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COMPUTING ISOGENIES BETWEEN JACOBIANS OF HYPERELLIPTIC CURVES OF ARBITRARY GENUS VIA DIFFERENTIAL EQUATIONS

Let p be an odd prime number and ℓ be an integer coprime to p. We survey an algorithm for computing explicit rational representations of (ℓ, . . . , ℓ)-isogenies between Jacobians of hyperelliptic curves of arbitrary genus over an extension K of the field of p-adic numbers Qp. The algorithm has a quasi-linear complexity in ℓ as well as in the genus of the curves.

Introduction

Over the last few years there has been a growing interest in computational aspects of abelian varieties, especially Jacobians of algebraic curves. When such a variety is given, a first task is to compute the number of points on it in some finite field [Sch95, BGG + 17]. A way to achieve this efficiently is to work with isogenies. In addition to point counting, the computation of isogenies has many applications in number theory and cryptography [CEL12, CL13, FT19, CS20]. In order to have optimal algorithms for computing isogenies, in particular those which are defined over finite fields, several approaches have been suggested. One of them consists in reducing the problem to the computation of a solution of a nonlinear differential equation [START_REF] Elkies | Elliptic and modular curves over finite fields and related computational issues[END_REF]CE15], possibly after having lifted the problem to the p-adics [LS08, LV16, CEL20, Eid20]. In this work, we focus on p-adic algorithms that compute the explicit form of a rational representation of an isogeny between Jacobians of hyperelliptic curves for fields of odd characteristic.

Let k be a field of characteristic different from 2 and ℓ > 1 and g > 1 two integers. Let C (resp. C 1 ) be a genus g hyperelliptic curve over k and let J (resp. J 1 ) be its Jacobian. We assume that there exists a separable (ℓ, . . . , ℓ)-isogeny I : J 1 → J defined over k and we are interested in computing one of its rational representations. Let us recall briefly the definition of a rational representation and how we compute it (see [Eid20] for more details). Let P be a Weierstrass point on C 1 and j P : C 1 → J 1 the Jacobi map with origin P . The morphism I • j p induces a morphism I P : C 1 → C (g) , where C (g) is the g-th symmetric power of C. When a coordinate system for C 1 and C is fixed, the morphism I P is given by its Mumford representation, which consists of a pair of polynomials (U (z), V (z)) with the following property: if

I P (Q) = {R 1 , . . . , R g } (for some Q ∈ C 1 ), then U (x(R i )) = 0 and V (x(R i )) = y(R i )
, for all i = 1, . . . , g. Here x(R i ) and y(R i ) denote the coordinates of the point R i . The 2g coefficients of the two polynomials U and V can be represented as rational fractions over k in one variable and they form what we call a rational representation of I. We assume that C (resp. C 1 ) is given by the affine model C :

y 2 = f (x) (resp. C 1 : v 2 = f 1 (u)). Let Q be a non-Weierstrass point on C 1 such that I P (Q) = {(x (0) 1 , y (0) 1 ), . . . , (x (0) g , y (0) 
g )} contains g distinct points and does not contain neither a point at infinity nor a Weierstrass point. Let t be a formal parameter of C 1 at Q and let {(x 1 (t), y 1 (t)), . . . , (x g (t), y g (t))} be the image of Q(t) by I P . The action of I P on the spaces of holomorphic differentials of C 1 and C (g) gives the following differential system whose unknown is X(t) = (x 1 (t), . . . , x g (t)) ∈ k t .

         H(X(t)) • X ′ (t) = G(t) y i (t) 2 = f (x i (t)), i = 1, . . . , g X(0) = (x (0) 1 , • • • , x (0) g ) Y (0) = (y (0) 1 , • • • , y (0) g ) (1)
where G(t) = (G 1 (t), . . . , G g (t)) ∈ k t g and H(X(t)) is the matrix defined by

H(x 1 (t), . . . , x g (t)) =       x 1 (t)/y 1 (t) x 2 (t)/y 2 (t) • • • x g (t)/y g (t) x 1 (t) 2 /y 1 (t)
x 2 (t) 2 /y 2 (t)

x g (t) 2 /y g (t) . . . . . .

x g-1 1 (t)/y 1 (t) x 2 (t) g-1 /y 1 (t) • • • x g (t) g-1 /y g (t)       (2) 
Since the coefficients of U (z) are rational fractions of degree at most O(gℓ) [Eid20, Proposition 9], solving Equation (1) modulo t O(gℓ) allows to reconstruct all the components of the rational representation (note that the polynomial V (z) can be recovered using the polynomial U (z) and the equation of C).

Let p be an odd prime number. We assume that k is a finite field of characteristic p. Let K be an unramified extension of Q p such that the residue field of K is k. In [Eid20], we have designed an algorithm that computes, after lifting Equation (1) over K, an approximation of its solution. This algorithm is based on the following Newton iteration:

X 2m (t) = X m (t) + H(X m (t)) -1 (G -H(X m (t)) • X ′ m (t)) dt (3) 
which gives more and more accurate (for the t-adic distance) solutions of Equation (1). The complexity of this algorithm is quasi-linear with respect to ℓ but, unfortunately, it is at least quadratic in g (even if we note that the matrix H(x 1 (t), . . . , x n (t)) is a structured matrix). The main reason for this lack of efficiency is due to the fact that the components of the solution X(t) of Equation (1) are power series over an unramified extension of degree g of K. However, the rational fractions of the rational representation are defined over the ring of integers O K of K. This is where we loose an extra factor g.

In this article, we revisit the algorithm of [Eid20] and manage to lower its complexity in g and make it quasi-linear as well. For this, we work directly on the first Mumford coordinate

U (z) = g i=1 (z -x i (t))
which has the decisive advantage to be defined over the base field: we rewrite the Newton scheme (3) accordingly and design fast algorithms for iterating it in quasilinear time. Our main theorem is the following Theorem 1. Let K be an unramified extension of Q p and k its residue field. There exists an algorithm that takes as input:

• three positive integers g,n and N ,

• A polynomial f ∈ O K [z] of degree 2g + 1, • a vector X 0 = (x (0) 1 , . . . , x (0) g ) represented by the polynomial U 0 (z) = g i=1 (z-x (0) i ) ∈ O K [z] such that, over k, U 0 (z) is separable, • a vector Y 0 = (y (0) 1 , . . . , y (0) g ) represented by the interpolating polynomial V 0 (z) ∈ O K [z] of the data {(x (0) 1 , y (0) 1 ), . . . , (x (0) g , y (0) g )},
• a vector G(t) ∈ O K t g , and, assuming that the solution of Equation (1) has coefficients in O L with L an unram-

ified extension of K, outputs a polynomial U (t, z) = g i=1 (z -x i (t)) ∈ O K t [z] such that X(t) = (x 1 (t), . . . , x g (t)
) is an approximation of this solution modulo (p N , t n+1 ) for a cost Õ(ng)

operations 1 in O K at precision O(p M ) with M = N + ⌊log p (n)⌋.
Important examples of isogenies are, of course, the multiplication-by-ℓ maps. Classical algorithms for computing them are usually based on Cantor algorithm for adding points on Jacobians (see for example [START_REF] Cantor | On the analogue of the division polynomials for hyperelliptic curves[END_REF][START_REF] Abelard | Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes et complexité[END_REF]). Although, they exhibit acceptable running time in practice, their theoretical complexity has not been well studied yet and experiments show that they become much slower when the genus gets higher. Actually, in many cases, we have observed that the algorithms of [Eid20] perform better in practice even if their theoretical complexity in g is not optimal. Consequently, even though the algorithms designed in the present paper use Kedlaya-Umans algorithm [START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF] as a subroutine and then could be difficult to implement in an optimized way, they appear as attractive alternatives for the computation of ℓ-division polynomials on Jacobians of hyperelliptic curves.

The main result

In this section, we sketch the proof of the main theorem by showing that the Newton iteration given in Equation (3) can be executed with quasi-linear time complexity to give the desired polynomial in Theorem 1. The precision analysis has been already studied in [Eid20]. Throughout this section, the letter p refers to a fixed odd prime number and the letter K refers to a fixed unramified extension of Q p of degree d and k its residue field. Let O K be the ring of integers of K. We use the fixed point arithmetic model at precision O(p M ) to do computations in O K by representing an element in O K by an expression of the form

x + O(p M ) with x ∈ O K /p M O K . For instance, if d = 1, the quotient O K /p M O K is just Z/p M Z.
Additions, multiplications and divisions in this model all reduce to the similar operations in the exact quotient ring O K /p M O K . Let M(m) be the number of arithmetical operations required to compute the product of two polynomials of degree m in an exact ring. Standard algorithms allow us to take M(m) ∈ Õ(m). Let g > 1 be an integer and let G(t) ∈ O K t . Let also f be a polynomial of degree 2g + 1 and let U 0 (z) ∈ O K [z] be a polynomial of degree g which separable over k. For the sake of simplicity, we assume that U 0 is irreducible, therefore its splitting field L is an unramified extension of degree g of K. Let x

(0) 1 , . . . , x (0) g be the roots of U 0 (z) in L and X 0 = (x (0) 1 , . . . , x (0) 
g ). For i = 1, . . . , g, we assume that f (x

(0) i ) has a square root y (0) i in O L . Take Y 0 = (y (0) 1 , . . . , y (0) g ) and let V 0 (z) ∈ O K [z] be the interpolating polynomial of the data {(x (0) 1 , y (0) 1 ), . . . , (x (0) g , y (0) g )}.
We assume that the unique solution X(t) = (x 1 (t), . . . , x n (t)) of Equation (1) has coefficients in O L when X 0 and Y 0 are the initial conditions. Let m ∈ N and n

= 2m. Let X m (t) = (x (m) 1 (t), . . . , x (m) 
g (t)) be an approximation of X(t) modulo t m represented by the minimal polynomial of x

(m) 1 , U m (t, z) = (z -x (m) i (t)).
We show in the next proposition that we can compute efficiently an approximation X n (t) = (x

(n) 1 (t), . . . , x (n) g (t)) of X(t) modulo t n represented by the minimal polynomial U n (t, z) of x (n) 1 (t) using Equation (3).
1 The notation Õ(-) means that we are hiding logarithmic factors.

Proposition 2. Using the same notations as above, there exists an algorithm that computes U n (t, z) from U m (t, z) with time complexity Õ(mg).

Sketch of the proof. The algorithm performs the following steps.

(1) Compute the degree g -

1 polynomial W m (t, z) = g-1 i=0 w (m) i (t) z i such that W m (t, z) ≡ 1/f 2 (z) mod (t m , U m (t, z))
and W m (0, z) = 1/V 0 (z) mod U 0 (z). Observe that it is the interpolating polynomial of the points:

{(x (m) 1 , 1/y (m) 1 ), • • • , (x (m) g , 1/y (m) g )}. Deduce V m (z) = f (z)W m (z) mod (t m , U m (z)).
(2) Compute the Newton sums s (m)

i (t) = g j=1 (x (m) j (t)) i mod t m for i = 1, . . . , 2g -1 and deduce r (m) i (t) = g j=1 (x (m) j (t)) i-1 (x (m) j (t)) ′ mod t m .
(3) Compute the two products H(X m (t))X ′ m (t) and H(X m (t))X m (t) as follows:

H(X m (t))X ′ m (t) =       r (m) 1 r (m) 2 • • • r (m) g r (m) 2 r (m) 3 r (m) g+1 . . . r (m) g r (m) g+1 • • • r (m) 2g-1             w (m) 0 w (m) 1 . . . w (m) g-1       mod t m and H(X m (t))X m (t) =       s (m) 1 s (m) 2 • • • s (m) g s (m) 2 s (m) 3 s (m) g+1 . . . s (m) g s (m) g+1 • • • s (m) 2g-1             w (m) 0 w (m) 1 . . . w (m) g-1       mod t m (4) Compute (F (m) 1 , • • • , F (m) g ) = H(X m (t))X m (t) -(G(t) -H(X m (t))X ′ m (t)) dt. (5) Let D m (t, z) = F (m) 1 z g + F (m) 2 z g-1 + . . . + F (m) g-1 z 2 + F (m) g z. Compute U m (t, z)D m (t, z) = q (m) 2g z 2g + q (m) 2g-1 z 2g-1 + . . . + q (m) 0 mod t m and read off the polynomial Q m (t, z) = q (m) 2g z g-1 + q (m) 2g-1 z g-2 + . . . + q (m) g+1 . (6) Compute T m (t, z) = Q m (t, z)V m (t, z) U ′ m (t, z) mod (t m , U m (t, z)).
(7) Compute U n (t, z) such that U n (t, T m (t, z)) ≡ 0 mod (t m , U m (t, z)).

We now discuss briefly the complexity analysis. The polynomial W m in step 1 can be efficiently computed by the classical Newton scheme for extracting square roots. Since, the coefficients of W m and V m are polynomials of degrees at most m defined over K, the complexity of this 1 . We make use of Kedlaya-Umans algorithm [START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF] to execute step 7; the resulting bit complexity is Õ(mg).

  step is O(M(m)M(g)). The computation of the Newton sums s (m) i of U m in step 2 is classical [BGVPS21] and can be carried out for a cost of O(M(m)M(g)) operations. In step 3, we are dealing with two Hankel matrix-vector products. This can be done in O(M(m)M(g)) operations in K [CKY89, Section 3a]. The polynomial T m constructed in step 5 and step 6 interpolates the data {(x g )} (see [KY89, Section 5] for more details), it can be computed in O(M(m)M(g)) as well.Step 7 computes U n , the minimal polynomial of x (n)