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Abstract: This paper proposes three feature extraction (FE) methods based on density estimation
for hyperspectral images (HSIs). The methods are a mixture of factor analyzers (MFA), deep MFA
(DMFA), and supervised MFA (SMFA). The MFA extends the Gaussian mixture model to allow
a low-dimensionality representation of the Gaussians. DMFA is a deep version of MFA and consists
of a two-layer MFA, i.e, samples from the posterior distribution at the first layer are input to an MFA
model at the second layer. SMFA consists of single-layer MFA and exploits labeled information
to extract features of HSI effectively. Based on these three FE methods, the paper also proposes
a framework that automatically extracts the most important features for classification from an HSI.
The overall accuracy of a classifier is used to automatically choose the optimal number of features and
hence performs dimensionality reduction (DR) before HSI classification. The performance of MFA,
DMFA, and SMFA FE methods are evaluated and compared to five different types of unsupervised
and supervised FE methods by using four real HSIs datasets.

Keywords: dimensionality reduction; feature extraction; hyperspectral image; mixtures of factor
analyzers; supervised mixtures of factor analyzers; deep mixture of factor analyzers; classification

1. Introduction

Hyperspectral images (HSIs) provide abundant spectral information about a scene [1]. In general,
an HSI contains hundreds of spectral bands with high spectral resolution [2–4]. Having sufficient spectral
information makes it possible to discriminate different materials within a scene by using a classifier [5–8].
However, the high dimensionality of HSIs makes the processing computationally and memory costly.
To achieve an acceptable classification accuracy for an image of high dimensionality many conventional
HSI processing require many training samples [9–11]. This is known as the Hughes phenomenon or
the curse of dimensionality [12]. Thus when we have a limited number of training samples, we have
a trade-off between classification accuracy and the number of spectral bands [13–21]. Dimensionality
reduction (DR) is a very effective way to solve this problem [22–32]. Dimensionality reduced data should
be a good representation of the original data. In addition, both the computing time and the number of
training samples required will become less when the data dimensionality is lower. Therefore, DR is a very
important pre-processing step for HSI classification [33–39]. In general, DR can be divided into feature
selection (FS) and feature extraction (FE). In this paper, we focus on FE. There exist several classical and
novel statistical FE methods in the literature that have been used in HSI processing. FE methods are either
unsupervised or supervised. Principal component analysis (PCA) [40] is a classical unsupervised FE
method. PCA projects the original data onto a lower dimensional linear subspace of the original data space
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and can also be expressed as the maximum likelihood solution of a probabilistic latent variable model [41].
This reformulation of PCA is called probabilistic principal component analysis (PPCA) [42] and is
an example of a linear-Gaussian framework, in which all of the marginal and conditional distributions are
assumed to be Gaussian. Factor analysis (FA) [41,43] is also a linear Gaussian latent variable model closely
related to PPCA. For FA, the conditional distribution of the observed variables given the latent variable
have diagonal rather than an isotropic covariance matrix. In addition to these classical unsupervised
FE methods, there are several novel unsupervised FE methods in the literature, such as orthogonal
total variation component analysis (OTVCA) [44], edge-preserving filtering [45], Gaussian pyramid
based multi-scale feature extraction (MSFE) [46], sparse and smooth low-rank analysis (SSLRA) [47],
etc. For supervised FE methods, the new features should contain most discriminative information
based on the labeled samples. There exist several supervised FE methods, such as linear discriminant
analysis (LDA) [48], nonparametric weighted feature extraction (NWFE) [49], manifold-learning based HSI
feature extraction [50], low-rank representation with the ability to preserve the local pairwise constraints
information (LRLPC) [51], etc. Supervised methods are usually better than unsupervised methods for HSI
classification [52–54], since they have access to labeled data. However, the effectiveness depends on how
well the labeled dataset represents the whole original dataset.

For both PPCA and FA, all the marginal and conditional distributions of the HSI are assumed to be
Gaussian. However, in practice, most HSIs cannot be assumed to obey a Gaussian distribution. To overcome
this problem, we propose mixtures of factor analyzers (MFA), deep MFA (DMFA), and supervised MFA
(SMFA) FE methods for HSI. We also propose an image segmentation method based on the Gaussian mixture
model for MFA, DMFA, and SMFA to solve the problem of a non-normal distribution. MFA assumes
a low-dimensionality representation of the Gaussians in the Gaussian mixture model. DMFA consists of
a two-layer MFA, which inputs the samples from the posterior distribution at the first layer to an MFA
model at the second layer. SMFA is a supervised FE method that uses labeled samples to extract features of
HSI. Based on these three FE methods, a framework for HSI classification is also proposed in this paper.
While the dimensionality of the desired features needs to be selected by the user in conventional DR
methods, the proposed framework automatically determines the dimensionality of features according to
classification accuracy without prior supervision by the user. The contribution of the paper are summarized
as follows:

• Two unsupervised FE methods, MFA and DMFA, are proposed for HSI. MFA and DMFA are
particularly suitable for DR of HSI with a non-normal distribution and unlabeled samples.

• A supervised FE method, SMFA, is proposed for HSI. SMFA can be effectively used for DR of HSI
with a non-normal distribution and labeled samples.

• An image segmentation method based on the Gaussian mixture model is proposed for MFA,
DMFA, and SMFA to solve the problem of a non-normal distribution.

• Frameworks for extracting the most useful features for HSI classification based on the MFA,
DMFA, and SMFA DR methods are proposed.

The paper is organized as follows. Section 2 briefly describes the three FE methods and
a framework which automatically extracts optimal features for HSI classification. Section 3 presents
experimental results and analysis of the results. Finally, Section 4 concludes the paper.

2. Proposed FE Methods And Framework

2.1. MFA

Let x denote a D-dimensional spectral vector, z denote a d-dimensional latent vector, and m ∈
{1, ..., M} denote the component indicator variable of the M factor analyzers in MFA. The MFA model
can be defined as

p(m) = πm,
M

∑
m=1

πm = 1, (1)
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p(z|m) = p(z) = N (z; 0, I), (2)

p(x|z, m) = N (x; Wmz + µm, Ψ), (3)

where N (z; 0, I) means that z is Gaussian vector with zero mean and d × d identity matrix I as
the covariance matrix. The parameters of the m-th factor analyzer include a mixing proportion πm,
mean µm, a D× d factor loading matrix Wm, and a D× D diagonal matrix Ψ which represents the
independent noise variances for each band.

The parameters z, µm, Wm, and Ψ of MFA are estimated (trained) by using an expectation
maximization (EM) algorithm [55]. An example demonstrating how MFA works is shown in Figure 1a,b.
The schematic of the MFA is shown in Figure 2.
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Figure 1. (a) A scatterplot of HSI samples over two spectral bands. (b) Illustration of the MFA model
with each ellipse representing a Gaussian component. MFA has three components colored red (m = 1),
green (m = 2) and blue (m = 3). Their mixing proportions are given by πm. (c) Illustration of DMFA model
with each ellipse representing a Gaussian component. The number of components and mixing proportions
of the first layer of DMFA are the same as MFA. For the red component, we further learn a second layer
of DMFA with three components. For the green and blue components, both of them are learned a second
layer of DMFA with two components, respectively. We also introduce the second layer component indicator

variable km = 1, 2, ..., Km and mixing proportions π
(2)
m , where Km is the total number of the second layer

components associated with the first layer component m. Km is specific to the first layer component and
need not be the same for all m. In this example, K1 = 3, K2 = 2 and K3 = 2.

Gaussian mixture model

FA3FA2FA1

Original HSI

3M

1m 2m 3m
1

 2
 3



Dimensionality Reduction Result

Figure 2. The schematic of the MFA corresponding to Figure 1b.
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The performance of MFA for classification can be improved by increasing the dimensionality d
of the latent factors per component of the mixture of factor analyzers or the number M of mixture
components. However, for high dimensionality data, this approach quickly leads to overfitting.
Below we discuss a cross-validation scheme to select d while avoiding overfitting.

2.2. DMFA

Figure 1c shows a case where the posteriors have non-normal distribution, to solve this problem
the DMFA model was proposed. Instead of a simple standard normal prior, the DMFA model uses
a more powerful MFA prior:

p(z|m) = MFA(θ
(2)
m ), (4)

where θ
(2)
m is the model parameter in the second layer and it emphasizes that the new MFA’s parameters

are at the second layer and specific to component m of the first layer MFA, while holding the first layer
parameters fixed. Thus, the DMFA is equivalent to fitting component-specific second layer MFAs with
vectors drawn from p(z, m, |x; θ

(1)
m ) as data, where θ

(1)
m is the model parameter in the first layer.

Using p(km|m) = π
(2)
km

to denote the second layer mixing proportion of mixture component km,
and Km denote the total number of factor analyzers in the second layer for specific m of the first layer, so

∀m :
Km

∑
km=1

π
(2)
km

= 1, (5)

pDMFA(z, m) = p(m)p(z|m) = p(m)p(km|m)p(z|km). (6)

For convenience, denote all possible second layer mixture components with s = 1, ..., S,
where S = ∑M

m=1 Km. The mixing proportions are π
(2)
s = p(m(s))p(km(s)|m(s)), where m(s) and km(s)

are the first and second layer mixture components m and km to which s corresponds.
Therefore, the DMFA model is

p(s) = π
(2)
s , (7)

p(z(2)|s) = N (z(2); 0, I), (8)

p(z(1)|z(2), s) = N (z(1); W(2)
s z(2) + µ

(2)
s , Ψ(2)), (9)

m← m(s), (deterministic), (10)

p(x|z(1), m) = N (x; W(1)
m z(1) + µ

(1)
m , Ψ(1)), (11)

where (10) is fully deterministic as each s belongs to one and only one m. z(1) ∈ Rd(1) , z(2) ∈ Rd(2) ,
W(1)

m ∈ RD×d(1) , W(2)
s ∈ Rd(1)×d(2) , µ(1)

m ∈ Rd(1) , µ(2)
s ∈ Rd(2) , Ψ(1) and Ψ(2) are D × D and d(1) × d(1)

diagonal matrices of the first and second layers, respectively.
For the DMFA algorithm, the same scheme can be extended to training third-layer MFAs, but in

this paper, we only consider the two-layer DMFA model.
The DMFA model can be trained by using a greedy layers-wise algorithm. The first layer of DMFA

is trained as described above in Section 2.1, when training the second layer of DMFA, freezing the first
layer parameters and treating the sampled first layer factor values for each mixture component {z(1)n }m

as training data for the second layer of DMFA. The DMFA model is summarized in Algorithm 1, and an
illustration of the DMFA are shown in Figures 1c and 3, respectively.



Remote Sens. 2020, 12, 1179 5 of 19
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Figure 3. The schematic of the DMFA corresponding to Figure 1c.

Algorithm 1 DMFA algorithm

Step 1: Input HSI X = {x1, x2, ..., xN}, the maximum number of EM iteration (default=1000).

Step 2: Train the first layer of DMFA on X with M mixture components and d(1) dimensional latent
factors using the EM algorithm.

Step 3: Use the first layer latent factor dataset Ym = {z(1)n }m for each of the M mixture components
as training data for the second layer of DMFA.
Step 4: Train the second layer of DMFA on Ym with d(2) dimensional latent factors and Km mixture
components using the EM algorithm.

Step 5: Output DR results Z = {z(2)1 , z(2)2 , ..., z(2)N }.

2.3. SMFA

SMFA is a supervised FE method, let y denote an output value (label) for each D-dimensional
labeled spectral vector x. The SMFA model can be defined as

p(x|z, m) = N (x; Wmz + µm, Ψ), (12)

p(y|z, m) = N (y; Wymz + µym, Ψy), (13)

where the parameters of the m-th factor analyzer include mean µm, a D× d factor loading matrix Wm,
and a D×D diagonal matrix Ψ which represents the independent noise variances for each band. Wym,
µym, and Ψy are similar defined.
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The parameters z, µm, Wm, Ψ, Wym, µym, and Ψy of SMFA are also estimated by using the EM
algorithm [55]. The schematic of the SMFA is shown in Figure 4.

Gaussian mixture model

Original HSI

3M

1m 2m 3m
1


2

 3


Dimensionality Reduction Result

Labeled 
samples

Factor loading W3Factor loading W2Factor loading W1

Label Label Label

Dimensionality reduction

FA3FA2FA1

Figure 4. The schematic of the SMFA corresponding to Figure 1b.

2.4. Framework

Traditionally, in DR, the dimensionality of desired features has to be initialized by the user. In this
paper, we propose a framework that automatically selects the optimal dimensionality of desired features
for HSI. We use the classification accuracy of a classifier on validation samples to automatically determine
the dimensionality of the features. Different classifiers such as maximum likelihood (ML), support vector
machine (SVM), and random forest (RF), can be used in this framework. The framework based on MFA,
SMFA, and DMFA for HSI classification are summarized in Algorithms 2 and 3, respectively.

Algorithm 2 Framework based on MFA and SMFA

Step 1: Input HSI X, training samples;

Step 2: Automatically select the optimal number of features d and mixture components M:
for M = 2 : Mc

for d = 3 : D
2

Run MFA (or SMFA);
Five-fold cross-validation of SVM (ML, or RF) on training samples;
Save the cross-validation (CV) score CVM,d;

end
end
Return M̂ and d̂ corresponding to the best CV;

Step 3: Run MFA (or SMFA) with M̂ and d̂;
Step 4: Run SVM (ML or RF) classification;
Step 5: Output Classification results.
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Algorithm 3 Framework based on DMFA

Step 1: Input HSI X, training samples;

Step 2: Automatically select the optimal number of features in the first layer d(1), in the second layer
d(2), mixture components in the first layer M, and in the second layer Km:

for M = 2 : Mc
for d1 = 3 : D

2
for Km = 2 : M

for d2 = 3 : d1
Run DMFA;
Five-fold cross-validation of SVM (ML, or RF) on training samples;
Save the cross-validation accuracy (CVA) CVAM,d1,Km ,d2 ;

end
end

end
end
Return M̂, d̂1, K̂m, and d̂2 according to the best CVA;

Step 3: Run DMFA with M = M̂, d(1) = d̂1, Km = K̂m, and d(2) = d̂2;
Step 4: Run SVM (ML or RF) classification;
Step 5: Output Classification results.

3. Experiments and Results

The experiments were done using ML, RF, and SVM classifiers, but since ML and RF gave inferior
or slightly inferior results compared to SVM results, only the results of the SVM classifier are reported.

3.1. Experimental Datasets

The Indian Pines dataset was collected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor at Indian Pines. The image contains 145× 145 pixels with a spatial resolution of 20 m
and 220 spectral bands from 400 nm to 2500 nm. In the experiments, noisy bands and atmospheric
vapor absorption bands are excluded leaving 200 spectral bands. Figure 5 shows the false-color
composite of the Indian Pines image and the corresponding ground reference map, respectively.
The nine largest classes are considered for classification [24,56]. For the Indian Pines, the University
of Pavia, and the Salinas datasets, 10% of the labeled samples for each class are randomly selected
as training samples, and the remaining 90% are used as the test set, respectively. Tables 1, 2 and 3
provide information on the number of training and test samples for each class of interest, respectively.

Corn-no till

Corn-min till

Grass/pasture

Grass/tree

Soybeans-min till

Soybeans-no till

Soybeans-clean till

Hay-windrowed

Woods

(a) (b)

Figure 5. Indian Pines dataset. (a) Three-band false-color image. (b) Ground truth-map containing
nine land-cover classes.
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Table 1. Indian Pines HSI: Number of training and test samples.

Class Number Class Name Training Samples Test Samples

1 Corn-no till 143 1291
2 Corn-min till 83 751
3 Grass/Pasture 50 447
4 Grass/Trees 75 672
5 Hay-windrowed 49 440
6 Soybean-no till 97 871
7 Soybean-min till 247 2221
8 Soybean-clean till 61 553
9 Woods 129 1165

Total 934 8411

Table 2. University of Pavia dataset: Number of training and test samples.

Class Number Class Name Training Samples Test Samples

1 Asphalt 663 5968
2 Meadows 1865 16,784
3 Gravel 210 1889
4 Trees 306 2758
5 Painted metal sheets 135 1210
6 Bare Soil 503 4526
7 Bitumen 133 1197
8 Self-Blocking Bricks 368 3314
9 Shadows 95 852

Total 4278 38,498

Table 3. Salinas dataset: Number of training and test samples.

Class Number Class Name Training Samples Test Samples

1 Brocoli_green_weeds_1 201 1808
2 Brocoli_green_weeds_2 373 3353
3 Fallow 198 1778
4 Fallow_rough_plow 139 1255
5 Fallow_smooth 268 2410
6 Stubble 396 3563
7 Celery 358 3221
8 Grapes_untrained 1127 10,144
9 Soil_vinyard_develop 620 5583

10 Corn_senesced_green_weeds 328 2950
11 Lettuce_romaine_4wk 107 961
12 Lettuce_romaine_5wk 193 1734
13 Lettuce_romaine_6wk 92 824
14 Lettuce_romaine_7wk 107 963
15 Vinyard_untrained 727 6541
16 Vinyard_vertical_trellis 181 1626

Total 5415 48,714

The Houston dataset was provided by the IEEE Geoscience and Remote Sensing Society (GRSS)
for the Data Fusion Contest in 2013. This image is of the University of Houston campus and the
neighboring urban area. The dataset has 349× 1905 pixels with a spatial resolution of 2.5 m and
114 spectral bands coverage ranging from 380 nm to 1050 nm. This HSI contains fifteen classes of
interest. Figure 6 shows the false-color composite of the Houston image and the corresponding ground
reference map, respectively. The training and test samples were given according to the IEEE GRSS Data
Fusion Contest in 2013. The spatial positions and the number of training and test samples for each
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class of interest is fixed by the IEEE GRSS Data Fusion Contest. Table 4 provides information on the
number of training and test samples for each class of interest. It is important to note that the standard
sets of training and test samples were used for the dataset to make the results entirely comparable
with most of the methods available in the literature.

Healthy grass

Water

Railway

Stressed grass

Residential

Parking Lot 1

Synthetic grass

Commercial

Parking Lot 2

Trees

Road

Tennis Court

Soil

Highway

Running Track

(a)

(b)

Figure 6. Houston dataset. (a) Three-band false-color image. (b) Ground truth-map reference.

Table 4. Houston dataset: Number of training and test samples.

Class Number Class Name Training Samples Test Samples

1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Trees 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059

10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

The University of Pavia dataset was captured by the Reflective Optics System Imaging
Spectrometer sensor over the city of Pavia, Italy. This image has 610 × 340 pixels with a spatial
resolution of 1.3 m and 115 spectral bands coverage ranging from 0.43 µm to 0.86 µm. In the
experiments, this data contains nine classes of interest and has 103 spectral bands after removing
12 noisy bands. Figure 7 shows the false-color composite of the University of Pavia image and the
corresponding ground reference map.
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Asphalt

Meadows

Trees

Bricks

Bitumen

Bare Soil

Shadows

Gravel

Metal sheet

(a) (b)

Figure 7. University of Pavia dataset. (a) Three-band false-color image. (b) Ground truth-map reference.

The Salinas dataset was acquired by the AVIRIS sensor over Salinas Valley, California. This image
has 512× 217 pixels with a spatial resolution of 3.7 m and 204 spectral bands after removing 20 water
absorption bands. This image contains sixteen classes of interest. Figure 8 shows the false-color
composite of the Salinas image and the corresponding ground reference map.

Weeds_1

Weeds_2

Fallow

Fallow plow

Fallow smooth

Stubble

Celery

Grapes

Soil

Corn

Lettuce 4wk

Lettuce 5wk

Lettuce 6wk

Lettuce 7wk

Vinyard untrained

Vinyard trellis

(a) (b)

Figure 8. Salinas dataset. (a) Three-band false-color image. (b) Ground truth-map reference.

3.2. Experimental Setup

An SVM classifier is used to evaluate the performance of the proposed methods. The SVM
classifier is a supervised classification method that uses a kernel method to map the data with
a non-linear transformation to a higher dimensional space and in that space tries to find a linear
separating hyperplane from different classes. In the experiments, for SVM, the LibSVM Toolbox for
MATLAB was applied with a radial basis function (RBF) kernel [57,58]. The five-fold cross-validation
is used to find the best parameters, i.e., the kernel parameter and regularization parameter, in SVM.
The evaluation metrics used are overall accuracy (OA), average accuracy (AA), and Kappa coefficient
(KC), as well as standard deviation (STD). To further evaluate the performance of the proposed
algorithms, the following statistical and DR methods: PCA, PPCA, FA, LDA, NWFE, MFA, DMFA,
and SMFA are used for comparison. Each experiment is run ten times, and the average of these ten
experiments is reported.

3.3. Tuning Parameter Estimation and Assessment

For the MFA and SMFA algorithms, we need to estimate the number of mixture components M,
and the dimensionality of latent factors d. In the experiments, M ∈ {2, 3, ..., Mc}, where Mc is the
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maximal number of classes considered, d ∈ {3, 4, ..., D/2}, where D is the input dimensionality of
original datasets, we use five-fold cross-validation to obtain the optimal parameters M and d.

The assessment of the effect of the tuning parameters (M and d) on the performance of
the proposed methods was of interest. Since we were interested in the classification accuracy,
we investigated the effect of the number of mixture components M and the dimensionality of latent
factors d on OA. Figure 9a,b shows the 3-dimensional surface of the OA of MFA and SMFA with respect
to the values of parameters M and d for the SVM classifier, respectively. It can be seen that the OA
gradually increases in the beginning as the d increases, and then keeps stable with slight fluctuation as
the d increases, but decreases slightly when the d reaches some value. It can also be observed that the
OA is insensitive to M.

                             (a)                                                                  (b)                                                                  (c)

O
A

1

0.9

0.8

0.6

0.7

O
A

1

0.9

0.8

0.6

0.7

O
A

1

0.9

0.8

0.6

0.7

9
8

7 6
5

4
3

2
M

d3 8 13
18232833384350

9
8

7 6
5

4
3

2
M

d3 8 13
18232833384350

9
8

7 6
5

4
3

2
M

d3 8 13
18232833384350

0.95

0.9

0.8

0.7

0.85

0.75

0.95

0.9

0.8

0.85

0.75

0.95

0.9

0.8

0.85

0.75

Figure 9. OAs versus the reduced dimensionality d and the number of mixture components M in the
proposed methods with SVM classifier on the Indian Pines dataset. (a) MFA (b) SMFA, and (c) DMFA
in the first layer.

For the DMFA algorithm, we need to estimate the number of mixture components M and Km,
and the dimensionality of latent factors d(1) and d(2), in the first and second layer of DMFA, respectively.
In the experiments, M is the same as in the MFA, Km ∈ {2, ..., M}, we set Km = 2 for all m in our
experiments. d(1) is the same as d, d(2) ∈ {3, 4, ..., d(1)}. Five-fold cross-validation can be used to
obtain the optimal parameters. To analyze the impact of the number of mixture components M and the
dimensionality of latent factors d(1) in the first layer on the performance of DMFA, the output results
of the first layer of DMFA were used for HSI classification. Figure 9c shows the OAs with respect to
the values of parameters M and d(1). Figure 9a,b show similar things for MFA and SMFA, respectively.

3.4. Classification

The first experiment was performed on the Indian Pines dataset. Figure 10 shows the classification
maps obtained by different methods. From the figures, it can be seen that the classification maps
obtained by PCA, PPCA, FA, LDA, and NWFE are not very satisfactory since they have lots of visible
noise. By contrast, MFA, DMFA, and SMFA give much better classification maps, all of them have
a smoother appearance and preserve more details on edges. Besides visual comparison, Table 5 presents
the quantitative classification results for all the methods, and there it can be observed that the MFA,
DMFA, and SMFA achieve much higher classification accuracies than PCA, PPCA, and FA, respectively.
These results imply that the performance of DR could be improved by considering the Gaussian
mixture model. Moreover, DMFA and SMFA clearly outperform MFA, and the performance of DMFA
and SMFA is similar, both of them present the highest OA, AA, and KC and achieves most of the top
classification accuracy values for individual classes. This indicates that MFA, DMFA, and SMFA could
extract more useful information for classification from a complicated HSI. Moreover, SMFA is better
than LDA and NWFE, this means that SMFA is an effective supervised DR method. MFA, DMFA,
and SMFA improve the OA by 11.11%, 13.38%, and 13.42% using SVM compared to other methods
in the experiment, respectively. It is interesting to note that all DR methods based on FA (SMFA,
DMFA, MFA, and FA) gave a better performance than PCA and PPCA. The reason for this is that noise
could be distributed inconsistently for different components in real HSI. Table 5 also gives the STDs



Remote Sens. 2020, 12, 1179 12 of 19

of classification results for different DR methods for the Indian Pines dataset. It can be seen that all
the methods give similar and stable classification results. Table 6 compares the CPU processing time
(in seconds) used by different DR methods for the Indian Pines dataset. All methods were implemented
in Matlab R2019a on a computer having Intel(R) Core(TM) i7-6700 processor (3.40 GHz), 8.00 GB of
memory, and 64-bit Windows 10 Operating System. It can be seen that the running times for MFA,
DMFA, and SMFA were 3.85, 18.07, and 0.12 s, respectively. It is worth noting that the running time for
the supervised methods (LDA, NWFE, and SMFA) is affected considerably by the number of labeled
(training) samples used, and the unsupervised methods are affected by the total size of the dataset.

Table 5. The classification results (%) of different DR methods on the Indian Pines dataset, the best
results are in bold typeface. The row of each class number (CN) is the mean accuracy ± standard
deviation based on ten runs. The best classification results are given in bold typeface.

CN PCA PPCA FA LDA NWFE MFA DMFA SMFA

1 75.13 ± 2.39 81.22 ± 1.39 86.48 ± 1.93 89.31 ± 0.98 84.51 ± 2.25 93.00 ± 1.87 97.49 ± 1.51 96.34 ± 1.32
2 83.33 ± 2.16 84.00 ± 4.21 89.30 ± 3.49 72.44 ± 3.97 82.82 ± 2.16 91.71 ± 1.05 99.17 ± 0.89 95.61 ± 1.04
3 94.51 ± 1.62 94.77 ± 2.27 97.48 ± 0.89 92.84 ± 2.62 91.50 ± 1.75 94.42 ± 1.08 97.35 ± 1.66 95.08 ± 1.51
4 96.09 ± 1.02 95.95 ± 0.99 97.65 ± 0.98 97.32 ± 1.62 98.51 ± 1.49 98.53 ± 0.40 98.39 ± 0.47 98.81 ± 1.08
5 99.55 ± 0.14 99.77 ± 0.18 99.84 ± 0.16 99.55 ± 0.23 99.32 ± 0.16 99.83 ± 0.18 99.86 ± 0.14 99.84 ± 0.18
6 75.03 ± 1.99 82.06 ± 2.27 82.50 ± 2.14 80.37 ± 2.89 82.43 ± 3.00 90.53 ± 0.68 95.48 ± 1.40 97.36 ± 0.62
7 78.22 ± 1.85 77.62 ± 1.45 88.40 ± 1.70 82.85 ± 2.05 88.74 ± 2.11 95.56 ± 1.58 96.91 ± 1.22 98.24 ± 1.42
8 83.54 ± 2.68 83.00 ± 2.34 89.21 ± 2.68 77.76 ± 2.74 79.57 ± 3.56 96.75 ± 1.34 98.74 ± 1.03 99.28 ± 1.06
9 99.40 ± 0.32 99.83 ± 0.41 99.66 ± 0.26 99.57 ± 0.36 99.49 ± 0.55 99.83 ± 0.30 99.74 ± 0.54 99.91 ± 0.46

AA 87.20 ± 0.35 88.69 ± 0.73 92.30 ± 0.67 88.00 ± 0.64 89.65 ± 0.88 95.59 ± 1.01 98.14 ± 0.86 97.85 ± 0.51
OA 84.48 ± 0.35 85.98 ± 0.39 90.96 ± 0.60 87.20 ± 0.56 89.28 ± 0.82 95.59 ± 0.86 97.86 ± 0.72 97.90 ± 0.60
KC 0.8173 ± 0.0040 0.8345 ± 0.0048 0.8940 ± 0.0072 0.8495 ± 0.0065 0.8738 ± 0.0096 0.9459 ± 0.0102 0.9749 ± 0.0085 0.9753 ± 0.0070

Table 6. CPU processing times in seconds by different DR methods applied to the Indian Pines (INPS),
Houston (HSN), University of Pavia (UPA), and Salinas (SAS) datasets (the number of features = 20).

Datasets PCA PPCA FA LDA NWFE MFA DMFA SMFA

INPS 0.11 63.66 70.89 0.12 1.05 3.85 18.07 0.12
HSN 2.91 1335.09 21.45 0.89 5.02 103.77 151.91 4.54
UPA 0.62 285.01 4.01 0.21 0.91 28.10 79.30 1.55
SAS 0.56 356.44 22.15 0.38 − 18.97 87.85 1.62

              (a)                                          (b)                                        (c)                                          (d)                    

                (e)                                           (f)                                         (g)                                        (h)

Figure 10. Classification maps for the Indian Pines dataset obtained by SVM classification after using
(a) PCA, (b) PPCA, (c) FA, (d) LDA, (e) NWFE, (f) MFA, (g) DMFA, and (h) SMFA DR methods.



Remote Sens. 2020, 12, 1179 13 of 19

The second experiment was performed on the Houston dataset. Figure 11 shows the classification
maps obtained by different methods. From the figures, we can see that the proposed MFA, DMFA,
and SMFA algorithms also outperform the other algorithms. Table 7 presents the quantitative
classification results of the different DR methods. As shown in Table 7, the performance of DMFA
and SMFA is better than MFA and much better than PCA, PPCA, FA, LDA, and NWFE. MFA, DMFA,
and SMFA improve the OA by 4.60%, 6.67%, and 7.35% compared to other methods in the experiment,
respectively. Table 7 also presents the STDs of classification results. It can be seen that FA and LDA
present the most stable results. MFA, DMFA, and SMFA have slight fluctuation for each experiment
and give relatively stable results.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 11. Classification maps for the Houston dataset obtained by SVM classification after using
(a) PCA, (b) PPCA, (c) FA, (d) LDA, (e) NWFE, (f) MFA, (g) DMFA, and (h) SMFA DR methods.
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Table 7. The classification results (%) of different DR methods on the Houston dataset, the best results
are in bold typeface. The row of each class number (CN) is the mean accuracy ± standard deviation
based on ten runs.

CN PCA PPCA FA LDA NWFE MFA DMFA SMFA

1 98.05 96.20 ± 0.29 96.37 80.53 80.72 ± 0.45 98.98 ± 0.89 99.31 ± 1.66 79.49 ± 1.37
2 96.01 96.36 ± 0.13 95.97 80.92 82.99 ± 0.18 95.33 ± 1.63 95.24 ± 1.58 83.46 ± 1.57
3 100 99.97 ± 0.27 100 100 99.42 ± 0.58 99.76 ± 0.24 99.82 ± 0.19 99.48 ± 0.34
4 98.05 97.35 ± 1.36 97.72 92.90 89.49 ± 0.94 99.89 ± 0.32 99.47 ± 1.78 89.30 ± 2.09
5 97.41 97.45 ± 0.16 97.11 96.97 98.86 ± 0.38 98.42 ± 0.82 98.11 ± 1.09 99.96 ± 0.11
6 99.94 95.07 ± 0.46 95.30 93.71 95.11 ± 0.21 47.24 ± 0.80 99.97 ± 0.27 92.31 ± 0.35
7 81.34 82.05 ± 0.31 87.91 84.80 79.76 ± 2.44 66.22 ± 1.38 89.53 ± 3.02 82.37 ± 1.23
8 81.45 68.87 ± 0.17 84.18 71.13 72.46 ± 4.73 84.06 ± 1.14 81.82 ± 2.64 90.03 ± 0.11
9 83.40 78.34 ± 0.60 78.08 72.52 75.54 ± 1.19 87.65 ± 1.04 91.66 ± 0.66 83.95 ± 1.08

10 70.03 83.58 ± 0.48 65.32 73.17 81.27 ± 3.21 86.21 ± 0.24 66.67 ± 4.76 97.97 ± 1.59
11 67.86 69.57 ± 1.86 57.04 85.39 93.55 ± 2.10 68.21 ± 0.16 74.51 ± 0.59 88.99 ± 4.01
12 85.50 89.15 ± 5.12 82.68 82.52 85.11 ± 1.86 95.80 ± 2.28 94.07 ± 2.64 96.25 ± 1.19
13 30.69 30.06 ± 1.33 43.85 70.53 70.88 ± 1.74 92.52 ± 3.26 89.56 ± 2.31 65.26 ± 0.89
14 99.18 98.39 ± 0.24 89.05 99.19 99.60 ± 0.31 94.64 ± 0.83 97.24 ± 1.13 99.96± 0.22
15 100 99.41 ± 0.59 100 95.98 98.73 ± 0.50 99.54 ± 0.54 99.88 ± 0.14 91.97 ± 1.61

AA 85.93 85.50 ± 0.50 84.70 85.35 86.94 ± 0.47 87.68 ± 0.36 91.81 ± 0.39 89.42 ± 0.69
OA 83.45 83.75 ± 0.59 82.05 83.59 85.35 ± 0.56 86.65 ± 0.42 88.72 ± 0.49 89.40 ± 0.67
KC 0.8207 0.8240 ± 0.0065 0.8053 0.8223 0.8412 ± 0.0059 0.8552 ± 0.0046 0.8775 ± 0.0053 0.8848 ± 0.0075

The third and fourth experiments were performed on the University of Pavia and Salinas datasets.
It should be noted that the NWFE method does not work for the Salinas dataset. Therefore, in the
experiments of the Salinas dataset, there are no experimental results for NWFE. Figures 12 and 13 show
the classification maps obtained by different methods on the University of Pavia and Salinas datasets,
respectively. From Figures 12 and 13, it can be seen that the classification maps obtained by MFA, DMFA,
and SMFA are much better than PCA, PPCA, FA, LDA, and NWFE, respectively. Tables 8 and 9 present the
quantitative classification results. As shown in Tables 8 and 9, the classification accuracies of the proposed
MFA, DMFA, and SMFA methods are much better than PCA, PPCA, and FA methods. These results further
demonstrate that, instead of using a single Gaussian distribution model, the performance of DR could be
improved by considering the Gaussian mixture model. For the University of Pavia dataset, MFA, DMFA,
and SMFA improve the OA by 6.05%, 7.02%, and 7.02% compared to other methods used in the experiment,
respectively. For the Salinas dataset, MFA, DMFA, and SMFA improve the OA by 5.11%, 5.49%, and 5.62%
compared to other methods used in the experiment, respectively. Moreover, in the experiments, DMFA
and SMFA are clearly better than MFA, and DMFA and SMFA give similar and highest OA, AA, and KC
and also achieve most of the top classification accuracy values for the individual classes. This also further
indicates that MFA, DMFA, and SMFA could extract more effective information for classification from
a complicated HSI. Tables 8 and 9 also give the STDs of classification results for different DR methods for
the University of Pavia and Salinas datasets, respectively. It can be seen that all the methods give similar
and relatively stable classification results. This also further demonstrates that MFA, DMFA, and SMFA are
stable and effective DR methods.
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Table 8. The classification results (%) of different DR methods on the University of Pavia dataset, the best results are in bold typeface. The row of each class number
(CN) is the mean accuracy ± standard deviation based on ten runs.

CN PCA PPCA FA LDA NWFE MFA DMFA SMFA

1 92.00 ± 1.01 93.16 ± 0.82 94.65 ± 0.58 93.20 ± 0.55 94.10 ± 0.49 98.07 ± 0.45 98.39 ± 0.66 98.69 ± 0.27
2 95.71 ± 0.53 96.12 ± 0.25 96.43 ± 0.24 96.86 ± 0.41 97.52 ± 0.38 99.68 ± 0.10 99.02 ± 0.42 99.79 ± 0.08
3 78.98 ± 2.06 82.23 ± 1.86 80.16 ± 1.72 76.13 ± 2.81 74.01 ± 4.00 90.15 ± 2.29 98.39 ± 1.44 94.28 ± 1.93
4 94.24 ± 0.95 94.61 ± 0.82 93.86 ± 0.78 92.57 ± 0.90 89.63 ± 1.26 95.65 ± 0.36 98.72 ± 0.95 96.27 ± 0.61
5 99.41 ± 2.27 98.99 ± 2.01 99.21 ± 1.23 99.17 ± 0.16 99.59 ± 0.13 99.89 ± 0.12 99.93± 0.35 99.81 ± 0.09
6 90.96 ± 2.01 91.80 ± 0.75 93.54 ± 1.09 81.11 ± 1.06 90.39 ± 1.72 98.63 ± 0.30 99.80 ± 0.88 99.98 ± 0.30
7 85.40 ± 4.34 88.69 ± 1.98 90.08 ± 2.19 80.95 ± 1.35 83.12 ± 4.17 94.32 ± 0.76 99.75 ± 1.06 99.92 ± 0.68
8 77.35 ± 2.14 83.85 ± 0.97 84.40 ± 1.61 86.33 ± 2.03 84.91 ± 2.30 94.63 ± 0.81 97.15 ± 1.12 97.31 ± 1.54
9 91.55 ± 1.78 99.89± 0.58 99.31± 0.87 99.65 ± 0.18 99.88 ± 0.11 97.07 ± 0.93 99.64 ± 1.07 97.77 ± 0.58

AA 89.57 ± 0.53 92.27 ± 0.39 92.57 ± 0.48 89.55 ± 0.19 90.35 ± 0.66 96.47 ± 0.30 98.98 ± 0.49 98.22 ± 0.25
OA 91.78 ± 0.29 93.32 ± 0.27 93.80 ± 0.29 91.85 ± 0.18 93.02 ± 0.32 97.90 ± 0.14 98.87 ± 0.41 98.87 ± 0.14
KC 0.8908 ± 0.0038 0.9112 ± 0.0036 0.9177 ± 0.0038 0.8314 ± 0.0023 0.9071 ± 0.0043 0.9722 ± 0.0019 0.9850 ± 0.0055 0.9850 ± 0.0019

Table 9. The classification results (%) of different DR methods on the Salinas dataset, the best results are in bold typeface. The row of each class number (CN) is the mean
accuracy± standard deviation based on ten runs.

CN PCA PPCA FA LDA MFA DMFA SMFA

1 99.91± 0.17 99.32± 0.02 99.29± 0.38 99.95 ± 0.05 99.94± 0.09 99.82 ± 0.08 99.89± 0.18
2 99.88 ± 0.23 99.97 ± 0.09 99.82 ± 0.14 99.79 ± 0.03 99.79 ± 0.12 99.99± 0.21 99.99± 0.12
3 98.88 ± 0.36 99.04 ± 0.29 99.21 ± 0.16 99.78 ± 0.12 99.83 ± 0.07 99.72 ± 0.21 99.96± 0.22
4 99.13 ± 0.48 99.76 ± 0.42 99.76 ± 0.30 99.12 ± 0.53 98.96 ± 0.50 97.93 ± 0.46 98.41 ± 0.18
5 99.05 ± 0.64 98.19 ± 0.56 99.13 ± 0.15 98.96 ± 0.32 99.50 ± 0.34 99.92 ± 0.42 99.17 ± 0.20
6 99.94 ± 0.20 99.92± 0.09 99.03± 0.06 99.83 ± 0.08 99.23 ± 0.20 99.98± 0.14 99.97 ± 0.05
7 99.94 ± 0.19 99.89± 0.14 99.95± 0.20 99.94 ± 0.09 99.81 ± 0.10 99.91 ± 0.13 99.91 ± 0.12
8 88.88 ± 0.92 87.55 ± 1.01 84.53 ± 1.12 90.09 ± 1.29 97.73 ± 0.91 99.25 ± 0.04 99.71 ± 0.60
9 99.44 ± 0.16 99.38 ± 0.14 99.34 ± 0.15 99.95 ± 0.20 99.91 ± 0.07 99.93 ± 0.29 99.99± 0.03

10 96.27 ± 0.53 98.19 ± 0.72 97.80 ± 0.82 98.61 ± 0.45 98.99 ± 0.44 99.49 ± 0.83 99.76 ± 0.87
11 99.03 ± 0.80 99.04 ± 0.74 99.68 ± 0.47 98.86 ± 0.41 99.97 ± 0.19 99.90 ± 1.08 99.97± 0.28
12 98.36 ± 0.14 98.86 ± 0.07 99.26 ± 0.15 99.97± 0.32 99.94 ± 0.49 99.71 ± 0.15 99.89 ± 0.13
13 99.52 ± 0.51 99.76 ± 0.25 99.76 ± 0.22 99.39 ± 0.29 99.43± 0.09 99.52 ± 0.60 99.96± 0.45
14 99.79 ± 1.02 98.43 ± 0.83 99.16 ± 0.58 96.78 ± 0.93 99.93 ± 1.23 99.27 ± 1.60 99.99± 0.15
15 84.51 ± 1.20 85.68 ± 1.54 83.23 ± 1.96 72.62 ± 2.44 97.38 ± 1.15 98.03 ± 1.64 97.75 ± 2.26
16 99.38 ± 0.30 99.75 ± 0.74 99.58± 1.15 98.65 ± 0.44 99.76± 0.97 99.08 ± 0.63 99.92± 0.80

AA 97.62 ± 0.15 87.73 ± 0.12 97.54 ± 0.09 97.02 ± 0.12 99.49 ± 0.08 99.47 ± 0.26 99.66 ± 0.14
OA 95.09 ± 0.17 95.08 ± 0.09 94.19 ± 0.12 93.91 ± 0.10 99.02 ± 0.20 99.40 ± 0.40 99.53 ± 0.34
KC 0.9453 ± 0.0019 0.9452 ± 0.0010 0.9353 ± 0.0013 0.9321 ± 0.0011 0.9890 ± 0.0022 0.9933 ± 0.0045 0.9948 ± 0.0038
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Figure 12. Classification maps for the University of Pavia dataset obtained by SVM classification after
using (a) PCA, (b) PPCA, (c) FA, (d) LDA, (e) NWFE, (f) MFA, (g) DMFA, and (h) SMFA DR methods.

          (a)                       (b)                       (c)                      (d)                        (e)                       (f)                      (g)

Figure 13. Classification maps for the Salinas dataset obtained by SVM classification after using
(a) PCA, (b) PPCA, (c) FA, (d) LDA, (e) MFA, (f) DMFA, and (g) SMFA DR methods.

4. Conclusions

In this paper, MFA, DMFA, and SMFA were proposed for feature extraction of HSIs and were
then used for classification of them. MFA, DMFA, and SMFA are probabilistic DR methods, instead of
assuming that a whole HSI obeys a Gaussian distribution, the methods use a Gaussian mixture model
to extract more effective information for DR. The Gaussian mixture model is used for MFA to allow
a low-dimensionality representation of the Gaussian. A two-layer MFA, DMFA, utilizes the samples
from the posterior at the first layer to an MFA model at the second layer. MFA and DMFA are two
unsupervised DR method. The methods are particularly suitable for DR of HSI with a non-normal
distribution and unlabeled samples. SMFA is a supervised DR method and uses labeled samples
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to extract features. SMFA can be effectively used to DR of HSI with a non-normal distribution and
labeled samples.

Based on the three DR methods, we also proposed a framework for HSI classification, the overall
accuracy of a classifier on validation samples is used to automatically determine the optimal number
of features of DR for HSI classification. This framework can automatically extract the most effective
feature for HSI classification. To validate the performance of DR, we conduct experiments in terms
of SVM classification based on four real HSIs. The experimental results show that MFA, DMFA,
and SMFA can give better results than statistical DR comparison methods.

In the future, more validations on other applications, e.g., hyperspectral unmixing, target
detection, will be incorporated in our future work.
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