergence. A complete
study of all the possible dependence conditions on ε goes beyond the scope of this paper.

Finally, let us focus on the rate of convergence, in general and in the specific case of time series with
smooth trends belonging to a Sobolev ellipsoid.
First, note that the constant c3.4 in Theorem 3.4 doesn’t depend on Λ:

c3.4 = 5c6.4,1 + 72m0cξ + 9c6.4,2
m0

mΛ
= 160(c−1

6.1 ∧ λ∗)−1 + 36m0

(
v

1/2
ξ +

vξ
2cξ

+ mε + 3m0

)
+ 72m0cξ

= 160((4 max{4m2
0, 4vξ, 4m

2
ε, 2m

2
εΦ

2
εcΠ}) ∨ (16m0 max{m0,mε, cξ}))

+36m0

(
v

1/2
ξ +

vξ
2cξ

+ mε + 3m0

)
+ 72m0cξ.

So, the variance term in the risk bound on Θ̂k,τ depends on the time series structure by τ only. In the
specific cases of periodic or smooth trends, as mentioned at the end of Section 2, mΛ = 1, and then Sk,τ
is a subset of

Md,k,τ =

{
UV ; (U,V) ∈Md,k(R)×Mk,τ (R) s.t. sup

j,`
|Uj,`| 6

√
m0

kτ
and sup

`,t
|V`,t| 6

√
m0

kτ

}
.

If T0 ∈ Sk,τ , the bias term in the risk bound on Θ̂k,τ is null, and then ‖Θ̂k,τ −Θ0‖2F,Π has the order of
the variance term with probability larger than 1 − α. So, the rate of convergence is k(d + τ) log(n)/n.
This is to be compared with the rate in the i.i.d case: k(d+ T ) log(n)/n. First, when our series does not
have a given structure, τ = T and the rates are the same. However, when there is a strong structure, for
example, when the series is periodic, we have τ � T and our rate is actually better.
Now, consider Fourier’s basis (en)n∈Z and τ = 2N + 1 with N ∈ N∗. In the sequel, assume that

Λ =

(
en

(
t

T

))
(n,t)∈{−N,...,N}×{1,...,T}
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and

Sk,τ = Sk,β,L := {T ∈Md,k,τ : ∀j = 1, . . . , d, ∃fj ∈W(β, L), ∀n = −N, . . . , N , Tj,n = cn(fj)},

where β ∈ N∗, L > 0,

W(β, L) :=

{
f ∈ Cβ−1([0, 1];R) :

∫ 1

0

f (β)(x)2dx 6 L2

}
is a Sobolev ellipsoid, and cn(ϕ) is the Fourier coefficient of order n ∈ Z of ϕ ∈ W(β, L). Thanks to
Tsybakov [46], Chapter 1, there exists a constant cβ,L > 0 such that for every f ∈W(β, L),

1

T

T∑
t=1

∣∣∣∣∣f
(
t

T

)
−

N∑
n=−N

cn(f)en

(
t

T

)∣∣∣∣∣
2

6 cβ,LN
−2β .

So, if Θ0 = (fj(t/T ))j,t with fj ∈W(β, L) for j = 1, . . . , d, and if the sampling distribution Π is uniform,
then

min
T∈Sk,β,L

‖(T−T0)Λ‖2F,Π =
1

dT

∑
j,t

∣∣∣∣∣fj
(
t

T

)
−

N∑
n=−N

cn(fj)en

(
t

T

)∣∣∣∣∣
2

6 cβ,LN
−2β .

By Theorem 3.4, for n > (dτ)1/2(k(d+ τ))−1, with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3cβ,LN
−2β + c3.4

[
k(d+ 2N + 1)

log(n)

n
+

1

n
log

(
4

α

)]
.

Therefore, by assuming that β is known, the bias-variance tradeoff is reached for

N = Nopt :=

⌊(
3cβ,Lβ

c3.4k
· n

log(n)

)1/(2β+1)
⌋
,

and with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3cβ,LN
−2β
opt + 2c3.4kNopt

log(n)

n
+ c3.4

[
k(d+ 1)

log(n)

n
+

1

n
log

(
4

α

)]
= c1

[
c
1/(2β+1)
β,L

(
k

log(n)

n

)2β/(2β+1)

+ k(d+ 1)
log(n)

n
+

1

n
log

(
4

α

)]

with c1 =
[
[β−2β/(2β+1) + 2β1/(2β+1)]31/(2β+1)c

2β/(2β+1)
3.4

]
∨ c3.4.

4. Model selection

The purpose of this section is to provide a selection method of the parameter k. First, for the sake of
readability, Sk,τ and T̂k,τ are respectively denoted by Sk and T̂k in the sequel. The adaptive estimator
studied here is Θ̂ := T̂Λ, where T̂ := T̂k̂,

k̂ ∈ arg min
k∈K
{rn(T̂kΛ) + pen(k)} with K = {1, . . . , k∗} ⊂ N∗,

and

pen(k) := 16cpen
log(n)

n
k(d+ τ) with cpen = 2

(
1

c6.1
∧ λ∗

)−1

.

Note that the value of the constant cpen could be deduced from the proofs. It would however depend on
quantities that are unknown in practice, such as cΠ or Φε. Moreover, the value of cpen provided by the
proofs would probably be too large for practical purposes. In practice, we recommend to use the slope
heuristics to estimate this constant (see Arlot [6]).
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Theorem 4.1. Under Assumptions 3.1, 3.2 and 3.3, if n > max(d, τ), then

‖Θ̂−Θ0‖2F,Π 6 4 min
k∈K

{
3 min

T∈Sk
‖(T−T0)Λ‖2F,Π + c4.1,1k(d+ τ)

log(n)

n

}
+
c4.1,1
n

log

(
4k∗

α

)
+ c4.1,2

d1/2τ1/2

n2

with probability larger than 1− α, where

c4.1,1 = 4c3.4 + 16cpen + 72m0cξ and c4.1,2 = 9c6.4,2
m0

mΛ
.

5. Numerical experiments

This section deals with numerical experiments on the estimator of the matrix T0 introduced at Section
2. The R package softImpute is used. Our experiments are done on datas simulated the following way:

(1) We generate a matrix T0 = U0V0 with U0 ∈ Md,k(R) and V0 ∈ Mk,τ (R). Each entries of U0

and V0 are generated independently by simulating i.i.d. N (0, 1) random variables.
(2) We multiply T0 by a known matrix Λ ∈ Mτ,T (R). This matrix depends on the time series

structure assumed on M. Here, we consider the periodic case: T = pτ , p ∈ N∗ and Λ =
(Iτ | . . . |Iτ ). We use the notation Λ+ for the pseudo-inverse of Λ which satisfies Λ+ = Λ∗(ΛΛ∗)−1

because Λ is of full-rank τ .
(3) The matrix M is then obtained by adding a matrix ε such that ε1,., . . . , εd,. are generated inde-

pendently by simulating i.i.d. AR(1) processes with compactly supported error in order to meet
the φ-mixing condition. To keep a relatively small noise in order to have a relevant estimation at
the end, we multiply ε by the coefficient σε = 0.01.
Only 30% of the entries of M, taken randomly, are observed. These entries are then corrupted
by i.i.d. observation errors ξ1, . . . , ξn  N (0, 0.012). To meet Assumption 3.2, we also consider
uniform errors ξ1, . . . , ξn  U([−a, a]), where a =

√
3/100 ≈ 0.017 to keep the same variance

than previously. The first experiments will show that the estimation remains quite good even if
the ξi’s are not bounded. Note that we keep the same percentage of observed entries throughout
this section, so the number n of corrupted entries will vary according to the dimension d× T .

Given the observed entries, our goal is to complete the missing values of the matrix and check if they
correspond to the simulated data. The output given by the function complete of softImpute needs to
be multiplied by Λ+ in order to have an estimator of the matrix T0. We will evaluate the MSE of the
estimator with respect to several parameters and show that there is a gain to take into account the time
series structure in the model. As expected, the more Θ0 is perturbed, either with ε or ξ1, . . . , ξn, the
more difficult it is to reconstruct the matrix. In the same way, increasing the value of the rank k will
lead to a worse estimation. Finally, we study the effect of replacing the uniform error in each AR(1) by
a Gaussian one.

The first experiments are done with d = 1000 and p = 10. Here are the MSE obtained for 3 values
of the dimension T (100, 500 and 1000), three values of the rank k (2, 5 and 9), and for two kinds of
observation errors ξ1, . . . , ξn: Gaussian N (0, 0.012) v.s. uniform U([−0.017, 0.017]). The errors in the
AR(1) processes generating the rows of ε remain uniform U([−1, 1]).

d× T 1000×100 1000×500 1000×1000
ξi  N (0, 0.012) 0.0976 0.0072 0.0051

ξi  U([−0.017, 0.017]) 0.0758 0.0061 0.0037

Table 1. 100*MSE, k = 2.

Thus, both of the rank k and the dimension of M seem to play a key role on the reduction of the MSE.
Regarding the dimension T (k and d being fixed), our numerical results are consistent with respect to
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d× T 1000×100 1000×500 1000×1000
ξi  N (0, 0.012) 0.5376 0.0220 0.0098

ξi  U([−0.017, 0.017]) 0.5 0.0227 0.0109

Table 2. 100*MSE, k = 5.

d× T 1000×100 1000×500 1000×1000
ξi  N (0, 0.012) 4.978 0.0704 0.0333

ξi  U([−0.017, 0.017]) 3.6885 0.0746 0.0418

Table 3. 100*MSE, k = 9.

the theoretical rate of convergence of order O(k(d + τ) log(n)/n) obtained at Theorem 3.4 (see Tables
1, 2 and 3). Indeed, the MSE is shrinking when T is increasing whatever the value of the rank k or
the error considered, which confirms that T has no impact on the MSE when we add the time series
structure in our model. On the contrary, we know that in the model without time series structure, the
MSE increases when T increases, what is also consistent with the theoretical rate of convergence of order
O(k(d + T ) log(n)/n). The gap between the MSE’s, especially when the dimension T goes from 100 to
500, is huge when the rank k is high. The increasing of the rank k significantly degrades the MSE, with
both kinds of errors ξi and even with a high value of T .
Note that for each tested values of k and T , whatever the distribution of the errors ξ1, . . . , ξn (Gaussian or
uniform), the MSE remains of same order. This justifies to take ξ1, . . . , ξn  N (0, 0.012) in the following
experiments.

Another interesting study consists in the comparison of the MSE with or without (classic model) taking
into account the time series structure of the dataset. This means to take

M = U0V0Λ + ε or M = U0V0

in Model (1). On time series datas, the MSE obtained with the classic model is expected to be worst than
the one obtained with our model. The following experiments shows the evolution of the MSE with respect
to the rank k (k = 1, . . . , 10) for both models. We take d = T = 1000, the ξi’s are i.i.d. N (0, 0.012)
random variables, and ε1,., . . . , εd,. are i.i.d. AR(1) processes with Gaussian errors. Finally, recall that
p = 10, so τ = 100 in our model.
As expected (see Figure 1), the MSE is much better with the model taking into account the time series
structure.

As we said, the estimation seems to be more precise with Gaussian errors in ε, and the more Θ0 is
perturbed via ε or ξ1, . . . , ξn, the more the completion process is complicated and the MSE degrades.
So, we now evaluate the consequence on the MSE of changing the value of σε. For both models (with
or without taking into account the time series structure), the following figure shows the evolution of the
MSE with respect to σε when the errors in ε are N (0, 1/3) random variables and all the other parameters
remain the same than previously. Note that this time, the MSE is not multiplied by 100 and we kept the
original values.
Once again, as expected (see Figure 2), the MSE with our model is smaller than the one with the classic
model for each values of σε. The fact that the MSE increases with respect to σε with both models
illustrates that more noise always complicates the completion process. In our experiments, the values of
σε range from 0.01 to 1 and we can notice that, even with σε close to 1, the MSE sticks to very small
values with our model, which is great as it means a good estimation. See also Table 4.
Let us do the same experiment but with uniform U([−1, 1]) errors in the AR(1) processes generating the
rows of ε.
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Figure 1. Models (time series (solid line) v.s. classic (dotted line)) MSEs with respect
to the rank k.
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Figure 2. Models (time series (solid line) v.s. classic (dotted line)) MSEs with respect
to σε, Gaussian errors.

Min. MSE Max. MSE
Model w/o time series struct. 0.00015 0.1416
Model with time series struct. 0.00004 0.0228

Table 4. Min. and max. values reached by the MSE with Gaussian errors in ε.

The curves shape on Figure 3 is pretty much the same as in the previous graph: the MSE for the model
taking into account the time series structure is still smaller than for the classic model. However, this
time, the MSE for both models reaches slightly higher values (see Table 5).

Finally, as mentioned, the previous numerical experiments were done by assuming that k is known,
which is mostly uncommon in practice. So, our purpose in the last part of this section is to implement
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Figure 3. Models (time series (solid line) v.s. classic (dotted line)) MSEs with respect
to σε, uniform errors.

Min. MSE Max. MSE
Model w/o time series struct. 0.00023 0.41307
Model with time series struct. 0.00004 0.11252

Table 5. Min. and max. values reached by the MSE with uniform errors in ε.

the model selection method introduced at Section 4. Let us recall the criterion to minimize:{
crit(k) = rn(T̂kΛ) + pen(k)
pen(k) = ccalk(d+ τ) log(n)/n

; k ∈ {1, . . . , 20}.

In the sequel, ξ1, . . . , ξn  N (0, 0.5), ε1,., . . . , εd,. are i.i.d. AR(1) processes with N (0, 1/3) errors, and
σε = 0.5. The penalty term in crit(.) depends on the constant ccal > 0 which has to be calibrated in
practice. One could implement the slope heuristics, well presented in Arlot [6]. However, with our nice
experimental conditions, to take ccal = 1 works well.
On six independent experiments, Table 6 gives the rank k̂ selected by minimizing the criterion studied
in Section 4 and the MSE of the associated adaptive estimator T̂k̂. Our method select the true k (9)
four times and a very close value of the true k (10) two times. In each case, the adaptive estimator has
a small MSE.

Selected rank k̂ = 10 k̂ = 9 k̂ = 9 k̂ = 10 k̂ = 9 k̂ = 9
MSE 0.0394 0.0222 0.0235 0.0313 0.0226 0.0273

Table 6. Selected ranks k̂ and MSE of T̂k̂.

6. Proofs

This section is organized as follows. We first state an exponential inequality that will serve as a basis
for all the proofs. From this inequality, we prove Theorem 6.4, a prototype of Theorem 3.4 that holds
when the set Sk,τ is finite or infinite but compact by using ε-nets (ε > 0). In the proof of Theorem 3.4,
we provide an explicit risk-bound by using the ε-net Sεk,τ of Sk,τ constructed in Candès and Plan [12],
Lemma 3.1.
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6.1. Exponential inequality. This sections deals with the proof of the following exponential inequality,
the cornerstone of the paper, which is derived from the usual Bernstein inequality and its extension to
φ-mixing processes due to Samson [42].

Proposition 6.1. Let T ∈ Sk,τ . Under Assumptions 3.1, 3.2 and 3.3,

(6) E
[
exp

(
λ

4

((
1 + c6.1

λ

n

)
(R(T0Λ)−R(TΛ)) + rn(TΛ)− rn(T0Λ)

))]
6 1

and

(7) E
[
exp

(
λ

4

((
1− c6.1

λ

n

)
(R(TΛ)−R(T0Λ)) + rn(T0Λ)− rn(TΛ)

))]
6 1

for every T ∈ Sk,τ and λ ∈ (0, nλ∗), where

R(A) := E(|Y1 − 〈X1,A〉F |2) ; ∀A ∈Md,T (R),

c6.1 = 4 max{4m2
0, 4vξ, 4m

2
ε, 2m

2
εΦ

2
εcΠ} and λ∗ = (16m0 max{m0,mε, cξ})−1.

Proof of Proposition 6.1. The proof relies on Bernstein’s inequality as stated in [10], that we remind in
the following lemma.

Lemma 6.2. Let T1, . . . , Tn be some independent and real-valued random variables. Assume that there
are v > 0 and c > 0 such that

n∑
i=1

E(T 2
i ) 6 v

and, for any q > 3,
n∑
i=1

E(T qi ) 6
vcq−2q!

2
.

Then, for every λ ∈ (0, 1/c),

E

[
exp

[
λ

n∑
i=1

(Ti − E(Ti))

]]
6 exp

(
vλ2

2(1− cλ)

)
.

We will also use a variant of this inequality for time series due to Samson, stated in the proof of Theorem
3 in [42].

Lemma 6.3. Consider m ∈ N∗, M > 0, a stationary sequence of Rm-valued random variables Z =
(Zt)t∈Z, and

ΦZ := 1 +

T∑
t=1

φZ(t)1/2,

where φZ(t), t ∈ Z, are the φ-mixing coefficients of Z. For every smooth and convex function f :
[0,M ]T → R such that ‖∇f‖ 6 L a.e, for any λ > 0,

E(exp(λ(f(Z1, . . . , ZT )− E[f(Z1, . . . , ZT )]))) 6 exp

(
λ2L2Φ2

ZM
2

2

)
.

Let T ∈ Sk,τ be arbitrarily chosen. Consider the deterministic map X : E →Md,T (R) such that

Xi = X(χi) ; ∀i ∈ {1, . . . , n},

Ξi := (ξi, χi) for any i ∈ {1, . . . , n}, and h : R× E → R the map defined by

h(x, y) :=
1

n
(2x〈X(y), (T0 −T)Λ〉F + 〈X(y), (T0 −T)Λ〉2F ) ; ∀(x, y) ∈ R× E .
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Note that

h(Ξi) =
1

n
(2ξi〈Xi, (T

0 −T)Λ〉F + 〈Xi, (T
0 −T)Λ〉2F )

=
1

n
((ξi + 〈Xi, (T

0 −T)Λ〉F )2 − ξ2

i )

=
1

n
((Yi − 〈Xi,TΛ〉F )2 − (Yi − 〈Xi,T

0Λ〉F )2)

and
n∑
i=1

(h(Ξi)− E(h(Ξi))) = rn(TΛ)− rn(T0Λ) +R(T0Λ)−R(TΛ).

Now, replacing ξi by its expression in terms of Xi, ξi and ε,
n∑
i=1

(h(Ξi)− E(h(Ξi))) =

n∑
i=1

(
2

n
ξi〈Xi, (T

0 −T)Λ〉F
)

+

n∑
i=1

(
2

n
〈Xi, ε〉F 〈Xi, (T

0 −T)Λ〉F
)

+

n∑
i=1

(
1

n
〈Xi, (T

0 −T)Λ〉2F − E(h(Ξi))

)

=:

n∑
i=1

Ai +

n∑
i=1

Bi +

n∑
i=1

(Ci − E(h(Ξi))).

In order to conclude, by using Lemmas 6.2 and 6.3, let us provide suitable bounds for the exponentiel
moments of each terms of the previous decomposition:

• Bounds for the Ai’s and the Ci’s. First, note that since X1, ξ1 and ε are independent,

R(TΛ)−R(T0Λ) = E((Y1 − 〈X1,TΛ〉F )2 − (Y1 − 〈X1,T
0Λ〉F )2)

= 2E(ξ1〈X1, (T
0 −T)Λ〉F ) + E(〈X1, (T

0 −T)Λ〉2F )

= 2〈E(〈X1, (T
0 −T)Λ〉FX1),E(ε)〉F

+2E(ξ1)E(〈X1, (T
0 −T)Λ〉F ) + ‖(T0 −T)Λ‖2F,Π

= ‖(T0 −T)Λ‖2F,Π.(8)

On the one hand,

E(A2
i ) 6

4

n2
E(ξ2

i )E(〈Xi, (T
0 −T)Λ〉2F ) 6

4

n2
vξ(R(T0Λ)−R(TΛ))

thanks to Equality (8). Moreover,

E(|Ai|q) 6
2q

nq
E(|ξi|q)E(〈Xi, (T

0 −T)Λ〉qF )

6

(
4cξm0

n

)q−2
q!

2
· 4vξ
n2

(R(T0Λ)−R(TΛ)).

So, we can use Lemma 6.2 with

v =
4

n
vξ(R(T0Λ)−R(TΛ)) and c =

4cξm0

n
to obtain:

E

[
exp

(
λ

n∑
i=1

Ai

)]
6 exp

[
2vξ(R(T0Λ)−R(TΛ))λ2

n− 4cξm0λ

]
for any λ ∈ (0, n/(4cξm0)). On the other hand, |Ci| 6 4m2

0/n and

E(C2
i ) =

1

n2
E(〈Xi, (T

0 −T)Λ〉4F ) 6
4m2

0

n2
‖(T0 −T)Λ‖2F,Π =

4

n2
m2

0(R(T0Λ)−R(TΛ))
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thanks to Equality (8). So, we can use Lemma 6.2 with

v =
4

n
m2

0(R(T0Λ)−R(TΛ)) and c =
4m2

0

n

to obtain:

E

[
exp

(
λ

n∑
i=1

(Ci − E(h(Ξi)))

)]
6 exp

[
2m2

0(R(T0Λ)−R(TΛ))λ2

n− 4m2
0λ

]
for any λ ∈ (0, n/(4m2

0)).
• Bounds for the Bi’s. First, write

n∑
i=1

Bi =

n∑
i=1

(Bi − E(Bi|ε)) +

n∑
i=1

E(Bi|ε) =:

n∑
i=1

Di +

n∑
i=1

Ei,

and note that

E(Bi|ε) =
2

n
E(〈Xi, ε〉F 〈Xi, (T

0 −T)Λ〉F |ε)(9)

=
2

n

∑
j,t

E(1χi=(j,t)[(T
0 −T)Λ]χi)εj,t =

2

n

∑
j,t

pj,t[(T
0 −T)Λ]j,tεj,t

and

(10) ‖(T0 −T)Λ‖2F,Π = E(〈Xi, (T
0 −T)Λ〉2F ) = E([(T0 −T)Λ]2χi) =

∑
j,t

pj,t[(T
0 −T)Λ]2j,t,

where
pj,t := P(χ1 = (j, t)) = Π({eRd(j)eRT (t)∗})

for every (j, t) ∈ E . On the one hand, given ε, the Di’s are i.i.d, |Di| 6 8mεm0/n and

E(B2
i |ε) =

4

n2
E(〈Xi, ε〉2F 〈Xi, (T

0 −T)Λ〉2F |ε)

6
4

n2
m2
εE(〈Xi, (T

0 −T)Λ〉2F |ε) =
4

n2
m2
εE(〈Xi, (T

0 −T)Λ〉2F ) =
4

n2
m2
ε(R(T0Λ)−R(TΛ))

thanks to Equality (8). So, conditionnally on ε, we can apply Lemma 6.2 with

v =
4

n
m2
ε(R(T0Λ)−R(TΛ)) and c =

8mεm0

n

to obtain:

E

[
exp

(
λ

n∑
i=1

Di

)∣∣∣∣∣ ε
]
6 exp

[
2m2

ε(R(T0Λ)−R(TΛ))λ2

n− 8mεm0λ

]
for any λ ∈ (0, n/(8mεm0)). Taking the expectation of both sides gives:

E

[
exp

(
λ

n∑
i=1

Di

)]
6 exp

[
2m2

ε(R(T0Λ)−R(TΛ))λ2

n− 8mεm0λ

]
.

On the other hand, let us focus on the Ei’s. Thanks to Equality (9) and since the rows of ε are
independent,

E

[
exp

(
λ

n∑
i=1

Ei

)]
= E

exp

2λ
∑
j,t

pj,t[(T
0 −T)Λ]j,tεj,t


=

d∏
j=1

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]
.
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Now, for any j ∈ {1, . . . , d}, let us apply Lemma 6.3 to (εj,1, . . . , εj,T ), which is a sample of a
φ-mixing sequence, and to the function fj : [0,mε]

T → R defined by

fj(u1, . . . , uT ) := 2

T∑
t=1

pj,t[(T
0 −T)Λ]j,tut ; ∀u ∈ [0,mε]

T .

Since

‖∇fj(u1, . . . , uT )‖2 = 4

T∑
t=1

p2
j,t[(T

0 −T)Λ]2j,t ; ∀u ∈ [0,mε]
T ,

by Lemma 6.3:

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]
= E(exp(λ(fj(εj,1, . . . , εj,T )− E[fj(εj,1, . . . , εj,T )])))

6 exp

(
2m2

ελ
2Φ2

ε

T∑
t=1

p2
j,t[(T

0 −T)Λ]2j,t

)
.

Thus, for any λ > 0, by Equalities (8) and (10) together with n 6 dT ,

E

[
exp

(
λ

n∑
i=1

Ei

)]
=

d∏
j=1

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]

6
d∏
j=1

exp

(
2m2

ελ
2Φ2

ε

T∑
t=1

p2
j,t[(T

0 −T)Λ]2j,t

)

6 exp

2m2
ελ

2Φ2
εcΠ

dT

∑
j,t

pj,t[(T
0 −T)Λ]2j,t

 6 exp

[
2m2

ελ
2Φ2

εcΠ
n

(R(T0Λ)−R(TΛ))

]
.

Therefore, these bounds together with Jensen’s inequality give:

E exp

(
λ

4
[rn(TΛ)− rn(T0Λ) +R(T0Λ)−R(TΛ)]

)
= E

[
exp

(
λ

4

n∑
i=1

(h(Ξi)− E(h(Ξi)))

)]

= E

[
exp

(
λ

4

n∑
i=1

Ai +
λ

4

n∑
i=1

(Ci − E(h(Ξi))) +
λ

4

n∑
i=1

Di +
λ

4

n∑
i=1

Ei

)]

6
1

4

[
E

[
exp

(
λ

n∑
i=1

Ai

)]
+ E

[
exp

(
λ

n∑
i=1

(Ci − E(h(Ξi)))

)]

+ E

[
exp

(
λ

n∑
i=1

Di

)]
+ E

[
exp

(
λ

n∑
i=1

Ei

)]]

6 exp

[
2vξ

1− 4cξm0λ/n
· λ

2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

0

1− 4m2
0λ/n

· λ
2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

ε

1− 8mεm0λ/n
· λ

2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

εΦ
2
εcΠ

λ2

n
(R(T0Λ)−R(TΛ))

]
6 exp

[
cλ
λ2

n
(R(T0Λ)−R(TΛ))

]
with

cλ = max

{
2vξ

1− 4cξm0λ/n
,

2m2
0

1− 4m2
0λ/n

,
2m2

ε

1− 8mεm0λ/n
, 2m2

εΦ
2
εcΠ

}
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and

0 < λ < nmin

{
1

4cξm0
,

1

4m2
0

,
1

8mεm0

}
.

In particular, for
λ <

n

16m0 max{m0,mε, cξ}
,

we have
cλ 6 max{4m2

0, 4vξ, 4m
2
ε, 2m

2
εΦ

2
εcΠ}.

This ends the proof of the first inequality. �

6.2. A preliminary non-explicit risk bound. We now provide a simpler version of Theorem 3.4, that
holds in the case where Sk,τ is finite: (1) in the following theorem. When this is not the case, we provide
a similar bound using a general ε-net, that is (2) in the theorem.

Theorem 6.4. Consider α ∈]0, 1[.
(1) Under Assumptions 3.1, 3.2 and 3.3, if |Sk,τ | <∞, then

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π +
c6.4,1
n

log

(
2

α
|Sk,τ |

)
with probability larger than 1− α, where c6.4,1 = 32(c−1

6.1 ∧ λ∗)−1.
(2) Under Assumptions 3.1, 3.2 and 3.3, for every ε > 0, there exists a finite subset Sεk,τ of Sk,τ such

that

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π +
c6.4,1
n

log

(
2

α
|Sεk,τ |

)
+

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
τε

with probability larger than 1− α, where c6.4,2 = 4mΛ(v
1/2
ξ + vξ/(2cξ) + mε + 3m0).

Proof of Theorem 6.4. (1) Assume that |Sk,τ | < ∞. For any x > 0, λ ∈ (0, nλ∗) and S ⊂ Md,τ (R),
consider the events

Ω−x,λ,S(T) :=

{(
1− c6.1

λ

n

)
‖(T−T0)Λ‖2F,Π − (rn(TΛ)− rn(T0Λ)) > 4x

}
, T ∈ S

and
Ω−x,λ,S :=

⋃
T∈S

Ω−x,λ,S(T).

By Markov’s inequality together with Proposition 6.1, Inequality (7),

P(Ω−x,λ,Sk,τ ) 6
∑

T∈Sk,τ

P
(

exp

(
λ

4

((
1− c6.1

λ

n

)
(R(TΛ)−R(T0Λ))− (rn(TΛ)− rn(T0Λ))

))
> eλx

)
6 |Sk,τ |e−λx.

In the same way, with

Ω+
x,λ,S(T) :=

{
−
(

1 + c6.1
λ

n

)
‖(T−T0)Λ‖2F,Π + rn(TΛ)− rn(T0Λ) > 4x

}
, T ∈ S

and
Ω+
x,λ,S :=

⋃
T∈S

Ω+
x,λ,S(T),

by Markov’s inequality together with Proposition 6.1, Inequality (6), P(Ω+
x,λ,Sk,τ ) 6 |Sk,τ |e−λx.

Then,
P(Ωx,λ,Sk,τ ) > 1− 2|Sk,τ |e−λx

with

Ωx,λ,S := (Ω−x,λ,S)c ∩ (Ω+
x,λ,S)c ⊂ Ω−x,λ,S(T̂k,τ )c ∩ Ω+

x,λ,S(T̂k,τ )c =: Ωx,λ,Sk,τ (T̂k,τ ).
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Moreover, on the event Ωx,λ,Sk,τ , by the definition of T̂k,τ ,

‖Θ̂k,τ −Θ0‖2F,Π 6
(

1− c6.1
λ

n

)−1

(rn(T̂k,τΛ)− rn(T0Λ) + 4x)

=

(
1− c6.1

λ

n

)−1(
min

T∈Sk,τ
{rn(TΛ)− rn(T0Λ)}+ 4x

)
6

1 + c6.1λn
−1

1− c6.1λn−1
min

T∈Sk,τ
‖(T−T0)Λ‖2F,Π +

8x

1− c6.1λn−1
.

So, for any α ∈]0, 1[, with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6
1 + c6.1λn

−1

1− c6.1λn−1
min

T∈Sk,τ
‖(T−T0)Λ‖2F,Π +

8λ−1 log(2α−1|Sk,τ |)
1− c6.1λn−1

.

Now, let us take

λ =
n

2

(
1

c6.1
∧ λ∗

)
∈ (0, nλ∗) and x =

1

λ
log

(
2

α
|Sk,τ |

)
.

In particular, c6.1λn−1 6 1/2, and then

1 + c6.1λn
−1

1− c6.1λn−1
6 3 and

8λ−1

1− c6.1λn−1
6 32

(
1

c6.1
∧ λ∗

)−1
1

n
.

Therefore, with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + 32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sk,τ |

)
.

(2) Now, assume that |Sk,τ | =∞. Since dim(Md,τ (R)) <∞ and Sk,τ is a bounded subset ofMd,τ (R)
(equipped with T 7→ supj,t |Tj,t|), Sk,τ is compact in (Md,τ (R), ‖.‖F ). Then, for any ε > 0, there
exists a finite subset Sεk,τ of Sk,τ such that

(11) ∀T ∈ Sk,τ ,∃Tε ∈ Sεk,τ : ‖T−Tε‖F 6 ε.

On the one hand, for any T ∈ Sk,τ and Tε ∈ Sεk,τ satisfying (11), since 〈Xi, (T − Tε)Λ〉F =

〈XiΛ
∗,T−Tε〉F for every i ∈ {1, . . . , n},

|rn(TΛ)− rn(TεΛ)| 6 1

n

n∑
i=1

|〈Xi, (T−Tε)Λ〉F (2Yi − 〈Xi, (T + Tε)Λ〉F )|

6
ε

n

n∑
i=1

‖XiΛ
∗‖F

(
2|Yi|+ sup

j,t

τ∑
`=1

|(T + Tε)j,`Λ`,t|

)

6 εmΛ

(
2

n

n∑
i=1

|Yi|+ 2τm0

)
6 c1(ξ1, . . . , ξn)τε(12)

with

c1(ξ1, . . . , ξn) := 2mΛ

(
1

n

n∑
i=1

|ξi|+ mε + 2m0

)
,

and thanks to Equality (8),

|R(TΛ)−R(TεΛ)| = |R(TΛ)−R(T0Λ)− (R(TεΛ)−R(T0Λ))|
= |‖(T−T0)Λ‖2F,Π − ‖(Tε −T0)Λ‖2F,Π|
6 E(|〈Xi, (T−Tε)Λ〉F 〈Xi, (T + Tε − 2T0)Λ〉F |) 6 c2τε(13)

with c2 = 4m0mΛ. On the other hand, consider

(14) T̂ε
k,τ = arg min

T∈Sεk,τ
‖T− T̂k,τ‖F .
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On the event Ωx,λ,Sεk,τ with x > 0 and λ ∈ (0, nλ∗), by the definitions of T̂ε
k,τ and T̂k,τ , and

thanks to Inequalities (12) and (13),

‖Θ̂k,τ −Θ0‖2F,Π 6 ‖(T̂ε
k,τ −T0)Λ‖2F,Π + c2τε 6

(
1− c6.1

λ

n

)−1

(rn(T̂ε
k,τΛ)− rn(T0Λ) + 4x) + c2τε

6

(
1− c6.1

λ

n

)−1

[rn(T̂k,τΛ)− rn(T0Λ) + c1(ξ1, . . . , ξn)τε+ 4x] + c2τε

=

(
1− c6.1

λ

n

)−1 [
min

T∈Sk,τ
{rn(TΛ)− rn(T0Λ)}+ c1(ξ1, . . . , ξn)τε+ 4x

]
+ c2τε

6
1 + c6.1λn

−1

1− c6.1λn−1
min

T∈Sk,τ
‖(T−T0)Λ‖2F,Π +

8x

1− c6.1λn−1
+

[
c1(ξ1, . . . , ξn)

1− c6.1λn−1
+ c2

]
τε.

So, by taking

λ =
n

2

(
1

c6.1
∧ λ∗

)
and x =

1

λ
log

(
2

α
|Sεk,τ |

)
,

as in the proof of Theorem 6.4.(1), with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + 32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sεk,τ |

)
(15)

+

[
4mΛ

(
1

n

n∑
i=1

|ξi|+ mε + 2m0

)
+ c2

]
τε.

Thanks to Markov’s inequality together with Lemma 6.2, for λ0 = 1/(2ncξ),

P

(
n∑
i=1

|ξi| >
n∑
i=1

E(|ξi|) + s

)
6 exp

[
nvξλ

2
0

2(1− ncξλ0)
− λ0s

]

= exp

(
vξ

4nc2ξ
− s

2ncξ

)
= α

with

s =
vξ
2cξ

+ 2ncξ log

(
1

α

)
.

Then, since E(|ξi|) 6 E(ξ2
i )1/2 6 v

1/2
ξ for every i ∈ {1, . . . , n},

(16) P

[
1

n

n∑
i=1

|ξi| > v
1/2
ξ +

vξ
2ncξ

+ 2cξ log

(
1

α

)]
6 α.

Finally, note that if P(U > V + c) 6 α and P(V > v) 6 α with c, v ∈ R+ and (U, V ) a R2-valued
random variable, then

P(U > v + c) = P(U > v + c, V > v) + P(U > v + c, V 6 v)

6 P(V > v) + P(U > V + c, V 6 v) 6 2α.(17)

Therefore, by (15) and (16), with probability larger than 1− 2α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + 32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sεk,τ |

)
+

[
4mΛ

(
2cξ log

(
1

α

)
+ v

1/2
ξ +

vξ
2cξ

+ mε + 2m0

)
+ c2

]
τε.

�
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6.3. Proof of Theorem 3.4. The proof is dissected in two steps:

Step 1. Consider
Md,τ,k(R) := {T ∈Md,τ (R) : rank(T) = k}.

For every T ∈ Md,τ,k(R) and ρ > 0, let us denote the closed ball (resp. the sphere) of center T and
of radius ρ of Md,τ,k(R) by Bk(T, ρ) (resp. Sk(T, ρ)). For any ε > 0, thanks to Candès and Plan [12],
Lemma 3.1, there exists an ε-net Sεk(0, 1) covering Sk(0, 1) and such that

|Sεk(0, 1)| 6
(

9

ε

)k(d+τ+1)

.

Then, for every ρ > 0, there exists an ε-net Sεk(0, ρ) covering Sk(0, ρ) and such that

|Sεk(0, ρ)| 6
(

9ρ

ε

)k(d+τ+1)

.

Moreover, for any ρ∗ > 0,
Bk(0, ρ∗) =

⋃
ρ∈[0,ρ∗]

Sk(0, ρ).

So,

Bεk(0, ρ∗) :=

[ρ∗/ε]+1⋃
j=0

Sεk(0, jε)

is an ε-net covering Bk(0, ρ∗) and such that

|Bεk(0, ρ∗)| 6
[ρ∗/ε]+1∑
j=0

|Sεk(0, jε)| 6
([

ρ∗

ε

]
+ 2

)(
9ρ∗

ε

)k(d+τ+1)

.

If in addition ρ∗ > ε, then

|Bεk(0, ρ∗)| 6 3ρ∗

ε

(
9ρ∗

ε

)k(d+τ+1)

6

(
9ρ∗

ε

)2k(d+τ)

.

Step 2. For any T ∈ Sk,τ ,
sup
j,t
|T0

j,t| 6
m0

mΛτ
.

Then,

‖T‖F =

 d∑
j=1

τ∑
t=1

T2
j,t

1/2

6 ρ∗d,τ := c1

(
d

τ

)1/2

with c1 =
m0

mΛ
.

So, Sk,τ ⊂ Bk(0, ρ∗d,τ ), and by the first step of the proof, there exists an ε-net Sεk,τ covering Sk,τ and such
that

|Sεk,τ | 6
(

9ρ∗d,τ
ε

)2k(d+τ)

=

(
9c1

d1/2τ−1/2

ε

)2k(d+τ)

.

By taking ε = 9c1d
1/2τ−1/2n−2, thanks to Theorem 6.4.(2), with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+
c6.4,1
n

[
log

(
2

α

)
+ 2k(d+ τ) log

(
9c1

d1/2τ−1/2

ε

)]
+

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
τε

= 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+
c6.4,1
n

[
log

(
2

α

)
+ 4k(d+ τ) log(n)

]
+ 9c1

d1/2τ1/2

n2

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
.
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Therefore, since n > max(d, τ), with probability larger than 1− 2α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+(4c6.4,1 + 9c1c6.4,2)k(d+ τ)
log(n)

n
+

c6.4,1 + 72c1mΛcξ
n

log

(
2

α

)
.

Let us replace α by α/2 to end the proof.

6.4. Proof of Theorem 4.1. For any k ∈ K, let Sεk := Sεk,τ be the ε-net introduced in the proof of
Theorem 3.4, and recall that for ε = 9m0m

−1
Λ d1/2τ−1/2n−2,

|Sεk| 6
(

9m0

mΛ
· d

1/2τ−1/2

ε

)2k(d+τ)

= n4k(d+τ).

Then, for α ∈ (0, 1) and xk,ε := λ−1 log(2α−1|K| · |Sεk|) with λ = nc−1
pen ∈ (0, nλ∗),

4xk,ε − pen(k) =
4cpen

n
log

(
2

α
|K| · |Sεk|

)
− 16cpen

log(n)

n
k(d+ τ)

6
4cpen

n

[
4k(d+ τ) log(n) + log

(
2

α
|K|
)]
− 16cpen

log(n)

n
k(d+ τ)

6
4cpen

n
log

(
2

α
|K|
)

=: mn.(18)

Now, consider the event Ωλ,ε := (Ω−λ,ε)
c ∩ (Ω+

λ,ε)
c with

Ω−λ,ε :=
⋃
k∈K

⋃
T∈Sεk

Ω−xk,ε,λ,Sεk
(T) and Ω+

λ,ε :=
⋃
k∈K

⋃
T∈Sεk

Ω+
xk,ε,λ,Sεk

(T).

So,
P(Ωcλ,ε) 6

∑
k∈K

∑
T∈Sεk

[P(Ω−xk,ε,λ,Sεk
(T)) + P(Ω+

xk,ε,λ,Sεk
(T))] 6 2

∑
k∈K

|Sεk|e−λxk,ε = α

and Ωx
k̂,ε
,λ,Sε

k̂
(T̂ε

k̂
) ⊂ Ωλ,ε, where T̂ε

k is a solution of the minimization problem (14) for every k ∈ K.

On the event Ωλ,ε, by the definition of k̂, and thanks to Inequalities (12), (13) and (14),

‖Θ̂−Θ0‖2F,Π 6 ‖(T̂ε
k̂
−T0)Λ‖2F,Π + c2τε 6

(
1− c6.1

λ

n

)−1

(rn(T̂ε
k̂
Λ)− rn(T0Λ) + 4xk̂,ε) + c2τε

6

(
1− c6.1

λ

n

)−1

(rn(T̂k̂Λ)− rn(T0Λ) + c1(ξ1, . . . , ξn)τε+ 4xk̂,ε) + c2τε

=

(
1− c6.1

λ

n

)−1

×
(

min
k∈K
{rn(T̂kΛ)− rn(T0Λ) + pen(k)}+ c1(ξ1, . . . , ξn)τε+ 4xk̂,ε − pen(k̂)

)
+ c2τε

6
1

1− c6.1λn−1
min
k∈K
{(1 + c6.1λn

−1)‖(T̂k −T0)Λ‖2F,Π + 4xk,ε + pen(k)}

+
mn + c1(ξ1, . . . , ξn)τε

1− c6.1λn−1
+ c2τε

6 2 min
k∈K
{3/2‖(T̂k −T0)Λ‖2F,Π + 2pen(k)}+ 4mn + (2c1(ξ1, . . . , ξn) + c2)τε(19)

with

c1(ξ1, . . . , ξn) := 2mΛ

(
1

n

n∑
i=1

|ξi|+ mε + 2m0

)
and c2 = 4m0mΛ.
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Moreover, by following the proof of Theorem 6.4 and Theorem 3.4 on the same event Ωλ,ε,

‖(T̂k −T0)Λ‖2F,Π 6 3 min
T∈Sk

‖(T−T0)Λ‖2F,Π + c3.4

[
k(d+ τ)

log(n)

n
+

1

n
log

(
2

α
|K|
)]

for every k ∈ K. Therefore, thanks to (16), (17) and (19), with probability larger than 1− 2α,

‖Θ̂−Θ0‖2F,Π 6 4 min
k∈K

{
3 min

T∈Sk
‖(T−T0)Λ‖2F,Π + (c3.4 + 16cpen)k(d+ τ)

log(n)

n

}
+

4c3.4 + 16cpen

n
log

(
2

α
|K|
)

+ 9
m0

mΛ
· d

1/2τ1/2

n2

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
.

Let us replace α by α/2 to end the proof.
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