Harnessing polymer grafting to control the shape of plasmonic nanoparticles - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Applied Physics Année : 2020

Harnessing polymer grafting to control the shape of plasmonic nanoparticles

Ying Zhou
  • Fonction : Auteur
Liting Yan
  • Fonction : Auteur
Tanmoy Maji
Manos Gkikas

Résumé

Matrix-free polymer grafted nanoparticles (NPs) are single component polymer nanocomposites (PNCs) for which the often reported severe aggregation of the conventional PNCs can be suppressed. For a given particle core, the size and shape of the polymer grafted nanoparticles can be controlled by the molecular weight of the polymer and its grafting density. However, the degree of homogeneity of one-component PNCs depends on the grafted chain molecular weight and grafting density, as well as on the shape of grafted NPs. Surface plasmon resonance enhanced dynamic light scattering from very dilute solutions, yielding both translational and rotational transport coefficients, complemented by UV-Vis extinction spectra, can detect deviations from spheres. Here, we report that poly(isobutylene)-grafted Ag NPs strongly deviate from the spherical shape and are modeled as prolate spheroids. This NP asphericity, due to inhomogeneous grafting, can impact the structure and properties of plasmonic PNCs in the solid state. Thus, characterizing this behavior is a crucial step prior to the formation of one-component PNCs.
Fichier principal
Vignette du fichier
Ying_Zhou_2020_JAP_1.5140459.pdf (1.21 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03142228 , version 1 (27-08-2021)

Identifiants

Citer

Ying Zhou, Liting Yan, Tanmoy Maji, Gaëtan Lévêque, Manos Gkikas, et al.. Harnessing polymer grafting to control the shape of plasmonic nanoparticles. Journal of Applied Physics, 2020, 127 (7), pp.074302. ⟨10.1063/1.5140459⟩. ⟨hal-03142228⟩
36 Consultations
61 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More