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Abstract: Hyperspectral analysis is a well-established technique that can be suitably implemented in
several application fields, including materials science. This approach allows us to deal with data
samples containing spatial and spectral information at very high resolution, thus enabling us to
evaluate materials properties at a nanoscale level. As a proof of concept, hyperspectral imaging was
here considered to investigate 3D printed polymer matrix composites, considering graphene oxide
(GO) as a nanofiller. Commercial polycaprolactone and polylactic acid filaments were firstly treated
with GO to be then printed into testing specimens. Raman analysis was performed to assess the
GO distribution on samples surface by mapping different regions of interest and the collected data
were the input of a custom-made algorithm for hyperspectral image analysis, tailored to detect the
GO signature. Findings showed a valuable matching to Raman maps and were also characterized
by the positive feature of avoiding to set specific conditions to perform the investigation as GO
Raman distribution was carried out by fixing the wavenumber at 1580 cm−1, which is representative
of the G band of the nanofiller. This occurrence might lead to an uneven intensity representation
related to possible peak shifts which can bias the acquired results. Differently, hyperspectral imaging
needs a minimal set of data input, i.e., the spectral signatures of neat materials, to directly identify
the searched nanomaterial. More in-depth investigations need to be performed to fully validate
the proposed approach, but the here presented results already show the potential and versatility of
hyperspectral analysis in the materials science field.

Keywords: hyperspectral imaging analysis; graphene oxide; 3D printing

1. Introduction

Composite fabrication can be regarded as a real option to deal with novel materials with properly
designed properties for specific technological applications. This outcome can be achieved when each
step of the production process is carefully controlled, starting from an effective nanofiller dispersion
within the matrix, as the expected performance is strictly dependent on the fine interaction of the
parent materials. A detailed characterization is thus a crucial issue to be addressed to evaluate the
properties of the final component in detail and to tune the processing variables, to optimize the desired
output. In general, traditional approaches to identify materials are based on the comparison of detected
Raman spectra with reference spectral libraries. However, the identification of more than one material
in a sample, and their characterization is still an open issue.

In this regard, non-linear spectral analysis is an alternative and valuable approach to elaborate
Raman maps collected from 3D printed composites including graphene oxide (GO) [1], which was
selected as a model nanomaterial to test the reliability of the here proposed method. GO is a single
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layer of sp2 bonded carbon atoms arranged in a hexagonal lattice modified with functional groups, e.g.,
epoxides, alcohols, and carboxylic acids [2], which strongly improve the hydrophilic characteristics
and contribute to forming stable aqueous dispersions.

In Raman spectroscopy, the signal recorded for every single pixel is the result of the interaction of
light with several materials at the surface. In this framework, the term spectral unmixing refers to the
identification of the so-called endmembers, the spectral responses of the single constituent materials,
and to the determination of the amount of information with which each endmember contributes to
the detected signal [3]. According to recent literature, the spectral mixture model can be classified
as a linear or nonlinear process [4]. When the incident light interacts with only one material and the
scattered signals from different materials are mixed within the sensor, we can refer to the linear spectral
mixing model [5–7]. On the other hand, when the light scattered from one material interact with other
materials, having different chemical or physical characteristics, before reaching the sensor, we can refer
to the nonlinear mixing model. Referring to Raman spectroscopy, the incident monochromatic light
is scattered by molecules and most of the scattered light has the same frequency of the incident one
(Rayleigh scattering), but some fraction has different frequency due to the interaction between light
characteristics and molecular vibration (Raman scattering). Because the resolution of the spectrometer
sensor covers a surface larger than a single molecule, the incident light interacts with more than one
molecule before being detected by the detector.

When the radiation interacts with a composite of two or more materials that are intimately mixed
(such as sand grains), we can refer to a microscopic nonlinear mixture. In this kind of mixtures, the
interaction between light and materials requires extremely complex modeling, taking into account
also the non-Lambertian properties of the materials. This explains why most of the literature is
dedicated to linear approaches with very few papers presenting only approximations of nonlinear
models [8,9]. Alternative solutions have been proposed using machine learning, in particular with
neural networks [10–12]. In this kind of approach, it is possible to train a neural network to learn
linear and nonlinear correlations in the data. However, to detect all the possible correlations, it will be
necessary to build a very large training dataset covering all the possible scenarios given the problem
under investigation [13]. In practical applications, this ideal training dataset is not always available,
thus, it is necessary to find alternative solutions. An effective solution is based on the use of neural
networks to project the original data into a feature space through the use of nonlinear transformations.
This results in the linearization of the data projected in the feature space, thus allowing the effective
use of linear unmixing approaches. In particular, in this paper, we propose an approach that uses
Nonlinear Principal Component Analysis (NLPCA) to project the Raman data into a linear feature
space [14], and a classical linear unmixing approach applied directly to the linearized features to detect
endmembers and estimate their abundances.

The here presented study is aimed to highlight the potential of an alternative investigational
technique for materials characterization. As a case study, commercial polycaprolactone and polylactic
acid filaments were modified with GO to 3D print testing composites, to implement Raman findings
for the spectral unmixing analysis. Raman mapping is generally carried out by fixing a specific
wavenumber representative of the material to be detected; however, this might lead to an uneven
intensity representation related to possible peak shifts which can bias the acquired results. Differently,
hyperspectral imaging needs a minimal set of input data, i.e., the spectral signatures of the neat
materials, to directly identify the searched nanomaterial, which allows one to limit the number of the
experimental constraints to be set and thus perform a reliable material assessment.
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2. Theoretical Background

According to the linear mixture model definition, each pixel vector in the original map can be
modeled using the following expression:

X(i, j) =
p∑

z=1

Φz(i, j)·Ez + n(i, j) (1)

where X(i, j) represent the pixel vector at discrete coordinates (i, j), Ez denotes the spectral signatures
of the endmembers, Φz(i, j) is a scalar value indicating the fractional abundance of the endmember z
in the pixel vector, and n(i, j) is a noise vector. When dealing with linear mixing models, it is possible
to define two physical constraints, i.e., the sum-to-one constraint:

p∑
z=1

Φz(i, j) = 1 (2)

and the non-negativity constraint:
Φz(i, j) ≥ 0 (3)

To find the optimal solution of the fully constrained linear spectral mixture problem, the following
requirements are to be satisfied:

• Identification of the correct number of the endmembers
• Determination of a set of endmembers and their corresponding abundances fractions at each pixel.

Effective solutions have been proposed so far to deal with the first requirement [15]. However, the
second requirement can be addressed in two steps: endmember extraction and abundance estimation.
In the last decades, several algorithms have been developed for the extraction of spectral endmembers,
such as the pixel purity index (PPI) [16], N-FINDR, and vertex component analysis (VCA) [17,18]. Once
identified the endmembers, the abundance estimation consists of solving a constrained optimization
problem, minimizing the residual between the observed spectral vectors and the linear space spanned
by the inferred spectral signatures, under the constraints of non-negativity and/or the sum to one.

In general, linear mixing dominates macroscopic interactions, when the incident light interacts
with only one material before reaching the sensor. In the case of Raman spectroscopy, the light is
scattered by multiple materials and the interactions consist of photons emitted by molecules of one
material that are absorbed by molecules of another material, which may in turn emits more photons.

Assuming then a nonlinear mixture model, in Raman spectroscopy maps, each pixel vector can be
modeled as

X(i, j) = f(Ez, Φz(i, j)) + n(i, j) (4)

where f is an unknown nonlinear function that defines the interaction between Ez and Φz(i, j). Deriving a
physically based approach to nonlinear unmixing is an extremely complex task that requires identifying
parameters describing all the possible interactions between light and materials that are very hard or
impossible to obtain. To avoid complex physical models, neural networks are generally considered,
thanks to their ability to approximate complex functions and the high potential in decomposing
nonlinear mixed pixels [12]. Following a classical supervised approach, to train an effective neural
network, it is important to know how many endmembers are present in the data and their spectral
signature to design an optimal unmixing function f. However, in many practical cases, it is not possible
to know in advance this information, thus the unmixing function may result incomplete.

Whether linear or nonlinear, the general framework of spectral unmixing can be summarized
in dimensionality reduction, endmember identification, and abundance estimation, as depicted in
Figure 1.
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Figure 1. Sketch of the general spectral unmixing workflow.

The dimensionality reduction is an optional processing step and its application depends on
the dimension of the original data. However, in the case of Raman images, characterized by
thousands of highly correlated bands, the use of a dimensionality reduction approach can be beneficial,
improving computation time, complexity, and performances of the whole unmixing process [19].
Many dimensionality approaches have been proposed in the literature, from feature selection to
feature extraction. A comparative analysis of the effectiveness of different methods can be found in
reference [20].

Several linear approaches have been proposed so far to extract the endmembers from a given
data. These approaches can be divided into geometrical techniques that consider the mixed vector
enclosed within a simplex statistical framework that determines endmembers through parameters
estimation, and methods that model the linear mixture as a sparse regression problem. Given the data,
the abundance of each identified endmember can be quantified by solving a constrained optimization
problem, which minimizes the residual between each of the observed spectral vectors and the space
spanned by the inferred endmembers [21]. It is worth noting that using linear approaches in images
presenting a nonlinear mixture may not only detect all the endmembers present in the scene but also
may result in the identification of non-existing endmembers.

Taking into account that modeling all the possible nonlinear interactions between light and
materials characterizing Raman spectroscopy is an extremely complex task, the use of NLPCA [22]
is here proposed to linearize the original data into a linearized feature space while reducing the
original data dimensionality. This will then allow the implementation of linear unmixing models for
the extraction of endmembers and abundance estimation. In particular, the N-FINDR and SUnSAL
algorithms as described in [23,24] will be considered for the endmember extraction and the solution of
the constrained least square problem, respectively.

3. Materials and Methods

3.1. Nonlinear Principal Component Analysis

NLPCA was here implemented to project the original data into a lower dimensionality linear
feature space. The proposed approach is based on the use of Auto-Associative Neural Network
(AANN) or auto-encoder. Firstly, introduced in the 1980s, the autoencoders are now widely used as
one of the most powerful deep learning approaches. An autoencoder is a conventional feed-forward
neural network having a symmetrical topology with the input and output layers having the same
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number of nodes. According to the requirements of the NLPCA, the autoencoder was designed to have
three hidden layers, with the central one, defined as the bottleneck layer, having a smaller dimension
than the other hidden layers [25]. During the training phase, the nodes of the bottleneck layer force
the other hidden layers, defined as coding/decoding layers, to compress the information by removing
correlations, noise, and redundancies. Once trained, the information extracted from the bottleneck
layer represents the lower dimensionality feature space. It is worth noting that the number of nodes
in the bottleneck layer defines the dimension of the target feature subspace, while the nodes in the
coding and decoding layers are related to the complexity of the mapping and demapping functions to
and from the feature space. However, the selection of these values cannot be defined a priori. Thus,
to identify the optimal neural network topology, it is possible to apply a simple heuristic grid search
algorithm varying recursively the number of nodes of the hidden layers and evaluating the value of
the Means Square Error (MSE) error [26]. Then, the topology presenting the smallest error is selected.
A detailed description of the NLPCA implementation can be found in reference [22].

3.2. Endmember Extraction and Abundance Estimation

Several approaches have been developed for the automatic or semiautomatic extraction of spectral
endmembers, among which N-FINDR is one of the most powerful. N-FINDR is a geometric algorithm
that identifies the simplex of maximum volume that can be inscribed within the data set [23]. The
initialization of the algorithm is carried out by selecting a random set of q endmembers

{
E1, E2, . . . , Eq

}
,

with q ≤ n + 1, and n corresponding to the dimension of the feature space. The volume of the simplex
is then defined by

V
(
E1, E2, . . . , Eq

)
=

∣∣∣∣∣∣det
[

1, 1, . . . , 1
E1, E2, . . . , Eq

]∣∣∣∣∣∣
(q− 1)!

(5)

To identify the maximum volume of the simplex, this value is recalculated by testing each pixel vector
X(i,j) in the first endmembers position:

V
(
X(1, 1), E2, . . . , Eq

)
V
(
X(1, 2), E2, . . . , Eq

)
. . .

V
(
X(r, c), E2, . . . , Eq

) (6)

where r and c represent the number of rows and columns of the map. When one of the volumes
calculated in Equation (6) is greater than the volume obtained with the original endmembers set, the
evaluated endmember is replaced with the pixel corresponding to the maximum volume, resulting
in a new set of endmembers. This procedure is then iterated by testing the volumes in the other
endmember’s positions, retaining the combinations corresponding to the maximum volumes. At the
end of this process, the resulting volume should represent the maximum volume for the specific data.
It is important to note that according to our approach, the obtained endmembers are representative of
the feature space, thus to obtain their equivalent in the spectral domain, it will be necessary to reproject
them back into the original data space.

The estimation of the fractional abundances of each endmember within each pixel in the image
can be obtained by minimizing the total squared error, under the constraints of non-negativity and/or
the sum to one

minx
(

1
2

)
‖Ea− S‖22

x ≥ 0
1Tx = 1

(7)

where E ∈ <q refers to the matrix containing the q endmembers, a ∈ <k represents the fractional
abundance vector, and S ∈ <k is the observed mixed pixel. The solution of the optimization problems
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is then achieved through the SUnSAL algorithm that is based on the Constrained Split Augmented
Lagrangian Shrinkage Algorithm (C-SALSA) methodology to effectively solve a large number of
constrained least-squares problems sharing the same matrix system in reference [24].

3.3. Specimens Fabrication and Raman Analysis

The proposed approach has been tested on Raman maps acquired from 3D printed polymer-based
composites. The graphene oxide (GO; powder, oxidation: 4–10%) was supplied by Sigma-Aldrich
(Milan, Italy), while bidistilled water was purchased by Carlo Erba Reagenti (Milan, Italy).
Polycaprolactone (PCL) and polylactic acid (PLA) filaments were supplied from 3D4Makers (Haarlem,
The Netherlands) and Formfutura BV (Nijmegen, The Netherlands), respectively. All materials were
used as received.

Specimens were fabricated by preliminary depositing GO on the surface of PCL and PLA filaments.
For this aim, GO was suspended in bidistilled water (0.5% w/v) and ultrasonicated for 30 min. Filament
samples were then soaked in the resulting suspension, magnetically stirred for 3 h, dried at 40 ◦C once
recovered, and subsequently loaded in the N2 FFF 3D printer (Raise 3D Inc., Irvine, CA, USA). The
geometric models, representative of the composites to be printed, were processed by the ideaMaker
software (Raise 3D Inc., Irvine, CA, USA) to be sliced in the Z direction. For the 3D printing process,
the temperature of the nozzle (0.4 mm diameter) was set at 160 ◦C and that of the build platform at
20 ◦C for PCL samples, while the temperature of the nozzle was set at 205 ◦C and that of the build
platform at 40 ◦C for PLA samples. In both cases, they were fabricated by alternatively stacking layers
in a regular pattern in the 0◦/90◦ directions, the sample size being 8 × 8 × 3.2 mm3.

Raman characterization was performed to evaluate the GO presence and distribution on the
specimen surface using an InVia Raman microscope (Renishaw, UK). The analysis was carried out
on GO powder, 3D printed neat samples and 3D printed PCL/PLA-GO samples. Carbon nanofiller
distribution on specimen surface was assessed by collecting Raman maps, randomly located. A fixed
area of 250 × 120 µm (step 5 × 5 µm) was investigated using a laser with a wavelength of 532 nm,
1 s exposure time, and 2 accumulations for each acquired spectrum. Collected spectra were then
minimally processed to correct the baseline and remove the possible presence of cosmic rays (WiRE
software, Renishaw, UK).

4. Results and Discussion

Figure 2 shows the 3D printed structures here considered for the prosed unmixing analysis. The
average size of the deposited strands was 352.0 ± 5.8 µm for PCL-GO and 409.6 ± 5.3 µm for PLA-GO,
respectively; further data were previously reported in reference [1].

Figure 2. Pictures of polycaprolactone-graphene oxide (a) and polylactic acid-graphene oxide (b) 3D
printed structures.

Figure 3 shows the Raman spectra of GO powder, neat PCL, PCL-GO, PLA, and PLA-GO 3D
samples. GO spectrum is characterized by the two typical peaks at about 1320 cm−1 (D band) and 1580
cm−1 (G band), which is clearly identifiable in both spectra acquired from the printed composites.
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Figure 3. Raman spectra of neat polycaprolactone and polycaprolactone-graphene oxide (a), and neat
polylactic acid and polylactic acid-graphene oxide (b). In both panels the Raman spectrum of graphene
oxide is reported for comparison, the G band is clearly detectable in the two composites.

GO distribution was investigated by scanning a fixed area, randomly selected, on different
locations on PCL- and PLA-based composites. Figure 4 shows representative maps considering the
intensity peak at 1580 cm−1.

Figure 4. Raman maps of PCL-GO (a) and PLA-GO (b).

For each dataset (PCL-GO and PLA-GO), two different approaches have been carried out for
the selection of the endmembers. In the first case, the endmembers have been selected manually
from a spectral library, while in the second one the endmembers have been derived from data
using the N-FINDR endmember extraction technique. The spectral library considered in this study is
composed of a series of Raman measurements of pure materials. In particular, we selected three different
measurements of GO powder, and three different measurements of PCL and PLA filaments, respectively.

Two different metrics have been used to compare the performance of the proposed technique
depending on the endmember extraction approach. Regarding the endmember extracted from the data,
the assessment has been carried out using the Spectral Angle Distance (SAD) between each extracted
endmember and the set of available GO spectral signatures e and PCL or PLA. The SAD measures the
spectral angle formed by n-dimensional vectors and is defined as follows:

SAD(X(i, j), X(r, s)) = cos−1 X(i, j)·X(r, s)
‖X(i, j)‖‖X(r, s)‖

(8)

where low SAM values mean high spectral similarity between the compared signatures.
A second metric for the evaluation of the unmixing algorithms is based on the assumption that a

set of high-quality abundance maps and their corresponding endmembers may allow the reconstruction
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of the original data with higher precision than a set of low-quality endmembers/abundance maps.
Specifically, the metric used is the Root Mean Squared Error (RMSE) between the original and the
reconstructed data, which can be defined as follows:

RMSE
(
I(O), I(R)

)
=

1
s× l

s∑
i=1

l∑
j=1

 1
n

n∑
k=1

[
x(O)

k (i, j) − x(R)k (i, j)
]1/2

(9)

where I(O) is the original map, and I(R) is a reconstructed version of I(O), obtained using Equation
(1) with the set of endmembers used for the unmixing process and their corresponding estimated
fractional abundances.

4.1. PCL-GO Dataset

The obtained map of the PCL-GO 3D printed composites is composed of 51 × 25 pixels with 1015
spectral bands between 996 cm−1 and 2111 cm−1. To reduce the dimensionality of and to project the
data into a linear subspace, the PCL-GO map has been processed through an AANN. Following an
iterative process varying the number of nodes in the hidden layers, it has been found that the best
topology, having the lowest training MSE presented a 1015-500-25-500-1015 topology. This means
that the AANN has the 1015 bands as the input, 500 nodes in the coding/decoding layer, and then 25
nodes in the bottleneck layer. The features obtained through the bottleneck layer have then been used
as input to the N-FINDR algorithm considering only two endmembers. Subsequently, the obtained
endmembers have been used to determine the fractional abundances in each pixel of the map.

The obtained results have been compared with those collected using the classical linear unmixing
approach, without the projection in the feature space. Analyzing Figure 4, showing the reference
spectra and the endmembers resulting from the linear approach, it is possible to note that while the
first endmember, noted as EM#1, is very similar to the PCL reference spectra, the second endmember,
noted as EM#2, presents spectral characteristics more similar to a mixed spectrum rather than pure GO.
This can be clear comparing the response of features 18, 21, and 25 reported in Figure 5.

Table 1 reports the SAD values obtained comparing the reference spectra of GO and PCL, projected
in the feature space, with the endmembers obtained with both linear and nonlinear approaches,
respectively. Referring to the linear approach, the SAD values for EM#2 present almost the same value
for the comparison with PCL and GO. This means that using the linear approach is not possible to
clearly associate EM#2 to any reference spectra. On the other hand, considering the nonlinear approach,
the SAD values for EM#1 is lower when compared to PCL, while EM#2 present the lower value when
compared to GO, allowing the association of the two derived endmembers to the two materials.

Table 1. SAD values obtained by comparing the reference spectra of GO and PCL, and the endmembers
obtained using the linear and nonlinear approaches.

Linear Unmixing Approach Nonlinear Unmixing Approach

GO PCL GO PCL

EM#1 73.54 67.92 0.0028 0.0012

EM#2 69.15 69.93 0.0015 0.0033

For sake of comparison, following a traditional approach, we also estimated the similarities
of detected spectra with a reference spectral library in terms of SAD values. Figure 6 reports the
comparisons between the GO and PCL spectra and the most similar spectra in terms of SAD. As can be
noted, this approach is possible to identify correctly only PCL, which is the dominant material. Indeed,
this approach fails to identify GO mainly because it is present only in mixed solutions.
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Figure 5. Reference features obtained projecting the reference spectra in the feature space, and the
endmembers obtained with the proposed nonlinear approach.
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Figure 6. Comparisons between reference spectra (GO on the left, PCL on the right), and the spectra
most similar in terms of SAD.

In a second evaluation the reference features, obtained from the projection of the reference
spectra in the feature space have been used as endmembers to determine the fractional abundances
of each pixel. The RMSE values have been derived by evaluating the errors between the original
map and the reconstructed map obtained with Equation (9), where Φz(i, j) and Ez are respectively
the endmembers and the fractional abundances obtained using the linear unmixing approach on the
original data. Regarding the proposed nonlinear approach, the RMSE values have been calculated
using the low dimensionality feature map, obtained with the AANN, and the reconstructed feature
map obtained using Equation (9), where Φz(i, j) and Ez are respectively the endmembers and the
fractional abundances derived using the linear approach in the feature space.

Table 2 reports the RMSE values obtained after reconstructing the feature and the original
data maps.

Table 2. RMSE values derived between the original map and the reconstructed one, using linear (left)
and nonlinear (right) approaches.

RMSE Linear Approach Nonlinear Approach

PCL-GO 2.24 0.0096

PLA-GO 1.012 0.0164

Figure 7 graphically represents the per-pixel root mean square error (RMSE) obtained after
reconstructing the Raman Spectral maps, using the linear approach and the proposed nonlinear
approach, respectively. As can be seen, the proposed nonlinear method improves the quality of the
map reconstruction.

Figure 7. RMSE reconstruction errors for linear (left) and nonlinear (right) unmixing algorithms
applied to the PCL-GO structure.
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4.2. PLA-GO Dataset

A second experiment has been carried out on a 3D structure of PLA including GO. The obtained
map is composed of 111 × 17 pixels with 1015 spectral bands between 996 cm−1 and 2111 cm−1. In
this case an AANN having a 1015-500-25-500-1015 topology has also been used to project the original
data into a reduced dimensionality linear feature space. Differently from the previous experiment, we
bypassed the N-FINDR algorithm and instead used reference spectra as endmembers to estimate the
fractional abundances in each pixel of the map. The RMSE scores of the obtained results have been
compared with those obtained through a linear unmixing approach and reported in Table 2. As can
be noted, the map reconstructed using the nonlinear approach presents a lower RMSE if compared
with the map reconstructed with the linear approach. This can be also appreciated by analyzing the
error maps in Figure 8, where the difference values between the original Raman spectral map and
the reconstructed map obtained using the proposed nonlinear approach are lower than the difference
values between the original Raman map and the reconstructed map obtained using the linear approach.

Figure 8. RMSE reconstruction errors for the linear (left) and nonlinear (right) unmixing algorithms
applied to the PCL-GO structure.

Similarly, to the previous experiment, we applied a SAD-based technique to detect and identify all
the different materials present in the sample. The identification is carried out by deriving a similarity
index obtained by comparing each pixel of the Raman map with a set of reference spectra based on the
SAD value. Figure 9 reports the comparison between the most similar spectra and the reference spectra
for PLA and GO, respectively. In this case, while it is possible to correctly identify the PLA, which is
the dominant material, this approach does not allow the detection of GO, which is only present in a
mixed solution.

Figure 9. Comparisons between reference spectra (GO on the left, PLA on the right), and the spectra
most similar in terms of SAD.
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5. Conclusions

In this paper, we presented a novel approach to detect and identify different materials in Raman
spectra acquired on 3D structures. Traditional methods to identify materials from Raman spectroscopy
are based on the comparison of the detected spectra with predefined spectral libraries. When the
sample presents mixtures of different materials, traditional methods tend to fail. In this paper, we
propose to use the nonlinear generalization of the spectral unmixing approach that allows us to identify
different materials even if they are present in a mixed solution. Nonlinear intimate mixtures of the pure
spectra of the single materials mostly characterized the detected Raman spectra. Modeling the mixtures
with linear approaches may lead to a non-detection of all the endmembers in the data. Nonlinear
approaches in general require extremely complex nonlinear models of the interactions between light
and matter that are far from a practical realization.

The proposed approach takes advantage of an auto-associative neural network (AANN), a deep
autoencoder which allows us to project the original Raman spectra into a low-dimensionality linearized
feature space. The use of the AANN allows for the solving of nonlinear correlations in the original
data. Thus, it is possible to apply the linear unmixing approach directly in the features space.

The effectiveness of the proposed approach has been tested on two real datasets acquired on 3D
printed structures including GO in PCL and PLA matrices, respectively. The obtained results have
been compared with those obtained applying the linear approach to the same data and evaluated in
terms of Spectral Angle Distance (SAD) and Root Mean Square Error (RMSE). The results demonstrate
that the proposed approach overcomes the limitations introduced by linear unmixing and does not
require complex modeling of the light-matter interactions.

The full and straightforward implementation of the method presented here can be suitably and
readily considered for the evaluation of practical cases in different sectors. Dealing with a hyperspectral
camera can monitor processes and materials by remote control, providing a number of benefits: (i)
there is no need to handle the samples, this could be particularly interesting for addressing, e.g., safety
issues; (ii) sample size is not a limitation, as occurred in this experimentation as samples had to be
located under a microscope, and (iii) the collected data can be directly processed by the unmixing
algorithm here proposed.
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