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MATHEMATICAL MODELING AND NUMERICAL ANALYSIS FOR THE HIGHER

ORDER BOUSSINESQ SYSTEM

BASHAR KHORBATLY, RALPH LTEIF, SAMER ISRAWI, AND STÉPHANE GERBI

Abstract. This study deals with higher-ordered asymptotic equations for the water-waves problem. We
considered the higher-order/extended Boussinesq equations over a flat bottom topography in the well-known

long wave regime. Providing an existence and uniqueness of solution on a relevant time scale of order 1/
√
ε

and showing that the solution’s behavior is close to the solution of the water waves equations with a better

precision corresponding to initial data, the asymptotic model is well-posed in the sense of Hadamard. Then

we compared several water waves solitary solutions with respect to the numerical solution of our model. At
last, we solve explicitly this model and validate the results numerically.
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1. Introduction

1.1. The water-wave equations. In this paper, we investigate the one-dimensional flow of the free surface
of a homogeneous, immiscible fluid moving above a flat topography z = −h0. The horizontal and vertical
variables are denoted respectively by x ∈ R and z ∈ R and t ≥ 0 stands for the time variable. The free
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surface is parametrized by the graph of the function ζ(t, x) denoting the variation with respect to its rest
state z = 0 (see Figure 1). The fluid occupies the strictly connected (ζ(t, x) + h0 > 0) domain Ωt at time
t ≥ 0 denoted by:

Ωt = {(x, z) ∈ R2; −h0 ≤ z ≤ ζ(t, x)}.

Figure 1. One-dimensional flat bottom fluid domain.

The fluid is considered to be perfect, that is with no viscosity and only affected by the force of gravity.
We also assume the fluid to be incompressible and the flow to be irrotational so that the velocity field is
divergence and curl free. We denote by (ρ, V ) the constant density and velocity field of the fluid. The first
boundary condition at the free surface expresses a balance of forces. Kinematic boundary conditions are
considered assuming that both the surface and bottom are impenetrable, that is no particle of fluid can
cross. The set of equations describing the flow is now complete and is commonly known as the full Euler
equations:

(1.1)



∂tV + V · ∇x,zV = −g−→e z −
∇x,zP
ρ

in (x, z) ∈ Ωt, t ≥ 0,

∇x,z · V = 0 in (x, z) ∈ Ωt, t ≥ 0,

∇x,z × V = 0 in (x, z) ∈ Ωt, t ≥ 0,

P |z=ζ(t,x) = 0 for t ≥ 0, x ∈ R,
∂tζ −

√
1 + |∂xζ|2nζ · V |z=ζ(t,x) = 0 for t ≥ 0, x ∈ R,

−V · −→ez = 0 at z = −h0, t ≥ 0, ,

lim
|(x,z)|→∞

|ζ(x, z)|+ |V (t, x, z)| = 0 in (x, z) ∈ Ωt, t ≥ 0 .

where nζ =
1√

1 + |∂xζ|2
(−∂xζ, 1)T denotes the upward normal vector to the free surface.

The theoretical study of the above system of equations is extremely difficult due to its large number of
unknowns and its time-dependent moving domain Ωt. In fact, we have a free boundary problem, in other
words the domain is itself one of the unknowns. Using the assumption of irrotational velocity field, one can
express the latter as the gradient of a potential function ϕ. This potential satisfies the Laplace equation
inside the fluid, ∆x,zϕ = 0 in (x, z) ∈ Ωt. Consequently, the evolution of the velocity potential is written now
using Bernoulli’s equation. Although the system now is simpler, a free boundary problem still exists. To get
over this obstacle, Craig and Sulem [10, 11] had an interesting idea following Zakharov work [42], consisting
of a reformulation of the system of equations (1.1) using the introduction of a Dirichlet-Neumann operator,
thus reducing the dimension of the considered space and the unknowns number. Denoting by ψ the trace of
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the velocity potential at the free surface, ψ(t, x) = ϕ(t, x, ζ(t, x)) = ϕ|z=ζ , the Dirichlet-Neumann operator
is introduced

G[ζ]ψ = −
(
∂xζ
)
·
(
∂xϕ

)
|z=ζ

+
(
∂zϕ

)
|z=ζ

=

√
1 +

∣∣∂xζ∣∣2(∂nϕ)|z=ζ
where ϕ is defined uniquely from (ζ, ψ) as a solution of the following Laplace problem (see [28] for a complete
and accurate analysis): 

∂2xϕ+ ∂2zϕ = 0 in −h0 < z < ζ(t, x),
∂zϕ|z=−h0 = 0,

ϕ|z=ζ = ψ(t, x).

with ∂n = n.∇x,z the normal derivative in the direction of the concerned vector n. Thus, the evolution of
only the two variables (ζ, ψ) located at the free surface characterize the flow. This system is known by the
Zakharov/Craig-Sulem formulation of the water-waves equations giving :

(1.2)


∂tζ −

1

µ
G[ζ]ψ = 0 ,

∂tψ + ζ +
1

2
|∂xψ|2 −

(Gµ[ζ]ψ + ∂x(ζ) · ∂xψ)2

2(1 + |∂xζ|2)
= 0 .

The above system of equations has a particularly rich structure, and depending on the physical properties of
the flow, it is possible to obtain solutions to (1.2) with different qualitative properties. Nonlinear effects, for
example, become more important as wave amplitude increases. Although Zakharov’s reformulation resulted
in a reduced system of equations, the description of these solutions from a qualitative and quantitative point
of view remains very complex. A remedy for this situation requires the construction of simplified asymptotic
models whose solutions are approximate solutions of the full system. These approximate models allow to
describe in a fairly precise way the behavior of the complete system in a specific physical regime. This
requires a rescaling of the system in order to reveal small dimensionless parameters which allow to perform
asymptotic expansions of non-local operators (Dirichlet-Neumann), thus ignoring the terms whose influence
is minimal. The order of magnitude of these parameters makes it possible to identify the considered physical
regime. We start by introducing respectively the commonly known nonlinear and shallowness parameters:

ε =
a

h0
=

amplitude of the wave

reference depth
,

√
µ =

h0
λ

=
reference depth

wave-length of the wave
,

where 0 ≤ ε ≤ 1 is often called nonlinearity parameter, while 0 ≤ µ ≤ 1 is called the shallowness parameter.
In this manner, the dimensionless formulation of (1.2) reads:

(1.3)


∂tζ −

1

µ
Gµ[εζ]ψ = 0 ,

∂tψ + ζ +
ε

2
|∂xψ|2 − εµ

( 1
µGµ[εζ]ψ + ∂x(εζ) · ∂xψ)2

2(1 + ε2µ|∂xζ|2)
= 0 ,

where ψ(t, x) = ϕ|z=εζ and Gµ[εζ]ψ =

√
1 + µε2

∣∣∂xζ∣∣2(∂nϕ)|z=εζ .
Let us now identify the asymptotic geophysical shallow-water (µ� 1) category (or sub-regime) associated

with our work. An additional assumption is made on the nonlinearity parameter, from which a diverse set
of asymptotic models can be derived. More precisely, it is possible to deduce from (1.3) a (much simpler)
asymptotic model that is more amenable to numerical simulations and have more transparent properties.
For instance, taking ε ∼ µ into account, the flow under consideration is said to be in a small amplitude
regime.

1.2. Shallow-water, flat bottom, small amplitude variations (µ� 1, ε ∼ µ). In this paper, we restrict
our work on the well-known long waves regime with a flat topography for which the ”original” or ”standard”
Boussinesq system can be derived. Defining the depth-averaged horizontal velocity by :

(1.4) v(t, x) =
1

1 + εζ(t, x)

∫ εζ(t,x)

−1
∂xϕ(t, x, z) dz ,
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under the extra assumption ε ∼ µ, we can neglect the terms which are of order O(µ2) in the Green-Naghdi
equations (we refer to [17, 16] for formal derivation and to [20, 19, 23, 13] for well-posedness); then the
standard Boussinesq equations reads:

(1.5)

 ∂tζ + ∂x
(
(1 + εζ)v

)
= 0 ,

(1− ε1

3
∂2x)∂tv + ∂xζ + εv∂xv = O(ε2) .

Many strategies exist to study the water-wave problem especially by deriving equivalent models with better
mathematical structure such as well-posedness, conservation of energy, solitary waves, or physical properties
(see for instance [2, 29, 3, 7, 32, 35, 34, 5, 6, 28, 36, 37, 38]). It is worth noticing that the well posed
results for such model exist on a time scale of order 1/

√
ε (methods based on dispersive estimate in [42])

and 1/ε (energy estimate method in [28] ). A better precision is obtained when the O(µ2) terms are kept
in the equations: only O(µ3) terms are dropped. Following the work in a series of papers on the extended
Green-Naghdi equations [30, 31, 25, 24], one may write the extended Boussinesq equations by incorporating
higher order dispersive effects as follows:

(1.6)

{
∂tζ + ∂x(hv) = 0 ,

(1 + εT [ζ] + ε2T)∂tv + ∂xζ + εv∂xv + ε2Qv = O(ε3) ,

where h = 1 + εζ is the non-dimensionalised height of the fluid and we denote the three operators :

T [ζ]w = − 1

3h
∂x
(
(1 + 3εζ)∂xw

)
, Tw = − 1

45
∂4xw, Qv = −1

3
∂x
(
vvxx − v2x

)
.

1.3. Presentation of the results. As mentioned before, we will first derive an extended Boussinesq equa-
tions in the same way as the derivation of the extended Green-Naghdi equations: we will keep every terms up
to the third order in ε. This is done in the next section, section 2. Section 3 is devoted to the full justification
of the extended Boussinesq system. We will firstly, in subsection 3.2, write the extended Boussinesq system
in a quasilinear form. The linear analysis, performed in subsection 3.3 will permit by the energy estimate
method to state, in the subsection 3.4, the main results of well-posedness, stability and convergence of the
proposed extended Boussinesq system.

As for usual Green-Naghdi and Boussinesq model, we are interested in the construction of a solution
as a solitary wave. We will prove in section 4 that the profile of this solitary wave is a solution of a 3rd
order non linear ordinary differential equation, ODE. Thus, it seems impossible to find an explicit form of
this profile. Therefore, we will compute, using Matlab ODE solver ode45, an approximate profile. We will
compare the obtained solutions with the solutions of water-waves equations and find that this solution is a
better approximation than the solution of the original Green-Naghdi equation.

Lastly, instead of finding an analytical exact solitary wave, we will find an explicit solution with correctors
in section 5.

1.4. Comments on the results. In this section we try to highlight the potential need of higher-ordered
models and their benefits over the classical asymptotic ones. Despite having a more complicated structure
than classical models, higher ordered models may still be considered simpler than the original full Euler
system (1.1). In fact, as opposed to the full Euler system, these high order models enjoy a reduced structure
in terms of number of equations, unknown numbers and dimension space which make them more suitable
for theoretical and numerical study. Moreover, higher order approximations may have similar well-posedness
results as classcial ones on relevant time scales due to standard mathematical tools. Based on section 3 and
previous works [25, 24] this can be concluded at least in the one-dimensional case. However, the advantage
is obvious in terms of controlling the convergence precision of the approximation error with respect to Euler
equations (see in particular Theorem 3 of section 3).
On the other hand, while the solitary wave profile cannot be derived explicitly for higher order approxi-
mations, the numerical solution fits the corresponding one of the original Euler system much better than
classical models (as shown by figure 2). The numerical solution computation requires simple discretization
of a third-order nonlinear ODE using Matlab ode45 solver. Furthermore, it is noteworthy that by removing
the ε2 extended-Boussiseq ODE terms, the Green-Naghdi’s ODE can be recovered.
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1.5. Notation. We denote by C(λ1, λ2, ...) a constant depending on the parameters λ1, λ2, ... and whose
dependence on the λj is always assumed to be nondecreasing. The notation a . b means that a ≤ Cb, for
some non-negative constant C whose exact expression is of no importance (in particular, it is independent
of the small parameters involved).

We denote the L2 norm | · |L2 simply by | · |2. The inner product of any functions f1 and f2 in the Hilbert
space L2(Rd) is denoted by (f1, f2) =

∫
Rd f1(X)f2(X)dX. The space L∞ = L∞(Rd) consists of all essentially

bounded, Lebesgue-measurable functions f with the norm |f |L∞ = ess sup |f(X)| < ∞. We denote by
W 1,∞(R) =

{
f ∈ L∞, fx ∈ L∞

}
endowed with its canonical norm.

For any real constant s, Hs = Hs(Rd) denotes the Sobolev space of all tempered distributions f with the
norm |f |Hs = |Λsf |2 <∞, where Λs is the pseudo-differential operator Λs = (1− ∂2x)s/2.

For any functions u = u(t,X) and v(t,X) defined on [0, T )×Rd with T > 0, we denote the inner product,
the Lp-norm and especially the L2-norm, as well as the Sobolev norm, with respect to the spatial variable,
by (u, v) = (u(·, t), v(·, t)), |u|Lp = |u(·, t)|Lp , |u|L2 = |u(·, t)|L2 , and |u|Hs = |u(·, t)|Hs , respectively.

Let Ck(Rd) denote the space of k-times continuously differentiable functions.For any closed operator T
defined on a Banach space Y of functions, the commutator [T, f ] is defined by [T, f ]g = T (fg)− fT (g) with
f , g and fg belonging to the domain of T .

2. The higher-order/extended Boussinesq equations

When the surface elevation is of small amplitude, that is, when an assumption is made on the nonlinearity
parameter, the extended Green-Naghdi equations [30, 31, 25, 24] can be greatly simplified. Based on this,
the extended Boussinesq with ε ∼ µ reads for one-dimensional small amplitude surfaces:

(2.1)

{
∂tζ + ∂x(hv) = 0 ,

(h+ εT [h] + ε2T)∂tv + h∂xζ + εhv∂xv + ε2Qv = O(ε3) ,

where the right-hand side is of order ε3, and we see the dependence on ε2 in the left-hand side. Here
h = 1 + εζ and we denote by

T [h]w = −1

3
∂x
(
h3∂xw

)
, Tw = − 1

45
∂4xw , Qv = −1

3
∂x
(
vvxx − v2x

)
.

Remark 1. Some of the components in the second equation’s left-most term are of the size O(ε3). They
were kept to preserve the operator’s = = h+ εT [h]− ε2∂4x good properties; otherwise, these properties would
have been disrupted (see section 3.1).

2.1. The modified system. First of all, let us factorize all higher order derivatives (third and fifth) in
the left-most term of the above system (2.1). In fact, we only have to factorize third-order derivatives and
this is possible by setting ±ε2T [h](vvx) in the second equation. An inconvenient feature appears in this
left-most term due to the positive sign in front of the elliptic forth-order linear operator T which ravel the
way towards well-posedness using energy estimate method. This obviously affect the invertibility of the
factorized operator as we will see in section 3.1. For this reason we proceed as in [25, 24] by using a BBM
trick represented in the following approximate equation ∂tv+ εvvx = −ζx +O(ε) to overcome this difficulty.

At this stage, it is noteworthy that from [25, 24] one may conclude directly the well-posedness results for
such system but when the effect of surface tension is taken into consideration, the existence time scale is
up to order 1/ε. This presence of the surface tension was essential for controlling higher order derivatives
yielding from the BBM trick (see remarks in [24]). In our case, the surface tension is neglected and thus we
have to do proceed differently. The idea is to replace the capillary terms by a vanishing term ±ε2ζxxx which
will play a similar role. The term with a negative sign is used for a convenient definition of the energy space
(see Definition 1) in such a way that the other term can be controlled. As a consequence, the existence time
will get smaller with respect to the case of surface tension presence, i.e. the time scale reached is up to order
1/
√
ε. In view of the above notes (we refer to remarks 4 and 3 for more details), the modified system reads:

(2.2)

 ∂tζ + ∂x(hv) = 0 ,

(h+ εT [h]− ε2T)
(
∂tv + εvvx

)
+ h∂xζ − ε2ζxxx +

2

45
ε2ζxxxxx + ε2ζxxx + ε2Q[U ]vx = O(ε3) ,
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where U = (ζ, v), h(t, x) = 1 + εζ(t, x) and denote by

(2.3) T [h]w = −1

3
∂x(h3∂xw), Tw = − 1

45
∂4xw, Q[U ]f =

2

3
∂x
(
vxf

)
.

Remark 2. An equivalent formulation of system (2.2) has been numerically studied recently in [15]. This
formulation is obtained by dividing the second equation of system (2.2) by the water height function, h and
removing time dependency from the left-most factorized operator while keeping the same precision of the
model. During the numerical computations this operator has to be inverted at each time step so one can
solve system (2.2). The time dependency has to be amended in order to reduce the computational time.

We state here that the solution of (1.3) is also a solution to the extended Boussinesq system (2.2) up to
terms of order O(ε3).

Proposition 1 (Consistency). Suppose that the full Euler system (1.3) has a family of solutions Ueuler =
(ζ, ψ)T such that there exists T > 0, s > 3/2 for which (ζ, ψ′)T is bounded in L∞([0;T );Hs+N )2 with N
sufficiently large, uniformly with respect to ε ∈ (0, 1). Define v as in (1.4). Then (ζ, v)T satisfy (2.2) up to
a remainder R, bounded by

(2.4) ‖R‖(L∞[0,T [;Hs) ≤ ε3C ,

where C = C(h−1min, ‖ζ‖L∞([0,T [;Hs+N ), ‖ψ′‖L∞([0,T [;Hs+N )) .

Proof. Equation one of (2.2) exactly coincides with that of (1.3). It remains to check that the second equation
is satisfied up to a remainder R such that (2.4) holds. For this sake, we need an asymptotic expansion of ψ′

in terms of v which can be deduced from the work done in [25] as follows :

(2.5) ψ′ = v − 1

3
ε∂x
(
(1 + 3εζ)vx

)
+ ε2

1

3
ζ∂2xv + ε2Tv + ε3Rε3 .

Now we proceed iusing the same arguments as the ones used in Lemmas 5.4 and 5.11 in [28] to give some
control on Rε3 as follows :

(2.6) |Rε3|Hs ≤ C(h−1min, |ζ|Hs+6)|ψ′|Hs+6 and |∂tRε3|Hs ≤ C(h−1min, |ζ|Hs+8 , |ψ′|Hs+8) .

Then we take the derivative of the second equation of (1.3) and substitute G[εζ]ψ and ψ′ by −ε∂x(hv) and
(2.5) respectively. Therefore, taking advantage of the estimates (2.6) provides the control of all terms of
order ε3 as in (2.4) with N large enough (mainly greater than 8). �

3. Full justification of the extended Boussinesq system (µ3 < µ2 < µ� 1, ε ∼ µ)

The two main issues regarding the validity of an asymptotic model are the following:

• Are the Cauchy problems for both the full Euler system and the asymptotic model well-posed for a
given class of initial data, and over the relevant time scale ?

• Can the water waves solutions be compared to the solutions of the full Euler system when corre-
sponding initial data are close? If yes, can we estimate how close they are?

When an asymptotic model answer these two questions, it is said to be fully justified. In the sequel, after
the linear analysis of our model, we refer to section 3.4 to state the answers of these questions. Existence
and uniqueness of our solution on a time scale 1/

√
ε is given by Theorem 1, while a stability property is

provided by Theorem 2. Finally, the convergence Theorem 3 is stated and therefore the full justification of
our model is proved.

Let us firstly state some preliminary results in the section below.

3.1. Properties of the two operators = and =−1. Assume the nonzero-depth condition that underline
the fact that the height of the liquid is always confined, i.e. :

(3.1) ∃ hmin > 0, inf
x∈R

h ≥ hmin where h(t, x) = 1 + εζ(t, x) .

Under the above condition, let us introduce the operator =, where much of the modifications in the previous
section hinges on it, such as:

(3.2) = = h+ εT [h]− ε2T = h− 1

3
ε∂x(h3∂x·) +

1

45
ε2∂4x · .
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The following lemma states the invertibility results of the operator = on well chosen functional spaces.

Lemma 1. Suppose that the depth condition (3.1) is satisfied by the scalar function ζ(t, ·) ∈ L∞(R). Then,
the operator

= : H4(R) −→ L2(R)

is well defined, one-to-one and onto .

Proof. We refer to the recent works of two of the authors, [25, Lemma 1] and [24, Lemma 1], for the proof
of this lemma. �

Some functional properties on the operator =−1 are given by the Lemma below.

Lemma 2. Let t0 >
1
2 and ζ ∈ Ht0+1(R) be such that (3.1) is satisfied. Then, we have the following :

(i) For all 0 ≤ s ≤ t0 + 1, it holds

|=−1f |Hs +
√
ε|∂x=−1f |Hs + ε|∂2x=−1f |Hs ≤ C

( 1

hmin
, |h− 1|Ht0+1

)
|f |Hs .

and
√
ε|=−1∂xf |Hs + ε|=−1∂2xf |Hs ≤ C

( 1

hmin
, |h− 1|Ht0+1

)
|f |Hs .

(iii) For all s ≥ t0 + 1, it holds

‖=−1‖Hs(R)→Hs(R) +
√
ε‖=−1∂x‖Hs(R)→Hs(R) + ε‖=−1∂2x‖Hs(R)→Hs(R) ≤ Cs ,

and
√
ε‖=−1∂x‖Hs(R)→Hs(R) + ε‖=−1∂2x‖Hs(R)→Hs(R) ≤ Cs ,

where Cs is a constant depending on 1/hmin , |h− 1|Hs and independent of ε ∈ (0, 1).

Proof. We refer to the recent works of two of the authors, [25, Lemma 2] and [24, Lemma 2], for the proof
of this lemma. �

3.2. Quasilinear form. In order to rewrite the extended Boussinesq system in a condensed form and for
the sake of clarity, let us introduce an elliptic forth-order operator T [h] as follows:

(3.3) T [h](·) = h− ε2∂2x(·) +
2

45
ε2∂4x(·) .

The first equation of the system (2.2) can be written as follows:

∂tζ + εv∂xζ + h∂xv = 0.

Then we apply =−1 to both sides of the second equation of the system (2.2), to get:

∂tv + εvvx + =−1
(
T [h]ζx

)
+ ε2=−1

(
∂2xζx

)
+ ε2=−1

(
Q[U ]vx

)
= O(ε3) .

Hence the higher order Boussinesq system can be written under the form:

(3.4) ∂tU +A[U ]∂xU = 0 ,

where the operator A is denied by:

(3.5) A[U ] =

(
εv h

=−1
(
T [h] ·

)
+ ε2=−1

(
∂2x ·

)
εv + ε2=−1

(
Q[U ] ·

) ) .

7



3.3. Linear analysis. We consider the following linearized system around a reference state U = (ζ, v)T :

(3.6)

{
∂tU +A[U ]∂xU = 0,

U|t=0
= U0.

The energy estimate method needs to define a suitable energy space for the problem we are considering here.
This will permit the convergence of an iterative scheme to construct a solution to the extended Boussinesq
system (2.2) for the initial value problem (3.6).

Definition 1 (Energy space). For all s ≥ 0 and T > 0, we denote by Xs the vector space Hs+2(R)×Hs+2(R)
endowed with the norm:

for U = (ζ, v) ∈ Xs , |U |2Xs := |ζ|2Hs + ε2|ζx|2Hs + ε2|ζxx|2Hs + |v|2Hs + ε|vx|2Hs + ε2|vxx|2Hs .

Xs
T stands for C([0, T√

ε
];Xs) endowed with its canonical norm.

Remark 3. It is worth noticing that in the presence of surface tension the second term of the energy norm,
|ζx|2Hs , is controlled by ε in front of it and this is sufficiently enough to give an existence time scale of order
1/ε. In fact, the second term here in | · |Xs is due to the consideration of the vanishing term that is important
for Definition 1 itself and for controlling higher order terms (see Proposition 2).

Now we remark that a good suggestion of a pseudo-symmetrizer for A[U ] requires firstly the introduction
of a forth-order linear operator J [h] as follows:

J [h](·) = 1− ε2∂x
(
h−1∂x ·

)
+

2

45
ε2∂2x

(
h−1∂2x ·

)
,

where h = 1 + εζ . Thus a pseudo-symmetrizer for A[U ] is given by:

(3.7) S =

 J [h] 0

0 =

 =

 1− ε2∂x
(
h−1∂x ·

)
+ 2

45ε
2∂2x
(
h−1∂2x ·

)
0

0 h+ εT [h]− ε2T

 .

Remark 4. Introducing operator J [h] is of great interest for defining a suitable pseudo-symmetrizer for
(3.5). As the higher order derivative in T [h] is not multiplied by h (if this was the case then the vanishing
term considered might be ±ε2hζxxx), therefore J [h] must replace T [h] in the first entity of (3.7). This is
clearly necessary for controlling A2 +A3 (see Proposition 2).

Also, a natural energy for the initial value problem (3.6) is suggested to be as follows:

(3.8) Es(U)2 = (ΛsU, SΛsU) .

Lemma 3 (Equivalency of Es(U) and the Xs-norm). Let s ≥ 0 and suppose that ζ ∈ L∞(R) satisfies
consition (3.1). Then norm | · |Xs and the natural energy Es(U) are uniformly equivalent with respect to
ε ∈ (0, 1) such that:

Es(U) ≤ C
(
hmin, |h|∞

)
|U |Xs and |U |Xs ≤ C

(
hmin, |h|∞

)
Es(U).

Proof. We refer to the recent work of two of the authors [25, Lemma 3] for the proof of this important
property. �

The well-posedness and a derivation of a first energy estimate for the linear system is given in the following
proposition.

Proposition 2 (Well-posedness & energy estimate of the linear system). For t0 >
1
2 , s ≥ t0 + 1 and under

the depth condition (3.1), suppose that U = (ζ, v)T ∈ Xs
T and ∂tU ∈ Xs−1

T at any time in [0, T√
ε
]. Then,

there exists a unique solution U = (ζ, v)T ∈ Xs
T to (3.6) for any initial data U0 in Xs and for all 0 ≤ t ≤ T√

ε

it holds that:

(3.9) Es
(
U(t)

)
≤
(
e
√
ελT t

)1/2
Es(U0) ,

for some λT depending only on h−1min, sup0≤
√
εt≤T E

s(U(t)) and sup0≤
√
εt≤T |∂th(t)|L∞ .
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Proof. For the proof of the existence and uniqueness of the solution, we refer to the proof found in [20,
Appendix A] which can be directly adapted to the problem we are considering here.

Thereafter, we will focus our attention on the proof of the energy estimate (3.9). First of all, fix
λ ∈ R. The proof of the energy estimate is centered on bounding from above by zero the expression
e
√
ελt∂t(e

−
√
ελtEs(U)2). For this sake, we use the fact that = and J [h] are symmetric to evaluate the expres-

sion under the form:

1

2
e
√
ελt∂t(e

−
√
ελtEs(U)2) = −λ

2

√
εEs(U)2 −

(
SA[U ]Λs∂xU,Λ

sU
)
−
([

Λs, A[U ]
]
∂xU, SΛsU

)
+

1

2

(
Λsζ, [∂t, J [h]]Λsζ

)
+

1

2
(Λsv, [∂t,=]Λsv) .

Now it remains to control the r.h.s components of the above equation. To do so, we firstly recall the
commutator estimate we shall use due to Kato-Ponce [22] and recently improved by Lannes [27]: in particular,
for any s > 3/2, and q ∈ Hs(R), p ∈ Hs−1(R), one has:

(3.10)
∣∣[Λs, q]p|2 . |∇q|Hs−1 |p|Hs−1 .

Also we shall use intensively the classical product estimate (see [1, 27, 22]): in particular, for any p, q ∈
Hs(R2), s > 3/2, one has:

(3.11) |pq|Hs . |q|Hs |p|Hs .
• Estimation of (SA[U ]Λs∂xU,Λ

sU). We have:

SA[U ] =

(
εJ [h](v·) J [h](h·)

T [h] ·+ε2∂2x· ε=(v·) + ε2Q[U ]·

)
,

then it holds that:(
SA[U ]Λs∂xU,Λ

sU
)

= ε
(
J [h](vΛsζx),Λsζ

)
+
(
J [h](hΛsvx),Λsζ

)
+
(
T [h]Λsζx,Λ

sv
)

+ ε2
(
Λsζxxx,Λ

sv
)

+ ε
(
=(vΛsvx),Λsv

)
+ ε2

(
Q[U ]Λsvx,Λ

sv
)

= A1 +A2 + ...+A6 .

To control A1, by integration by parts, we have:

A1 = ε
(
vΛsζx,Λ

sζ
)

+ ε3
(
h−1∂x(vΛsζx),Λsζx

)
+

2

45
ε3
(
h−1∂2x(vΛsζx),Λsζxx

)
= A11 +A12 +A13 .

Clearly, it holds that:

|A11| =
1

2
ε|
(
Λsζ, vxΛsζ

)
| ≤ εC

(
|v|W 1,∞

)
Es(U)2.

By integrating by parts, it holds that:

|A12| = ε3
(
h−1vxΛsζx,Λ

sζx
)

+ ε3
(
h−1vΛsζxx,Λ

sζx
)
≤ εC

(
h−1min, |vx|∞

)
Es(U)2.

Now using the fact that:

(3.12) ∂2x(MN) = N∂2xM + 2MxNx +M∂2xN ,

for any differentiable functions M , N and by integration by parts, we have:

A13 =
2

45
ε3
[(
h−1vxxΛsζx,Λ

sζxx
)

+ 2
(
h−1vxΛsζxx,Λ

sζxx
)

+
1

2

(
h−2hxvΛsζxx,Λ

sζxx
)
− 1

2

(
h−1vxΛsζxx,Λ

sζxx
)]

= A131 + ...+A314 .

Although A131 can be controlled directly with
√
ε in front of the constant, one may improve this by ε instead.

Indeed by integration by parts one has:

A131 =
2

45
ε3
(
h−2hxvxxΛsζx,Λ

sζx
)
− 2

45
ε3
(
h−1vxxxΛsζx,Λ

sζx
)

= A1311 +A1312.

Remark that hx = εζ
x
, then A1311 posses sufficient ε’s, unlike A1312 on which we have to work a little more.

Indeed, in view of (3.1) we have that h−1 > 0, then it holds:

A1312 = − 2

45
ε3
(
h−1vxxx, (Λ

sζx)2
)
≤ 2

45
ε3|vxxx|∞

(
h−1, (Λsζx)2

)
.
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Again by integration by parts, we get :
(
h−1, (Λsζx)2

)
= (h−2hxΛsζ,Λsζx)− (h−1Λsζ,Λsζxx). Therefore one

may control A1312 by εC(h−2min, |ζ|W 1,∞ , µ|vxxx|∞)Es(U)2. Consequently, it holds:

A1311 +A132 + ..+A134 ≤ εC
(
h−2min, |ζ|W 1,∞ , |v|W 1,∞ ,

√
ε|vxx|∞

)
Es(U)2.

Collecting the information provided above we get:

|A1| ≤ εC
(
h−2min, |ζ|W 1,∞ , |v|W 1,∞ ,

√
ε|vxx|∞

)
Es(U)2 .

To control A2 +A3, by remarking firstly that J [h] and T [h] are symmetric, and then by integration by parts
after having performing some algebraic calculations and using (3.12), we have:

A2 +A3 = −
(
Λsv, hxΛsζ

)
+ ε2

(
h−1hxΛsζx,Λ

svx
)

+
4

45
ε2
(
h−1hxΛsvxx,Λ

sζxx
)
− 2

45
ε2
(
h−1hxxΛsζxx,Λ

svx
)
.

Unfortunately, an inconvenient term appears in A2 + A3: it is the term ε2
(
h−1hxxΛsζxx,Λ

svx
)
. This term

won’t be controlled without gaining
√
ε taken from hxx = εζ

xx
and the other

√
ε sits in front of the constant.

Due to this fact, it follows that:

|A2 +A3| ≤
√
εC
(
h−1min, |ζ|W 1,∞ , |v|W 1,∞ , ε|ζ

xx
|Hs
)
Es(U)2.

To control A4, by integration by parts, it holds:

A4 = −ε2(Λsζxx,Λ
svx) ≤

√
εEs(U)2 .

To control A5, by integration by parts, we have:

A5 = ε
(
hvΛsvx,Λ

sv
)

+
ε2

3

(
h3∂x(vΛsvx),Λsvx

)
+
ε3

45

(
∂2x(vΛsvx),Λsvxx

)
= A51 +A52 +A53

where ∣∣A51

∣∣ =
∣∣− ε

2

(
hxvΛsv,Λsv

)
− ε

2

(
hvxΛsv,Λsv

)∣∣ ≤ εC(|ζ
x
|∞, |vx|∞

)
Es(U)2

with ∣∣A52

∣∣ =
∣∣− ε2

2

(
h3xvΛsvx,Λ

svx
)
− ε2

6

(
h3vΛsvx,Λ

svx
)∣∣ ≤ εC(|ζ|W 1,∞

)
Es(U)2

and∣∣A53

∣∣ =
ε2

45

∣∣(vxxΛsvx,Λ
svxx

)
+ 2
(
vxΛsvxx,Λ

svxx
)
− 1

2

(
vxΛsvxx,Λ

svxx
)∣∣ ≤ εC(|ζ|W 1,∞ ,

√
ε|vxx|∞

)
Es(U)2.

Therefore, it holds that:

|A5| ≤ εC
(
|ζ|W 1,∞ , |vx|∞,

√
ε|vxx|∞

)
Es(U)2.

Finally, by integration by parts, A6 is controlled by εC
(
|vx|∞

)
Es(U)2. Therefore, it holds:∣∣(SA[U ]Λs∂xU,Λ

sU
)∣∣ ≤ √εC(|ζ|W 1,∞ , ε|ζ

xx
|Hs , |v|W 1,∞ ,

√
ε|vxx|∞

)
Es(U)2 .

• Estimation of
([

Λs, A[U ]
]
∂xU, SΛsU

)
. Let us remark that:([

Λs, A[U ]
]
∂xU, SΛsU

)
= ε
(
[Λs, v]ζx, J [h]Λsζ

)
+
(
[Λs, h]vx, J [h]Λsζ

)
+
(
[Λs,=−1(T [h]·)]ζx,=Λsv

)
+ ε2

(
[Λs,=−1(∂2x·)]ζx,=Λsv

)
+ ε
(
[Λs, v]vx,=Λsv

)
+ ε2

(
[Λs,=−1(Q[U ]·)]vx,=Λsv

)
= B1 +B2 + ...+B6.

To control B1, we use the expression of J [h] to write:

B1 = ε
(
[Λs, v]ζx,Λ

sζ
)

+ ε3
(
∂x[Λs, v]ζx,

1

h
Λsζx

)
+

2

45
ε3
(
∂2x[Λs, v]ζx, h

−1Λsζxx
)
.

Then by using the fact that:

(3.13) ∂x[Λs,M ]N = [Λs,Mx]N+[Λs,M ]Nx and ∂2x[Λs,M ]N = [Λs,Mxx]N+2[Λs,Mx]Nx+[Λs,M ]Nxx ,
10



and using (3.10), it holds that:

B1 = ε
(
[Λs, v]ζx,Λ

sζ
)

+ ε3
(
[Λs, vx]ζx, h

−1Λsζx
)

+ ε3
(
[Λs, v]ζxx, h

−1Λsζx
)

+
2

45
ε3
{(

[Λs, vxx]ζx, h
−1Λsζxx

)
+ 2
(
[Λs, vx]ζxx, h

−1Λsζxx
)

+
(
[Λs, v]ζxxx, h

−1Λsζxx
)}

≤
√
εC
(
h−1min, |v|Hs , ε|vxx|Hs

)
Es(U)2 .

The
√
ε in front of the constant is due to the inconvenient term represented by ε3

(
[Λs, vx]ζxx, h

−1Λsζxx
)
.

To control B2, by the expression of J [h] and (3.13), we have:

B2 =
(
[Λs, h− 1]vx,Λ

sζ
)

+ ε3
(
[Λs, ζ

x
]vx, h

−1Λsζx
)

+ ε2
(
[Λs, h− 1]vxx, h

−1Λsζx
)

+
2

45
ε2
{(

[Λs, (h− 1)xx]vx, h
−1Λsζxx

)
+ 2
(
[Λs, (h− 1)x]vxx, h

−1Λsζxx
)

+
(
[Λs, h− 1]vxxx, h

−1Λsζxx
)}
.

Then, clearly the following estimate holds:

|B2| ≤ εC
(
h−1min, |h− 1|Hs , ε|ζxx|Hs

)
Es(U)2.

To control B3, we have that = is symmetric and that:

=[Λs,=−1]T [h]ζx = =[Λs,=−1T [(h]·)]ζx − [Λs, T [h]]ζx .

Moreover, since [Λs,=−1] = −=−1[Λs,=]=−1, one gets:

=[Λs,=−1 T [h]·]ζx = −[Λs,=]=−1T [h]ζx + [Λs, T [h]]ζx .

Therefore, one may write:

B3 =
(
[Λs,=]=−1(T [h]ζx),Λsv

)
+
(
[Λs, T [h]]ζx,Λ

sv
)
.

At this point, using the expressions of T [h] and J [h], it holds:

2

45
ε2∂4xζx = 2=ζx − 2hζx +

2

3
ε∂x(h3ζxx) .

Therefore, it holds that:

=−1(T [h]ζx) = 2ζx −=−1(hζx)− ε2=−1(ζxxx) +
2

3
ε=−1∂x(h3ζxx) ,

which implies that:

B3 = 2
(
[Λs,=]ζx,Λ

sv
)
−
(
[Λs,=]=−1(hζx),Λsv

)
+

2

3
ε
(
[Λs,=]=−1∂x(h3ζxx),Λsv

)
− ε2

(
[Λs,=]=−1(ζxxx),Λsv

)
+
(
[Λs, T [h]]ζx,Λ

sv
)

= B31 +B32 +B33 +B34 +B35.

Thanks to the fact that, for all k ∈ N, hk − 1 = O(εζ) and using the explicit expression of = combined with
the identities:

(3.14) [Λs, ∂x(M∂x·)]N = ∂x[Λs,M ]Nx and [Λs, ∂mx ]N = 0 ∀ m ∈ N∗ ,

then by integration by parts and (3.10), it holds that:

B31 = 2
(
[Λs, h− 1]ζx,Λ

sv
)

+
2

3
ε
(
[Λs, h3 − 1]ζxx,Λ

svx
)
≤
√
εC
(
|h− 1|Hs)Es(U)2 .

Also, by (3.10) it holds:

|B32| ≤
∣∣([Λs, h]=−1(hζx),Λsv

)
+

1

3
ε
(
[Λs, h3]∂x=−1(hζx),Λsvx

)∣∣ ≤ εC
(
|h − 1|Hs , Cs)Es(U)2 ,

with

|B33| ≤
∣∣2
3
ε
(
[Λs, h]=−1∂x(h3ζxx),Λsv

)
+

2

9
ε2
(
[Λs, h3]∂x=−1∂x(h3ζxx),Λsvx

)∣∣ ≤ εC(|h−1|Hs , Cs)Es(U)2 ,
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and

|B34| ≤ ε2
∣∣([Λs, h]=−1(ζxxx),Λsv

)
+

1

3
ε3
(
[Λs, h3]∂x=−1(ζxxx),Λsvx

)∣∣ ≤ εC
(
|h − 1|Hs , Cs)Es(U)2 .

For controlling B35, the explicit expression of T [h] and (3.14) gives that:

B35 =
(
[Λs, h− 1]ζx,Λ

sv
)
≤ εC

(
|h− 1|Hs , Cs)Es(U)2 .

Thus, as a conclusion, it holds that:

|B3| ≤
√
εC
(
|h− 1|Hs , |ζ|∞, ε|ζxxx|Hs−1 , Cs

)
Es(U)2.

To control B4, as for B3 and using (3.14) one may write:

B4 = −ε2
(
[Λs,=]=−1ζxxx,Λsv

)
= −ε2

(
[Λs, h]=−1ζxxx,Λsv

)
− 1

3
ε3
(
[Λs, h3]∂x=−1ζxxx,Λsvx

)
≤ εC

(
|h− 1|Hs , Cs)Es(U)2 .

To control B5, using the expression of =, (3.10) and (3.13) with integration by parts and the fact that
∂x[Λs,M ]N = [Λs,Mx]N + [Λs,M ]Nx, it holds:

|B5| = ε
∣∣([Λs, v]vx, hΛsv

)
+

1

3
ε
(
[Λs, vx]vx, h

3Λsvx
)

+
1

3
ε
(
[Λs, v]vxx, h

3Λsvx
)

+
1

45
ε2
(
[Λs, vxx]vx,Λ

svxx
)

+
2

45
ε2
(
[Λs, vx]vxx,Λ

svxx
)

+
1

45
ε2
(
[Λs, v]vxxx,Λ

svxx
)∣∣ ≤ εC(|h|∞, |v|Hs ,√ε|vxx|Hs−1 , ε|vxxx|Hs−1

)
Es(U)2.

To control B6, using the same arguments as the ones used to control B3, using expression of =, (3.10) and
(3.14), it follows that:

B6 = −ε2
(
[Λs, h]=−1Q[U ]vx,Λ

sv
)
− ε3

3

(
[Λs, h3]∂x=−1Q[U ]vx,Λ

svx
)

+ ε2
(
[Λs,Q[U ]]vx,Λ

sv
)
.

Now, using the expression of Q with the help of Lemma 2, estimate (3.10), in addition to (3.14) and the fact
that [Λs, ∂x(M ·)]N = ∂x[Λs,M ]N , it holds:

|B6| ≤ εC
(
|h− 1|Hs ,

√
ε|vx|Hs , Cs

)
Es(U)2 .

Eventually, as a conclusion, one gets:∣∣([Λs, A[U ]
]
∂xU, SΛsU

)∣∣ ≤ √εC(h−1min, |h− 1|Hs , |ζ|Hs , ε|ζxx|Hs , |v|Hs ,
√
ε|vx|Hs , ε|vxx|Hs , Cs

)
Es(U)2.

It is worth noticing that
√
ε in front of the constant is due to B1 and B31.

• Estimation of
(
Λsζ, [∂t, J [h]]Λsζ

)
. Using the expression of J [h] and by integration by parts, it holds that:(

Λsζ, [∂t, J [h]]Λsζ
)∣∣ = ε2

(
h−2∂thΛsζx,Λ

sζx
)

+
2

45
ε2
(
h−2∂thΛsζxx,Λ

sζxx
)
≤ εC(h−2min, |∂tζ|∞)Es(U)2.

• Estimation of
(
Λsv, [∂t,=]Λsv

)
. It holds that:

[∂t, h]Λsv = ∂thΛsv and [∂t, ∂x(h3∂x·)]Λsv = ∂x(∂th
3Λsvx) ,

then by integration by parts:∣∣(Λsv, [∂t,=]Λsv
)∣∣ =

∣∣(∂thΛsv,Λsv
)

+
ε

3

(
∂th

3Λsvx,Λ
svx
)∣∣ ≤ εC(|∂tζ|∞, Es(U))Es(U)2.

Finally, combining the above estimates in addition to that fact that Hs(R) is continuously embedded in
W 1,∞(R), it holds that:

1

2
e
√
ελt∂t(e

−
√
ελtEs(U)2) ≤

√
ε
(
C(h−1min, E

s(U))− λ
)
Es(U)2.

Taking λ = λT large enough (how large depending on sup
t∈[0, T√

ε
]

C(h−1min, E
s(U)) such that the right hand side

of the inequality above is negative for all t ∈ [0, T√
ε
], then it holds that:

∀ t ∈
[
0,

T√
ε

]
,

1

2
e
√
ελt∂t

(
e−
√
ελtEs(U)2

)
≤ 0.
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Thanks to Grönwall’s inequality so that it holds

∀ t ∈
[
0,

T√
ε

]
, Es

(
U(t)

)
≤
(
e
√
ελT t

)1/2
Es(U0) ,

and hence the desired energy estimate is finally obtained. �

3.4. Main results.

Well-posedness of the extended Boussinesq system. Theorem 1 represents the well-posedness of the extended
Boussinesq system (2.2) which holds in Xs = Hs+2(R)×Hs+2(R) as soon as s > 3/2 on a time interval of
size 1/

√
ε.

Theorem 1 (Local existence). Suppose that U0 = (ζ0, v0) ∈ Xs satisfying (3.1) for any t0 >
1
2 , s ≥ t0 + 1.

Then there exists a maximal time Tmax = T (|U0|Xs) > 0 and a unique solution U = (ζ, v)T ∈ Xs
Tmax

to the
extended Boussinesq system (2.2) with initial condition (ζ0, v0) such that the non-vanishing depth condition
(3.1) is satisfied for any t ∈ [0, Tmax√

ε
). In particular if Tmax <∞ one has

|U(t, ·)|Xs −→∞ as t −→ Tmax√
ε
, or inf

R
h(t, ·) = inf

R
1 + εζ(t, ·) −→ 0 as t −→ Tmax√

ε
.

Proof. The proof follows same line as [25, Theorem 1] using the energy estimate proved in Proposition 2.
This is due to the fact that in [25] a most general case is considered (i.e. the extended Green-Naghdi
equations). Remark that the proof itself is an adaptation of the proof of the well-posedness of hyperbolic
systems (see [1] for general details). �

A stability property. Theorem 1 is complemented by the following result that shows the stability of the
solution with respect to perturbations, which is very useful for the justification of asymptotic approximations
of the exact solution. (The solution U = (ζ, v)T and time Tmax that appear in the statement below are those
furnished by Theorem 1).

Theorem 2 (Stability). Suppose that the assumption of Theorem 1 is satisfied and moreover assume that

there exists Ũ = (ζ̃, ṽ)T ∈ C
(

[0, Tmax√
ε

], Xs+1(R)
)

such that ∂tζ̃ + ∂x(h̃ṽ) = f1,

=̃
(
∂tṽ + εṽṽx

)
+ h̃∂xζ̃ − ε2ζ̃xxx +

2

45
ε2ζ̃xxxxx + ε2ζ̃xxx + ε2Q[Ũ ]ṽx = f2 ,

with h̃(t, x) = 1 + εζ̃(t, x) and F̃ = (f1, f2)T ∈ L∞
(

[0, Tmax√
ε

], Xs(R)
)

. Then for all t ∈ [0, Tmax√
ε

], the error

U = U − Ũ = (ζ, v)T − (ζ̃, ṽ)T with respect to U given by Theorem 1 satisfies for all 0 ≤ t ≤ Tmax/
√
ε the

following inequality ∣∣U∣∣
L∞([0,t],Xs(R)) ≤

√
εC̃
(∣∣U|t=0

∣∣
Xs(R) + t

∣∣F̃ ∣∣
L∞([0,t],Xs(R))

)
,

where the constant C̃ is depending on |U |L∞([0,Tmax/
√
ε],Xs(R)) and |Ũ |L∞([0,Tmax/

√
ε],Xs+1(R)).

Proof. The proof consists on the evaluation of 1
2
d
dt

∣∣U∣∣2
Xs(R). Knowing that fact, by subtracting the equations

satisfied by U = (ζ, v)T and Ũ = (ζ̃, ṽ)T , we obtain:{
∂tU +A[U ]∂xU = −

(
A[U ]−A[Ũ ]

)
∂xŨ − F̃ ,

U|t=0
= U0 − Ũ0 .

Consequently, a similar energy estimate evaluation as in Proposition 2 yields the desired result. �
13



Convergence. As a conclusion, the following convergence result states that the solutions of the full Euler
system, remain close to the ones of the system we are considering, namely system (2.2), with a better
precision as ε3 is smaller.

Theorem 3 (Convergence). Let ε ∈ (0, 1), s > 3/2, and U0 = (ζ0, ψ0)T ∈ Hs+N (R)2 satisfying condition
(3.1) where N is large enough, uniformly with respect to ε ∈ (0, 1). Moreover, assume Ueuler = (ζ, ψ)T to be
a unique solution to the full Euler system (1.3) that satisfies the assumption of Proposition 1. Then there
exists C, T > 0, independent of ε, such that

• Our new model (2.2) admits a unique solution UxB = (ζxB , vxB)T , defined on [0, T√
ε
] with corre-

sponding initial data (ζ0, v0)T ;
• The error estimate below holds, at any time 0 ≤ t ≤ T/

√
ε,

|(ζ, v)− (ζxB , vxB)|L∞([0,t];Xs) ≤ Cε3t . ε5/2 .

Proof. The first point is provided by the local existence result Theorem 1. Thanks to Proposition 1, then
the solution of the water wave equations (ζ, v)T solve our model (2.2) up to a residual R of order ε3. The
error estimation then follows from the stability Theorem 2. �

4. Solitary Waves

4.1. Explicit Solitary Wave Solution of the extended Boussinesq system. Solitary waves were
initially discovered in shallow water by J.S. Russell during his experiments to design a more dynamic canal
boat [12]. Many partial differential equations have been derived in the literature to model the solitary wave
observed by Russell. Such models are commonly known as the Korteweg-de Vries (KdV) scalar equation
for a unidirectional flow or the coupled Boussinesq and Green-Naghdi evolution equations. These famous
nonlinear and dispersive models describe the shallow water waves and admit explicit families of solitary wave
solutions [4, 33, 26, 39, 8]. The explicit solitary solutions of different nonlinear PDE’s can be calculated using
many methods. One of these methods is replacing the partial differential equation by an ordinary one (ODE)
and thus one can look for explicit solutions in terms of particular functions. This replacement can be done
by setting a reference traveling wave and hence one look for traveling-wave solutions. In this section, we seek
the explicit solution of traveling waves for the extended Boussinesq system. Let us recall that the extended
Boussinesq system that we are considering can be written as:

(4.1)

{
∂tζ + ∂x(hv) = 0 ,

(1 + εT [ζ] + ε2T)∂tv + ∂xζ + εv∂xv + ε2Qv = O(ε3) ,

where h(t, x) = 1 + εζ(t, x) and denote by
(4.2)

T [ζ]w = − 1

3h
∂x
(
(1+3εζ)∂xw

)
= −1

3
(1−εζ)∂x

(
(1+3εζ)∂xw

)
+O(ε3), Tw = − 1

45
∂4xw, Qv = −1

3
∂x
(
vvxx−v2x

)
.

In order to find solitary wave solutions of the extended Boussinesq system (4.1), we seek solutions in the
form of the traveling wave ζ(t, x) = ζc(x− ct) and v(t, x) = vc(x− ct) with lim

|x|→∞
|(ζc, vc)|(x) = 0 where the

constant c ∈ R is the velocity of the solitary wave. Plugging the above Ansatz into eq. (4.1) yields:

(4.3)

 −cζ
′

c + (hcvc)
′ = 0 ,

−cv
′

c +
εc

3

(
(1 + 3εζc)v

′′

c

)′
− ε2c

3
ζcv

′′′

c +
ε2c

45
v(5)c + ζ

′

c +
ε

2
(v2c )′ =

ε2

3

(
vcv

′′

c − (v
′

c)
2
)′

.

We may now integrate and, using the vanishing condition at infinity to set the integration constant, we
deduce from the first equation:

(4.4) − cζc + hcvc = 0 .

Using (4.4), one can deduce that v
′′′

c = cζ
′′′

c +O(ε).

One can also check the following identity ζcζ
′′′

c = (ζcζ
′′

c )′ − 1

2

(
(ζ
′

c)
2
)′

is true. Using the latter identities

into the second equation of (4.3), we may now integrate and, using the vanishing condition at infinity to set
14



the integration constant one can deduce:

(4.5) − cvc +
ε

2
v2c + ζc = −εc

3
v
′′

c − ε2cζcv
′′

c +
ε2c2

3
ζcζ
′′

c −
ε2c2

6
(ζ
′

c)
2 − ε2c

45
v(4)c +

ε2

3
vcv

′′

c −
ε2

3
(v
′

c)
2.

One can deduce from (4.4) the following identity:

(4.6) vc = cζc − εcζ2c +O(ε2) .

Using (4.4) into the l.h.s of (4.5) and (4.6) into the r.h.s of (4.5), withdrawing all terms of order O(ε3) one
can deduce the following equation:

(4.7) ζc −
c2ζc

2(1 + εζc)2
(2 + εζc) = −εc

2

3
ζ
′′

c +
ε2c2

6
(ζ
′

c)
2 +

ε2c2

3
ζcζ
′′

c −
ε2c2

45
ζ(4)c .

Multiplying (4.7) by ζ
′

c and integrating once again yields,

(4.8)
ζ2c
2

(
1− c2

1 + εζc

)
=
εc2

6
(εζc − 1)(ζ

′

c)
2 − ε2c2

45
ζ
′′′

c ζ
′

c +
ε2c2

90
(ζ
′′

c )2.

The equation (4.8) is a third order non linear ordinary differential equation. When dropping the ε2 terms on
the r.h.s of (4.8), one gets the analogous ODE for the GN equation which exhibits the analytical solitary wave
solution defined in (4.9). A careful examination reveals that the equation (4.8) does not admit an explicit
solution in any appropriate method. In [30], the author studied solitary wave solutions of the Hamiltonian
formulation of the extended Green-Naghdi equations by performing a singular perturbation analysis. In
the latter paper, Matsuno mentioned that his inspection also reveals that the obtained third-order nonlinear
differential equation would not have analytical solutions. The aim was to find an exact solitary wave solution
of equation (4.8). However, analytical approaches might not be applied to many nonlinear problems. The
explicit solution of the extended Boussniesq (4.1) system remain an open problem. An alternative approach
is to consider the numerical solution of the equation (4.8). Therefore, we validate the asymptotic extended
Boussinesq model (4.1) by comparing its travelling wave solution (computed numerically) with corresponding
solution to the full Euler equations, computed using fast and accurate algorithms [14, 41].

4.2. Numerical Solitary Wave Solution of the extended Boussinesq system. In the previous section,
the emphasis was on finding an analytic solution for the extended Boussinesq system of equations of the
form of a solitary wave. However, many differential equations, especially nonlinear ones of high order, does
not admit exact explicit solutions. Instead, numerical solutions must be considered as an alternative way
of dealing with these equations. To this end we compute the solution of (4.8) numerically by employing
the Matlab solver ode45. We compare the obtained solutions with the solutions of water-waves equations.
The latter is computed using the Matlab script of Clamond and Dutykh [9] where they introduce a fast and
precise approach for computing solitary waves solution. We compute the solitary waves for our model with
three values of velocity, namely c = 1.025, c = 1.01 and c = 1.002. In fact, the Matlab script in [9] offer
fast and accurate results but limited to realtively small velocities. We compare the obtained solutions with
the ones corresponding to the full Euler system (numerically computed), the original Green-Naghdi system
(ζGN ), the Boussinesq system (ζB) and the KdV equation (ζKdV ). The explicit solution of the original
Green-Naghi model has been initially obtained by Serre in [39] and later on by Su and Gardner [40]:

(4.9) εζGN (x) = (c2 − 1) sech2
(√3(c2 − 1)

4c2ε
x
)

= εc2ζKdV (x) = εc2ζB(x) .

The waves are rescaled so that the Korteweg-de Vries and Boussinesq solutions do not depend on c. Con-
sistently, we set ε = 1. By the convergence theorem, the above solutions provide good approximations of
the traveling waves of the exact water-waves equations, when c− 1 ≈ ε� 1, that is in the weakly nonlinear
regime.

In fact, in figure 2, one can see clearly as c− 1→ 0 and after re-scaling, the solitary waves tend towards
the KdV solution (ζKdV ). Moreover, when zooming in, one can see that the the full Euler system (water-
waves) solution is in better agreement with the solution of the extended Boussinesq model rather than the
Green-Naghdi one.
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(a) Re-sized waves, c = 1.025, 1.01, 1.002 (b) Zoom in

Figure 2. Comparison of the solitary waves solutions.

In figure 3, we plot in a log-log scale the normalized l2-norm of the difference between the solitary wave
solutions of the approximate models and the water-waves solution. The error is computed for different values
of c. The extended Bossinesq model exhibit a better convergence rate (quadratic) when compared to the
original Green-Naghdi model (linear). This highlight the fact that extended Boussinesq model have a better
approximate solution.

Figure 3. Errors as a function of c− 1 (log-log plot).
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5. Explicit solution with correctors of order O(ε3) for the extended Boussinesq
equations

Another approach of dealing with nonlinear PDE’s when looking for analytical exact solution is finding
instead an explicit solution with correctors. Explicit solutions with correctors for asymptotic water waves
models have been obtained in [21, 18]. Actually, Hs-consistent solutions are obtained to the models in
the variable topography case using the analytic solution of the model in the flat topography configuration.
In what follows, we find an explicit solution with correctors of order O(ε3) for the extended Boussinesq
model (4.1) and validate the result numerically.

We start by defining an Hs-consistent solution or in other words explicit solution with correctors of order
O(ε3).

Definition 2. A family (ζ, v) is Hs-consistent on [0, T/
√
ε] for the extended Boussinesq equations (4.1), if

(5.1)

{
∂tζ + ∂x(hv) = ε3r1 ,

(1 + εT [h] + ε2T)∂tv + ∂xζ + εv∂xv + ε2Qv = ε3r2 ,

with (r1, r2) bounded in
(
L∞
(
[0, T√

ε
], Hs(R)

))2
.

The standard Boussinesq system can be easily obtained form the extended Boussinesq system (4.1) by
dropping all terms of order O(ε2). Thus the standard Boussinesq system can be written as:

(5.2)

{
∂tζ + ∂x(hv) = 0 ,

∂tv −
ε

3
∂2x∂tv + ∂xζ + εv∂xv = O(ε2) .

5.1. Explicit solution of the standard Boussinesq system (5.2). The standard Boussinesq system
enjoys a well known explicit solution of solitary traveling wave (ζ1, v1) of the form:

(5.3)


ζ1(t, x) = α sech2

(
k (x− ct)

)
,

v1(t, x) =
cζ1(t, x)

1 + εζ1(t, x)
,

where k =

√
3α

4
and c =

√
1

1− αε
and α is an arbitrary chosen constant. This explicit solitary wave was

already introduced in equation (4.9) in the previous section 4.2. As shown in figure 2, this solution is in
good agreement with the water waves solutions in the weakly nonlinear regime.

Theorem 4. Let (ζ1, v1) be a solution of the standard Boussinesq system (5.2) and (ζ2, v2) solution of the
linear equations below:

(5.4)

{
∂tζ2 + ∂xv2 = 0 ,

∂tv2 + ∂xζ2 = f(ζ1, v1) ,

with

(5.5) f(ζ1, v1) = ∂xζ1∂x∂tv1 +
2

3
ζ1∂

2
x∂tv1 +

1

45
∂4x∂tv1 +

1

3
∂x
(
v1(v1)xx − (v1)2x

)
,

then (ζ, v) = (ζ1, v1) + ε2(ζ2, v2) is Hs-consistent with the extended Boussinesq system (4.1).

Proof. First, we would like to mention that we denote by O(ε) any family of functions (fε)0<ε<1 such that

(
1

ε
fε)0<ε<1 remains bounded in L∞

(
[0, T√

ε
], Hr(R)

)
, for possibly different values of r. We may now proceed

in proving the stated result.
If ζ and v such that (ζ, v) = (ζ1, v1) + ε2(ζ2, v2) solve the first equation of (4.1) up to O(ε3) terms, then

∂tζ1 + ∂x((1 + εζ1)v1) + ε2∂tζ2 + ε2∂xv2 = O(ε3).

The first equation of (4.1) is satisfied up to O(ε3) terms if and only if:

ε2∂tζ2 + ε2∂xv2 = O(ε3).
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Therefore one can take:
∂tζ2 + ∂xv2 = 0.

Now, let us recall that the second equation of (4.1) can be written as:

∂tv −
ε

3
∂2x∂tv − ε2∂xζ∂x∂tv −

2ε2

3
ζ∂2x∂tv −

ε2

45
∂4x∂tv + ∂xζ + εv∂xv −

ε2

3
∂x
(
vvxx − v2x

)
= O(ε3).

We seek (ζ2, v2) such that if (ζ, v) = (ζ1, v1) + ε2(ζ2, v2) and (ζ1, v1) solve the standard Boussinesq equa-
tions (5.2), then the second equation of (4.1) is satisfied up to O(ε3) terms if and only if:

ε2∂tv2 + ε2∂xζ2 = ε2f(ζ1, v1),

with f(ζ1, v1) = ∂xζ1∂x∂tv1 +
2

3
ζ1∂

2
x∂tv1 +

1

45
∂4x∂tv1 +

1

3
∂x
(
v1(v1)xx − (v1)2x

)
. Therefore, this yields

∂tv2 + ∂xζ2 = f(ζ1, v1).

Hence, the result is directly obtained given the conditions on ζ2 and v2 in the theorem statement. �

5.2. Analytic solution for the linear system (5.4). In this section, we find the analytic solution for the
two transport equations of system (5.4). Lets consider first the initial value problem of (5.4):

(5.6)


∂tζ2 + ∂xv2 = 0 , if x ∈ R, t > 0,

∂tv2 + ∂xζ2 = f(t, x), if x ∈ R, t > 0,
ζ2(0, x) = ζ02 (x), v2(0, x) = v02(x) if x ∈ R,

where ζ02 and v02 are both given in C∞(R). One can equivalently check the following:

(5.7)


∂t(ζ2 + v2) + ∂x(ζ2 + v2) = f(t, x) , if x ∈ R, t > 0,

∂t(ζ2 − v2)− ∂x(ζ2 − v2) = −f(t, x), if x ∈ R, t > 0,
ζ2(0, x) = ζ02 (x), v2(0, x) = v02(x) if x ∈ R,

The analytical solution of both transport equations of system (5.7) are:

ζ2 + v2 = (ζ02 + v02)(x− t) +

∫ t

0

f(s, x− t+ s)ds,

and

ζ2 − v2 = (ζ02 − v02)(x+ t)−
∫ t

0

f(s, x+ t− s)ds.

Thus, one can easily deduce that the analytic solutions of system (5.6) are given by

(5.8) ζ2 =
1

2

[
(ζ02 + v02)(x− t) + (ζ02 − v02)(x+ t) +

∫ t

0

f(s, x− t+ s)ds−
∫ t

0

f(s, x+ t− s)ds
]
,

and

(5.9) v2 =
1

2

[
(ζ02 + v02)(x− t)− (ζ02 − v02)(x+ t) +

∫ t

0

f(s, x− t+ s)ds+

∫ t

0

f(s, x+ t− s)ds
]
.

5.3. Explicit solution with correctors for the system of equations (4.1). In what follows, we prove
that the extended Boussinesq system (4.1) enjoys an explicit solution with correctors of order O(ε3).

Theorem 5. Let (ζ1, v1) given by the expressions in (5.3) and f(t, x) as defined in (5.5). Lets also consider
the initial condition (ζ0, v0) = (ζ1(0, x), v1(0, x))+ε2(ζ02 , v

0
2) where ζ02 and v02 are both given in C∞(R). Then,

the family (ζ, v) with

(5.10) ζ = ζ1 +
ε2

2

[
(ζ02 + v02)(x− t) + (ζ02 − v02)(x+ t) +

∫ t

0

f(s, x− t+ s)ds−
∫ t

0

f(s, x+ t− s)ds
]
,

and

(5.11) v = v1 +
ε2

2

[
(ζ02 + v02)(x− t)− (ζ02 − v02)(x+ t) +

∫ t

0

f(s, x− t+ s)ds+

∫ t

0

f(s, x+ t− s)ds
]
,

is an explicit solution with correctors of order O(ε3) on [0, T√
ε
] for the extended Boussinesq system (4.1).
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Proof. Theorem 4, gives theHs consistency result of (ζ, v) = (ζ1, v1)+ε2(ζ2, v2) with the extended Boussinesq
system (4.1), where (ζ2, u2) as given in (5.8) and (5.9) is a solution of the linear system (5.4). Hence the
result can be obtained easily. �

6. Numerical validation

In this section, we numerically validate the result of Theorem 5. In fact, we consider the equations given
by system (4.1) and we compute explicitly the solutions given by (5.10) and (5.11). Then, we compute the
residues for both equations after substituting (5.10) and (5.11) correspondingly. First we have to set the

initial conditions ζ02 = v02 = exp
(
−
(3πx

10

)2)
. We also choose the constant α = 1. The residues R1(ε) and

R2(ε) of the first and second equation of the system (4.1) respectively, are defined as follow:

(6.1)

{
Rp1(ε) = ‖∂tζ + ∂x(hv)‖p ,
Rp2(ε) = ‖(1 + εT [h] + ε2T)∂tv + ∂xζ + εv∂xv + ε2Qv‖p .

where p ∈ {2,∞}. The residues Rp1(ε) and Rp2(ε) for p = 1 and p =∞ are computed for several values of ε,
namely ε = 10−1, 10−2, 10−3, 10−4 and 10−5, at time t = 1. The results are summarized in Table 1 and
Figures 4 and 5 where we plot in a log-log scale the residues Rp1 and Rp2 for p = 1 and p =∞ in terms of ε.

ε R2
1(ε) R2

2(ε) ε R∞1 (ε) R∞2 (ε)

1E-1 2.70E-02 3.80E-03 1E-1 4.30E-03 4.81E-04
1E-2 2.58E-05 2.96E-06 1E-2 4.17E-06 4.10E-07
1E-3 2.57E-08 2.89E-09 1E-3 4.16E-09 4.12E-10
1E-4 2.57E-11 2.88E-12 1E-4 4.16E-12 4.13E-13
1E-5 2.58E-14 2.90E-15 1E-5 4.33E-15 5.22E-16

Table 1. The residues R1(ε) and R2(ε) for p = 2 (left) and p =∞ (right)

Figure 4. The residues R∞1 and R∞2 as a function of ε.
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Figure 5. The residues R∞1 and R∞2 as a function of ε.

One clearly sees that the curves of the residues for both p = 1 and p =∞ are both parallel to ε3. This shows
that the residues convergence rate is O(ε3), which is in total agreement with our theoretical result.
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