A Study of Maximal and Minimal Ideals of n-Refined Neutrosophic Rings
Mohammad Abobala

To cite this version:
Mohammad Abobala. A Study of Maximal and Minimal Ideals of n-Refined Neutrosophic Rings. Journal of fuzzy extension and applications, 2021. hal-03142210

HAL Id: hal-03142210
https://hal.science/hal-03142210
Submitted on 15 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Study of Maximal and Minimal Ideals of n-Refined Neutrosophic Rings

Mohammad Abobala
Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria.

PAPER INFO

Chronicle:
Received: 01 November 2020
Revised: 19 December 2020
Accepted: 08 February 2021

Abstract:
If R is a ring, then \(R_n(I) \) is called a refined neutrosophic ring. Every AH-subset of \(R_n(I) \) has the form \(P = \sum_{i=0}^{n} \sum_{j=0}^{i} a_{ij} = \{ a_0 + a_1 + \cdots + a_n : a_i \in P_i \} \), where \(P_i \) are subsets of the classical ring \(R \). The objective of this paper is to determine the necessary and sufficient conditions on \(P_i \) which make \(P \) an ideal of \(R_n(I) \). Also, this work introduces a full description of the algebraic structure and form for AH-maximal and minimal ideals in \(R_n(I) \).

Keywords:
n-Refined Neutrosophic Ring.
n-Refined AH-Ideal.
Maximal Ideal.
Minimal Ideal.

1. Introduction

Neutrosophy is a new kind of generalized logic proposed by Smarandache [12]. It becomes a useful tool in many areas of science such as number theory [16, 20], solving equations [18, 21], and medical studies [11, 15]. Also, there are many applications of neutrosophic structures in statistics [14], optimization [8], and decision making [7]. On the other hand, neutrosophic algebra began in [4], Smarandache and Kandasamy defined concepts such as neutrosophic groups and neutrosophic rings. These notions were handled widely by Agboola et al. in [6, 10], where homomorphisms and AH-substructures were studied [3, 13, 17].

Recently, there is an arising interest by the generalizations of neutrosophic algebraic structures. Authors proposed n-refined neutrosophic groups [9], rings [1], modules [2, 22], and spaces [5, 19].
If R is a classical ring, then the corresponding refined neutrosophic ring is defined as follows:

$$R_n(I) = \{a_0 + a_1 I + \cdots + a_n I_n : a_i \in R\}.$$

Addition and multiplication on $R_n(I)$ are defined as:

$$\sum_{i=0}^{n} x_i I_i + \sum_{i=0}^{n} y_i I_i = \sum_{i=0}^{n} (x_i + y_i) I_i,$$

$$\sum_{i=0}^{n} x_i I_i \times \sum_{j=0}^{n} y_j I_j = \sum_{i,j=0}^{n} (x_i \times y_j) I_i I_j.$$

Where \times is the multiplication defined on the ring R and $I_i I_j = I_{\min(i,j)}$.

Every AH-subset of $R_n(I)$ has the form $P = \sum_{i=0}^{n} P_i I_i = \{a_0 + a_1 I + \cdots + a_n I_n : a_i \in P_i\}$. There is an important question arises here. This question can be asked as follows:

What are the necessary and sufficient conditions on the subsets P_i which make P be an ideal of $R_n(I)$? On the other hand, can we determine the structure of all AH-maximal and minimal ideals in the n-refined neutrosophic ring $R_n(I)$?

Through this paper, we try to answer the previous questions in the case of n-refined neutrosophic rings with unity. All rings through this paper are considered with unity.

2. Preliminaries

Definition 1. [1]. Let $(R, +, \times)$ be a ring and $I_k: 1 \leq k \leq n$ be n indeterminacies. We define $R_n(I) = \{a_0 + a_1 I + \cdots + a_n I_n : a_i \in R\}$ to be n-refined neutrosophic ring. If $n=2$ we get a ring which is isomorphic to 2-refined neutrosophic ring $R(I_1, I_2)$.

Addition and multiplication on $R_n(I)$ are defined as:

$$\sum_{i=0}^{n} x_i I_i + \sum_{i=0}^{n} y_i I_i = \sum_{i=0}^{n} (x_i + y_i) I_i,$$

$$\sum_{i=0}^{n} x_i I_i \times \sum_{j=0}^{n} y_j I_j = \sum_{i,j=0}^{n} (x_i \times y_j) I_i I_j.$$

Where \times is the multiplication defined on the ring R.

It is easy to see that $R_n(I)$ is a ring in the classical concept and contains a proper ring R.

Definition 2. [1]. Let $R_n(I)$ be an n-refined neutrosophic ring, it is said to be commutative if $xy = yx$ for each $x, y \in R_n(I)$, if there is $I \in R_n(I)$ such $1. x = x. 1 = x$, then it is called an n-refined neutrosophic ring with unity.

Theorem 1. [1]. Let $R_n(I)$ be an n-refined neutrosophic ring. Then (a) R is commutative if and only if $R_n(I)$ is commutative, (b) R has unity if and only if $R_n(I)$ has unity, and (c) $R_n(I) = \sum_{i=0}^{n} R I_i = \{\sum_{i=0}^{n} x_i I_i : x_i \in R\}$.

Definition 3. [1]. (a) Let $R_n(I)$ be an n-refined neutrosophic ring and $P = \sum_{i=0}^{n} P_i I_i = \{a_0 + a_1 I + \cdots + a_n I_n : a_i \in P_i\}$ where P_i is a subset of R, we define P to be an AH-subring if P_i is a subring of R for all i.
subring is defined by the condition \(P_i = P_j \) for all \(i, j \). (b) \(P \) is an AH-ideal if \(P_i \) is an two sides ideal of \(R \) for all \(i \), the AHS-ideal is defined by the condition \(P_i = P_j \) for all \(i, j \). (c) The AH-ideal \(P \) is said to be null if \(P_i = R \) or \(P_i = \{0\} \) for all \(i \).

Definition 4. [1]. Let \(R_n(I) \) be an \(n \)-refined neutrosophic ring and \(P = \sum_{i=0}^{n} P_iI_i \) be an AH-ideal, we define AH-factor \(R(I)/P = \sum_{i=0}^{n}(R/P_i)I_i = \sum_{i=0}^{n}(x_i + P_i)I_i; x_i \in R \).

Theorem 2. [1]. Let \(R_n(I) \) be an \(n \)-refined neutrosophic ring and \(P = \sum_{i=0}^{n} P_iI_i \) be an AH-ideal: \(R_n(I)/P \) is a ring with the following two binary operations:

\[
\sum_{i=0}^{n}(x_i + P_i)I_i + \sum_{i=0}^{n}(y_i + P_i)I_i = \sum_{i=0}^{n}(x_i + y_i + P_i)I_i,
\]

\[
\sum_{i=0}^{n}(x_i + P_i)I_i \times \sum_{i=0}^{n}(y_i + P_i)I_i = \sum_{i=0}^{n}(x_i \times y_i + P_i)I_i.
\]

Definition 5. [1]. (a) Let \(R_n(I), T_n(I) \) be two \(n \)-refined neutrosophic rings respectively, and \(f_R; R \to T \) be a ring homomorphism. We define \(n \)-refined neutrosophic AHS-homomorphism as \(f: R_n(I) \to T_n(I); f(\sum_{i=0}^{n} x_iI_i) = \sum_{i=0}^{n} f(x_i)I_i \), (b) \(f \) is an \(n \)-refined neutrosophic AHS-isomorphism if it is a bijective \(n \)-refined neutrosophic AHS-homomorphism, and (c) AH-Ker \(f = \sum_{i=0}^{n} Ker(f)I_i = \sum_{i=0}^{n} x_iI_i; x_i \in Ker f_R \).

3. Main Discussion

Theorem 3. Let \(R_n(I) = \{a_0 + a_1I + \cdots + a_nI_n; a_i \in R\} \) be any \(n \)-refined neutrosophic ring with unity \(1 \). Let \(P = \sum_{i=0}^{n} P_iI_i = \{a_0 + a_1I + \cdots + a_nI_n; a_i \in P_i \} \) be any AH-subset of \(R_n(I) \), where \(P_i \) are subsets of \(R \). Then \(P \) is an ideal of \(R_n(I) \) if and only if \((a) P_i \) are classical ideals of \(R \) for all \(I \) and \((b) P_0 \leq P_k \leq P_{k-1} \) for all \(0 < k \leq n \).

Proof. First of all, we assume that \((a), (b) \) are true. We should prove that \(P \) is an ideal. Since \(P_i \) are classical ideals of \(R \), then they are subgroups of \((R, +) \), hence \(P \) is a subgroup of \((R_n(I), +) \). Let \(r = r_0 + r_1I_1 + \cdots + r_nI_n \) be any element of \(R_n(I), x = x_0 + x_1I_1 + \cdots + x_nI_n \) be an arbitrary element of \(P \), where \(x_i \in P_i \). We have For \(n = 0 \), the statement \(r \cdot x \in P \) is true clearly. We assume that \(P \) is true for \(n = k \), we must prove it for \(k + 1 \).

\[
r \cdot x = (r_0 + r_1I_1 + \cdots + r_kI_k + r_{k+1}I_{k+1})(x_0 + x_1I_1 + \cdots + x_kI_k + x_{k+1}I_{k+1}) =
\]

\[
(r_0 + r_1I_1 + \cdots + r_kI_k)(x_0 + x_1I_1 + \cdots x_kI_k) + r_{k+1}I_{k+1}(x_0 + \cdots + x_kI_k + 1) + (r_0 + \cdots r_kI_k)x_{k+1}I_{k+1}.
\]

We see remark

\[
(r_0 + r_1I_1 + \cdots + r_kI_k)(x_0 + x_1I_1 + \cdots x_kI_k) \in P_0 + P_1I_1 + \cdots + P_kI_k (\text{by induction hypothesis}).
\]

On the other hand, we have

\[
r_{k+1}I_{k+1}(x_0 + \cdots + x_{k+1}I_{k+1}) = (r_{k+1}x_0 + r_{k+1}x_{k+1})I_{k+1} + r_{k+1}x_1I_1 + \cdots + r_{k+1}x_kI_k.
\]
Since all P_i are ideals and $P_0 \leq P_{k+1}$, we have \(r_{k+1}x_i \in P_i \) and \(r_{k+1}x_0 + r_{k+1}x_{k+1} \in P_{k+1} \), hence \(r_{k+1}l_{k+1}(x_0 + \cdots + x_{k+1}l_{k+1}) \in P \). Also, \((r_0 + \cdots + r_k l_k)x_{k+1}l_{k+1} = r_0x_{k+1}l_{k+1} + r_1x_{k+1}l_1 + \cdots + r_kx_{k+1}l_k \).

Under the assumption of theorem, we have \(r_0x_{k+1} \in P_{k+1} \) and \(r_1x_{k+1} \in P_{k+1} \leq P_i \).

For all \(1 \leq i \leq k \). Thus \(P \) is an ideal.

For the converse, we assume that \(P \) is an ideal of \(R_n(I) \). We should prove (a) and (b).

It is easy to check that if \(P = P_0 + \cdots + P_nI_n \) is a subgroup of \((R_n(I),+)\), then every \(P_i \) is a subgroup of \((R,+)\). Now we show that (b) is true.

For every \(1 \leq i \leq n \), we have an element \(l_i \), that is because \(R \) is a ring with unity, hence. Let \(x_0 \) be any element of \(p_0 \), we have \(x_0 \in P \), and \(x_0l_i \in P \).

Thus \(x_0 \in P_i \), which means that \(P_0 \leq P_i \) for all \(1 \leq i \leq n \).

Also, for every \(x_i \in P_i \), we have \(x_i l_i \in P \), thus \(x_i l_i l_{i-1} = x_i l_{i-1} \in P \), so that \(x_i \in P_{i-1} \), which means that \(P_i \leq P_{i-1} \) and (b) holds.

Example 1. Let \(Z \) be the ring of integers, \(Z_3(I) = \{a + bi_1 + ci_2 + di_3; a, b, c, d \in Z\} \) be the corresponding 3-refined neutrosophic ring, we have:

\[
P = \langle 16 \rangle + \langle 2 \rangle + \langle 1 \rangle_4 + \langle 9 \rangle_8 = \{16x + 2y_1 + 4z_2 + 8t_3; x, y, z, t \in Z\}
\]

is an ideal of \(Z_3(I) \), that is because, \(\langle 16 \rangle \leq \langle 2 \rangle \leq \langle 9 \rangle \leq \langle 2 \rangle > \).

Now, we are able to describe all AH-maximal and minimal ideals in \(R_n(I) \).

Theorem 4. Let \(R_n(I) = \{a_0 + a_1 l + \cdots + a_n l_n; a_i \in R\} \) be any n-refined neutrosophic ring with unity 1.

Let \(P = \sum_{n=0}^{\infty} P_i l_i \) be any ideal of \(R_n(I) \). Then (a) non trivial AH-maximal ideals in \(R_n(I) \) have the form \(P_0 + RI_1 + \cdots + RI_n \), where \(P_0 \) is maximal in \(R \) and (b) non trivial AH-minimal ideals in \(R_n(I) \) have the form \(P_1 l_1 \), where \(P_1 \) is minimal in \(R \).

Proof. (a) assume that \(P \) is an AH-maximal ideal on the refined neutrosophic ring \(R_n(I) \), hence for every ideal \(M = (M_0 + M_1 l_1 + \cdots + M_n l_n) \) with property \(P \leq M \leq R_n(I) \), we have \(M = P \) or \(M = R_n(I) \). This implies that \(M_i = R \) or \(M_i = P_i \), which means that \(P_0 \) is maximal in \(R \). On the other hand, we have \(P_0 \leq P_k \leq P_{k-1} \). For all \(0 < k \leq n \), thus \(P_i \in \{P_0, R\} \) for all \(1 \leq i \leq n \). Now suppose that there is at least \(j \) such that \(P_j = P_0 \), we get that \(P_0 + \cdots + P_j l_j + \cdots + R l_n \leq P_0 + R l_1 + \cdots + R l_j + \cdots + R l_n \), hence \(P \) is not maximal. This means that \(P_0 + R l_1 + \cdots + R l_n \), where \(P_0 \) is maximal in \(R \) is the unique form of AH-maximal ideals.

For the converse, we suppose that \(P_0 \) is maximal in \(R \) and \(P_i = R \). For all \(1 \leq i \leq n \). Consider \(M = (M_0 + M_1 l_1 + \cdots + M_n l_n) \) as an arbitrary ideal of \(R_n(I) \) with AH-structure. If \(P \leq M \leq R_n(I) \), then \(P_i \leq M_i \leq R \) and, this means that \(P_0 = M_0 \) or \(M_0 = R \), that is because \(P_0 \) is maximal.

According to **Theorem 3**, we have \(M_0 \leq M_i \leq M_{i-1} \). Now if \(M_0 = R \), we get \(M_i = R \), thus \(M = R_n(I) \).
If $M_0 = P_0$, we get $M = P$. This implies that P is maximal.

(b) It is clear that if P_j is minimal in R, then $P_j I_1$ is minimal in $R_n(I)$. For the converse, we assume that $P = P_0 + P_1 I_1 + \cdots + P_n I_n$ is minimal in $R_n(I)$, consider an arbitrary ideal with AH-structure $M = (M_0 + M_1 I_1 + \cdots + M_n I_n)$ of $R_n(I)$ with the property $M \leq P$, we have: $M = \{0\}$ or $M = P$ which means that $M_1 = P_1$ or $M_1 = \{0\}$. Hence P_1 is minimal.

According to Theorem 3, we have $M_0 \leq M_k \leq M_{k-1}$ for all k. Now, suppose that there is at least $\neq 1$ such that $P_j \neq \{0\}$, we get $P_j I_j \leq P_0 + P_1 I_1 + \cdots + P_n I_n$. Thus P is not minimal, which is a contradiction with respect to assumption. Hence any non trivial minimal ideal has the form $P_1 I_1$, where P_1 is minimal in R.

Example 2. Let $R = Z$ be the ring of integers, $Z_n(I) = \{a_0 + a_1 I_1 + \cdots + a_n I_n; a_i \in Z\}$ be the corresponding n-refined neutrosophic ring, we have

(a) the ideal $P = \langle 2 \rangle + Z I_1 + \cdots + Z I_n$ is AH-maximal, that is because $\langle 2 \rangle$ is maximal in R and (b) there is no AH-minimal ideals in $Z_n(I)$, that is because R has no minimal ideals.

Example 3. Let $R = Z_{12}$ be the ring of integers modulo 12, $Z_{12n}(I)$ be the corresponding n-refined neutrosophic ring, we have

(a) the ideal $P = \langle 6 \rangle I_1 = \{0, 6 I_1\}$ is AH-minimal, that is because $\langle 6 \rangle$ is minimal in R.

(b) the ideal $Q = \langle 2 \rangle + Z_{12} I_1 + \cdots + Z_{12} I_n$ is maximal, that is because $\langle 2 \rangle$ is maximal in R.

Now, we show that Theorem 4 is not available if the ring R has no unity, we construct the following example.

Example 4. Consider $2Z_2(I) = \{(2a + 2b I_1 + 2c I_2); a, b, c \in Z\}$ the 2-refined neutrosophic ring of even integers, let $P = (2Z + 4Z I_1 + 4Z I_2) = \{(2a + 4b I_1 + 4c I_2); a, b, c \in Z\}$ be an AH-subset of it. First of all, we show that P is an ideal of $2Z_2(I)$. It is easy to see that $(P, +)$ is a subgroup. Let $x = (2m + 4n I_1 + 4t I_2)$ be any element of P, $r = (2a + 2b I_1 + 2c I_2)$ be any element of $2Z_2(I)$, we have $rx = (4am + [8an + 4bm + 8bt + 8ct + 4cm] + I_2[8at + 8ct + 4cm]) \in P$. Thus P is an ideal and the inclusion’s condition is not available, that is because $2Z$ is not contained in $4Z$.

4. Conclusion

In this article, we have found a necessary and sufficient condition for any subset to be an ideal of any n-refined neutrosophic ring with unity. On the other hand, we have characterized the form of maximal and minimal ideals in this class of neutrosophic rings. As a future research direction, we aim to study Köthe’s Conjecture on n-refined neutrosophic rings about the structure of nil ideals and the maximality/minimality conditions if R has no unity.
Open Problems

According to our work, we find two interesting open problems.

- Describe the algebraic structure of the group of units of any n-refined neutrosophic ring.
- What are the conditions of AH-maximal and minimal ideals if R has no unity?

References

https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1748&context=nss_journal