
HAL Id: hal-03142148
https://hal.science/hal-03142148v2

Preprint submitted on 15 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A combinatorial proof of Aldous–Broder theorem for
general Markov chains

Luis Fredes, Jean-François Marckert

To cite this version:
Luis Fredes, Jean-François Marckert. A combinatorial proof of Aldous–Broder theorem for general
Markov chains. 2022. �hal-03142148v2�

https://hal.science/hal-03142148v2
https://hal.archives-ouvertes.fr

A combinatorial proof of Aldous–Broder

theorem for general Markov chains

Luis Fredes† and Jean-François Marckert∗

†Université Paris-Saclay.
∗CNRS, LaBRI, Université Bordeaux

Abstract

Aldous–Broder algorithm is a famous algorithm used to sample a uniform spanning tree of

any finite connected graph G, but it is more general: given an irreducible and reversible Markov

chain M on G started at r, the tree rooted at r formed by the first entrance steps in each node

(different from the root) has a probability proportional to
∏

e=(e−,e+)∈Edges(t,r)Me−,e+ , where the

edges are directed toward r. In this paper we give proofs of Aldous–Broder theorem in the general

case, where the kernel M is irreducible but not assumed to be reversible (this generalized version

appeared recently in Hu, Lyons and Tang [5]).

We provide two new proofs: an adaptation of the classical argument, which is purely prob-

abilistic, and a new proof based on combinatorial arguments. On the way we introduce a new

combinatorial object that we call the golf sequences.

Acknowledgments

The first author acknowledge support from ERC 740943 GeoBrown.

1 Introduction

Consider G = (V,E) a finite connected graph: V is the set of vertices, and E the set of undirected

edges. A path is a sequence of vertices w = (wk, 0 ≤ k ≤ m), with the property that {wk, wk+1} ∈ E
for every k. This path is said to be covering if it visits all the vertices and if m is the first time with

this property. More formally, for every 1 ≤ k ≤ |V | define

τk(w) = inf{j, |{w0, · · · , wj}| = k}, 1 ≤ k ≤ |V |,

the first time the path has visited k different points (we write τk instead of τk(w) when it is clear from

the context). The path w is then called covering if τ|V |(w) = m.

Denote by SpanningTrees(G) the set of spanning trees t of G, and by SpanningTrees•(G) the set

of rooted spanning trees (t, r), where r, the root, is a distinguished vertex of V . Each tree (t, r) is

considered as a directed graph in which the edges are directed toward the root: for any (e−, e+) in

the edge set E(t, r), e+ is the parent of e− in t (we write e+ = p(e−)).

Definition 1. For a covering path w, denote by FirstEntranceTree(w) the rooted spanning tree (t, w0)

whose |V | − 1 edges are (wτk , wτk−1) (that is oriented towards the root w0) for 2 ≤ k ≤ τ|V |.

Thus, each edge corresponds to the first edge used to visit each vertex different from w0, turned

around.

A Markov kernel M = (Ma,b, a, b ∈ V) on V is said to be positive on G if Ma,b > 0 ⇐⇒ {a, b} ∈ E.

Any Markov chain driven by such a Markov kernel can traverse each edge of G both ways, and each

step of such a chain corresponds to an edge of G. On a connected graph, as it is the case here, this

chain is irreducible, therefore it has a unique invariant distribution, ρ = (ρv, v ∈ V).

A model of random covering paths is obtained by killing a Markov chain W at the cover time.

1

Theorem 2. [Aldous–Broder, [1] and [2]]Let W be a Markov chain with positive and reversible

kernel M and invariant distribution ρ. Then, for any (t, r) ∈ SpanningTrees•(G)

P
[
FirstEntranceTree

(
W0, · · · ,Wτ|V |

)
= (t, r) | W0 = r

]
= Const.

 ∏
e∈E(t,r)

Me

 /ρ(r). (1)

To be totally clear, each e is an edge of the type (e−, e+), where e+ = p(e−), and Me = Me−,e+ .

Elements around Aldous–Broder algorithm can be found in [6].

As a consequence if M is the Markov kernel corresponding to the simple random walk on G, Ma,b =

1{a,b}∈E/degG(a), and since the invariant distribution of this simple random walk ρv is proportional

to degG(v), the r.h.s. of (1) is proportional to
∏
u∈V 1/degG(u), that is independent of t, so that

FirstEntranceTree(W0, · · · ,Wτ|V |) is a uniform spanning tree1, rooted at W0 = r.

As we will see, Aldous–Broder theorem does not hold if we remove the reversibility condition.

Recall that if X = (Xi, i ∈ Z) is a Markov chain with positive kernel M with invariant distribution

ρ, under its stationary regime, then the time reversal of X is also a Markov chain under its stationary

regime, with same invariant distribution, and with kernel

←−
Mx,y := ρyMy,x/ρx, for all (x, y) ∈ V 2. (2)

The next result extends Aldous–Broder theorem:

Theorem 3. Let W be a Markov chain with positive kernel M (reversible or not) with invariant

distribution ρ. Then, for any (t, r) ∈ SpanningTrees•(G)

P
[
FirstEntranceTree

(
W0, · · · ,Wτ|V |

)
= (t, r) | W0 = r

]
= Const.

 ∏
e∈E(t,r)

←−
Me

 /ρ(r). (3)

The aim of this paper, is to give two new proofs of this result. This theorem has been proved

by Hu, Lyons and Tang [5] shortly before our work; but, at the moment we were writing the present

paper, this result was not present on the first version of [5], on the arxiv.

• This theorem implies Aldous–Broder result since in the reversible case,
←−
M = M .

• We will prove that if W is taken under its stationary regime (meaning that W0 ∼ ρ) then

P
[
FirstEntranceTree

(
W0, · · · ,Wτ|V |

)
= (t, r)

]
= Const.

 ∏
e∈E(t,r)

←−
Me

 . (4)

This formula is equivalent to (3).

• From our point of view, Aldous–Broder theorem should be stated like Theorem 3, since this time

reversal is not only a tool for the (original) proof of the Theorem but a characteristic of its conclusion.

As a matter of fact, it is probably common for researchers in the field to try to find a coupling between

Wilson construction [10, 8] of the spanning tree (which is faster) and Aldous–Broder’s, but the fact

that Wilson algorithm produces a tree with distribution Const.
∏
e∈E(t,r)Me shows that it is likely not

possible, unless ones use Wilson algorithm with
←−
M instead of M .

1To conclude here, another argument is needed: the fact that the support of FirstEntranceTree(W0, · · · ,Wτ|V |) is the

set of all spanning trees, which is easy to see

2

• Both theorems above are valid on multigraph, which are the analogous of graph in which multiple

edges between vertices are allowed, as well as loops (edges {a, a} adjacent to a single node are allowed).

All the proofs we give are valid in this settings too (even if tiny adjustments to treat multiple edges

could be needed at some places).

Remark 4. In general,
∏
e∈E(t,r)Me and

∏
e∈E(t,r)

←−
M e are different. Let us write

∏
u∈t for a product

over the set of vertices of t. For (t, r) ∈ SpanningTrees•(G),∏
e∈E(t,r)

Me =
∏

u∈t\{r}

Mu,p(u) = Const. ρr
∏

u∈t\{r}

ρuMu,p(u)

while by (2), and since in a tree all nodes but the root are children of some nodes,∏
e∈E(t,r)

←−
Me =

∏
u∈t\{r}

[
Mp(u),u ρp(u)/ρu

]
= Const. ρr

∏
u∈t\{r}

ρp(u)Mp(u),u.

so that these quantities are different when ρ is not reversible with respect to M .

Different formula does not imply different values, but a graph of size 3 is sufficient to observe that

these formulas are indeed different: consider

M =

 0 1/3 2/3

1/5 0 4/5

1/7 6/7 0

 , ρ =
1

226

[
33, 95, 98

]
and

←−
M =

 0 19/33 14/33

11/95 0 84/95

11/49 38/49 0

 .
It can be verified that ρ is the invariant measure of M and that

←−
M is the reversal kernel. The tree

(t, r) defined by (2, 1) and (3, 1) has weights M2,1M3,1 = 1/35 6=
←−
M2,1

←−
M3,1 = 121/4655.

Let us say some words on the paths (wk, 0 ≤ k ≤ τ|V |) that satisfy FirstEntranceTree
(
w0, · · · , wτ|V |

)
=

(t, r). Such a path starts at w0 = r and eventually reaches each vertex u of V \ {r} for the first time

from p(u) its parent in (t, r). In other words, FirstEntranceTree
(
w0, · · · , wτ|V |

)
= (t, r) iff

{(wτk , wτk−1), 2 ≤ k ≤ |V |} = {(u, p(u)), u ∈ V \ {r}}, (5)

meaning that k 7→ w(τk) induces a decreasing labelling towards the root.

The analysis of P(FirstEntranceTree
(
W0, · · · ,Wτ|V |

)
= (t, r)) from this kind of considerations leads

to sum on all the paths according to the order at which the vertices are reached. Since this direct

approach of Theorem 3 seems difficult to complete, the initial proofs by both Aldous and Broder of

their theorems follow a tricky path which is purely probabilistic. In our new proof, we avoid also

the direct treatment of the labellings discussed above, but produce instead a combinatorial argument,

relying on a new object we introduce, the golf sequence, which, we believe is interesting in its own.

1.1 Some recalls from combinatorics

The new proof uses many ingredients of the combinatorics folklore, and we must say that we have

been deeply inspired by Zeilberger short paper [11] where many results from linear algebra are proved

by means of combinatorial tools, notably, Foata’s proof of MacMahon’s master theorem [11, 3] and

the famous

3

Theorem 5 (Matrix Tree Theorem).

det(Id−M (r)) =
∑

(t,r)∈SpanningTrees•(G)

∏
e∈E(t,r)

Me, (6)

where M (r) is the matrix M deprived of the line r and column r, and Id the identity matrix with the

same size as that of M (r).

We borrow the argument from Zeilberger [11] since it helps to present the arguments of our own proof.

Proof. First, a cycle is a (class of equivalence of) path (w0, · · · , wm) for some m ≥ 1, such that

wm = w0 and |{w0, · · · , wm}| = m (it is simple). Two cycles are equivalent if one can be obtained

from the other by shifting its indices in Z/mZ.

Observe that

Id−M (r) =
[(∑

v′∈V Mu,v′
)
1(u=v) −Mu,v

]
(u,v)∈(V \{r})2

. (7)

Denote by B the set of pairs (B,C) such that:

• B is a directed graph on V , where each vertex of V \ {r} has either 0 or 1 outgoing edge ending in

V (including {r} this time). Denote by VB the set of vertices from which there is an outgoing edge.

• C is a collection of directed disjoint cycles on VC = (V \ {r}) \ VB.

Set Weight(B) :=
∏
u∈VB Mu,t(u) where t(u) is the target of the edge starting at u; Weight(C) :=

(−1)N(C)
∏
c cycles of C

∏
e∈cMe−,e+ the product of the weight of edges along the directed cycles of C,

where N(C) the number of cycles of C and finally define Weight(B,C) := Weight(B)Weight(C).

An expansion of (7) allows one to see that Weight(B) :=
∑

(B,C)∈BWeight(B,C) = det(Id−M (r)).

Here is the argument: first, expand det(Id−M (r)) using Leibniz formula:

det(Id−M (r)) =
∑

(−1)sign(σ)
∏
i 6=r

(Id−M (r))i,σ(i),

where the sum range on all permutations σ on V \ {r}. Now, consider the set F (σ) = {i : σ(i) = i}
of fix points of σ, and rewrite, by (7):

∏
i 6=r

(Id−M (r))i,σ(i) =

 ∏
i∈F (σ)

−Mi,i +
∑
j∈V

Mi,j

 ∏
i∈V \({r}∪F (σ))

−Mi,σ(i)

 .

The second parenthesis can be interpreted as the weight of cycles of σ with lengths at least 2. Now

expand the first parenthesis (without simplifying Mi,i, so that Mi,i comes with a sign +, and in another

term, with a sign −). This first parenthesis can be rewritten as a sum over A ⊂ F (σ) as follows:

∏
i∈F (σ)

−Mi,i +
∑
j∈V

Mi,j

 =
∑

A⊂F (σ)

(∏
i∈A

(−Mi,i)

) ∏
i∈F (σ)\A

∑
j

Mi,j

 .

Each factor −Mi,i can be seen to be the weight of a loop over i (that is a cycle of size 1), and by

expansion,
∏
i∈F (σ)\A

∑
j∈V Mi,j can be interpreted as the weight of a directed graph where each vertex

of F (σ) \A has a single outgoing edge, ending on any vertex of V . This ends the argument explaining

why Weight(B) = det(Id−M (r)).

– We claim now that Weight(B) =
∑

(t,r)∈SpanningTrees•(G)

∏
e∈E(t,r)Me. The graphs “B” are made of

cycles and trees, and C is made of cycles (with a sign of the weight corresponding to parity). For any

4

pair (B,C) having (totally) at least one cycle one can define (B′, C ′) as follows: for a total order on the

set of oriented cycles, take the greatest cycle c in the union of B and C. Denote by (B′, C ′) the pair

obtained by moving c from the component containing it to the other. This map (B,C)→ (B′, C ′) is

clearly an involution and satisfies Weight(B′, C ′) = −Weight(B,C). Hence, Weight(B) coincides with

the sum of the Weight(B,C) taken on the set of pairs (B,C) which have no cycles: C is empty, and

the graph B has no cycle, and since its number of edges is one less than its number of vertices, it is a

spanning tree.

The quantity det
(
Id−M (r)

)
is the central algebraic object; it is somehow the partition func-

tion of the family of weighted spanning trees under inspection, but not only. It will appear under the

following forms at several places of the paper.

Notice that the direct expansion of the determinant (using permutations) gives

det(Id−M (r)) =
∑
C

(−1)N(C)
∏

c cycles of C

∏
e∈c

Me (8)

where the sum ranges over all sets C of disjoint (oriented) cycles of length ≥ 1 on the set of vertices

V \ {r}.
Now by considering the involution that changes the orientation of every cycle one gets

det(Id−M (r)) = det(Id−
←−
M (r))

and therefore for a fixed r ∈ V∑
(t,r)∈SpanningTrees•(G)

∏
e∈E(t,r)

Me =
∑

(t,r)∈SpanningTrees•(G)

∏
e∈E(t,r)

←−
M e.

This together with Remark 4 say that even though the terms associated to each tree (t, r) may be

different, these sums are equal (similar identities are present in Hu & al. [5]).

Even more, the invariant distribution ρ of the Markov kernels M and
←−
M is related to these

quantities by:

ρw = Const. det(Id−M (w)) = Const.det(Id−
←−
M (w)) (9)

so that, from the matrix tree theorem, this provides a connection between ρw and the total mass of

spanning trees rooted at w. To prove (9), there are several methods, one of them being the use of

Theorem 2 or 3, but direct arguments exist (and are classical). One wants to solve the vector system{
ρ(Id−M) = 0, ρ

[1
...
1

]
= 1

}
. Assume here that the vertex are labeled from 1 to n. Since the sum by

rows of Id−M is zero, the system is over-determined, so we discard the equation (ρ(Id−M))1,n = 0.

Then, the row vector ρ is solution of

ρQ =
[
0 · · · 0 1

]
where Q =

 [(Id−M)i,j

]
i≤n,j≤n−1

1
...

1

 . (10)

By symmetry, it suffices to prove that ρn satisfies (9). For this use the Cramer rule to get (9): notice

that replacing the n-th row of Q by [0, · · · , 0, 1] we obtain the wanted determinant in the numerator (as

5

a cofactor). It remains to show for the denominator that det(Q) =
∑

w det(Id−M (w)); the following

argument is classical. It suffices to expand det(Q) according to the last column and show that

det((Id−M)(i,j):i 6=a,j 6=n)(−1)n−a = det((Id−M)(i,j):i 6=a,j 6=a) = det(Id−M (a)). (11)

This first equality is more general: in fact, det((Id−M)(i,j):i 6=a,j 6=b)(−1)b−a = det((Id−M)(i,j):i 6=a,j 6=a)

for all b ∈ {1, · · · , n}, and this independence to the deprived column b (up to the sign) is a consequence

of the fact that the sum of the columns of Id−M is 0 (this property allows to play with the lacking

column b: take the a-th column Ca and replace it by Ca +
∑

k 6=a,bCk =
∑

k 6=bCk = −Cb. This

replacement does not alter the determinant, and now, we have −Cb at position a).

2 New combinatorial proof of Theorem 3

We will assume all along the proof that |V | ≥ 2, otherwise the statement is trivial.

Theorem 3 expresses P(FirstEntranceTree(Wi, 0 ≤ i ≤ τ|V |(W)) = (t, r)) in terms of
←−
M , but since W

is a Markov chain with kernel M , we need also to consider reverse paths in the proof. For a path

w = (w0, · · · , wm) on G denote by |w| = m its number of steps, w = wm its last position, and w = w0

its first position. Denote by ←−w = (wm, wm−1, · · · , w0) the reverse time path and set

Weight(w) :=

|w|−1∏
i=0

←−
Mwi+1,wi , (12)

which is the weight of ←−w starting at w taken under the kernel
←−
M .

A heap h of directed outgoing edges of a vertex u is a finite sequence

h = [(u, ti), 1 ≤ i ≤ `]

for some ` ≥ 0, where, for each i, {u, ti} ∈ E. The set of such heaps is ∪k≥0Oku where Ou = {(u, v) :

{u, v} ∈ E} is the set of oriented outgoing edges out of u (in G). A collection of heaps is a sequence

H := (Hu, u ∈ V) of heaps, where Hu ∈ ∪k≥0Oku is a heap of directed edges out of u (see Fig. 1,

picture 2). The set of collections of heaps is the product set

HeapCol =
∏
u∈V

(⋃
k

Oku

)
.

Each element of HeapCol can be seen as a multigraph (repetition of edges permitted), in which the

sequence of outgoing edges out of each node is equipped with a total order. We will use collections of

heaps to encode various sorts of family of connected paths. As a combinatorial tool, they allow some

rearrangements of steps, and then provide some ways to construct bijections efficiently.

The concatenation operation ⊕ of heaps is defined as usual:

[e1, · · · , em]⊕ [e′1, · · · , e′m′] = [e1, · · · , em, e′1, · · · , e′m′]

which extends to collection of heaps as expected : H ⊕H ′ := (Hu ⊕H ′u, u ∈ V).

We say that h is a prefix of h⊕ h′, notion which extends again to collections.

The weight of a heap h = [(si, ti), 1 ≤ i ≤ m] and of a collection H = (Hu, u ∈ V) are

Weight(h) :=
m∏
i=1

←−
M si,ti ,

Weight(H) :=
∏
u∈V

Weight(Hu).

The weight of an empty heap is set to 1.

6

Prefix removal (PR). For h = h′ ⊕ h′′, the “prefix removal” of h′ in h is possible. We write this

operation h	PR h′ = h′′. This extends to collections: if H = H ′ ⊕H ′′, we set H 	PR H ′ = H ′′.

Trees. The number of children Degin(t,r)(u) of a node u in (t, r) which is often called out-degree or

simply degree in the literature in the case of trees, coincides with the number of incoming edges at

u in (t, r) (the notation Degin(t,r)(u) is introduced to avoid any confusion with degG(u), the degree

of the graph at u which comes into play too, and with the total degree of u in t). A node u with

Degin(t,r)(u) = 0 is called a leaf, and the set of leaves is denoted ∂t. Notice that since |V | ≥ 2, r is not

a leaf. The elements in the set to = V \ ∂t are called internal nodes.

2.1 Step 1. Collection of heaps encoding of a path

Definition 6. The passport of a collection of heaps H = (Hu, u ∈ V) ∈ HeapCol is the pair

OUTIN(H) := [(Outu(H), u ∈ V), (Inu(H), u ∈ V)]

where, for all u ∈ V , Outu(H) := |Hu| records the number of outgoing edges of u and

Inu(H) :=
∑
w∈V
|(w, u) in Hw|

records the number of incoming edges to u (with multiplicities).

As a standard passport in real life, the passport is used to record the number of entries/exits at

each node, with multiplicities. Different collections of heaps can have the same passport.

Denote by Paths(r) the set of paths w starting at w0 = r (with any finite length). With any path

w ∈ Paths(r) associate the collection of heaps Heap(w) := (Heapu(w), u ∈ V) ∈ HeapCol, where

Heapu(w) := [(wj+1, wj) : 0 ≤ j ≤ |w| − 1, wj+1 = u] ;

these edges are then taken according to their order in w, and they correspond to edges that reach u,

that are turned around. It can be useful to consider them as steps outgoing from u in ←−w , still taken

according to their order in w (see Figure 1).

As warm up, let us prove the following classical fact.

Lemma 7. The map
Heap : Paths(r) −→ HeapCol

w 7−→ Heap(w)

is a weight preserving injection (meaning that Weight(w) = Weight(Heap(w)).

This is not a bijection since some elements of HeapCol do not encode any paths.

Proof. Let us take an element h = (hu, u ∈ V) in the image, and let us reconstruct its unique preimage

w by the map Heap (in fact, we build ←−w). The total number of edges in h is the number of steps m

of any walk w such that Heap(w) = h. If m = 0, the statement is clear. Recall that the collection of

heaps gives the steps of←−w . Assume m > 0. This allows to recover the only possible value for the final

point wm too: this is the unique node wm having one more outgoing edge than incoming (if such a

node does not exist, the path ends and starts at r, and then wm = r). Now, knowing the last position

of the walk wm, take (wm, u) the rightmost (top see Figure 1) edge in Heapwm , record the identity of

the node u, and remove the edge (wm, u) from Heapwm . Now, set wm−1 := u. Iterate the construction

until all the heaps are empty.

The statement about the weights easily follows.

7

v0 v1 v2

v3 v4 v5

v6

v2

v6

v5v4

v1

v3

v0

Figure 1: Left: graph G, where the walk w = v0v3v0v1v0v1v0v3v0v3v4v5v4v6v4v3v4v5v2 is performed.

Right: Heap associated to the path w; for example, Hv3 = [(v3, v0), (v3, v0), (v3, v0), (v3, v4)]. To read

the steps of w in the heap, follow the edges from top to bottom to form ←−w , then transform ←−w into w.

The steps used to construct the tree are circled.

Definition 8. (i) A collection of heaps H ∈ HeapCol with a balanced passport i.e.

OUTIN (H) = [(Nu, u ∈ V), (Nu, u ∈ V)], (13)

for some Nu ≥ 0, is called a heap of cycles. Denote by HCycles the set of heaps of cycles and

by HCycles(free 3 v) the heaps of cycles where Nv = 0, meaning that v is not an element of any

cycle.

(ii) A heap of cycles H ∈ HCycles satisfying Nu ≤ 1 for all u, is called trivial (it is a set of non

intersecting cycles). We denote by HCyclesTrivial(free 3 v) the set of trivial heap of cycles for

which Nv = 0 (that is, non incident to v).

Remark 9. It is folklore to build “classical heap of cycles” from “our collection of heaps with bal-

anced passport” see Viennot [9]. Classical heaps of cycles are equivalence classes of sequence of cycles

(c1, · · · , cp) (were p ≥ 0), where the relation is the transitive closure of the following relation: two

sequences (c1, · · · , cp) ∼R (c′1, · · · , c′p′) are equivalent if they coincide except for some non intersecting

and consecutive cycles ci and ci+1 and (ci, ci+1) = (c′i+1, c
′
i). In words: non intersecting cycles com-

mute, and intersecting cycles do not. Following Cartier & Foata [3] terminology, sequences of cycles

with the partial commutation formula form a partially commutative monoid (for the concatenation

operation), which can be geometrically represented using heap of “real” cycles (see Viennot [9] and

Krattenthaler [7]).

Giving these classical heap of cycles one can form the collection of heaps Heap(c1)⊕· · ·⊕Heap(cp).

To define the converse we need to introduce first, the PopCycle function. Assume that a collection of

heaps (Hu, u ∈ V) is given. For a vertex w0 we define the procedure PopCycle(w0) as: follow the path

starting at w0 and stop it the first time it forms a cycle c, that is the path w0, w1, · · · , wj satisfies

wi = wj for some i < j and j is the first index with this property; then return c the cycle formed by

(wi, · · · , wj) and suppress the cycle from the heaps (that is all the edges (wi, wi+1), · · · , (wj−1, wj)).

Now, to define the converse do the following: if all the heaps of the collection are empty, then

associate the empty heap of cycles; otherwise, consider w0 = u a vertex with non-empty heap. Starting

8

from i = 1 repeat the following procedure until the heaps are all empty: define ci := PopCycle(w0),

increment i and define w0 = u, for a u chosen among those for which Hu 6= ∅ (see Figure 2 for

a representation of this map). This procedure is well-defined since passports are balanced, i.e. the

number of incoming edges is equal to the number of out-coming edges; and this property is preserved

each time PopCycle is used. At the end, the sequence (c1, · · · , cm) obtained depends on the order of the

nodes u chosen, but it can be proved that for all choices of u, the final sequences of cycles are equal as

heap of cycles.

v2

v6

v4

v1v0

v3 v5

v2

v6

v4

v1v0

v3 v5

v2

v6

v4

v1v0

v3 v5

Figure 2: Left: representation of a heap of cycles as in Definition 8. Center: algorithm to form the

classical heap of cycles started from v3. Right: representation of a classical heap of cycles (there are

some cycles on top of the others). Cycles here have length 2, but they may be of any length in general.

For a trivial heap of cycles H = (Hu, u ∈ V), define

SignedWeight(H) = Weight(H)(−1)|Cycles(H)|.

We have the following inversion formula

∑
H∈HCycles(free3f)

Weight(H) =

 ∑
H∈HCyclesTrivial(free3f)

SignedWeight(H)

−1 (8)
= det

(
Id−M (f)

)−1
. (14)

This formula is famous in combinatorics (see [9, 7]). A simple proof : we will prove that the product

of the sums of the two first members of (14) gives 1. For this associate to each pair (h, t) of heap

of cycles and trivial heap of cycles (an element of HCycles(free 3 f) × HCyclesTrivial(free 3 f)), a pair

(h′, t′) of the same type obtained as follows: Take the greatest cycle c in the union of t and of the set

of cycles of h having no cycle above them and which moreover do not intersect the cycles of t. Now,

to obtain (h′, t′) from (h, t), remove c from the component which contains it, and move it to the other

(if it is move on h, it is placed on top of it). This operation is an involution which changes the sign

of the weight, so that the total weight of the pairs (h, t) coincides with the weight of the single pair

(∅,∅) which is 1.

2.2 Step 2. Collection of heaps of a covering path corresponding to a given tree

Consider the subset of Paths(r),

Paths(t, r, f) := {w covering : FirstEntranceTree(w) = (t, r), w = r, w = f}.

The passport of any path w ∈ Paths(t, r, f), satisfies,

OUTIN(Heap(w)) = [(Nu + 1u=f , u ∈ V), (Nu + 1u=r, u ∈ V)], (15)

9

for Nf = 0, some Nr ≥ 0, and some Nu ≥ 1 for all u /∈ {f, r}.
From the FirstEntranceTree construction, the last visited vertex is a leaf:

Lemma 10. If f is an internal node of t, then Paths(t, r, f) = ∅.

All paths w ∈ Paths(t, r, f) have a step from p(u) to u, for each node u 6= r. The oriented edges of

(t, r) can be seen as a collection of heaps Ht = (Ht
u, u ∈ V) defined by:{

Ht
u = [(u, p(u)], for u 6= r,

Ht
r = ∅,

whose passport is

OUTIN(Ht) =
[
(1− 1u=r, u ∈ V) ,

(
Degin(t,r)(u), u ∈ V

)]
. (16)

By construction, the edges of Ht are the first edges of the collection Heap(w) (we put them according

to their order in w), and then can be removed using the remove prefix operation; it produces the

collection of “truncated heaps” defined by removing the edges of t from Heap(w)

HeapTrunc(w) := Heap(w)	PR Ht(w). (17)

If (15) holds, in view of (16), the passport of HeapTrunc(w) is

OUTIN
(
HeapTrunc(w)

)
= [(Nu + 1u=f − (1− 1u=r), u ∈ V), (Nu + 1u=r − Degin(t,r)(u), u ∈ V)]. (18)

One of the main point of the proof is the following Lemma, which says that we completely know the

set of collections of truncated heaps HeapTrunc [Paths(t, r, f)]. In words, they correspond, prior to

truncation, to all collections Heap(w) satisfying (15) and large enough so that Ht can be removed. Set

HeapCol[(ou, u ∈ V), (iu, u ∈ V)] := {h ∈ HeapCol : OUTIN(h) = [(ou, u ∈ V), (iu, u ∈ V)]}

Lemma 11. If f ∈ ∂t, the set HeapTrunc [Paths(t, r, f)] is equals to

Ξ(t, r, f) :=
⋃

HeapCol
[
(nu + (Degin(t,r)(u)− 1)1u∈to , u ∈ V), (nu + 1u∈∂t(1− 1u=f), u ∈ V)

]
(19)

where the union is taken on all nu ≥ 0, ∀u 6= f , and nf = 0 (no incoming or outgoing edge at f , while

nu + 1u∈∂t(1− 1u=f) > 0 for the other leaves).

Lemma 11 describes the set of heaps that are not circled in Figure 1 (in all generality).

Proof. � Proof of HeapTrunc [Paths(t, r, f)] ⊂ Ξ(t, r, f). This inclusion can be seen thanks to a change

of variables from (18). Indeed, from (18) we must have Nu−Degin(t,r)(u) + 1u=r ≥ 0 and Nu + 1u=f −
1 + 1u=r ≥ 0, which implies

Nu ≥
(
Degin(t,r)(u)− 1u=r

)
1u∈to + 1u∈∂t(1− 1u=f)

since Degin(t,r)(u) ≥ 1 when u ∈ to and Degin(t,r)(u) = 0 when u ∈ ∂t. We then set

nu := Nu −
[(

Degin(t,r)(u)− 1u=r

)
1u∈to + 1u∈∂t(1− 1u=f)

]
and compute the passport (18) after this change of variable to conclude this inclusion.

� Now, take h = (hu, u ∈ V) ∈ Ξ(t, r, f) and consider H := Ht ⊕ h the potential unique collection

10

of heaps such that HeapTrunc [H] = h. Let us prove that there exists a path w ∈ Paths(t, r, f) such

that Heap(w) = H. As explained in the proof of Lemma 7, the collection of heaps H can be used to

construct a path: denote by p the current point and
←−
w? the current path which are initialized as p = f

and
←−
w? = (f).

(a) If Hp is empty then stop the construction and “return
←−
w?”. If Hp is not empty, consider the last

edge (p, u) of the heap Hp.

(b) Remove (p, u) from Hp, add (p, u) as last step in
←−
w?.

(c) Set p = u and go to (a).

This construction stops when a vertex p with an empty heap Hp is reached. To conclude the proof,

taking into account Lemma 7, it suffices to prove that all the heaps are empty when this event occurs

(since it is necessary and sufficient for H to encode a path).

We claim that indeed, all the heaps are empty and moreover p = r. Observe first that the global

passport of H is obtained by doing OUTIN(Ht) + OUTIN(h), which gives for some (nu, u ∈ V),[
(nu + (Degin(t,r)(u)− 1)1u∈to + 1− 1u=r, u ∈ V), (nu + Degin(t,r)(u) + 1u∈∂t(1− 1u=f), u ∈ V)

]
=

[
(nu + Degin(t,r)(u) + 1u∈∂t − 1u=r, u ∈ V), (nu + Degin(t,r)(u) + 1u∈∂t − 1u=f , u ∈ V)

]
.

Up to a change of variables, this matches the passport of a path (see (15)); however (15) does not

characterize collection of heaps corresponding to paths, but collection of heaps of paths concatenated

with heap of cycles (see Defi. 8 and (13)). We then need to discard the possibility of cycles. Notice

that each vertex different from r has as many outgoing as incoming edges, so that necessarily p = r.

We will prove that if the heap Hv of an internal node v is empty, then it is also the case of the heaps of

its children. Indeed, if Hv is empty, then, all the outgoing edges out of v have been used, and therefore

all the incoming edges to v must have also been used too! (one always needs to enter before exiting).

Therefore when Hv is empty all the incoming edges arriving at v have been used in their respective

heaps. As a matter of fact, the leftmost edge of the heap Hu for each child u of v, is the edge (u, v),

and this edge is incoming at v: as a conclusion when Hv is empty, Hu is empty too.

By Lemma 11,

Corollary 12. For any (t, r) ∈ SpanningTrees•(G),

P(FirstEntranceTree(w0, · · · , wτ|V |(w)) = (t, r)) = Weight(Ht)
∑
f∈∂t

ρfWeight(Ξ(t, r, f))

=
(∏
e∈E(t,r)

←−
Me

)∑
f∈∂t

ρfWeight(Ξ(t, r, f)).

2.3 The combinatorial trick

In the preceding sections we use collections of heaps to present some operations that could have

been presented without them, since withdrawing the steps of the first entrance trees could have been

done directly on w. From here, collections of heaps becomes the central objects: just consider a

moment the collections of heaps HeapTrunc(w) which comes from w, and have been defined using t.

From now on, the economic way to think about them is to forget where they come from ! They are just

elements (Hu, u ∈ V) of some sets of collections of heaps whose passports satisfy some constraints (see

Proposition 16). When seen as coming from w and←−w , it is tempting to equip the edges of (Hu, u ∈ V)

with a global order inherited from w, but this way of thinking drove us in some dead ends.

11

Collections of heaps are simple object, devoid of global ordering, even if each heap comes with a

fixed order. In the sequel, in order to make clear that we don’t try to follow in any way the order

induced by w, we still call “first edge” of Hu the leftmost one (the bottom on the figures in the

representation of heaps, for example, Figure 1). All our algorithms will use “first edges first”: hence

since the edges of t have been removed, following paths constructed using the first edges of the heaps

produce paths that do not correspond to portions of w or of ←−w in general.

The general principle is that one can do many things with collections of heaps. Including playing golf?

Yes.

2.4 Combinatorial golf sequences decomposition

In the sport called golf, players hit balls into a series of holes. We introduce the combinatorial

golf sequence, a new combinatorial object: it consists in a sequence of paths on G, modeling the

moves of some balls (placed on some vertices) on a golf court (the graph G), until each of them finds

a different empty hole (some special vertices). It is parameterized by the pair
[
HoleSet, S

]
as follows:

• S = (S1, · · · , SNb) is the sequence of starting vertices from which balls are to be played, with Sj ,

being the starting position of the j-th. We denote by Nbu := |{j : Sj = u}| the number of balls

starting at u, Nb =
∑

uNbu, the total number of balls; (Nbu, u ∈ V) is called the counting sequence

of S.

• HoleSet is a subset of V , the set of empty holes, and we require u ∈ HoleSet ⇒ Nbu = 0 so that a

node which is the ending point of a path, is not the starting of any paths.

Definition 13. A sequence of paths (w(1), · · · , w(|Nb|)) is an element of GolfSequence
[
HoleSet, S

]
iff:

– for any j, w(j) =
(
w

(j)
i , 0 ≤ i ≤

∣∣w(j)
∣∣) is a finite path starting at Sj, i.e. w(j) ∈ Paths(Sj),

– the final positions of each path is a hole, meaning that

Final(i) := w(i)(|w(i)|) ∈ HoleSet, for all 1 ≤ i ≤ Nb.

– each hole captures the first ball visiting it, and looses after that the property of being a hole. It

becomes a standard vertex for subsequent paths. This means that the vertices Final(i) are distinct, and:

• the time |w(1)| is the hitting time of HoleSet by w(1),

• ... the time |w(k)| is the hitting time of HoleSet \ {Final(1), · · · ,Final(k − 1)} by w(k), for each k.

Remark 14. GolfSequence
[
HoleSet, S

]
is empty if Nb > |HoleSet|, and non-empty if Nb ≤ |HoleSet|.

————————————

The stochastic golf sequence. We call StochasticGolfSequence
[
HoleSet, S

]
, a random variable

X := (X(1), · · · , X(Nb)) taking its values in GolfSequence
[
HoleSet, S

]
distributed as follows. For any

j ∈ {1, · · · ,Nb}, conditionally on {X(1), · · · , X(j−1)}, the trajectory of the jth ball X(j) := (X
(j)
t , t ≥

0) is a Markov chain with kernel
←−
M started at Sj and killed at the first element of HoleSet not present

in the already killed trajectories (X(k), k ≤ j − 1).

————————————

The weight of a combinatorial golf sequence (w(1), · · · , w(Nb)) is set as

Weight
[
w(1), · · · , w(Nb)

]
:=

Nb∏
j=1

Weight
(
w(j)

)
=

Nb∏
j=1

|w(j)|−1∏
i=0

←−
M

w
(j)
i ,w

(j)
i+1

12

which then corresponds to the probability of independent trajectories in the stochastic golf sequence

using the kernel
←−
M , killed at the first time it visits a still available hole.

Denote by GolfSequence
[
HoleSet, S, free 3 f

]
the subset of GolfSequence

[
HoleSet, S

]
leaving the

hole f empty, meaning that f 6∈ {Final(i), 1 ≤ i ≤ Nb}).

Proposition 15. [Trivial stochastic golf sequence property]

Let X = (X(1), · · · , X(Nb)) be a StochasticGolfSequence
[
HoleSet, S

]
with Nb ≤ |HoleSet|.

(i) We have P
(
X ∈ GolfSequence

[
HoleSet, S

])
= 1.

(ii) If Nb = |HoleSet| − 1 (eventually a single hole will remains free with probability 1) then∑
f∈HoleSet

P
(
X ∈ GolfSequence

[
HoleSet, S, free ∈ f

])
= 1.

Proof. When Nb ≤ |HoleSet|, the stochastic golf sequence is well defined and takes its value in

GolfSequence
[
HoleSet, S

]
: the paths are a.s. finite by irreducibility of the Markov chains. The second

statement follows since a single hole must remain free at the end.

Proposition 16. For any parameters (HoleSet, S) such that u ∈ HoleSet⇒ Nbu = 0, the map

Heap : GolfSequence
[
HoleSet, S

]
−→ HeapCol(

w(1), · · · , w(Nb)
)

7−→ Heap
(
w(1)

)
⊕ · · · ⊕ Heap

(
w(Nb)

) (20)

is a weight preserving injection, and the image is included in⋃
A:|A|=Nb
A⊂HoleSet

⋃
nu≥0

HeapCol [(nu + Nbu, u ∈ V), (nu + 1u∈A), u ∈ V)] (21)

Remark 17. This Proposition is also a key point of our approach. The map
(
w(1), · · · , w(N)

)
7→

Heap
(
w(1)

)
⊕ · · · ⊕Heap

(
w(N)

)
is not an injection when defined on a more general set of Nb-tuple of

paths; but for golf sequences, it is.

Proof. The fact that the image of any golf sequence is included in (21) comes from the fact that for

each u, Nbu paths start at u. The result is that, eventually, a subset A of the HoleSet with cardinality

Nb is eventually occupied. This gives a collection of heaps in the set (21).

Take H := Heap
(
w(1)

)
⊕ · · · ⊕ Heap

(
w(Nb)

)
an image under this map. It suffices to explain how to

recover w(1) from H (and iterate). Recall that S1 and HoleSet are known data. To recover w(1) follow

steps (a), (b) and (c) in Lemma 11 started at p = S1 with the difference that we stop and return the

path the first time p ∈ HoleSet and then we define Final(1) := p. Do the same for w(k), except that

the stopping time is now the first time the constructed path hits HoleSet\{Final(1), · · · ,Final(k−1)}.
At the end, the set of final points A is the set of final points of the golf paths.

2.5 Decomposition of Truncated heaps

Proposition 18. Consider (Nbu, u ∈ V) some non negative integers, HoleSet a subset of V , such that

|HoleSet| = Nb + 1, and such that u ∈ HoleSet⇒ Nbu = 0,

13

f = v2

v6 ∈ HoleSet

S1 = v4

v1 ∈ HoleSetS2 = v0
v2 ∈ HoleSet

Figure 3: An application of Proposition 18 to our example in Figure 1. The bijection takes as input

a pair of heaps: the heap of cycles is in red, and the golf sequence heap is colored blue and purple

(the blue steps shows the path starting at S1 = v4 and the purple steps the path starting at S2 = v0;

in this case S = (S1, S2) = (v4, v0)). The bijection outputs the heap obtained by putting the heap of

cycles above the golf sequence heap. The corresponding HoleSet is {v1, v2, v6}, and f = v2 (it is in

free, because it belongs to HoleSet, and there are not incoming edges at v2). We kept the steps used

to construct the tree, which are circled, in order to show the full decomposition of Figure 1.

i.e. after the golf sequence a single vertex remains free. Finally let S = (S1, · · · , SNb) be a sequence

of starting points with counting vector (Nbu, u ∈ V). Assume that f ∈ HoleSet. There is a weight

preserving bijection between N := HeapGolfSequence
[
HoleSet, S, free 3 f

]
× HCycles(free 3 f) and

M :=
⋃
nu≥0
nf=0

HeapCol
[
(nu + Nbu, u ∈ V), (nu + 1u∈HoleSet\{f}), u ∈ V)

]
.

See Figure 3 for an application of this proposition.

Proof. The map φ : (H1, H2) 7→ H1⊕H2 is an injection from N toM since passports are compatible,

and as following the idea in the proof of Proposition 16 (in the case where |A| = Nb− 1), it is possible

to recover the golf sequence from the concatenation.

Now, φ is also a surjection: take an element H ∈ M and let us build a pair (h, h′) ∈ N such that

h⊕h′ = H. For that, we need to show that we can extract from H all the golf trajectories. Consider S1,

and follow the path coming out of S1 using the edges given by the collection H, as usual. Eventually,

this path will reach an element z of HoleSet: indeed, for all nodes which are not in HoleSet, the number

of outgoing edges is ≥ the number of incoming edges. It is then not possible that the ball arriving at

an internal node u ∈ to, find an empty heap Hu and is trapped there.

This gives the first golf sequence, and the removal of all the edges used to define it provides an el-

ement of
⋃

n′u≥0

n′
f
=0

HeapCol
[
(n′u + Nbu − 1u=S1 , u ∈ V), (n′u + 1u∈HoleSet\{f,z}), u ∈ V)

]
since the balance

at each vertex of this first path is 0, except at the starting and ending position. We are in the same

situation as before with one less path in the golf sequence. When all the paths of the golf sequence have

been extracted, the possibly remaining heaps are balanced, and still nf = 0, so that the remaining

steps form a heap of piece of HCycles(free 3 f).

14

2.6 Conclusion: proof of Theorem 3

From Proposition 18 and Lemma 11, one identifies that

Weight(Ξ(t, r, f)) = Weight
(
HeapGolfSequence

[
HoleSet, S, free 3 f

])
Weight(HCycles(free 3 f))

where HoleSet = ∂t and S is any starting sequence with counting sequence (Nbu, u ∈ V) = ((Degin(t,r)(u)−
1)1u∈to , u ∈ V): in words Degin(t,r)(u)− 1 balls start at the internal node u. Such a starting sequence

(Si, 1 ≤ i ≤ Nb) is easy to build: take any order on to, and sort the nodes u1, · · · , u|to|, and take as

sequence S: the node u1 repeated Degin(t,r)(u1) − 1 times, followed by u2 repeated Degin(t,r)(u2) − 1

times, etc.

Recall Corollary (12). We want to prove that∑
f∈∂t

ρfWeight(Ξ(t, r, f)) =
1∑

x det(Id−M (x))
.

Taking into account that ρf = det(Id−M(f))∑
x det(Id−M(x))

and (14) we just need to prove that

∑
f∈∂t

Weight(HeapGolfSequence
[
HoleSet, S, free 3 f]) = 1

but this is precisely what says the trivial stochastic golf sequence property (Proposition 15(ii)).

Remark 19. In Section 2.3 we said that we would use the collection of heaps HeapTrunc(w) while

forgetting the initial order of edges coming from w or ←−w : we used these collections of heap to define

the golf sequences, and the additional heap of cycles, and none of them have been defined using the

order of the original steps of w or ←−w .

However, using portions of w (or ←−w) to define golf trajectories seem possible but brings many

complications: because somehow, “the next ball” to be played depends on the arrival position of the

previous. In terms of heaps of cycles everything become messy; for example the global heap of cycles

produced finally in our construction, needs to be partially piled after each golf path, if one wants to use

the chunks of consecutive steps of ←−w in their initial order. These considerations make this ensemble

quite difficult to follow and would produce a much longer and involved argument.

Remark 20. In the proof, we have rearranged the steps of the random walk with kernel
←−
M . What

we did – notably around the notion of golf sequences – is reminiscent of Diaconis & Fulton paper

[4] and the commutative property they proved (this property being also at the core of the study of

internal DLA). When one studies a sequence of stopped random paths, where the stopping time of

each path depends on the ending points of the preceding paths (the starting points being fixed, and

possibly different), under some various conditions, the distribution of the set of final points of the

trajectories is independent from the order of the sequence of paths and the distribution of the vector

giving the total number of traversals of each edge by the sequence of paths, is also independent from

the order of sequence of path.

3 Proof of Theorem 3 by adaptation of the classical argument

The proof follows mainly, Aldous–Broder’s ideas, except that M =
←−
M is not an hypothesis; we

proceed here and there to some small changes with respect to classical arguments.

15

The LastExitTree. Any path (z0, · · · , zn) on G can be used to define a rooted tree

(Γn, zn) := LastExitTree(z0, · · · , zn),

rooted at zn, as follows: set (Γ0, z0) as the tree reduced to its root z0; from k = 0 to n− 1,

construct (Γk+1, zk+1) from (Γk, zk) by the addition of the edge (zk, zk+1) and the suppression of

the outgoing edge from zk+1 (if any). The set of nodes of (Γn, zn) is {z0, · · · , zn}. For any k ∈
{1, · · · , |{z0, · · · , zn}|}, denote by

νk = max{j : |{zj , · · · , zn}| = k},

the last time k nodes are to be visited “in the future”, which is also a last visit time for a node. It

follows that the tree LastExitTree(z0, · · · , zn) has root zn and has for edges

(zνk , zνk+1), for k = |{z0, · · · , zn}| to 2.

In Definition 1, we defined the FirstEntranceTree associated with a covering path; this definition

can be extended to any path, covering or not, killed at the covering time or not. The following lemma

is proved by a straightforward checking:

Lemma 21. For any path (w0, . . . , wn) on G:

FirstEntranceTree(w0, · · · , wn) = LastExitTree(wn, · · · , w0). (22)

Several remarks follow:

• The sequence of trees (FirstEntranceTree(w0, · · · , wk), 0 ≤ k ≤ n) is non decreasing, and the jumps

of this sequence correspond to the τm = inf{j : |{w0, · · · , wj}| = m} where a new node is attached to

the tree. Moreover, for a Markov chain (Wi, i ≥ 0),

FirstEntranceTree(Wi, i ≥ 0) = FirstEntranceTree(Wi, 0 ≤ i ≤ τ|V |).

• The right hand side in (22) is somehow not natural since we reverse the time (time is decreasing).

The following Lemma is a direct consequence of the previous one

Lemma 22. Assume that (Xk, k ≥ 0) and (Yk, k ≤ 0) are two processes such that,

(X0, X1, · · ·)
(d)
= (Y0, Y−1, · · ·). (23)

For

τm = inf{j : |{X0, X1, · · · , Xj}| = m},
Lm = inf{j : |{Y0, Y−1, · · · , Y−j}| = m},

we have

(X0, · · · , Xτm)
(d)
= (Y0, · · · , Y−Lm) (24)

and then

FirstEntranceTree(X0, · · · , Xτm) = LastExitTree(Xτm , · · · , X0)
(d)
= LastExitTree(Y−Lm , · · · , Y0). (25)

16

The equality in law (23) is crucial: assume that (Xk, k ≥ 0) is a Markov chain with kernel M ; in

this case the initial value X0, play a role for (Xk, k ≥ 0), which is really different from the final value

Y0 in (Y−k, Y−k+1, Y−k+2, · · · , Y0). Requiring (23) for Markov chains can be done in two natural ways:

Lemma 23. (a) If (Xk, k ∈ Z) and (Yk, k ∈ Z) are two Markov chains with respective positive Markov

kernels M and
←−
M on G, with invariant distribution ρ. Assume that both (Xk, k ∈ Z) and (Yk, k ∈ Z)

are taken under their invariant distributions, then

(X0, X1, X2, · · ·)
(d)
= (Y0, Y−1, Y−2, · · ·)

(b) If M is reversible (that is M =
←−
M) then, if (Xk, k ∈ Z) and (Yk, k ∈ Z) are two Markov chains

with respective Markov kernel M , then for any x0,

L [(X0, X1, X2, · · ·) | X0 = x0] = L [(Y0, Y−1, Y−2, · · ·) | Y0 = x0]

(so that, somehow, the situation of (a) occurs, conditionally, “outside the stationary regime”).

Aldous–Broder argument relies on (b) while (a) seems to us more natural and leads to Theorem 3.

The following Lemma is not stated by Aldous [1] or Broder [2], but it is a consequence of their proofs.

Lemma 24. Assume (Yk,k∈Z) is a Markov chain with kernel
←−
M under its stationary regime, then for

every (t, r) ∈ SpanningTrees•(G) one has

P(LastExitTree(Yk, k ≤ 0) = (t, r)) = Const.
∏

e∈E(t,r)

←−
M e. (26)

Before proving the Lemma, let us discuss a bit the consequences of the two last lemmas :

� As discussed in Aldous [1] and Broder [2], when
←−
M = M (reversible case) and r fixed,

L((X0, · · · , Xτm) | X0 = r) = L((Y0, · · · , Y−Lm) | Y0 = r)

so that by Lemma 22,

P(FirstEntranceTree(Xi, 0 ≤ i ≤ τ|V |) = (t, r) | X0 = r) = P(LastExitTree(Y≤0) = (t, r)|Y0 = r)

= Const.1x0=r
(∏
e∈E(t,r)

Me

)
/ρ(r).

� If we do not assume
←−
M = M , then for X a Markov chain with kernel M , starting under its invariant

distribution, we have

P(FirstEntranceTree(Xi, 0 ≤ i ≤ τ|V |) = (t, r)) = P(LastExitTree(Y≤0) = (t, r))

= Const.
∏

e∈E(t,r)

←−
M e,

and conditional on X0 = r in the left hand side and Y0 = r in the right hand side, it gives Theorem 3.

Proof. Equation (26) comes from the fact that one can view the sequence (LastExitTree(Yk, k ≤
m),m ≥ 0) as a Markov chain with state space SpanningTrees•(G) running from −∞2 and there-

fore under its stationary regime. The kernel Q((t, r), (t′, r′)) of this chain provides the probability to

2When the chain is not aperiodic, it has to be seen as the limit when m → +∞ of a Markov chain starting at −m
under its invariant distribution

17

pass from (t, r) to (t′, r′); this weight is
←−
M r,r′ or 0 depending on whether the root displacement is

enough to transform t into t′ or not (together with the removal of the outgoing edge from r′ in t).

The trees (t, r) which may lead to (t′, r′) do not have the (oriented) edge (r, r′) but an edge from r′ to

one of the neighbors u of r′ in G; this is the only difference between t and t′. The trees (t, r) having

(t′, r′) as neighbour (see Fig . 4) are then parameterized by these neighbours u of r′, and the balance

equation (if one assumes P (t, r) =
∏
e∈E(t,r)

←−
M e),

∑
(t,r):(t′,r′)

is a neighbour

P ((t, r))Q((t, r), (t′, r′)) =

 ∑
u neighbour of r′

←−
M r′,u

[∏
e∈E(t′,r′)

←−
M e

]
←−
M r,r′

←−M r,r′ =
∏

e∈E(t′,r′)

←−
M e

is satisfied.

As mentioned by Aldous [1], the irreducibility follows the fact that the LastExitTree of the sequence

of steps that forms the depth first traversal of a tree is the tree itself.

r

r′

r

r′

r

r

r′

r′

Figure 4: The antecedent of a given tree for the tree Markov chain.

Remark 25. In Hu & al. [5], it is established that the first entrance tree and the last exit tree taken

at the cover time of the Markov chain, have same distribution.

Acknowledgments

We thank the anonymous referee for her/his corrections and comments.

18

References

[1] D. J. Aldous. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM

Journal on Discrete Mathematics, 3(4):450–465, 1990.

[2] A. Z. Broder. Generating random spanning trees. In FOCS, vol. 89, pages 442–447, 1989.

[3] P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements. Lecture notes in

mathematics, 1969.

[4] P. Diaconis and W. Fulton. A growth model, a game, an algebra, Lagrange inversion, and characteristic

classes. volume 49, pages 95–119 (1993). 1991. Commutative algebra and algebraic geometry, II (Italian)

(Turin, 1990).

[5] Y. Hu, R. Lyons, and P. Tang. A reverse Aldous–Broder algorithm. Annales de l’Institut Henri Poincaré,

Probabilités et Statistiques, 57(2):890 – 900, 2021.

[6] A. A. Járai. The uniform spanning tree and related models, 2009. http://www.maths.bath.ac.uk/

%7Eaj276/teaching/USF/USFnotes.pdf.

[7] C. Krattenthaler. The theory of heaps and the cartier–foata monoid. In Appendix of the electronic edition

of Problèmes combinatoires de commutation et réarrangements. 2006.

[8] J. G. Propp and D. B. Wilson. How to get a perfectly random sample from a generic markov chain and

generate a random spanning tree of a directed graph. J Algorithms, 27(2):170–217, 1998.

[9] G. X. Viennot. Heaps of pieces, i : Basic definitions and combinatorial lemmas. In G. Labelle and P. Leroux,

editors, Combinatoire énumérative, pages 321–350, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[10] D. B. Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing, pages 296–303, 1996.

[11] D. Zeilberger. A combinatorial approach to matrix algebra. Discrete Mathematics, 56(1):61 – 72, 1985.

19

http://www.maths.bath.ac.uk/%7Eaj276/teaching/USF/USFnotes.pdf
http://www.maths.bath.ac.uk/%7Eaj276/teaching/USF/USFnotes.pdf

	Introduction
	Some recalls from combinatorics

	New combinatorial proof of Theorem 3
	Step 1. Collection of heaps encoding of a path
	Step 2. Collection of heaps of a covering path corresponding to a given tree
	The combinatorial trick
	Combinatorial golf sequences decomposition
	Decomposition of Truncated heaps
	Conclusion: proof of Theorem 3

	Proof of Theorem 3 by adaptation of the classical argument

