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Abstract: In recent years, fusing hyperspectral images (HSIs) and multispectral images (MSIs) to
acquire super-resolution images (SRIs) has been in the spotlight and gained tremendous attention.
However, some current methods, such as those based on low rank matrix decomposition, also have
a fair share of challenges. These algorithms carry out the matrixing process for the original image
tensor, which will lose the structure information of the original image. In addition, there is no
corresponding theory to prove whether the algorithm can guarantee the accurate restoration of the
fused image due to the non-uniqueness of matrix decomposition. Moreover, degenerate operators are
usually unknown or difficult to estimate in some practical applications. In this paper, an image fusion
method based on joint tensor decomposition (JTF) is proposed, which is more effective and more
applicable to the circumstance that degenerate operators are unknown or tough to gauge. Specifically,
in the proposed JTF method, we consider SRI as a three-dimensional tensor and redefine the fusion
problem with the decomposition issue of joint tensors. We then formulate the JTF algorithm, and the
experimental results certify the superior performance of the proposed method in comparison to the
current popular schemes.

Keywords: hyperspectral image; multispectral image; image fusion; joint tensor decomposition

1. Introduction

With the flourishing of both artificial intelligence (AI) and mathematical theory, image fusion has
always been the focus and hotspot in neuroscience, metabonomics, remote sensing, and many other
fields [1–3]. Generally, image fusion refers to synthesizing images’ data obtained from the diverse
image acquisition equipment. It is aimed at achieving complementary information from different
information sources to further acquire clearer, more informative, and higher quality reconstructed
images. In 1994, Genderen and Phol proposed a simple and intuitive definition of image fusion [4]:
image fusion is merging two or more images into a new image using some algorithms. Therein,
hyperspectral images (HSIs), playing a catalytic role in image fusion, have been widely leveraged in
geophysical exploration [5], agricultural remote sensing [6], marine remote sensing [7], environmental
monitoring [8], and other fields [9–13] because of their rich spectral information. However, the spatial
resolution of HSIs is still relatively low, subjected to the imaging equipment of HSIs and the complex
imaging environment, which cannot meet the application requirements of mixing, classification,
detection, etc., while this further limits the prospect of HSIs. Therefore, how to improve the resolution
of hyperspectral images has become the hot issue in the field of image processing.

Specially, panchromatic fusion and hyperspectral-multispectral fusion are two forms of
hyperspectral super-resolution image reconstruction. Panchromatic fusion refers to fusing
multispectral images (or hyperspectral images) and panchromatic images to obtain images with
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more spatial information. In [14], the authors classified the pansharpening techniques into component
substitution (CS) [15] and multi-resolution analysis (MRA) [16]. Meanwhile, they proposed a hybrid
method, combining the better spatial information of CS and the more accurate spectral information of
MRA techniques, to improve the spatial resolution while preserving the original spectral information
as much as possible.

Concretely, a multispectral image (MSI) generally consists of dozens of bands, and most of them
are in the range of the visible region. Given a low-spatial resolution HSI, the operation of spatial
resolution enhancement using MSI under the same scene is termed hyperspectral image fusion or
super-resolution image (SRI) reconstruction. Generally, the MSI has a higher spatial resolution than
the HSI, which is complementary to the HSI. In this paper, we mainly study the method of SRI
reconstruction by combining the spectral information of HSI with the spatial information of MSI under
the same scene.

Nevertheless, the existing technologies can neither avoid the distortion of image
spectral characteristics, nor the complex and time-consuming frequency decomposition and
reconstruction. Therefore, Yokoya proposed a simple spectral preservation fusion technique:
the smoothing filter based intensity modulation (SFIM) [17], which is also called the generalized
Laplace pyramid (GLP) [18–21] based on the modulation transfer function (MTF) used to fuse HSI
and MSI by hypersharpening [22]. Then, utilizing the ratio between the high-resolution image and its
low-pass filter (with a smoothing filter) image, spatial details could be modulated into co-registered
low-resolution MSIs without changing their spectral characteristics and contrast. Compared with
Brovey transform [23], SFIM is an advanced fusion technology to improve the spatial details of MSIs,
and its spectral characteristics are reliably preserved.

Beyond that, Eismann introduced a maximum a posteriori estimation method [24]. It combined
the stochastic mixing model of the content under the spectral scene and developed a cost function that
could optimize the estimation of the hyperspectral scene related to the observed hyperspectral and
auxiliary images. Moreover, this method can generally reconstruct sub-pixel information of several
main components in SRI estimation. Furthermore, sparse representation has often been employed
to deal with various types of image processing problems, especially in the inverse problem. In 2006,
Elad denoised the image with the sparse representation method [25]. This not only achieved the
state-of-the-art effect, but introduced the K-SVD dictionary training method [26]. In 2010, the authors
of [27] proposed a single-frame super-resolution image reconstruction method based on sparse
representation.

In contrast, traditional methods, such as principal component substitution and enhancement of
least squares estimation, are primarily limited to the first principal component. For remote sensing
images, the spectral characteristics of pixels are denoted as endmembers, including mixed endmembers
and pure endmembers. Since each pixel has mixed endmembers, unmixing is a technique for estimating
the number of pure endmembers in each pixel, the spectral characteristics, and the abundance of the
endmembers [28]. The SRI reconstruction method based on unmixing usually decomposes the HSI
and the MSI of the same scene. The endmember matrix of the decomposed HSI and the abundance
matrix of the MSI are combined to obtain the reconstructed HSI with high spatial resolution.

In the effort of [29], the authors proposed the method of enhancing the spatial resolution of the HSI
in terms of unmixing technology: coupled nonnegative matrix factorization (CNMF). They exploited
nonnegative matrix factorization to unmix the HSI and MSI sequentially and iteratively obtained
the endmember matrix and abundance matrix. Ultimately, the SRI was obtained by combining the
two matrices. The nonnegative matrix decomposition usually cannot guarantee the unique solution,
although CNMF could achieve good reconstruction results. To address this matter, Eliot Wycoff
presented a nonnegative sparse enhancement model for SRI reconstruction [30], which testified
that the solution was not unique in the CNMF method, and it had high computational complexity
and a high requirement for CPU operation ability. To further boost the effect of super-resolution
reconstruction, the authors of [31] came up with a method to resolve the problem of super-resolution
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and hyperspectral unmixing simultaneously. Unlike the measures in [29], they took advantage of
the nearest alternating linear minimization (PALM) [32] to update them simultaneously, while the
initialization of the endmember matrix applied SISAL [33] for endmember extraction.

Simultaneously, some researchers studied the fusion of the MSI and HSI based on the
tensor [34–40], mainly considering the natural tensor structure of spectral images, so as to reduce
the information lost in matricization and increase the performance. Generally, multi-channel images
and other data have their own natural tensor structure. In addition, since the tensor has good
expressive ability and computational characteristics, it is very meaningful to study the tensor analysis
of images. Moreover, tensor decomposition can preserve the structural characteristics of the original
image data. For HSIs, tensor decomposition makes full use of spatial and spectral redundancy
between images and compresses and extracts relevant feature information with high quality. Based
on HSIs, a nonnegative tensor canonical polyadic decomposition (CP) algorithm was raised that
was applied to dispose of the blind source separation [41]. Shashua utilized CP decomposition
for image compression and classification [42], while Bauckhage introduced discriminant analysis
to high-order data such as color images for classification [43]. Xiao Fu proposed a coupled tensor
decomposition framework [44], which could guarantee the identifiability of SRIs under mild and
realistic conditions. Meanwhile, Shutao Li and Renwei Dian put forward a coupled sparse tensor
factorization (CSTF) [45]; they regarded the SRI as a three-dimensional tensor and redefined the
fusion problem as the core tensor and dictionary estimation of three modes. The high-spatial spectral
correlation in the SRI was modeled by a regularizer, which could promote the generation of sparse core
tensors. However, CSTF is an optimization model based on tensor Tucker decomposition, which is
not unique. Moreover, most existing methods assume that known (or easily estimated) degenerate
operators are applied to SRI to form the corresponding HSI and MSI, which is practically absent. In this
paper, we deal with the super-resolution problem under the condition that the degenerate operators
are seldom known and contain noise. A joint tensor decomposition model is proposed by taking
advantage of the multi-dimensional tensor structure of the HSI and MSI.

The main content of this paper is to utilize the joint tensor decomposition (JTF) algorithm for the
fusion of HSI and MSI, so as to explore the problem of SRI reconstruction. The contributions are listed
as follows:

• In the proposed method, the high-spatial resolution HSI is regarded as a three-dimensional tensor,
while the fusion issue is redefined as the joint estimation of the coupling factor matrix, which is
also expressed as the joint tensor decomposition problem for the hyperspectral image tensor,
multispectral image tensor, and noise regularization term.

• In order to observe the reconstruction effect of this method, the performance of this algorithm
is compared with the five algorithms. Experiments show that the JTF method provides clearer
spatial details than the real SRI, while the running time of JTF is acceptable compared with the
excellent performance.

• Besides, we conduct experiments under the incorrect Gaussian kernel (3× 3, 5× 5, 7× 7), correct
Gaussian kernel (9 × 9), and different noises, while showing the fusion effect of the six test
methods with the Pavia University data captured by the ROSISsensor as well. The results
reveal that the JTF method performs best in comparison with the other methods in terms of
reconstruction accuracy regardless of whether the Gaussian kernel is correct and the level of
added noise. This indicates that the JTF algorithm is more suitable for degradation operators that
are unknown or contain noise.

The outline of this paper is organized as follows. In Section 1, we mainly introduce some basic
notations and definitions for tensors. In Section 2, we give a basic overview of tensors. The proposed
coupled image fusion algorithms are introduced in Section 3. In Section 4, experimental results on the
algorithms are presented. Conclusions and future research directions are given in Section 6.
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2. Preliminaries on Tensors

2.1. Definition and Notations

In this section, we first briefly introduce some necessary notions and preliminaries. The general
tensor is denoted as X , while the element (i, j, k) of a third-order tensor X is signed by xijk. The matrix
is denoted as X, and the scalar (or the vector) is represented by x. A fiber is defined by fixing every
index but one. Third-order tensors have column, row, and tube fibers, denoted by x:jk, xi:k, and xij:,
respectively; see Figure 1. Fibers are always assumed to be column vectors. The mode-n matricization
of a tensor X ∈ RI1×I2×···×IN is signed by X(n), which arranges the mode-n fibers to be the columns of
the matrix and can reduce the dimension of the tensor.

mode-1： : jkx mode-2 ： :i kx mode-3 ： :ijx

I

J

K

Figure 1. Fibers of a third-order tensor .

Definition 1. The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is defined by Equation (1), which is
denoted as A⊗ B, and the calculation result is a matrix of size IK× JL, i.e.,

A⊗ B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aI JB

 (1)

= [a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL].

Then, we have a new matrix-matrix production termed as the Khatri–Rao product.

Definition 2. Let A ∈ RI×K and B ∈ RJ×K. Then, the Khatri–Rao product is a matrix of size I J × K
defined as:

A� B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK], (2)

where ⊗ is the Kronecker product.

Next, we discuss some properties of the Khatri–Rao product, which will be useful in our
later discussion.

A� B� C = (A� B)� C = A� (B� C),

(A� B)T(A� B) = ATA ∗ BTB,

(A� B)† = ((ATA) ∗ (BTB))†(A� B)T.

(3)

Definition 3. The n-mode (matrix) product of a tensor X ∈ RI1×I2×···×IN with a matrix M ∈ RJ×In is
represented as:

(X ×n M)i1···in−1 jin+1···iN =
iN

∑
in=1

xi1i2···iN mjin , (4)

which can be denoted by X ×n M and is a tensor with a size of I1 × · · · × In−1 × J × In+1 × · · · × IN .
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Definition 4. The Frobenius norm of a tensor X ∈ RI1×I2×···×IN is represented as:

‖ X ‖=

√√√√ I1

∑
i1=1

I2

∑
i2=1
· · ·

IN

∑
iN=1

x2
i1,i2···iN . (5)

2.2. Tensor Decomposition

The general tensor decomposition models involve CP decomposition and Tucker decomposition.
Specifically, the CP decomposition is a special case of the Tucker decomposition. Due to the special
structure of tensors, these tensor decomposition methods are leveraged in hyperspectral image
processing. For a tensor X ∈ RI1×I2×···×IN , the CP decomposition could be expressed as:

X ≈
R

∑
r=1

λra(1)r ◦ a(2)r ◦ · · · ◦ a(N)
r = [[λ; A(1), A(2), · · · , A(N)]], (6)

where “◦” is the outer product of the vectors, R is a positive integer, and A(n) is the factor matrix.
For n = 1, 2, · · · , N, λ ∈ RR, a(n)r ∈ RIn , A(n) ∈ RIn×R, the factor matrix is a combination of the rank
one vector a(n)r and denoted as:

A(n) = [a(n)1 , a(n)2 , · · · , a(n)R ], (7)

Let the three-order tensor X ∈ RI×J×K be a hyperspectral image, the CP decomposition could be
formulated as:

X ≈
R

∑
r=1

λrar ◦ br ◦ cr = [[λ; A, B, C]], (8)

where I, J, and K are the numbers of the row, column, and spectral dimensions, respectively, while r =
1, 2, · · · , R, λ ∈ RR, ar ∈ RI , br ∈ RJ ,cr ∈ RK.

Each column of the above factor matrices A, B, and C is normalized, and λr is the weight. If there
is no requirement to standardize the factor matrix, the CP decomposition can also be reformulated as:

X ≈ (A
′
, B
′
, C
′
). (9)

where A
′
, B
′
, C
′

mean the general factor matrices, which are constructed by assigning the weight to
the factor matrices A, B, C.

The schematic diagram of CP decomposition is shown in Figure 2. If R denotes the minimum
number of outer products needed to express X , then the tensor rank is R, i.e., rank(X ) = R, and the
decomposition is known as rank decomposition, which is a particular case of CP decomposition.
At present, there is no specific method to directly solve the rank of any given tensor, which has been
proven to be an NP-hard problem. Through the factor matrix, the CP decomposition of a third-order
tensor can be written in expansion form.

X(1) = A
′
(C
′ � B

′
)T,

X(2) = B
′
(C
′ �A

′
)T,

X(3) = C
′
(B
′ �A

′
)T.

(10)

A third-order tensor can be denoted as follows by applying mode-n products:

X ′ = X ×1 D1 ×2 D2 ×3 D3, (11)

The above formula can be expressed in the form of factor matrices:

X ′ ≈ (D1A
′
, D2B

′
, D3C

′
). (12)
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 + + +
X

1c Rc2c
1b Rb2b

1a Ra2a

Figure 2. Canonical polyadic (CP) decomposition of third-order tensors .

Theorem 1. Correspondingly, we consider how many rank-one tensors (components) of the decomposition of
the CP model are added to minimize the error. The usual practice is to start with R = 1 until you encounter a

“good” result. Of course, if you have a strong application background and prior information, you can also specify
it in advance. For a given number of components, there is still no universal solution for CP decomposition.
Specifically, the alternating least squares (ALS) algorithm is a more popular method in the case that the number
of components is pre-given [46]. For the CP decomposition of tensors, even if R is much larger than max{i, j, k},
the CP decomposition model is essentially unique. The lower order decomposition of matrices and Tucker
decomposition of tensors are generally not unique, which is a significant difference between them. The most
famous result about the uniqueness of tensor decomposition is due to Kruskal [47]. One result of the Kruskal
criteria is the following statement, which applies to general tensors, which provides the uniqueness proof of the
CP decomposition model.

Suppose X = [[A, B, C]] and tensor X ∈ RI×J×K of rank R has a unique decomposition if:

R ≤ 1
2
[min(I, R) + min(J, R) + min(K, R)− 2].

where A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R.

The uniqueness condition of the tensor CP decomposition model is relatively relaxed compared
with that of the matrix decomposition model. Since the rank of matrix decomposition must be lower
than the dimension of the matrix and needs nonnegative, sparse, and geometric conditions, certainly,
we can also judge whether the CP decomposition model is unique according to the rank of the
given tensor.

3. Problem Formulation

The purpose of HSI and MSI fusion is to estimate the unobservable SRI (S ∈ RI×J×K) from
the observable low-spatial resolution HSI (H ∈ Ri×j×K) and the high-spatial resolution MSI (M ∈
RI×J×k), where I(i) and J(j) denote the spatial dimensions and K(k) denotes the number of spectral
bands. The tensorH is spatially downsampled with respect to (w.r.t.) S , that is I > i and J > j, while
the tensorM is spectrally downsampled w.r.t. S , that is K > k. We assume that the two observed data
are obtained under the same atmospheric and illumination conditions and are geometrically combined
with radiation correction.

3.1. Image Fusion Based on Matrix Decomposition

The fusion method based on matrix factorization assumes that each spectral vector of the target
SRI can be written as a small number of linear combinations of different spectral characteristics [48],
which can be represented as:

S(3) = WH, (13)

where S(3) ∈ RI J×K is the three-mode unfolding matrix of the tensor S . Matrices W ∈ RI J×R

and H ∈ RR×K represent the spectral basis and the corresponding coefficient matrix, respectively,
where R� min{I J, K}.

The spatial domain of low-spatial resolution hyperspectral data is degraded from the spatial
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domain of multispectral data. On the other hand, multispectral data are a form of spectral degradation
of high-spatial resolution hyperspectral data. Therefore,H andM are modeled as:

H(3) = WHh, M(3) = WmH, (14)

where Hh = HDH, Wm = DMW, H(3) ∈ Rij×K, and M(3) ∈ RI J×k are the three-mode unfolding
matrices of the HSI (tensor H) and MSI (tensorM), respectively. DH ∈ RI J×ij is a matrix modeling
the point spread function (PSF) and the spatial subsampling process in the hyperspectral sensor.
DM ∈ RK×k is a matrix modeling spectral downsampling in the multispectral sensor, whose rows
contain the spectral response of the multispectral sensor. Therefore, the matricized HSI and MSI are
modeled as:

H(3) = WHDH, M(3) = DMWH, (15)

In the matrix decomposition based fusion approaches, if the spectral basis DH and coefficient
matrix DM can be estimated by jointly factoring from H(3) and M(3), the SRI can be restored according
to Equation (13), which is the main idea based on matrix decomposition.

3.2. Image Fusion Based on Tensor Decomposition

Matrix based methods usually assume that degradation operators are known or easily estimated,
but in practice, it is difficult to determine. By comparing the spectral properties of hyperspectral and
multispectral sensors, the degradation operator DM can be modeled and estimated relatively easily.
However, the spatial operator becomes a bit difficult. A common model assumption from SRI to
HSI conversion is a combination of the blurring by a Gaussian kernel and a downsampling process.
Of course, this is a rough approximation and may be far from accurate. Even if this assumption is
approximately correct, there are still many uncertainties.

In order to solve the non-uniqueness of matrix decomposition and under the condition of
little knowledge of degenerate operators and noise, we propose a method based on joint tensor
decomposition to fuse the HSI and MSI in this section. Tensor based models have many advantages.
For example, it is a very efficient strategy to abstract image data into tensor representation and then
input them in the image fusion model. For the output data, we can choose the desired format to save
them conveniently. Formally, we represent the SRI as the following equation via CP decomposition:

S = [[A, B, C]] (16)

where S ∈ RI×J×K, A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R, and R is the the number of components.
The HSI is the spatial downsampling version of the SRI. Assuming that the point spread function

(PSF) of the hyperspectral sensor is separable from the downsampling matrix of the wide mode and
the high mode, we can have:

H = S ×1 D1 ×2 D2 (17)

where D1 ∈ RI×i, D2 ∈ RJ×j are the spatial degradation along the width and height modes,
respectively. For subsampling, the separability hypothesis implies that the function of spatial
subsampling matrix DH is decoupled from the two spatial patterns of S , and thus, the degenerate
operator DH = D2 ⊗D1 in the matricized form. Under the separability assumption, the HSI (H) can
be represented as:

H = [[A
′
, B
′
, C]] (18)

where A
′
= D1A ∈ RI×R, B

′
= D2B ∈ RJ×R, and C ∈ Rk×R. In this paper, we assume that spectral

response DM has noise, i.e., rough sampling in the process of conversion from the SRI to the MSI.
Formally, we represent it as:

D
′
M = DM + Γ (19)
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where Γ is Gaussian random noise. Analogously, the MSI (M) can be represented as:

M = S ×3 D
′
M (20)

where D
′
M ∈ RK×k is the downsampling matrix of the spectral mode. We substitute Formula (16) into

(20) to obtain:
M = [[A, B, C

′
]] (21)

where A ∈ Ri×R, B ∈ Rj×R, and C
′
= D

′
MC ∈ RK×R. In order to reconstruct the SRI, we need to

estimate the factor matrices A, B, C.

4. The Joint Tensor Decomposition Method

The Joint Tensor Decomposition Method

In this section, we consider that when DM contains noise and the spatial degradation operator
DH = D2 ⊗D1 is completely unknown, even though this type of operation is called a combination of
blurring and downsampling, in practice, hyperparameters such as the blurring kernel type, kernel
size, and downsampling offset are barely known. Therefore, the joint tensor decomposition model can
be generalized to the following model:

min
A,B,C

‖ H − (A
′
, B
′
, C) ‖2

F + ‖ M− (A, B, C
′
) ‖2

F +β ‖ C
′ −D

′
MC ‖2

F, (22)

We use the following optimization models to obtain factor matrices A, B and C, where β is the
regularization parameter. The above optimization problem is non-convex, and the solutions of the
factor matrices A, B, and C are not unique. However, the objective function in (22) is convex for
each variable block, remaining unchanged with other variables. Therefore, we choose the proximal
alternate optimization (PAO) scheme to solve the above optimization problem, which guarantees that
the optimization problem converges to the critical point under certain conditions. Then, each step of
the iterative update of the factor matrix is reduced to solving an easy-to-handle Sylvester equation by
matricization of tensor HSI and MSI. Specifically, the A, B, and C iterations are updated as follows:

• Optimization with respect to C:

When A, B, A
′
, B
′
, and C

′
are fixed, the optimization w.r.t. C in (22) can be written as:

min
C
‖ H − (A

′
, B
′
, C) ‖2

F + ‖ M− (A, B, C
′
) ‖2

F +β ‖ C
′ −D

′
MC ‖2

F,

The above optimization problem can be transformed into the following one by using the
properties of n-mode matrix unfolding.

min
C
‖‖ H(3) − C(B

′ �A
′
)T) ‖2

F +β ‖ C
′ −D

′
MC ‖2

F (23)

where H(3) is the three-mode unfolding matrix of tensors H. The optimization problem (23) is
quadratic, and its unique solution is equal to the calculation of the general Sylvester matrix equation.

βD
′T
MD

′
MC + CE− βD

′T
MC

′
= H(3)E (24)

where E = (B
′T

B
′
) ∗ (A′TA

′
).

We use the Sylvester function in the MATLAB toolbox to solve the above equation.

• Optimization with respect to A
′
:
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When A, B, C, B
′
, and C

′
are fixed, the optimization w.r.t. A

′
in (22) can be written as:

min
A′
‖ H − (A

′
, B
′
, C) ‖2

F, (25)

The above optimization problem can be transformed into the following one by using the
properties of n-mode matrix unfolding.

min
A′
‖ H(1) −A

′
(C� B

′
)T) ‖2

F, (26)

where H(1) is the one-mode unfolding matrix of tensorsH. The optimization problem (26) is convex,
and the optimal solution is then given by:

A
′
= H(1)[(C� B

′
)T]†, (27)

According to the property of the Khatri–Rao product pseudo-inverse, we can rewrite the solution as:

A
′
= H(1)(C� B

′
)(CTC ∗ B

′T
B
′
)†, (28)

The advantage of solving the above equation is that we only need to compute the pseudo-inverse
matrix of the R× R matrix, but not the jK× R matrix. The solving process of factor matrix B

′
is similar

to that of A
′
, and we can rewrite the solution as:

B
′
= H(2)(C�A

′
)(CTC ∗A

′T
A
′
)†. (29)

• Optimization with respect to C
′
:

When A, B, C, A
′
, and B

′
are fixed, the optimization w.r.t. C

′
in (22) can be written as the following

one by using the properties of n-mode matrix unfolding.

min
C′
‖ M(3) − C

′
(B�A)T) ‖2

F +β ‖ C
′ −D

′
MC ‖2

F (30)

where M(3) is the three-mode unfolding matrix of tensors M. The optimization problem (30) is
quadratic, and its unique solution is equal to the calculation of the general Sylvester matrix equation.

βITIC
′
+ C

′
F− βD

′
MC = H(3)F (31)

where F = (BTB) ∗ (ATA), and I is the unit matrix of 4× 4.
We use the Sylvester function in the MATLAB toolbox to solve the above equation.

• Optimization with respect to A:

When B, C, A
′
, B
′
, and C

′
are fixed, the optimization w.r.t. A in (22) can be written as:

min
A
‖ M− (A, B, C

′
) ‖2

F, (32)

The above optimization problem can be transformed into the following one by using the
properties of n-mode matrix unfolding.

min
A
‖ M(1) −A(C

′ � B)T ‖2
F, (33)

where M(1) is the one-mode unfolding matrix of tensorsM. The optimization problem (33) is convex,
and the optimal solution is then given by:
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A = M(1)[(C
′ � B)T]†, (34)

According to the property of the Khatri–Rao product pseudo-inverse, we can rewrite the solution
as:

A = M(1)(C
′ � B)(C

′TC ∗ B
′TB)†, (35)

Similarly, we only need to compute the pseudo-inverse matrix of the R× R matrix, but not the
Jk× R matrix. The solving process of factor matrix B is similar to that of A, and we can rewrite the
solution as:

B = M(2)(C
′ �A)(C

′T
C
′ ∗ATA)†, (36)

For each iteration update, we discuss it in detail. The specific algorithm is shown in Algorithm 1.
After obtaining the estimated values of A, B, and C, the super-resolution tensor reconstruction is
obtained from the following formula:

S ≈ (A, B, C). (37)

The detailed steps of the proposed method are given in Algorithm 1.

Algorithm 1: Algorithm for coupled images.

Initialization: β, R, A0, B0, C0, A
′
0, B

′
0, C

′
0

Apply blind STEREO Algorithm [44] with random
initializations to obtain A, B, C, A

′
, B
′
, C

′

While not converged, do
C← arg minC ‖ H(3) − C(B

′ �A
′
)T) ‖2

F +β ‖ C
′ −D

′
MC ‖2

F
A
′ ← arg minA′ ‖ H(1) −A

′
(C� B

′
)T) ‖2

F,
B
′ ← arg minB′ ‖ H(2) − B

′
(C�A

′
)T) ‖2

F,
C
′ ← arg minC′ ‖ M(3) − C

′
(B�A)T) ‖2

F +β ‖ C
′ −D

′
MC ‖2

F,
A← arg minA ‖ M(1) −A(C

′ � B)T) ‖2
F,

B← arg minB ‖ M(2) − B(C
′ �A)T) ‖2

F.
end while

5. Experiments And Results

5.1. Experimental Data

To obtain an MSI from an SRI, we used the spectral specifications of the multispectral sensor,
which were taken from the QuickBird sensor in our experiments [49]. The QuickBird sensor
produces four-band MSI in the following spectral bands: blue (430–545 nm), green (466–620 nm), red
(590–710 nm), and near-infrared (715–918 nm). Then, the spectral response matrix DM is formed by
comparing the SRI obtained in the experiment from 400 to 2500 nm with the multi-spectral sensor
band, and the MSI image is obtained by assuming that there is random Gaussian noise in DM. More
precisely, DM is a selective averaging matrix that acts on the common wavelength of the SRI and
MSI, and the experimental data came from [44]. The data selected in this paper were taken from
Pavia University in Italy and were captured by the ROSIS sensor. The SRI, HSI, and MSI have sizes of
608× 336× 103, 152× 84× 103, and 608× 336× 4, respectively. Specifically, the MSI is generated by
QuickBird simulation, while the HSI is generated by SRI by 9× 9 Gaussian blur and downsampling,
and the MSI is generated for the Pavia University image according to the QuickBird specification.
The degradation process from the SRI to the HSI is a combination of spatial blurring of the 9× 9
Gaussian kernel and the D = 4 factor along two spatial directions to model the blurred image.

On the 3.6 GHz kernel and 8 GB RAM Windows server, the simulation is carried out by MATLAB.
According to the algorithm JTF, factors A, B, and C are obtained through the joint tensor decomposition
of the MSI and HSI, which mainly solves the least squares problem and preliminarily estimates
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the potential factors, where the CP decomposition is computed by TensorLab [50]. The maximum
number of iterations for tensor decomposition was set to 25 in the initialization, while the number of
iteration updates for factor matrix requires continuing numerical simulation. In this paper, we fixed
β = 1. We mainly refer to [44]; this paper proved that the performance of super-resolution tensor
reconstruction is best when beta is equal to one. The proposed model adds the noise term in the
objective function based on [44]. Therefore, we selected a similar parameter.

To further demonstrate the performance of our proposed algorithm, this method is compared with
the following five HSI-MSI fusion methods: Blind Stereo [44], CNMF (coupled nonnegative matrix
factorization) [29], SFIM (smoothing filter based intensity modulation) [51], MTF-GLP (modulation
transfer function based generalized Laplacian pyramid) [19], and MAPSMM (maximum a posterior
estimation with a stochastic mixing model) [24].

5.2. Evaluation Criterion

In order to evaluate the quality of reconstructed high-spatial resolution HSIs, we introduce several
intuitive evaluation indicators. The first index is the reconstruction signal-to-noise ratio (R-SNR)
criterion defined as:

R− SNR = 10log10(
∑K

k=1 ‖Sk‖2
F

∑K
k=1 ‖S

′
k − Sk‖2

F
). (38)

where S
′
k and Sk are the frontal slices of reconstructed SRI and ground truth SRI. The higher the R-SNR

is, the better the reconstruction quality.
The second index is the root mean squared error (RMSE), i.e.,

RMSE =

√
‖ S ′ − S ‖2

F
WHS

. (39)

where S ′ and S are the reconstructed SRI and ground truth SRI, B is the number of bands of
hyperspectral images, and W and H are the spatial dimensions of total spectral images. Low RMSE
values indicate good reconstruction performance.

The third index is the spectral angle mapper (SAM), which is defined as:

SAM =
1
I J

I J

∑
n=1

arccos(
S(3)(n, :)S

′
(3)(n, :)T

‖S(3)(n, :)‖2‖S
′
(3)(n, :)‖2

). (40)

where S
′
(3)(n, :) and S(3)(n, :) express respectively the fibers of the reconstructed and the ground-truth

SRI. SAM measures the angles between the reconstructed and the ground-truth fibers of the SRI, and a
small SAM is equivalent to good performance.

The fourth index is the relative dimensionless global error in synthesis (ERGAS), which is
represented as:

ERGAS = 100c

√√√√ 1
I JK

K

∑
k=1

‖S′k − Sk‖2
F

µ2
k

. (41)

where c = I
i =

J
j is the spatial downsampling factor and µk is the mean values of the elements in Sk.

After image reconstruction, we hope to get a smaller ERGAS.
The fifth index is the universal image quality index (UIQI), which is defined as:

UIQI =
1
S

S

∑
i=1

UIQI(S
′i, Si). (42)
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where:

UIQI(S
′i, Si) =

1
P

P

∑
j=1

σsi
js
′ i
j

σsi
j
σs′ ij

2µsi
j
µs′ ij

µsi
j
+ µs′ ij

2σsi
j
σs′ ij

σsi
j
+ σs′ ij

(43)

Si
j and S

′i
j show the jth window of the ith band ground truth image and reconstructed image,

respectively. P represents the number of window positions. σsi
js
′ i
j

means the sample covariance between

Si
j and S

′i
j , and µsi

j
and σsi

j
denote the mean value and standard deviation of Si

j. The range of the index

is [−1, 1]. The larger the value of UIQI, the better the fusion effect.
The sixth index is the normalized mean squared error (NMSE), which is represented as:

NMSE =
‖S′3 − S3‖F

‖S3‖F
. (44)

where S
′
3 and S3 are the three-mode unfolding matrix of the reconstructed and ground-truth SRI. The

smaller the NMSE, the closer the effect of image fusion is to the ground truth image.
In addition to the above evaluation indicators, the other simplest performance indicator is the

running time of the algorithm. In this paper, the efficiency of several reconstruction algorithms is
compared with the computational time.

5.3. Selection Of Parameters

In this section, we select different iterations and the number of components of CP decomposition
and experimented under these conditions to obtain the best parameter values, so as to evaluate the
sensitivity of the JTF algorithm to important parameters in the model. Because the algorithm in this
paper is based on the unknown DH, we first consider experimenting under the condition that the
algorithm incorrectly assumes a 7× 7 Gaussian blur kernel instead of using the correct 9× 9 Gaussian
kernel. Certainly, we have also made experimental comparisons under the correct Gaussian kernels.

Considering the JTF algorithm under different signal-to-noise ratios and assuming that the
signal-to-noise ratio (SNR) of the HSI and MSI is the same, where the SNR here is set 20 db, to evaluate
the effect of the number of iterations Iter on the image fusion in the algorithm, we run the JTF algorithm
based on the number of iterations Iter. Because the JTF algorithm is based on the modification of the
Blind Stereo algorithm [44], we compare the performance of the algorithms with or without noise
of the degenerate operator. Figure 3 shows the evaluation metrics of SRI after the reconstruction of
Pavia University with the change of iteration number Iter. In order to reduce the running time of
the algorithm, without loss of generality, here R = 100, β = 1, where the black line represents Blind
Stereo algorithm performance in matrix DM with noise, the red is the reconstruction results of the JTF
algorithm under the same condition, and the blue trend line indicates the fusion performance by the
Blind Stereo algorithm when DM does not contain noise.

As can be seen from Figure 3, when Iter changes from one to 20, the R-SNR of Pavia University
decreases, while the values of NMSE, ERGAS, and SAM increase. Among them, R-SNR declines
sharply and then rises, while the other evaluation metrics show the opposite trend. When the number
of iterations is less than five, the reconstruction effect is better. Therefore, the maximum number of
iterations of the JTF algorithm is set between one and five. In addition, the reconstruction effect of this
algorithm is always superior to the Blind stereofusion algorithm with noise.

Then, we change the number of components from R = 50 to R = 600 to observe the effect of the
number of tensor decomposition components on the image fusion, which depicts different evaluation
metrics of the recovered HSIs for Pavia University; see Figure 4.
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Figure 3. The results of the evaluation criterion as functions of the number of iterations Iter for the
proposed joint tensor decomposition (JTF) method. SAM, spectral angle mapper; ERGAS, relative
dimensionless global error in synthesis; R-SNR, reconstruction signal-to-noise ratio.

Figure 4 shows the effect of image fusion in three cases with a different number of components.
When DH is unknown and DM contains noise, we compare the above three cases. From the six
evaluation metrics, it can be seen that when the number of components is less than 100, the performance
of the proposed algorithm is almost the same as the case that DM is clean. It completely achieves the
denoising effect and is always better than the Blind Stereo algorithm in the same situation. With the
increase of the number of components, all three cases show good performance. However, when the
number of components increases to more than 300, the reconstruction effect has a downward trend.
According to the above Theorem [47], this is because when the number of components does not
satisfy Theorem 1, the algorithm cannot guarantee the uniqueness of CP decomposition, which affects
the initialization of the initial factor matrix in the algorithm, resulting in the poor performance of
the algorithm.

Then, consider the selection range of the number of components under the condition of the
uniqueness of tensor decomposition. As the JTF algorithm only decomposes MSI by CP, we set
I = 608, J = 336, K = 4 in Theorem 1. According to the dimension of MSI, we can divide the selection
of parameter R into the following four cases:

(1) When R < K = 4, bring R into Proposition 1, i.e.,

R ≤ 1
2
(R + R + R− 2)⇒ R ≥ 1. (45)

By synthesizing the formulas and conditions, we can get the range of R in the first case, which is
1 ≤ R < 4.

(2) When 4 = K ≤ R < J = 336, bring R into Proposition 1, i.e.,

R ≤ 1
2
(R + R + 4− 2)⇒ R ≤ R + 1. (46)

The above derivation is obviously valid, so we only consider the conditions, and we can get the
range of R in the second case, which is 4 ≤ R < 336.
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(3) When J = 336 ≤ R < I = 608, bring R into Proposition 1, i.e.,

R ≤ 1
2
(R + 336 + 4R− 2)⇒ R ≥ 338. (47)

By synthesizing the formulas and conditions, we can get the range of R in the third case, which is
336 ≤ R < 338.

(4) When R ≥ 608 = I, bring R into Proposition 1, i.e.,

R ≤ 1
2
(608 + 336 + 4R− 2)⇒ R ≥ 475. (48)

As such, we can get the range of R in the fourth case, which is R < 475 and R ≥ 608 by
synthesizing the formulas and conditions. Therefore, we can conclude that there is a contradiction
between the deduced range of R and the range of conditions, so this situation does not exist.

To sum up, combining the above four cases, in order to guarantee the uniqueness of CP
decomposition, the range of the number of components is 1 ≤ R ≤ 338. In this paper, according to the
fusion effect of the algorithm while ensuring the uniqueness of CP decomposition, we fixed R = 275.

0 100 200 300 400 500 600

R

8

10

12

14

16

18

20

R
-S

N
R

0 100 200 300 400 500 600

R

0.7

0.75

0.8

0.85

0.9

0.95

U
IQ

I

0 100 200 300 400 500 600

R

2

4

6

8

10

12

E
R

G
A

S

0 100 200 300 400 500 600

R

0.1

0.15

0.2

0.25

0.3

0.35

N
M

S
E

0 100 200 300 400 500 600

R

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
E

0 100 200 300 400 500 600

R

5

10

15

20

25

S
A

M

Noise

JTF

Noiseless

Figure 4. The results of evaluation metrics as functions of the number of components R for the proposed
JTF method. UIQI, universal image quality index.

5.4. Experimental Results

To further investigate the performance of the method, we conduct experiments under the incorrect
Gaussian kernel (3× 3, 5× 5, 7× 7) and correct Gaussian kernel (9× 9) and show the fusion effect
of the six test methods on Pavia University. Table 1 shows the R-SNR, NMSE, RMSE, ERGAS, SAM,
and UIQI of the HSI recovered from Pavia University, and we present the best of the six algorithms in
bold. As can be seen from the table, in the case of incorrect estimation of the Gaussian kernel, the fusion
effect of other algorithms excluding JTF is worse than that of the correct Gaussian kernel. The closer
these five algorithms are to the correct Gaussian kernel, the better the results will be. Nevertheless,
the JTF method performs best in the comparison of the methods in terms of reconstruction accuracy
whether the Gaussian kernel is correctly estimated or not. Overall, the JTF and CNMF methods are
very effective in the reconstruction of Pavia University. On the contrary, the JTF algorithm proposed
does not degrade the image reconstruction effect due to the incorrect estimation of the Gaussian
kernel. More specifically, the property of the proposed algorithm is greater under the hypothetical
Gaussian kernel, which also proves that the JTF algorithm has more generalization significance and
application prospects.
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Table 1. Quantitative results of the test methods on Pavia University under the different
Gaussian kernels. CNMF, coupled nonnegative matrix factorization; SFIM, smoothing filter based
intensity modulation; MTF-GLP, modulation transfer function based generalized Laplacian pyramid;
MAPSMM, maximum a posterior estimation with a stochastic mixing model.

Gaussian Kernel Method R-SNR NMSE RMSE ERGAS SAM UIQI

3× 3

JTF 17.8267 0.1284 0.0266 4.3495 5.95 0.9031
Blind STEREO 11.0252 0.281 0.0581 9.9924 15.841 0.7777

CNMF 15.8798 0.1607 0.0332 5.684 7.8655 0.8922
SFIM 10.7811 0.289 0.0598 10.3849 11.2828 0.7374

MTF-GLP 12.8459 0.2279 0.0471 7.608 10.4577 0.7845
MAPSMM 11.8642 0.2551 0.0528 8.3346 10.4203 0.7449

5× 5

JTF 17.6357 0.1313 0.0272 4.4351 5.9266 0.8983
Blind STEREO 11.163 0.2766 0.0572 9.6563 15.6988 0.7938

CNMF 15.5546 0.1668 0.0345 5.7987 7.9809 0.8623
SFIM 12.6416 0.2333 0.0483 7.9097 10.2705 0.7725

MTF-GLP 13.6742 0.2072 0.0428 6.9561 9.7086 0.8038
MAPSMM 12.8407 0.228 0.0472 7.4954 9.5283 0.7733

7× 7

JTF 17.7156 0.1301 0.0269 4.4008 5.8517 0.9001
Blind STEREO 13.4084 0.2136 0.0442 7.421 11.9428 0.8584

CNMF 16.0028 0.1584 0.0328 5.5489 7.2096 0.8747
SFIM 13.1113 0.221 0.0457 7.493 9.9524 0.7804

MTF-GLP 13.9393 0.2009 0.0416 6.7583 9.461 0.8057
MAPSMM 13.1616 0.2197 0.0454 7.2442 9.3344 0.7777

9× 9

JTF 17.603 0.1318 0.0273 4.4091 5.7811 0.8991
Blind STEREO 13.7402 0.2056 0.0425 7.0851 11.3721 0.8621

CNMF 16.3576 0.1521 0.0315 5.3307 7.1092 0.8792
SFIM 13.3654 0.2147 0.0444 7.2704 9.7603 0.7875

MTF-GLP 14.1333 0.1965 0.0406 6.6077 9.3225 0.8109
MAPSMM 13.2983 0.2163 0.0447 7.1304 9.1704 0.7813

Figure 5 reveals the fusion experimental results for Pavia University under the incorrect Gaussian
kernel (7× 7), which contains the 50th and 100th bands’ fused images and the corresponding error
images reconstructed by the six algorithms, were Line 1 and Line 2 in Figure 5 denote the fused
HSIs of the 50th band and the corresponding error HSIs of each method, respectively. Moreover,
Figure 5g shows the reference HSIs, while the third and forth rows show the reconstructed images for
the 100th band and corresponding error images, respectively. Except for the last column, each column
in Figure 5 shows the experimental results corresponding to each method. The error image reflects
the difference between the fusion result and the ground truth. As depicted in Figure 5, this paper
uses the red box to show the more obvious areas in order to compare the difference of error images
of different algorithms clearly. By visualized comparison of the fused HSIs with the reference HSIs,
the fusion result of the Blind STEREO method shows slight spectral distortion on the top of the
building, while the MAPSMM method generates fuzzy spatial details in some areas, and the spatial
information of the fused image is well enhanced by the CNMF method. A closer inspection reveals
that the spectral and spatial differences of fused HSIs obtained by the six methods are not obvious.
Therefore, in order to further compare the performance of each fusion method, the second and fourth
lines of Figure 5 show the error images of the six methods under two spectral bands. The error image
is the difference (absolute value) between the fused HSI and the reference HSI pixel value. We magnify
the data element value in the error image by 10 times, so that we can inspect it more carefully. It can
be seen that the Blind STEREO, SFIM, MTF-GLP, and MAPSMM methods have large differences,
while the CNMF method generates relatively smaller differences, and the JTF method has the smallest
differences in most regions, indicating that this method has good fusion ability and provides clearer
spatial details than the other five algorithms.
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Figure 5. Reconstructed images and corresponding error images of Pavia University for the 50th
and 100th bands with unknown DH and noisy DM: (a) JTF; (b) Blind STEREO; (c) CNMF; (d) SFIM;
(e) MTF-GLP; (f) MAPSMM; (g) ground truth.

Similar to the previous experiments, Figure 6 shows the fusion experimental results for Pavia
University under the correct Gaussian kernel (9× 9), which contain the 50th and 100th bands’ fused
images and the corresponding error images reconstructed by the six algorithms. Figure 6 shows the
fused HSIs of the 50th band and the corresponding error HSIs of each method, which are displayed
in Lines 1–2. Moreover, Figure 6g shows the reference HSIs, while the third and forth rows show
the reconstructed images for the 100th band and corresponding error images, respectively. Similarly,
in order to compare the difference of the error images of different algorithms clearly, the data element
values in the error image are magnified 10 times, and the red box is applied to display the region with
obvious errors. The spectral distortion caused by the Blind STEREO method is very obvious and is
affected by the Gaussian kernel changes, as shown in Figure 6b. Compared with the Blind STEREO
method, other methods can effectively improve the spatial performance while maintaining the spectral
information, and the difference between the fused images is not significant. Therefore, in order to
further verify the fusion performance of the proposed method, the second and fourth lines of Figure 6
show the error images corresponding to different methods, respectively. It can be seen that the error
image obtained by the JTF method is the lowest in most regions, and the fusion effect is not affected by
the Gaussian kernel, which indicates that the JTF method has a superior image reconstruction effect
and is more robust. Overall, the JTF method has better reconstruction performance and clearer fusion
effects than the other five algorithms.
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Figure 6. Reconstructed images and corresponding error images of Pavia University for the 20th
and 60th bands with unknown DH and noisy DM: (a) JTF; (b) Blind STEREO; (c) CNMF; (d) SFIM;
(e) MTF-GLP; (f) MAPSMM; (g) ground truth.

5.5. Experimental Results of the Noisy Case

In practice, there exits additive noise in the hyperspectral and multispectral imaging processes.
Therefore, to test the robustness of the proposed JTF method to the noise, we firstly simulate the tensor
imagesM and H in the same way as the previous experiments for Pavia University and then add
Gaussian noise to the HSI and MSI. Because the noise level in the HSI is often higher than that of
the MSI, we fix the SNR added to the HSI to be 20db and compare the evaluation indicators with the
traditional five classical models with the change of noise added to MSI.

Figure 7 presents the quality metric values of the noisy cases on Pavia University. It can be seen
that from the reconstruction performance of the six fusion algorithms emerges a trend of enhancement
with the increase of MSI image noise. Although the fusion effect of CNMF is closer to that of the JTF
algorithm when the noise is high, the JTF method is still better than other test methods in the case of
noise as a whole.
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Figure 7. The results of evaluation metrics under different noises. MSI, multispectral image.

5.6. Analysis of Computational Costs

In this section, experiments are carried out on six classical methods to demonstrate the
computational efficiency of the proposed method, which are accomplished with MATLAB R2016b on a
PC with Intel Core i7-7500 CPU and 8 GB RAM. The mean time (in terms of seconds) of all comparison
methods is shown as Table 2.

As can be seen from Table 2, the method based on the filter fusion (SFIM) does not need to
calculate the optimal factor matrix of each mode, and its running time is shorter than the method
based on tensor samples. For tensor based methods, since the iterative strategy is used to obtain the
optimal solution of each unknown factor, the time of the two methods (JTF, Blind STEREO) is almost
the same. MTF-GLP runs between the first two classes of methods, while CNMF and MAPSMM
have long running times. Compared with the excellent performance, the running time of JTF is
acceptable. Analyses were conducted based on various noises under different Gaussian kernels to
further observe the performance of different algorithms. The results indicate that the running time of
most algorithms is shorter under the premise of correct estimation of Gaussian kernels. However, there
is little difference with the run time of the JTF algorithm under unknown Gaussian kernels, and the
running time has little relation with the magnitude of additive noise, which indirectly proves that our
algorithm is more robust.

Table 2. Time (s) of the test methods on Pavia University under the different conditions.

Method Gaussian Kernel (7 × 7) Gaussian Kernel (9 × 9) Gaussian Kernel (7 × 7) Gaussian Kernel (9 × 9)
SNR (10 db) SNR (10 db) SNR (20 db) SNR (20 db)

JTF 17.266912 15.883985 15.303149 15.035694
Blind STEREO 15.179482 13.761605 13.057704 12.79495

CNMF 91.838425 89.438305 82.124058 82.466387
SFIM 1.421629 0.821533 0.836197 0.829191

MTF-GLP 24.859017 25.753572 24.809271 31.731484
MAPSMM 301.682105 283.545812 266.800409 299.233003

6. Conclusions

In this paper, a joint tensor decomposition method was proposed to fuse hyperspectral and
multispectral images to address the hyperspectral super-resolution issue. The JTF algorithm regards
the fusion problem as the joint tensor decomposition, which not only ensures the non-uniqueness of
decomposition, but is applicable to the circumstance that degenerate operators are unknown or tough
to gauge. In order to observe the reconstruction effect of this method, we compare the performance
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of the proposed algorithm with that of the five algorithms. Experiments show that the proposed
algorithm has great performance advantages and certain simulation prospects. For our future work,
we would concentrate on the novel scenario that adds the non-negative constraints for the joint tensor
decomposition of super-resolution images.
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