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FAST Weighted Average Calculation Algorithm

This paper presents an efficient algorithm (method) for calculating Weighted Averages called the "Fast Weighted Average" calculation algorithm. In general, the algorithm presented in textbooks for calculating a Weighted Average of n elements (each with a Values and a Weight) will require n multiplication operations, assuming no Weights and no Values are zero.

The Fast Weighted Average calculation algorithm can calculate the Weighted Average of elements using at most (n -1) multiplication operations when using Normalized Weights.

Furthermore, in many examples the computational complexity of the multiplication operations of the Fast Weight Average algorithm are reduced compared to the standard Weighted Average calculation algorithm, as the multiplication operations of the Fast Weighted Average algorithm often have fewer digits, though this depends on the data set. The Fast Weighted Average algorithm is particularly useful when people perform and interpret the calculations and make decisions based on the results.

Review

The Weighted Average of data points or Values of variable with Values , each with corresponding non-negative Normalized Weights is denoted by and calculated as:

Weighted Average of x:

Normalized Weights mean that:

If arbitrary weights are given , which must be non-negative, they can be normalized as follows where represents the Normalized Weight:

n n x {x 1 , x 2 , . . . x i , . . . x n } {w 1 , w 2 , . . . w i , . . .

w n } x x = n ∑ i=1 (w i ⋅ x i ) n ∑ i=1 w i = 1
{W 1 , W 2 , . . . W i , . . . W n } w i I will assume none of the values are 0. If any are zero, then they will ignored and excluded from the count of . So we will assume positive Normalized weights .

Standard implementation of the Weighted Average calculation with Normalized Weights of elements will require multiplication operations if each Weight is positive (not zero) and each value is non-zero. If any of the values are zero, then this reduces the number of multiplication operations required, but standard algorithms may require up to multiplication operations.

In practice, any Values where either the value is zero or the weight is zero can be discarded (after Weights are Normalized, if needed) and the number of elements and multiplication operations reduced accordingly. This paper deals with situations where Weights are Normalized and each of the elements in the Weighted Average calculation have positive (non zero, non-negative) Weights, and non-zero Values.

FAST Weighted Average Calculation Algorithm

The Fast Weighted Average calculation algorithm is implemented as follows. First, a value in the set of variables is selected as a Reference Value. We will use as the Reference Value for the purposes of the formula. Any Value can be used as the Reference Value, and can simply be relabeled as without loss of generality.

Define as follows:

(Difference between and the Reference Vale of )

This means:

[Note that ]

The Fast Weighted Average calculation algorithm to calculate the Weighted Average of , denoted by , is expressed in the following formula:

Note that the index of the sum goes from 2 to n, and so this requires multiplication operations. The sum would run from going from 1 to n, but the first term is zero since , so the term when can be ignored.

I will call the terms is the Difference (from a Reference Value) and each term is a Weighted Difference term.

Note that the Difference terms are generally smaller than the original values if the values are close to each, so this method can be easier for people to execute with pen and paper or calculators and easier for people to estimate the Weighted Average given the values and Normalized Weights.

w i n n {w 1 , w 2 , . . . w i , . . . w n } n n n n x 1 x 1 Δx i Δx i = x i -x 1 x i x 1 x i = x 1 + Δx i Δx 1 = 0 x x x = x 1 + n ∑ i=2 (w i ⋅ Δx i ) i (n -1) i (Δx 1 = 0) (i = 1) Δx i (w i ⋅ Δx i )
FAST Weighted Average Algorithm: 

Arbitrary Reference Value

The formula can be modified if different values of are selected for the Reference Value or an Arbitrary value is selected as a Reference Value. Define the Reference Value as ("A" is for Anchor), which can be any value.

Now define as follows:

(difference between and the Reference Value or Anchor)

The Weighted Average of can be calculated as:

In general, this formula will require multiplication operations. However, if the Reference Value is selected to be , meaning , then and the corresponding Weighted Difference term can excluded from the sum so only multiplication operations are required.

That is, if and the sum runs from 2 to n as given in the first instance:

If and the sum runs from 1 to (n -1):

If the sum excludes j :

x 1 x 1 x A Δx i Δx i = x i -A x i x x = A + n ∑ i=1 (w i ⋅ Δx i ) n A x j (A = x j ) (Δx j = 0) (n -1) ( j = 1) (A = x 1 ) x = A + n ∑ i=2 (w i ⋅ Δx i ) ( j = n) (A = x n ) x = A + n-1 ∑ i=1 (w i ⋅ Δx i ) (1 < j < n)
In each of these cases, there are only multiplication operations required if for some j rather than multiplication operations with the traditional Weighted Average formula.

In addition to reducing the number of multiplication operations, the Weighted Difference algorithm is generally easier for people to calculate as the Difference terms are smaller and often have fewer digits than the original Values when the Values are close together so the computational complexity of the multiplication operations is reduced because there are fewer digits to multiply. This applies in many practical circumstances but may not be applicable in certain circumstances.

The remainder of the document is designed for a wide audience -therefore, it may use slightly different terms for concepts than are used in academic mathematics papers. For example, "Normalized Weights" are sometimes called "Percentage Frequencies".

Expected Value

Also note that the Expected Value calculation is essentially the same calculation as the Weighted Average calculation where instead of using the frequency percentage, is the Probability of the given event occurring, and is the Value assigned to that event.

The Expected Value is essentially the Weighted Average outcome of the Value based on the probabilities. The Expected Value of is denoted as and is calculated as:

Expected Value of N: 

Weighted Average (or Expected Value) of Two Values

Given two values we can simply the Weighted Average calculation. Note that the Weighted Average of two Values will always be between the two Values, which should provide some intuition regarding whether to add or subtract the Weighted Difference from the Reference Value. I if either or is zero, then no multiplication is required as then either or is will be 1.

x = A + j-1 ∑ i=1 (w i ⋅ Δx i ) + n ∑ i=j+1 (w i ⋅ Δx i ) (n -1) (A = x j ) n p i N i N N N = n ∑ i=1 ( p i ⋅ N i ) n n (N j for some j ) n (n -1) (N 1 , N 2 )
Without loss of generality, we can say as we simply label the larger of two values . Define the variable as Difference between and :

( will be positive if )

Note that

Thus, by the definition, will be positive. The Weighted Average of , which is written as can be calculated as either:

(Version 1)

(Version 2)

As discussed earlier, these equations only require a single multiplication operation to execute. Do you understand why this works? What does your intuition tell you?

Average of Two Numbers

Let's consider the example where we have to calculate the Unweighted (or Direct) Average of two values/numbers . This is also equivalent to the scenario where these values have equal Weight in a Weighted Average. In this section will refer to the Straight (Unweighted or Equally Weighted) Average.

The Traditional formula for the Average is:

If the two values are the same, then the Average is just the value which is repeated, and no further calculation is required: if then .

If the two values are different, let be the larger of the two values. We can do this without loss of generality.

Define the Difference as:

p i w i (N 1 , N 2 ) ( p 1 , p 2 ) N = 2 ∑ i=1 ( p i ⋅ N i ) = ( p 1 ⋅ N 1 ) + ( p 2 ⋅ N 2 ) p 1 p 2 p 1 p 2 (N 2 ≥ N 1 ) N 2 D N 1 N 2 D = N 2 -N 1 D N 2 ≥ N 1 N 2 = N 1 + D D (N 1 , N 2 ) (N ) N = N 1 + (D ⋅ p 2 ) N = N 1 -(D ⋅ p 1 ) (N 1 , N 2 ) (N ) N = N 1 + N 2 2 N 1 = N 2 N = N 1 = N 2 (N 1 , N 2 ) N 2 D D = N 2 -N 1
Define as:

Note that both and are positive based on be the larger of the two values.The Average can then be calculated as:

The average of two numbers can also be thought of as the Midpoint of two numbers, and many Algebra classes teach a Midpoint formula equivalent to the average formula above. In this case, is denoted as the Midpoint of two values and the "Traditional" Midpoint formula is:

Therefore:

In this context, the Average or Midpoint is the point that is in the Middle of the two values. That is, the "Distance" or "Difference" from the Midpoint to each of the values is the same. In this example, the "Difference" really means the Absolute Value of the Difference. The idea is that form the Midpoint, you must travel the same distance (in opposite directions) to reach .

To summarize:

d d = D 2 D d N 2 N = N 1 + d = N 1 + D 2 ⟹ N 1 = N -d N = N 2 -d = N 2 - D 2 ⟹ N 2 = N + d M (N 1 , N 2 ) M = N 1 + N 2 2 M = N 1 + d = N 1 + D 2 ⟹ N 1 = M -d M = N 2 -d = N 2 - D 2 ⟹ N 2 = M + d N 1 and N 2 N 1 and N 2 M = N = N 1 + d = N 1 + D 2 M = N = N 2 -d = N 2 - D 2

Proof of FAST Weighted Average Algorithm

In general, a Weighted Average calculation of values can be done with multiplications, given Normalized Weights.

As discussed, Weighted Average of N is denoted by and calculated by: Where is the Percentage Frequency or Normalized Weight for each value ( in previous sections). Now we will define each value relative to as a Reference Value. Define as:

[We subtract from each value]

This means:

Inserting this expressions for into the Weighted Average Formula:

Multiplying through by :

Separating terms of the sum:

is a constant value which can be factored out:

We also have the constraint that:

as the Percentage Frequencies (Normalized Weights) must sum to 100%. Therefore, the last expression becomes:

n (n -1) N N = n ∑ i=1 ( p i ⋅ N i ) p i w i N 1 ΔN i ΔN i = N i -N 1 N 1 N i = N 1 + ΔN i N i N = n ∑ i=1 ( p i ⋅ N i ) = n ∑ i=1 ( p i ⋅ (N 1 + ΔN i ) ) p 1 N = n ∑ i=1 ( ( p i ⋅ N 1 ) + ( p i ⋅ ΔN i ) ) N = n ∑ i=1 ( p i ⋅ N 1 ) + n ∑ i=1 ( p i ⋅ ΔN i ) N 1 N = N 1 ⋅ n ∑ i=1 ( p i ) + n ∑ i=1 ( p i ⋅ ΔN i ) n ∑ i=1 p i = 1
This simplifies to our Fast Weighted Average Formula for the Weighted Average Calculation:

Also note that in this context as Therefore, the term for will be zero, so the index can run from 2 to n which saves one multiplication operation.

We can pick whichever value we want to serve as the Reference value by assigning it the label . We therefore have freedom over which value we use as a Reference Value.

Proof of Arbitrary Reference Value Formula

We can also perform Weighted Average calculations with an arbitrary Reference Value. Let's define the reference value with the variable for Anchor.

Now we define all our values relative to the Anchor :

where

We can go through the prior algebra where ether only difference is becomes .

Multiplying through by :

Separating Sum terms:

is a constant value which can be factored out:

N = N 1 ⋅ 1 + n ∑ i=1 ( p i ⋅ ΔN i ) N = N 1 + n ∑ i=1 ( p i ⋅ ΔN i ) ΔN 1 = 0 ΔN 1 = N 1 -N 1 = 0 (i = 1) N = N 1 + n ∑ i=2 ( p i ⋅ ΔN i ) N 1 A A N i = A + ΔN i ΔN i = N i -A N 1 A N = n ∑ i=1 ( p i ⋅ N i ) = n ∑ i=1 ( p i ⋅ (A + ΔN i ) ) p 1 N = n ∑ i=1 ( ( p i ⋅ A) + ( p i ⋅ ΔN i ) ) N = n ∑ i=1 ( p i ⋅ A) + n ∑ i=1 ( p i ⋅ ΔN i )

A

Again, we have constraint that:

Therefore, the last expression becomes:

This is the Weighted Differences method for Weighted Average and Expected Value calculations.

The variable is a "Difference" from the Anchor (Reference value) and the expression is a Weighted Difference term. To calculate the Weighted Average we can sum the Weighted Differences and add them to the Anchor Value. This will generally require multiplications unless the Anchor value is selected as one of the values of . Note we are excluding cases where a Percentage Frequency is 0, as these can be ignored, so we have values which have non-zero Percentage Frequencies or Weights.

Again, since: Again, if the Anchor is set equal to a particular value of such as for some , then :

By assumption: Therefore Therefore, if the Anchor is set to any of the value of such as for some then the Weighted Difference Method (Algorithm) will require multiplication operations as the corresponding term in the Weighted Difference sum can be ignored as and we skip that term in the sum and do not multiply by as:

because

N = A ⋅ n ∑ i=1 p i + n ∑ i=1 ( p i ⋅ ΔN i ) n ∑ i=1 p i = 1 N = A + n ∑ i=1 ( p i ⋅ ΔN i ) ΔN i ( p 1 ⋅ ΔN i ) n N n ΔN i = N i -A A N N j j (ΔN j = 0) ΔN j = N j -A A = N j ΔN j = N j -N j = 0 N N j j (n -1) (ΔN j = 0) p j p j ⋅ ΔN j = 0 (ΔN j = 0)

Proof for FAST Weighted Average Calculation Algorithm for Two Values

Here is a formal proof how why the Fast Weighted Average Algorithm for two values.

As a review, given two Values and corresponding Percentage Frequencies of (Normalized Weights), the traditional formula for Weighted Average of variable N when N can take with two Values is:

if either or is zero, then no multiplication is required as then either or is will be 1.

If they are not equal, without loss of generality, we can say as we simply label the larger of two values . Define the variable as Difference between and :

( will be positive if )

Note that:

Thus, by the definition, will be positive. The Weighted Average of , which is written as can be calculated as either:

(Version 1) (Version 2)

We will start with our Traditional Weighted Average Formula, and transform it into both versions using the relationship .

Inserting the expression for that :

Multiplying through by : Merging terms with :

(N 1 , N 2 ) ( p 1 , p 2 ) (N ) N = 2 ∑ i=1 ( p i ⋅ N i ) = ( p 1 ⋅ N 1 ) + ( p 2 ⋅ N 2 ) N = (N 1 ⋅ p 1 ) + (N 2 ⋅ p 2 ) p 1 p 2 p 1 p 2 (N 2 ≥ N 1 ) N 2 D N 1 N 2 D = N 2 -N 1 D N 2 ≥ N 1 N 2 = N 1 + D D (N 1 , N 2 ) (N ) N = N 1 + (D ⋅ p 2 ) N = N 1 -(D ⋅ p 1 ) ( p 1 + p 2 = 1) N = (N 1 ⋅ p 1 ) + (N 2 ⋅ p 2 ) N 2 N 2 = N 1 + D N = (N 1 ⋅ p 1 ) + (N 1 + D) ⋅ p 2 p 2 N = (N 1 ⋅ p 1 ) + (N 1 ⋅ p 2 ) + (D ⋅ p 2 ) N 1 N = N 1 ⋅ ( p 1 + p 2 ) + (D ⋅ p 2 )

Proof of Difference-Based with MidPoint Formula (Average of Two Values)

Let's prove the Difference-based MidPoint formula starting with the Traditional Midpoint Formula:

Traditional Midpoint Formula:

The Fast MidPoint calculation algorithms we have are:

[Version 1] [Version 2]
Where and

Proof Method A Version 1

Begin by inserting the expression for in Version 1, which gives :

It should be noted that:

Therefore:

Combining terms onto a single fraction Cancelling terms:

M = N 1 + N 2 2 M = N 1 + D 2 M = N 2 - D 2 (D = N 2 -N 1 ) (N 2 ≥ N 1 ) D M = N 1 + N 2 -N 1 2 N 1 = 2 ⋅ N 1 2 M = N 1 + N 2 -N 1 2 = 2 ⋅ N 1 2 + N 2 -N 1 2 M = 2 ⋅ N 1 + N 2 -N 1 2 N 1 M = N 1 + N 2 2
Version 2

We will also show the Version 2 is consistent with the Traditional MidPoint Formula. Version 2 is:

where Inserting the expression for into the equal above gives:

It should be noted that:

Therefore:

Combining terms onto a single fraction Cancelling terms:

Therefore these variations of the MidPoint Formula are mutually consistent.

Proof Method B

We can also go the other way and being with the Traditional MidPoint Formula and manipulate it:

Version 1: Add and Subtract to the Numerator:

Rearrange terms:

M = N 2 -D 2 D = (N 2 -N 1 ) D M = N 2 - N 2 -N 1 2 N 2 = 2 ⋅ N 2 2 M = N 2 - N 2 -N 1 2 = 2 ⋅ N 2 2 - N 2 -N 1 2 M = 2 ⋅ N 2 -N 2 + N 1 2 N 2 M = N 2 + N 1 2 M = N 1 + N 2 2 N 1 M = N 1 + N 2 + N 1 -N 1 2 = (2 ⋅ N 1 ) + (N 2 -N 1 ) 2 = 2 ⋅ N 1 2 + N 2 -N 1 2 M = N 1 + N 2 -N 1 2 = N 1 + D 2

FAST Direct Average Algorithm

The Direct Average of data points or Values of variable with values is denoted by and calculated as:

Average of x:

The Direct Average of a set of numbers is the Unweighted Average of the set of numbers, and can also be thought of as the Weighted Average of the set of Values where each value is given Equal Weight:

[The Weight of each value is ]

These weights are normalized as:

Therefore, we can apply our Fast Weighted Average Formula with weight . We can select any value as a Reference Value or an Arbitrary Reference Value. Selecting a Value as the Reference Value and labeling it gives:

Selecting an arbitrary Reference Value gives:

The version using as the Reference Value makes the term equal to zero, and so this is excluded from the sum.

Proof

Again, set the reference value equal to , and express each value relative to :

n x {x 1 , x 2 , . . . x i , . . . x n } x x = ∑ n i=1 (x i ) n x = ∑ n i=1 (x i ) n = n ∑ i=1 ( 1 n ⋅ x i ) 1 n = n ∑ i=1 ( 1 n ) = n ⋅ 1 n = 1 1 n x 1 x = x 1 + ∑ n i=2 (x i -x 1 ) n A x = A + ∑ n i=1 (x i -A) n x 1 (x 1 -A) A A Δx i = x i -A ⟹ x i = A + Δx i x = ∑ n i=1 (x i ) n = ∑ n i=1 (A + Δx i ) n
Setting equal to eliminates the first term in the sum, so doing so allows the sum to run from equals 2 to as the first term is zero.

Assumptions

Throughout this paper, I have assumed that none of the Normalized Weights or Percentage Frequencies values are 0 or negative. If any are zero, then they will ignored and excluded from the count of . So we will assume positive weights . So the number refers to the number of Values that remain after discarding values with zero Weight.

Arbitrary Weights

A similar method can be used if arbitrary (non-formalized) weights are given to calculate the Weighted average in at most multiplication operations given positive arbitrary Weights and Values of variable with Values . Again, the Weights must be non-negative, and any Weights which are equal to zero will be discarded long with the corresponding Value.

The Weighted Average of variable given arbitrary (non-Normalized) Weights is defined as: Defining the variable ("S" is for "Sum") as:

We can rewrite the equation for the Weighted Average as:

x = ∑ n i=1 A n + = ∑ n i=1 + Δx i n x = n ⋅ A n + ∑ n i=1 Δx i n x = A + ∑ n i=1 Δx i n = A + ∑ n i=1 (x i -A) n A x 1 i n w i p i n n {w 1 , w 2 , . . . w i , . . . w n } n (n -1) n {W 1 , W 2 , . . . W i , . . . W n } n x {x 1 , x 2 , . . . x i , . . . x n } x x = ∑ n i=1 (W i ⋅ x i ) ∑ n i=1 W i W S W S = n ∑ i=1 W i x = ∑ n i=1 (W i ⋅ x i ) W S
In general, the formula above will require multiplication operations and a division operation at the end to divide by . Normalizing the Weights will also require division operations to divide each original Weight by the sum of the Weights .

We can calculate the Weighted Average without Normalizing the weights and with at most multiplication operations through the formula below. Again, assume that we use the value as the Reference Value.

Again, define as follows:

The Weighted Average of can be calculated as:

Note the sum runs from going from 2 to , and is outside of the sum, so we can calculating the sum of the Weighted Differences and divide once by . Therefore, implementing this formula will require at most multiplication operations and a single Division calculation.

Pseudo-Code

Pseudo-code for implementing this calculation algorithm is shown below. 

for i = 1 to (n-1) { D[i]=x[i]-x[0]; WD[i]=W[i]*x[i]; WD_Sum = WD_Sum+WD[i] W_Sum=W_Sum+W[i]; } WA=x[0]+ (WD_Sum / W_Sum); n W S n (W S ) (n -1) x 1 Δx i Δx i = x i -x 1 ⟺ x i = x 1 + Δx i x x = ∑ n i=2 (W i ⋅ Δx i ) W S + x 1 i n W S W S (n -1)
Return WA;

The above calculations can also be done in-place to not have additional arrays D[n] and WD [n]. That is when retaining the Weights, if you have the Weighted Difference and the Reference Value then one can reconstruct the original set of values given. Pseudo-code for in-place calculations is given below.

WD_Sum=0

W_Sum= W[0]

for i = 1 to (n-1) { x[i]=x[i]-x[0]; x[i]=W[i]*x[i]; WD_Sum = WD_Sum+x[i] W_Sum=W_Sum+W[i]; } WA=x[0]+ (WD_Sum / W_Sum);
Return WA; For both of these, the code can be modified if the Weights are Normalized to simply not calculate the W_Sum value, and not divide by the W_Sum value, since this will always be 1 given the Weights are normalized. Pseudocode for normalized weights is shown below: 

Arbitrary Reference Value

We can also use an Arbitrary Reference Value . Again, in general, an Arbitrary Reference Value which is not one of the values of will require will require multiplication operations.

Define the Reference Value as ("A" is for Anchor), which can be any value.

Define

as follows:

The Weighted Average of can be calculated as:

Again, setting equals to will make so we can ignore the corresponding term in the sum as we are multiplying by zero. Return WA; Note that in this example, the sum runs from i going from 0 to n-1. Again, the are zero-indexed as per computer science standards.

A x i n

A 

Δx i Δx i = x i -A ⟺ x i = Δx I + A x x = ∑ n i=1 (W i ⋅ Δx i ) W S + A A x

1)

  Discard any values which have zero Normalized weight 2) Select a Reference Value from the set of data points, which is referred to ax 3) Calculate the Difference between every other value and the Reverence Value 4) Calculated the Weighted Difference of each term (aside from the Reference Value) by multiplying the Weight times the Difference from the Reference Value. 5) Sum the Weighted Differences 6) Add the Sum of the Weighted Differences to the Reference Value of

  also use the term Percentage Frequency for Normalized Weight and use instead of . Given two Values and corresponding Percentage Frequencies of (Normalized Weights):

  Assume the inputs are arrays W[n] and x[n] which contain floating point numbers for the Weights and Values respectively. We will also assume x[0] is the Reference Value. Each array is zeroindexed and has n values. We also use the arrays D[n] for the Difference values, and WD[n] for the Weighted Difference values. WD_Sum=0 W_Sum= W[0]

  Pseudo-code for implementing this calculation algorithm is shown below. Inputs are arrays W[n] and x[n] which contain floating point numbers for the Weights, and Values respectively, and a separate variable A for the Reference Value.

  be further refined to save an operation and an intermediate variable as:

www.fastmath.net of 2 21 © 2020 -2021 Matthew Tambiah

© 2020 -2021 Matthew Tambiah

www.fastmath.net of 4 21 © 2020 -2021 Matthew Tambiah

www.fastmath.net of 5 21 © 2020 -2021 Matthew Tambiah

www.fastmath.net of 7 21 © 2020 -2021 Matthew Tambiah

www.fastmath.net of

www.fastmath.net of 9 21 © 2020 -2021 Matthew Tambiah

www.fastmath.net of 10 21 © 2020 -2021 Matthew Tambiah

www.fastmath.net of 21 21 © 2020 -2021 Matthew Tambiah

Inserting expression : This is the expression we are looking for. We can also derive the other variant, using as the Reference value in a similar way. Note that: ( ):

Inserting the expression for :

Multiplying through by and moving term to the end :

Merging terms with :

Inserting expression :

Alternate Derivations

We can also derive these in a different way. Begin with:

Insert expression as

Multiply through by : Rearrange terms:

Factor out a :

( p 1 + p 2 = 1)

Similarly, begin with

Insert expression as

Multiply through by : Rearrange terms:

Factor out a :

Note that:

Therefore:

For Version 2, begin with:

Then Add and Subtract to the Numerator:

Rearrange terms:

Proof Method C

The Fast MidPoint Formula can also be calculated from the Fast Weighted Average Formula for two values which were:

(Version 1)

(Version 2)

Where and

Note that in the MIdPoint or Average of two values, this is equivalent to the Weighted Average Formula where each weight is :

Since :

This means the MidPoint is the Weighted Average of two values given equal weights so . The MidPoint is therefore :