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Abstract

A lot of effort is currently made to provide methods to analyze and un-
derstand deep neural network impressive performances for tasks such as im-
age or text classification. These methods are mainly based on visualizing
the important input features taken into account by the network to build a de-
cision. However these techniques, let us cite LIME, SHAP, Grad-CAM, or
TDS, require extra effort to interpret the visualization with respect to expert
knowledge. In this paper, we propose a novel approach to inspect the hidden
layers of a fitted CNN in order to extract interpretable linguistic objects from
texts exploiting classification process. In particular, we detail a weighted
extension of the Text Deconvolution Saliency (wTDS) measure which can
be used to highlight the relevant features used by the CNN to perform the
classification task. We empirically demonstrate the efficiency of our ap-
proach on corpora from two different languages: English and French. On all
datasets, wTDS automatically encodes complex linguistic objects based on
co-occurrences and possibly on grammatical and syntax analysis.
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1 Introduction

Each author has a discursive identity made up of identifiable lexical and gram-

matical choices. Therefore, one of the challenges of deep learning on text is to

describe these identities.

Although it was shown in the literature that, in terms of accuracy, CNN based

approaches outperform existing classifiers based on statistical key-indicators (e.g.

the relative words frequency) or other machine learning techniques, it is still not

clear if and how CNNs make use of standard features used in text mining (for

instance word co-occurrences). We might also go further and assume that, for text

classification, CNNs can rely on other complex linguistic structures that might

be of interest for linguists. In the attempt to shed some light on this topic, our

approach mainly relies on deconvolution process (i.e. transpose process), allowing

us to interpret the CNN features in the input space.

This paper focuses on linguistic object analysis via a multichannel convolu-

tional architecture. That is, a CNN is trained to associate several parts of tran-

scribed political speeches to their speaker (e.g. E. Macron and D. Trump). Our

main contribution is an improvement of an existing measure, the Text Deconvo-

lution Saliency (TDS) (TDS, Vanni et al., 2018), called weighted Text Deconvo-

lution Saliency (wTDS), allowing us to visualize the linguistic markers used by

the CNN to perform the classification of a text, but also to make them fully inter-

pretable for the linguists. In order to have a relevant description of a dataset, the

wTDS is included in a model that introduce two further contributions i) process-
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ing the CNN parameters in order to “rank” text segments assigned to an author

from the more to the less representative of that author and ii) introducing a multi-

channel CNN architecture in order to exploit additional linguistic information (e.g.

lemma or part-of-speech) for each token.

The next section describes some of the most representative related works. Two

of them are discussed in more details in order to motivate and better describe our

own main contribution.

1.1 Related works

Since the seminal work of Collobert and Weston (2008), adopting CNNs for sev-

eral NLP tasks (part-of-speech tagging, chunking, named entity recognition and

semantic labeling), many researchers have widely used CNNs for similar and

other purposes, such as text modeling (e.g. Kalchbrenner et al., 2014) or sentence

classification (e.g. Kim, 2014). While CNNs are not the only available deep archi-

tecture in Text Mining, it has been noticed that they have several advantages with

respect to recurrent architectures (RNNs, in particular LSTM and GRU) when per-

forming key-phrase recognition (Yin et al., 2017). This supervised classification

task is the one we are interested in this work. In particular, we aim at uncover-

ing linguistic patterns used to highlight similarities and specificities (Feldman, R.,

and J. Sanger, 2007; Ludovic Lebart, André Salem and Lisette. Berry, 1998) in

a corpus. Standard text analysis techniques originally relied on statistical scores,

for instance on the relative frequency of words (a.k.a. z-scores, see Lafon, 1980).

However, these techniques could not exploit more challenging linguistic features,
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such as syntactical motifs Mellet and Longrée (2009). In order to overcome these

limitations and to account for long term dependencies in sentences, CNNs have

been recently used. Indeed, being CNNs more robust than RNNs to the vanishing

gradient problem, they might be able to detect links between different parts of a

sentence (Dauphin et al., 2017; Wen et al., 2017; Adel and Schütze, 2017). This

property is crucial, since it was shown that long range dependencies emerge in

real data (Li et al., 2015). Aiming at inspecting these dependencies as long as

other complex linguistic patterns, some tools explaining how CNNs perform the

classification task are required. In this regard, a recent crucial contribution is rep-

resented by the Local Interpretable Model-agnostic Explanations (LIME Ribeiro

et al., 2016) framework. The basic idea of LIME is to approximate any complex

classifier (e.g. a CNN) by a simpler one (e.g. sparse linear) in a neighborhood

of a training point xi. A simplified representation x̃i of xi is adopted, and N

points in a neighborhood of x̃i are sampled uniformly and used to minimize a

distance between the original classifier and the simpler one. Once the simpler

classifier is trained, it can be used to assess the (positive or negative) contribu-

tion of each feature to the classification task as easily as in linear models. This

approach provides very interesting results and is generic, since it can provide ex-

planations for any kind classifier. However, for every training point it involves

sampling N neighbors and evaluating the classifier for each one of them. This

might be computationally prohibitive, especially for high dimension data. In the

context of key-phrase recognition, an alternative approach was proposed by Vanni

et al. (2018). They considered as input data text segments of fixed size (M to-
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kens). Each data point was represented as an M ×D matrix, where D is the word

embedding size. After training a CNN for an author recognition task, they used a

Deconvolution Network (Zeiler and Fergus, 2014) to project the feature map back

into the input data space. Thus, the “deconvolution” assigns to the m-th token in

the i-th text segment (say dim) a vector xim ∈ RD. The sum of its entries defines

the Text Deconvolution Saliency (TDS) of dim. Intuitively, the higher (respec-

tively lower) the TDS of dim, the more (less) dim contributed to assign the text

segment to its class (i.e. its author). Although this approach returns meaningful

results it may suffer from some inconsistencies in the explanation, as it will be

shown in Section 2. In order to preserve the computational efficiency of TDS

(once the CNN is trained it can be computed at a cost of one model evaluation per

data point) we propose an improved version of the TDS (Section 2.2) overcoming

the explanation drawbacks.

This paper is organized as follows: Section 2 describes our CNN architecture

as well as our contributions. Section 3 illustrates the framework described in Sec-

tion 2 on two datasets: a English corpus and a French corpus. Section 4 concludes

the paper and outlines some perspectives for future research.

2 Model and contributions

The first part of this section details our model, a convolutional neural network,

trained for author classification tasks. In this work, this task corresponds to an

intermediate step but does not represent our final goal. Indeed, the scope is to

learn how to exploit a trained CNN to recover linguistic markers, specific to the
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different authors. Thus, after detailing the architecture, we focus on some origi-

nal contributions to the linguistic features extraction. Our main contribution, the

weighted Text Deconvolution Saliency (wTDS) is described in Section 2.2. Two

other contributions, the softmax breakdown ranking and the multi-channel convo-

lutional lemmatization are discussed in Section 2.3.

Notation. In the following, v ∈ RN will denote a real vector v with N entries.

If not differently stated, it is intended to be a column vector. The notation A ∈

RM×N will be used to define a real matrix with M rows and N columns and the

function relu(·) is defined as

relu(x) = max{0, x}

2.1 CNN baseline

The CNN considered takes as input d1, . . . , dN text segments, each containing a

fixed number of tokensM . In the examples that we consider in Section 3 each seg-

ment is part of a presidential speech, so that the number of classesK is the number

of considered presidents. An embedding layer is used for word representation. Al-

though this layer might rely on different well known models such as fastText (Bo-

janowski et al., 2017; Joulin et al., 2017), Word2Vec (Mikolov et al., 2013) or

Glove (Pennington et al., 2014) as long as a fine tuning of the embedding vectors

is allowed during optimization, the choice of the embedding model is not crucial.

Once the word feature vectors are obtained, they are concatenated (by row) in

such a way to form a matrix with M rows. This resulting matrix can then be input
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into a convolutional layer applying several filters all having the same width as the

dimension of the embedding matrix. One max pooling layer follows, equipped

with a non linear activation function. A deconvolutional layer (up-sampling +

convolution with transpose filters) is then introduced to bring the convolutional

features back into the word embedding space. Finally, two fully-connected layers

and a softmax function output for each segment di a vector ẑi ∈ {0, 1}K , where

K is the number of classes/authors. The following multinomial cross-entropy loss

function is considered:

L(θ) := −
N∑
i=1

K∑
k=1

zik log (ẑik(θ)) (1)

where θ denotes the set of all the network trainable parameters and z ∈ RN×K

is an observed binary matrix, whose k-th row encodes the class/author of the i-th

text segment (thus zik = 1 iff di is affected to the k-th class/author). The above

loss function is minimized with respect to θ via an Adam optimizer. In order to

avoid overfitting the whole dataset is split into train (80%) and validation (20%)

sets and the loss function in Eq. (1) is monitored on the validation set during

optimization, allowing us to apply early stopping (Prechelt, 1998) (Figure 1). A

graphical representation of the model described so far can be seen in Figure 2.

2.2 A new enriched TDS

After the CNN has been trained on the train dataset, it can assign a text segment

di (either in the train or in the validation set) to its class/author. We recall that di

can be viewed as a real matrix with M rows, where M is the number of tokens
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Figure 1: Model loss and accuracy

of di and D columns, where D is the embedding size. The m-th token of di,

corresponding to them-th row of the matrix, is denoted by dim and it is a vector in

RD. The deconvolutional layer (see Figure 2) assigns to every dim another vector

of the same size denoted by xim ∈ RD. Note that, since this representation is the

output of two convolutional layers, it is sensitive to the context of dim (neighbor

tokens). The Text Deconvolution Saliency (TDS, Vanni et al., 2018) of the token

dim is defined as

TDS(dim) =
D∑

d=1

ximd (2)

where the real number ximd is the d-th entry of xim We stress that, although this

measure is defined for each token of di it also accounts for the context of di (see

also the experiments in Section 3). The authors in Vanni et al. (2018) argue that,

the higher the TDS of a token, the more the token (conditionally to its context)

plays a crucial role in the classification task, according to the CNN. As a matter
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Figure 2: Three channels convolution/deconvolution for three representation of
the input 1) full-forms (words), 2) part-of-speech (POS), 3) lemma

of fact, even though TDS can correctly highlight the relevant words/contexts in di

being used by the CNN to classify di, it cannot tell us how the network uses them.

To illustrate this point in more detail, consider the following extract from a speech

by Donald Trump:

[...] neighborhoods for their families , and good jobs for themselves

. These are just and reasonable demands of righteous people and a

righteous public . But for too many of our citizens , a different reality

exists : Mothers and children trapped in poverty in our inner cities ;

rusted-out [...]

(D. Trump, the 20th of January 2017, Inaugural Address, United States Capitol

Building in Washington, DC).

This text is part of a corpus described in Section 3 and collects several part of

speeches from the US presidents. Once properly trained for an author recognition
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(a) TDS (b) LIME

Figure 3: Comparing the activation boost of the tokens toward the class “Trump”
according to TDS and LIME.

task, the CNN detailed in the previous section can correctly recognize this speech

as being pronounced by the president Trump. In Figure 3a an histogram reports

the TDS scores for the tokens of the extract. The higher the bars, the more the

corresponding tokens had a key role in the classification task. Now, when com-

paring these TDSs with the word contributions detected by LIME (Figure 3b) we

see that most of the tokens having a high TDS correspond to brown right bars

having a positive impact in classifying the speech as “Trump” (e.g. righteous,

people). Conversely, according to LIME, the noun “poverty” seems to have a

negative boost when performing a binary classification “Trump” or “No Trump”.

Indeed, if we additionally compute the z-scores of the tokens of di (Figure 4), with

respect to the whole corpus, we see that the noun “poverty” is underused by D.

Trump and this is in line with the explanation provided by LIME. However, this

noun is very specific to another president in the corpus: L.B Johnson. Thus, the

importance of the word “poverty” was correctly captured by TDS, but we cannot
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Figure 4: z-scores for the noun “poverty” for the US presidents in the analyzed
corpus.

say if that word contributed for “Trump” or against “Trump”.

This motivated us to improve the TDS score initially proposed by Vanni et al.

(2018), with two additional features: i) it should be able to go negative to indi-

cate negative contributions of words to some classes and ii) in case of multi-class

classification, for a word dim it should be able to quantify its contribution to each

class. In order to build such a measure, note that the last two fully connected lay-

ers of the CNN basically map the de-convolved features xi1, . . . , xiM into a single

vector in RK , denoted yi (see Figure 2), where K is the number of classes. If we
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concatenate xi1, . . . , xiM into a column vector Xi, of size DxM , the map can be

specified as

yi = d+ C (relu (b+ AXi)) (3)

where A ∈ RE×DM , b ∈ RE , C ∈ RE×K and d ∈ RK and E is the size of the

penultimate layer. In order to obtain a score that is specific to the token dim we

observe that

AXi =
M∑

m=1

Amx
T
im (4)

where Am ∈ RE×D is the sub-matrix of A obtained by selecting all the rows and

the D columns form the (D(m− 1) + 1)-th to the (D(m− 1) +D)-th. Thus we

define

wTDS(dim) := d+ C
(
relu

(
b+ Amx

T
im

))
(5)

Note that, instead of TDS(dim), wTDS(dim) is a vector with K entries. Each

entry quantifies the activation boost of word dim (conditionally to its context) for

the class K. Moreover, the matrix multiplication Amxim induced K weighted

sums of the entries of xim, in contrast with the simple sum defined in Eq. (2). For

this reason we call the measure in Eq. (5) weighted Text Deconvolution Saliency

(wTDS). Figure 5 shows the wTDSs for the class “Trump” of the tokens in the

Trump’s speech reported above. As it can be seen, the word “poverty” now has a

small negative contribution when classifying the speech as “Trump”. We notice

that, once the CNN is trained, the computation of the wTDS for one token (for all

the classes) has the cost of the matrix multiplications in Eq. (5). This is a huge

advantage compared to LIME for two reasons: First, no sampling is required.
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(a) Trump (b) Johnson

Figure 5: wTDS for classes “Trump” and “Johnson” for the tokens in the sample
speech of D. Trump.

Second, whereas LIME can only provide us with the tokens contribution in the

binarized problem (e.g. “Trump” vs. “No Trump”) , wTDS computes the tokens

contribution to each class in one shot.

2.3 Softmax breakdown ranking

In the previous section, we described how, given an input text segment di, wTDS

can be used to assess the contribution of each token in di for the class assignment.

Now, we zoom one step out and try to detect the key-segments in the data set, i.e.

the segments being the more representative of each author according to the CNN.

In particular, it might be of interest to be able to rank d1, . . . , dN from the most to

the least representative for each author.

A possible way to do that is described in the following. The number of neurons

in the last layer of the deep CNN coincides with the number of classes, previously
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denoted by K. In the previous section yi ∈ RK denoted the value of that layer

for the text segment di . Thus, yik is the value of the k-th neuron and it is a real

number. As usually, a softmax activation function is applied to yi in such a way to

obtain K probabilities ẑik (see Figure 2) lying in the K − 1 simplex

ẑik =
exp(yik)∑K
j=1 exp(yij)

(6)

Note that the above ẑik is the very same as in Eq. (1). The highest probability ẑik

corresponds to the class assigned by the network to the observation di. However,

if one entry of yi is significantly higher than the others, it is mapped to 1 by the

softmax transformation and all the other entries are mapped to zero. For instance,

consider two de-convolved features yi and yj corresponding to two different doc-

uments both assigned to class k. Assume also that yik > yjk, so that the document

di is more representative of the class than dj . If yik and yjk are large enough,

after applying the softmax function they both will be mapped to one and it will

no longer be possible to assess whether di or dj is more representative of class k.

Thus, we make unconventional use of the trained deep neural network and observe

the activation rate of neurons before applying the softmax transformation. Doing

that, allows us to sort the learning data (text segments) based on their activation

strengths. This simple but efficient method provides us with the most relevant

key-segment in the corpus for each class.

2.4 Multichannel convolutional lemmatization

Often, CNN for images have multiple channels. Indeed, the RGB colors encoding

could be considered as three different representations of the input. Each represen-
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tation corresponds to a data matrix and the convolutional layers apply different

filters to each matrix and then later merge the results. Also with texts, it is pos-

sible to encode the data in multiple channels that might be used, for instance, to

combine different word embedding solutions (skip-gram, cBow or Glove). Apart

from word embedding, a pre-tagging process (Collobert and Weston, 2008) al-

lows data scientists and linguists to get supplementary material on each word,

such as the part-of-speech (POS) and the lemma. Both of them are essential for

a linguistic interpretation of the key-segments and to observe complex linguistic

patterns (a.k.a syntactical motifs Mellet and Longrée, 2009). It is those reasons

motivated us to implement a multi-channel CNN to account for the POS and the

lemma. However, using a single multi-channel convolutional layer to learn those

patterns from each representation is not convenient for our purposes. Indeed, the

max pooling operations merge all the information into one channel, thus making

it impossible to retrieve which representation (word, POS or lemma) contributed

to the classification. Since the aim of our contribution is to interpret the classifier,

we split the convolution (and the max pooling) in three parts, one for each chan-

nel (see Figure 2). By doing that, the deconvolution mechanism can be applied to

the three channels separately and all the linguistic features can be observed right

after the deconvolutional layers. Finally, to combine this information, the features

are merged into a global vector and the final dense layers use them to perform

the class assignment. In more details, the m-th token of the segment di is now

represented by three embedding vectors, say d(w)
im for the full form, d(pos)im for the

POS and d(l)im for the lemma (see Figure 2). After deconvolution, these embedding
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vectors are mapped to x(w)
im , x(pos)im and x(l)im, respectively. Thus, whereas with a sin-

gle channel, wTDS(dim) was a vector in RK , in a multichannel environment, we

can define three wTDS vectors in RK for each token. For instance, wTDS(d(l)im)

refers to the lemma component of the m-th token and it can be computed as

wTDS(d
(l)
im) := d+ C

(
relu

(
b+ A(l)

m (x
(l)
im)

T
))

where A(l)
m denotes a sub-matrix accounting for the lemma channel (the green one

in Figure 2) and the m-th token x(l)im.

3 Experiments

First we want to thank the authors of TDS Vanni et al. (2018) for providing us

with their datasets.

Political discourse analysis is one of the major challenges for linguistics in

textual data analysis. For many years, statistics have provided tools and results

that help linguists to interpret political speeches. We will now see how our deep

architecture allows us to describe international political discourses. We propose

to test our model by analysing two political discourse corpora in two different

languages, English and French. For comparison reasons, these two corpora are

made from presidential speeches and respect the same chronological span, from

the 1960s to today.

The first dataset targets American political discourse. It is a corpus of 1.8

millions of words of American presidents from J.F. Kennedy in 1961 to D. Trump

in 2019. With 11 presidents, we focus on D. Trump to make a short but profound
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linguistic analysis of the discourse of the current US president. The second is

symmetrical with the speeches of the French presidents under the 5th republic

from 1958 to today. It is 8 French presidents from C. De Gaulle to E. Macron

with 2.7 millions of words we focus also on current president, E. Macron.

By default, the accuracy of each model (English and French) exceeds 90%, but

the markers displayed by the wTDS seem to be too sensitive to low frequencies

(very rare linguistic markers) or on the contrary very frequent but unique to a

president (high z-score). The purpose of our architecture being to observe new

linguistic markers different from those known by statistics, each corpus has been

filtered with precise rules to reduce the weight of these markers. Some words have

been replaced: i) proper names ii) dates iii) words only present in a president.

These rules reduce model accuracy by about 10% but help to reduce overfitting

and extract relevant key segments. The table 1 compare those models, unfiltered

(English, French) and filtered (English*, French*)

dataset authors vocab words acc
English 11 33279 1 815 839 90%

English* 11 14758 1 815 839 81%
French 8 46978 2 738 652 91%

French* 8 20211 2 738 652 84%

Table 1: English and French datasets.

3.1 English data set

Section 2.2 introduce a key-segment of D. Trump detected with the softmax break-

down ranking method with a simple model using only one channel for the full-
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form of words. With the multi-channel convolutional lemmatization (Section 2.3),

we have now a wTDS score on each token for each channel and this selected seg-

ment become fully interpretable for the linguists due to exploitable features on

full-form (blue words), part-of-speech (orange words) and lemma (green words):

[...] neighborhoods for their families , and good jobs for themselves

. These are just and reasonable demands of righteous people and a

righteous public SENT But for too many of our citizens , a different

reality exists : Mothers and children trapped in poverty in our inner

cities ; rusted-out [...]

We highlight here the main activation zones having a wTDS higher than a

fixed threshold. As it can be seen, there is a redundancy of “righteous people”

and “righteous public”, being part of a simple and compassionate vocabulary (e.g.

“families”, “mothers”, “children” or simply “good jobs”), which is typical of pop-

ulist speeches.

“But” appears as a characteristic of a polemical discourse that defines Trump’s

rhetoric. The president rarely makes a consensual speech. Opposition marks, as

“But”, allow him to build a speech setting him apart from the mainstream. Being

“But” placed at the beginning of the sentence, its full-form wTDS highlights the

role of conjunction of opposition rather than of conjunction of coordination.

We also report that the full-form wTDS for the word “many” is negative (Fig-

ure 3a). Since “many” is one of the words more often employed by president

Trump (high z-score), a negative wTDS might appear surprising. However in this
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context, “many” is preceded by “too” which is taken into account by the convolu-

tion layer. Thus we checked the z-score of the linguistic pattern “too many”, and

we found out that it is higher for B. Obama than D. Trump. This is a very good

example of the wTDS capability to capture the linguistic context.

Finally, the wTDSs of part-of-speech focuses on a simple but essential marker,

the dot (encoded as “SENT”). The over use of this marker refers to a fundamental

rhetorical choice of D. Trump: short sentences. The reduction of the sentence

length is a trend that can be observed in most democracies in Europe or in USA.

In the attempt to be accessible to as many people as possible, D. Trump’s speech

thus plays on syntactic simplification (Norris and Inglehart, 2019). For a long

time, political discourse has imitated literature with long sentences and relative

or subordinate proposals, but nowadays, political discourse imitates popular lan-

guage with short sentences that include only one subject, one verb and one com-

plement. On average, in the corpus, Trump’s sentence counts 14.15 words when

Obama’s sentence counts 21.51 words (Figure 6). In fact, the end of sentence

markers characterize the current president.

In 50 words here, Trump seems to take up the linguistic characteristics of

populist discourse (Oliver and Rahn, 2016) as it is expressed in the United States

and Europe at the beginning of the 21st century.

3.2 French data set

This section aims at demonstrating that Deep learning can easily adapt to the

subtleties of each language. A French presidential corpus is considered. In this
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Figure 6: Average sentence size

dataset, the segment that the model identifies as being the most characteristic of

E. Macron’s speech gathers remarkable features of the current French president

language. The wTDSs highlight linguistic markers with multiple interpretations:

[...] intérêts industriels et qui construire le opacité PRP PRP:det

décisions collectives qu’ attendent nos concitoyens . La cinquième clé

de notre souveraineté passe par le numérique . ce défi est aussi celui

d’ une transformation profonde de nos économies , de nos sociétés ,

de notre imaginaire même . La [...]

(Macron, the 26th of September 2017, speech about Europe at the Sorbonne).

Some main features of the E. Macron’s speech emerge. First, the French president

tries to give a non-ideological and pragmatic talk oriented towards action, move-

ment and efficiency (Colen, 2019). Thus, the lemmas “construire” (to build) and

“transformation” are very meaningful of such a discourse whose main scope is to
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be dynamic. The word “numérique” (digital) is often at the heart of the speech of

a president who talks about changes and who wants to show his technical moder-

nity. Then, from a grammatical and syntactic point of view, most of the time, the

“PRP PRP:det” sequence (meaning preposition + contracted article, in French)

introduces adverbial phrases. Thus, E. Macron avoids the main topics but he is

precise with the modalities of the action. In E. Macron’s speech, both the subject

and the object are less important than the way of the proposed reforms. Finally,

from a lexical point of view, the CNN seems to focus on “concitoyens” (fellow

citizens) which allows E. Macron to avoid the term “compatriots”, considered too

nationalist in the 21st century, in the context of the European integration. A high

wTDS also corresponds to the “nos” and “notre” (“our” and “ours”) forms as well

to the lemma “notre”. Indeed, the construction of a political “we” appears as the

main rhetorical objective of a discourse that aims at gathering the people behind

its leader.

4 Conclusion and perspectives

We have introduced and tested a new method to extract relevant linguistic objects

characterizing the different classes/authors in a multi-class classification context.

The main focus of the present work are the hidden layers of a trained CNN. In

particular we introduced a measure (wTDS) which, entirely relying on the learned

parameters, allowed us to detect the key words that, conditionally to their context,

were used by the CNN to assign a text segment to its author. We have proposed

a routine to rank the text segments from the most to the least representative for
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each author providing a new and different view in the author discourse analysis.

The way we propose to compute all these features internally to the network leads

to a highly reduced computation cost (compared to LIME for instance) and thus

allows us to design a multi-channel architecture accounting for part-of-speech and

the lemma leading to extract enriched linguistic objects at almost no cost.

The linguistic objects that we learn in this multi-class classification framework

are those better discriminating one author with respect to the others. In order to

extract not only discriminative spatial linguistic objects (using CNNs) but to take

into account the sequential generation of the discourse based on these linguistic

objects, recurrent networks have to be considered. Some tools already explore

the hidden layers of such architectures (e.g. LSTMVis1) and future works might

focus on the combination of both approaches, for instance, first extracting spatial

patterns then analyzing their sequential organization for an even more in depth

discourse analysis.

1http://lstm.seas.harvard.edu/.
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