
HAL Id: hal-03142205
https://hal.science/hal-03142205

Preprint submitted on 15 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing isogenies between Jacobians of hyperelliptic
curves of arbitrary genus via differential equations

Elie Eid

To cite this version:
Elie Eid. Computing isogenies between Jacobians of hyperelliptic curves of arbitrary genus via differ-
ential equations. 2021. �hal-03142205�

https://hal.science/hal-03142205
https://hal.archives-ouvertes.fr


COMPUTING ISOGENIES BETWEEN JACOBIANS OF HYPERELLIPTIC

CURVES OF ARBITRARY GENUS VIA DIFFERENTIAL EQUATIONS

ELIE EID

Abstract. Let p be an odd prime number and ℓ be an integer coprime to p. We survey an al-

gorithm for computing explicit rational representations of (ℓ, . . . , ℓ)-isogenies between Jacobians

of hyperelliptic curves of arbitrary genus over an extension K of the field of p-adic numbers Qp.

The algorithm has a quasi-linear complexity in ℓ as well as in the genus of the curves.

1. Introduction

Over the last few years there has been a growing interest in computational aspects of abelian

varieties, especially Jacobians of algebraic curves. When such a variety is given, a first task is to

compute the number of points on it in some finite field [Sch95, BGG+17]. A way to achieve this

efficiently is to work with isogenies. In addition to point counting, the computation of isogenies

has many applications in number theory and cryptography [CEL12, CL13, FT19, CS20].

In order to have optimal algorithms for computing isogenies, in particular those which are defined

over finite fields, several approaches have been suggested. One of them consists in reducing the

problem to the computation of a solution of a nonlinear differential equation [Elk97, CE15],

possibly after having lifted the problem to the p-adics [LS08, LV16, CEL20, Eid20]. In this

work, we focus on p-adic algorithms that compute the explicit form of a rational representation

of an isogeny between Jacobians of hyperelliptic curves for fields of odd characteristic.

Let k be a field of characteristic different from 2 and ℓ > 1 and g > 1 two integers. Let C

(resp. C1) be a genus g hyperelliptic curve over k and let J (resp. J1) be its Jacobian. We

assume that there exists a separable (ℓ, . . . , ℓ)-isogeny I : J1 → J defined over k and we are

interested in computing one of its rational representations. Let us recall briefly the definition

of a rational representation and how we compute it (see [Eid20] for more details). Let P be

a Weierstrass point on C1 and jP : C1 → J1 the Jacobi map with origin P . The morphism

I ◦ jp induces a morphism IP : C1 → C(g), where C(g) is the g-th symmetric power of C.

When a coordinate system for C1 and C is fixed, the morphism IP is given by its Mumford

representation, which consists of a pair of polynomials (U(z), V (z)) with the following property:

if IP (Q) = {R1, . . . , Rg} (for some Q ∈ C1), then U(x(Ri)) = 0 and V (x(Ri)) = y(Ri), for all

i = 1, . . . , g. Here x(Ri) and y(Ri) denote the coordinates of the point Ri. The 2g coefficients

of the two polynomials U and V can be represented as rational fractions over k in one variable

and they form what we call a rational representation of I.

We assume that C (resp. C1) is given by the affine model C : y2 = f(x) (resp. C1 : v
2 = f1(u)).

Let Q be a non-Weierstrass point on C1 such that IP (Q) = {(x
(0)
1 , y

(0)
1 ), . . . , (x

(0)
g , y

(0)
g )} contains

g distinct points and does not contain neither a point at infinity nor a Weierstrass point. Let

t be a formal parameter of C1 at Q and let {(x1(t), y1(t)), . . . , (xg(t), yg(t))} be the image of

Q(t) by IP . The action of IP on the spaces of holomorphic differentials of C1 and C(g) gives the
1



following differential system whose unknown is X(t) = (x1(t), . . . , xg(t)) ∈ k̄JtK.


















H(X(t)) ·X ′(t) = G(t)

yi(t)
2 = f(xi(t)), i = 1, . . . , g

X(0) = (x
(0)
1 , · · · , x

(0)
g )

Y (0) = (y
(0)
1 , · · · , y

(0)
g )

(1)

where G(t) = (G1(t), . . . , Gg(t)) ∈ kJtKg and H(X(t)) is the matrix defined by

H(x1(t), . . . , xg(t)) =













x1(t)/y1(t) x2(t)/y2(t) · · · xg(t)/yg(t)

x1(t)
2/y1(t) x2(t)

2/y2(t) xg(t)
2/yg(t)

...
...

xg−1
1 (t)/y1(t) x2(t)

g−1/y1(t) · · · xg(t)
g−1/yg(t)













(2)

Since the coefficients of U(z) are rational fractions of degree at most O(gℓ) [Eid20, Proposition 9],

solving Equation (1) modulo tO(gℓ) allows to reconstruct all the components of the rational

representation (note that the polynomial V (z) can be recovered using the polynomial U(z) and

the equation of C).

Let p be an odd prime number. We assume that k is a finite field of characteristic p. Let K be

an unramified extension of Qp such that the residue field of K is k. In [Eid20], we have designed

an algorithm that computes, after lifting Equation (1) over K, an approximation of its solution.

This algorithm is based on the following Newton iteration:

X2m(t) = Xm(t) +H(Xm(t))−1

∫

(G−H(Xm(t)) ·X ′

m(t)) dt (3)

which gives more and more accurate (for the t-adic distance) solutions of Equation (1). The

complexity of this algorithm is quasi-linear with respect to ℓ but, unfortunately, it is at least

quadratic in g (even if we note that the matrix H(x1(t), . . . , xn(t)) is a structured matrix). The

main reason for this lack of efficiency is due to the fact that the components of the solution X(t)

of Equation (1) are power series over an unramified extension of degree g of K. However, the

rational fractions of the rational representation are defined over the ring of integers OK of K.

This is where we loose an extra factor g.

In this article, we revisit the algorithm of [Eid20] and manage to lower its complexity in g

and make it quasi-linear as well. For this, we work directly on the first Mumford coordinate

U(z) =
g
∏

i=1
(z − xi(t)) which has the decisive advantage to be defined over the base field: we

rewrite the Newton scheme (3) accordingly and design fast algorithms for iterating it in quasi-

linear time. Our main theorem is the following

Theorem 1. Let K be an unramified extension of Qp and k its residue field. There exists an

algorithm that takes as input:

• three positive integers g,n and N ,

• A polynomial f ∈ OK [z] of degree 2g + 1,

• a vector X0 = (x
(0)
1 , . . . , x

(0)
g ) represented by the polynomial U0(z) =

g
∏

i=1
(z−x

(0)
i ) ∈ OK [z]

such that, over k, U0(z) is separable,

• a vector Y0 = (y
(0)
1 , . . . , y

(0)
g ) represented by the interpolating polynomial V0(z) ∈ OK [z]

of the data {(x
(0)
1 , y

(0)
1 ), . . . , (x

(0)
g , y

(0)
g )},

2



• a vector G(t) ∈ OKJtKg,

and, assuming that the solution of Equation (1) has coefficients in OL with L an unram-

ified extension of K, outputs a polynomial U(t, z) =
g
∏

i=1
(z − xi(t)) ∈ OKJtK[z] such that

X(t) = (x1(t), . . . , xg(t)) is an approximation of this solution modulo (pN , tn+1) for a cost Õ(ng)

operations1 in OK at precision O(pM ) with M = N + ⌊logp(n)⌋.

Important examples of isogenies are, of course, the multiplication-by-ℓ maps. Classical algo-

rithms for computing them are usually based on Cantor algorithm for adding points on Jacobians

(see for example [Can94, Abe18]). Although, they exhibit acceptable running time in practice,

their theoretical complexity has not been well studied yet and experiments show that they

become much slower when the genus gets higher. Actually, in many cases, we have observed

that the algorithms of [Eid20] perform better in practice even if their theoretical complexity

in g is not optimal. Consequently, even though the algorithms designed in the present paper

use Kedlaya-Umans algorithm [KU11] as a subroutine and then could be difficult to implement

in an optimized way, they appear as attractive alternatives for the computation of ℓ-division

polynomials on Jacobians of hyperelliptic curves.

2. The main result

In this section, we sketch the proof of the main theorem by showing that the Newton iteration

given in Equation (3) can be executed with quasi-linear time complexity to give the desired

polynomial in Theorem 1. The precision analysis has been already studied in [Eid20].

Throughout this section, the letter p refers to a fixed odd prime number and the letter K refers

to a fixed unramified extension of Qp of degree d and k its residue field. Let OK be the ring of

integers of K.

We use the fixed point arithmetic model at precision O(pM ) to do computations in OK by

representing an element in OK by an expression of the form x + O(pM ) with x ∈ OK/pMOK .

For instance, if d = 1, the quotient OK/pMOK is just Z/pMZ. Additions, multiplications and

divisions in this model all reduce to the similar operations in the exact quotient ring OK/pMOK .

Let M(m) be the number of arithmetical operations required to compute the product of two

polynomials of degree m in an exact ring. Standard algorithms allow us to take M(m) ∈ Õ(m).

Let g > 1 be an integer and let G(t) ∈ OKJtK. Let also f be a polynomial of degree 2g + 1 and

let U0(z) ∈ OK [z] be a polynomial of degree g which separable over k. For the sake of simplicity,

we assume that U0 is irreducible, therefore its splitting field L is an unramified extension of

degree g of K. Let x
(0)
1 , . . . , x

(0)
g be the roots of U0(z) in L and X0 = (x

(0)
1 , . . . , x

(0)
g ). For

i = 1, . . . , g, we assume that f(x
(0)
i ) has a square root y

(0)
i in OL. Take Y0 = (y

(0)
1 , . . . , y

(0)
g ) and

let V0(z) ∈ OK [z] be the interpolating polynomial of the data {(x
(0)
1 , y

(0)
1 ), . . . , (x

(0)
g , y

(0)
g )}. We

assume that the unique solution X(t) = (x1(t), . . . , xn(t)) of Equation (1) has coefficients in OL

when X0 and Y0 are the initial conditions.

Let m ∈ N and n = 2m. Let Xm(t) = (x
(m)
1 (t), . . . , x

(m)
g (t)) be an approximation of X(t) modulo

tm represented by the minimal polynomial of x
(m)
1 , Um(t, z) =

∏

(z − x
(m)
i (t)). We show in the

next proposition that we can compute efficiently an approximation Xn(t) = (x
(n)
1 (t), . . . , x

(n)
g (t))

of X(t) modulo tn represented by the minimal polynomial Un(t, z) of x
(n)
1 (t) using Equation (3).

1The notation Õ(−) means that we are hiding logarithmic factors.

3



Proposition 2. Using the same notations as above, there exists an algorithm that computes

Un(t, z) from Um(t, z) with time complexity Õ(mg).

Sketch of the proof. The algorithm performs the following steps.

(1) Compute the degree g − 1 polynomial Wm(t, z) =
g−1
∑

i=0
w

(m)
i (t) zi such that

Wm(t, z) ≡ 1/f2(z) mod (tm, Um(t, z))

and Wm(0, z) = 1/V0(z) mod U0(z). Observe that it is the interpolating polynomial of

the points:

{(x
(m)
1 , 1/y

(m)
1 ), · · · , (x(m)

g , 1/y(m)
g )}.

Deduce Vm(z) = f(z)Wm(z) mod (tm, Um(z)).

(2) Compute the Newton sums s
(m)
i (t) =

g
∑

j=1
(x

(m)
j (t))i mod tm for i = 1, . . . , 2g − 1 and

deduce r
(m)
i (t) =

g
∑

j=1
(x

(m)
j (t))i−1(x

(m)
j (t))′ mod tm.

(3) Compute the two products H(Xm(t))X ′

m(t) and H(Xm(t))Xm(t) as follows:

H(Xm(t))X ′

m(t) =













r
(m)
1 r

(m)
2 · · · r

(m)
g

r
(m)
2 r

(m)
3 r

(m)
g+1

...

r
(m)
g r

(m)
g+1 · · · r

(m)
2g−1

























w
(m)
0

w
(m)
1
...

w
(m)
g−1













mod tm

and

H(Xm(t))Xm(t) =













s
(m)
1 s

(m)
2 · · · s

(m)
g

s
(m)
2 s

(m)
3 s

(m)
g+1

...

s
(m)
g s

(m)
g+1 · · · s

(m)
2g−1

























w
(m)
0

w
(m)
1
...

w
(m)
g−1













mod tm

(4) Compute (F
(m)
1 , · · · , F

(m)
g ) = H(Xm(t))Xm(t)−

∫

(G(t) −H(Xm(t))X ′

m(t)) dt.

(5) Let Dm(t, z) = F
(m)
1 zg+F

(m)
2 zg−1+ . . .+F

(m)
g−1z

2+F
(m)
g z. Compute Um(t, z)Dm(t, z) =

q
(m)
2g z2g + q

(m)
2g−1z

2g−1 + . . . + q
(m)
0 mod tm and read off the polynomial Qm(t, z) =

q
(m)
2g zg−1 + q

(m)
2g−1z

g−2 + . . .+ q
(m)
g+1.

(6) Compute Tm(t, z) =
Qm(t, z)Vm(t, z)

U ′

m(t, z)
mod (tm, Um(t, z)).

(7) Compute Un(t, z) such that Un(t, Tm(t, z)) ≡ 0 mod (tm, Um(t, z)).

We now discuss briefly the complexity analysis. The polynomial Wm in step 1 can be efficiently

computed by the classical Newton scheme for extracting square roots. Since, the coefficients

of Wm and Vm are polynomials of degrees at most m defined over K, the complexity of this
4



step is O(M(m)M(g)). The computation of the Newton sums s
(m)
i of Um in step 2 is classi-

cal [BGVPS21] and can be carried out for a cost of O(M(m)M(g)) operations. In step 3, we are

dealing with two Hankel matrix-vector products. This can be done in O(M(m)M(g)) operations

in K [CKY89, Section 3a]. The polynomial Tm constructed in step 5 and step 6 interpolates the

data {(x
(m)
1 , x

(n)
1 ), . . . , (x

(m)
g , x

(n)
g )} (see [KY89, Section 5] for more details), it can be computed

in O(M(m)M(g)) as well. Step 7 computes Un, the minimal polynomial of x
(n)
1 . We make use of

Kedlaya-Umans algorithm [KU11] to execute step 7; the resulting bit complexity is Õ(mg). �

References

[Abe18] S. Abelard. Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes

et complexité. PhD thesis, 2018. Thèse de doctorat dirigée par Gaudry, Pierrick et Spaenlehauer,

Pierre-Jean Informatique Université de Lorraine 2018. 3

[BGG+17] S. Ballentine, A. Guillevic, E. L. García, C. Martindale, M. Massierer, B. Smith, and J. Top. Isogenies

for point counting on genus two hyperelliptic curves with maximal real multiplication. In Algebraic

geometry for coding theory and cryptography, pages 63–94. Springer, 2017. 1

[BGVPS21] A. Bostan, L. González-Vega, H. Perdry, and E. Schost. Complexity issues on newton sums of

polynomials. 02 2021. 5

[Can94] D. G. Cantor. On the analogue of the division polynomials for hyperelliptic curves. 1994(447):91–146,

1994. 3

[CE15] J.-M. Couveignes and T. Ezome. Computing functions on jacobians and their quotients. LMS Journal

of Computation and Mathematics, 18(1):555–577, 2015. 1

[CEL12] J.-M. Couveignes, T. Ezome, and R. Lercier. A faster pseudo-primality test. Rend. Circ. Mat.

Palermo (2), 61(2):261–278, 2012. 1

[CEL20] X. Caruso, E. Eid, and R. Lercier. Fast computation of elliptic curve isogenies in characteristic two.

working paper or preprint, March 2020. 1

[CKY89] J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of nonlinear polynomial equations faster. In

Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Compu-

tation, ISSAC ’89, page 121–128, New York, NY, USA, 1989. Association for Computing Machinery.

5

[CL13] J.-M. Couveignes and R. Lercier. Fast construction of irreducible polynomials over finite fields. Israel

J. Math., 194(1):77–105, 2013. 1

[CS20] C. Costello and B. Smith. The supersingular isogeny problem in genus 2 and beyond. In International

Conference on Post-Quantum Cryptography, pages 151–168. Springer, 2020. 1

[Eid20] E. Eid. Fast computation of hyperelliptic curve isogenies in odd characteristic, 2020. 1, 2, 3

[Elk97] N. Elkies. Elliptic and modular curves over finite fields and related computational issues. 1997. 1

[FT19] E. V. Flynn and Y. B. Ti. Genus two isogeny cryptography. In J. Ding and R. Steinwandt, editors,

Post-Quantum Cryptography, pages 286–306, Cham, 2019. Springer International Publishing. 1

[KU11] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J.

Comput., 40(6):1767–1802, 2011. 3, 5

[KY89] E. Kaltofen and L. Yagati. Improved sparse multivariate polynomial interpolation algorithms. In

P. Gianni, editor, Symbolic and Algebraic Computation, pages 467–474, Berlin, Heidelberg, 1989.

Springer Berlin Heidelberg. 5

[LS08] R. Lercier and T. Sirvent. On Elkies subgroups of l-torsion points in elliptic curves defined over a

finite field. J. Théor. Nombres Bordeaux, 20(3):783–797, 2008. 1

[LV16] P. Lairez and T. Vaccon. On p-adic differential equations with separation of variables. In Proceedings

of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, pages 319–323.

ACM, New York, 2016. 1

[Sch95] R. Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de

Bordeaux, 7(1):219–254, 1995. 1

5



Elie Eid, Univ. Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France.

Email address: elie.eid@univ-rennes1.fr

6


	1. Introduction
	2. The main result
	References

