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chemistry in the Lake Victoria catchment (East Africa)

Adama Bakayoko'!, Corinne Galy-Lacaux?, Véronique Yoboué!, Jonathan E. Hickman®, Frank
Roux?, Eric Gardrat?, Frédéric Julien*, Claire Delon?

! Laboratoire des Sciences de la Matiére, de I'Environnement et de 1'Energie Solaite. (LASMES),
Université Félix Houphouét Boigny, Abidjan, Cote d’Ivoire

2 Laboratoire d’Aérologie (Laero), Université de Toulouse, CNRS, UPS, France

3 NASA Goddard Institute for Space Studies, New York, NY USA

4 Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INP-ENSAT,
France ~

E-mail: bakayokoadma@gmail.com and corinne.galy-lacaux(@aero.obs#mip.fr

Abstract

This work provides a complete chemical characterization ofsains collected in the tropical rural site of
Mbita (Kenya) on the shores of Lake Victoria (annual rainfall 1259.3 mm). We present a wet nitrogen
deposition budget including inorganic and organic dissolyed nitrogen in relation with atmospheric
sources of gases and particles, precipitation rate and air mass transport. A unique two-year monitoring
data set (2017-2019), providing 183 rain samples was collected and analyzed according to
international standards (WMO/GAW). Considering that precipitation represents the largest contributor
of water to the Lake Victoria (80%),.this study gives new insights in the seasonality of nutrients wet

deposition inputs in the unique natural resource represented by Lake Victoria and its catchment.

Four main contributions to the chem{al composition of precipitation, were identified: (1) a 28%
terrigenous contribution related to crustaldand biomass sources (2) a 14% marine contribution related
to Indian ocean air masses intrusiony(3) a 15% organic contribution due to volatile organic carbon
emissions from biomass burning and vegetation and (4) a predominant nitrogenous contribution of
39% due to livestock and fertilizers, biomass burning and neighboring agricultural fires. Ammonium
and nitrate volumesweighed:méan concentrations are 36.75 and 8.88 peq L, respectively. Rain in
Mbita is alkaline (pH=5.8) highlighting neutralization by heterogeneous chemistry. Total nitrogen wet
deposition is 8.54 kgN ha™! yr'!, 58,760 tN yr! for the entire lake, with 26% attributed to dissolved
organic nitrogen. A total atmospheric deposition of 15 kgN ha! yr'! is estimated taking into account
dry deposition estimate from literature, showing that the Lake Victoria ecosystem is exposed to

eutrophication:#/An extensive and regular monitoring of wet and dry nitrogen deposition is highly
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2

2 1 recommended both in-shore and off-shore to help improving the efficiency of nitrogen use in
5 2 agricultural areas and reduce nitrogen losses around Lake Victoria.

6

; 3 Keywords: Precipitation chemistry, wet deposition, nitrogen wet deposition budget, Lake Victoria

9 4  Dbasin, Kenya.
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15 6 1. Introduction

16 .. . . . : .
17 7 Determining atmospheric budgets of key chemical compounds is crucial to understand the functioning
18

8 of ecosystems and biogeochemical cycles. In these budgets, the importange of the chemical
209 composition of wet deposition as a source of nutrients, e.g, nitrogen (N), sulphur (S) or carbon (C) is
2210  widely recognized (Duce et al 2009), and shows a high spatial andstémporal variation. This
541  composition reflects various interacting physical and chemical ‘mechanisms in the atmosphere
235 including biogenic and anthropogenic sources of pollutants, atmespheric transport and chemical
2713 transformation processes as well as removal processes (Galy-Lacaux et a/ 2009). The comprehensive
2914 global assessment on precipitation chemistry and biogeochemically?mportant trace species deposition
15 by Vet et al (2014) emphasized that the African continent<is under-sampled and lacks quality

326 controlled measurements.

3517 80% of African countries are affected by soil nitrogen deficiency because of inadequate use of
378  fertilizers, and insufficient quantity and.poor quality of organic inputs (Masso et a/ 2017). In Africa it
389 s expected that nitrogen (N) deposition to ecosystems will increase by 50% until 2100 (Lamarque et
420  al 2013), especially through wet depoiition, due to increasing demography and changes in climate,

421 land uses and atmospheric concentrations. The impact of nitrogen management and nitrogen

43 e . . . .
422  deposition in Africa has become a majorsocietal challenge related to food security, global change and

2223 biodiversity loss (Zhang et.al 2020)..Sub-Saharan Africa, considered as a “too little” N area, would

4724  benefit from a reduction of reactive N pollution to help limited available N sources to go further in
48
4925  supporting food production (Sutton ef al 2019). The conversion of atmospheric N compounds back to

§?26 N atmospheric deposition is an important determinant of N availability for ecosystems, but currently,

g;ﬂ experimental studies conducted on the African continent remain scarce and scattered.

54
528  Lake Victoria is thessecond largest freshwater lake in the world with a lake surface area of 68,800 km?

56
529  and a total basin/area of 195,000 km?. Precipitation is the largest contributor of water (80%) to the

g ;%0 lake (Sutcliffe and Petersen 2007, Tamatamah et al 2005), leading some authors to describe the lake

60
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as “atmosphere controlled” (Kizza et al 2009, Tate et al 2004). The Lake is a great socio-economic
resource of the East African Community partner states for fisheries, tourism, transport, water, and
energy among others, and a core to East Africa regional integration and development (Nyilitya et al
2020). Anthropogenic inputs of N to Lake Victoria through runoff or waste management, were
described in several studies (Bootsma and Hecky 1993, Kayombo and Jorgensen 20063 Masso et al
2017, Nyilitya et al 2020, Zhou et al 2014), where the authors also point out that N wet deposition is
missing in the budget estimation, due to the lack of available measurements. Indeed, very few studies
on precipitation chemistry and wet deposition of nutrients in Great Lakes_ exist (luakes Victoria,
Malawi, Tanganyika, Kivu) and give an incomplete view of the chemical content of rain (Bootsma et
al 1996, Gao et al 2018, Vuai et al 2013), highlighting the necessity to accurately quantify this input.
Assessing wet deposition fluxes and their seasonal variability to LaketVictoria has become important
for understanding the bioavailability of nutrients in this ecosystem, Furthermore, assessing the organic
part of nitrogen wet deposition with accuracy is a major challenge, while‘'many authors report very

few existing data in Africa on this topic (Cape et al 2011, Cornell 2011),

This study is part of the East African demonstration area of the Global Environmental Facility — United
Nations Environmental Program (GEF-UNEP) International Nitrogen Management System (INMS)
project, and of the French program Cycle de I’ Azote entre la Surface et I’Atmosphere en afriQUE
(CASAQUE). This work is based on a two yeatr.monitoring period (May 2017 — April 2019) of wet
deposition on the shore of the Lake Victoria to assess the chemical composition of rain in the area, as
well as the sources of chemical compound emissions influencing the precipitation chemistry content.
We include a particular focus on the N contribution (inorganic and organic) in rain. The climatic and
hydrological projections to the lakesVietoria basin show an intensification of future annual rainfall by
25% in the eastern and 5-10% in the'western part of the basin (Olaka et al 2019). In this context, this
study will provide (1) a unique quantification of important biogeochemically species wet deposition
and (2) a comprehensive atmospheric wet deposition nitrogen budget to the Lake Victoria and its

catchment.

2. Sampling site and methods

2.1. Site description

The study site is located at the Centre of Insect Physiology and Ecology (ICIPE) in Mbita (Fig. 1).
Mbita is/a tropical agricultural area along the shores of Lake Victoria in East Africa. It is located near

the Southwestern border of Kenya and Uganda at the latitude and longitude of 0.44°S, 34.18°E
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respectively and 1125 m above mean sea level - MSL (Fig. 1a). Mbita is located at 71 km as the crow
flies from the third largest city in Kenya, Kisumu City with a population of 409,928 inhabitants (KNBS
2010). The Homa Bay county is divided into eight sub counties including Mbita as one sub county.
The total population of the Homa Bay county is 1 131 950 inhabitants with a low density of 307
inhabitants per km2 (ADP 2019). Mbita sub county, with 125 000 inhabitants, represents the second
lowest contribution of the Homa Bay total population in 2019. Two main relief regions are found, the
lakeshore lowlands and the upland plateau. The upland plateau starts at 1219 m above sealevel and
has an undulating surface resulting from erosion (Fig. 1b). The Kondera naturalforest borders Mbita.
Mbita is part of the lower midland and its surrounding areas are influenced by biomass burning, mixed
and anthropogenic sources, and dust aerosols (Boiyo ef a/ 2018b, 2017b, Makokha and Angeyo 2013).
In addition to local sources, the long-range transport of aerosols towards the site could significantly
influence the aerosol load (Boiyo ef al 2017a, Gatebe et al 2001). Agriculture plays a crucial role to
food and nutrition security in Homa bay county. Most of the ineeme of Homa bay county is derived
from crop, livestock and fisheries activities but 50% of the populationiis food insecure (GoK 2013).
Mbita is charasteristic of a mixed crop site with maize; sorghum, beans, millet and agroforestry
systems (GoK 2014). Large scale farms are found in Mbita sub cour?cy where large stocks of livestock
are kept (zebu cattle, red massai sheep, goat and chicken) (MoALF 2016). In Mbita and on the borders
of Lake Victoria, the density of cattle and small ruminants zepresents more than 100 cattle per square

kilometer (FAO 2005).
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Figure 1: (a) Map of the study area on the African Continent (shown top left in the insert). Location of the site of
Mbita (red circle): Blue labeling represents the major African lakes and ocean. (b) Topographic map within the study
domain. (c¢) Mean precipitation at Mbita according to seasonal climatology for the period 1985-2019 with March
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April May (MAM), June July August (JJA), September October November (SON) and December January February
(DJF). (d) Photo of the Mbita measurement site located at the ICIPE center.

2.2 Climatology

A long term database of key meteorological parameters is available at ICIPE center for the period
1985 - 2019. It includes ambiant air temperature for the period 1985-2013, air relative humidity for
the period 1999-2013 and pluviometry for the period 1985-2019, with a gap in 1997 and 1998 (Fig.
2a) (for more details, see supplementary material (Sup. Mat.) section meteorological parameters).
Mbita is characterized by a low annual variability of ambient air temperature for the period 1985-2013,
with a mean annual value of 24.33 + 0.80 °C (Fig. 2a) and a mean annual relative humidity of 80.74
+3.96%. Monthly means of relative humidity do not present any distinct/seasonal ¢ycle and vary from
76.46 £13.30 % during the dry season in August to 83.09 £4.83 % in the.wet season in May (Fig. 2a).
Wind speed data show a relatively low mean annual value with»2.03 + 0.14 m.s"!. Monthly mean
calculations show higher values in the main wet season with a'maximumrin May (2.30 £ 0.23 m s™!)
and a minimum in the dry season in February (1.83 £ 0.09 mis*). These tesults are similar to the ones

presented in other studies in East Africa (Boiyo ez al 2017b, Ogwang ez al 2015, Yang et al 2015).
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The mean annual'pluviometry at Mbita is 1259.3 + 334.6 mm for the period 1985-2019. The rainfall

patterns 1 dy area present a bimodal distribution with a long and a short rainy season from
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March to May and October to December respectively. Standard deviations indicate that precipitation
can be highly variable. The atmospheric circulation caused by the presence of Lake Victoria (breeze
effects) as well as the convergence zone created by the steep topography of the site (highlands)
influences the spatial and temporal variability of the precipitation regime (Okech et al/ 2018).

Mbita receives generally a maximum of rain in April (256.3 £148.6 mm) and December(120.4 £51.6
mm), and a minimum in July (41.6 £35.3 mm) and February (42.2 £29.0 mm). Three:main periods of
rainfall variability are highlighted from the Standardized Precipitation Index (SPI) analysis (sece
definition in the Sup. Mat.) : (I) a period in deficit from 1985 to 1992, (II) aperiodiin excess from
1999 to 2013 and (III) a period in deficit from 2015 to 2019. The year 2008 presents ‘@ maximum SPI
close to 2 and corresponds to the rainiest year (1906 mm) (Fig.2b). The driest yearwith an index of -

1.7 is observed in 1990 with 655.7 mm. Details may be found in the sapplementary material.

2.3. Sample collection and analytical procedures

Rainwater samples at Mbita were collected using an automati¢ precipitation collector designed for the
INDAAF (International Network to study Deposition' and Atme@spheric composition in AFrica)
network (see details Sup. Mat. section samplescollection protocol). At the site, a local operator
collected each rain event in 50 mL greiner tube immediately stored at ICIPE center in a deep freezer
(-18°C). During the day, samples were collected just after each rainfall and when rain occurred at
night, sampling wass done between 6 and 8 AM. After collection, samples were sent back for analysis
to the Laboratoire d’Aérologie (Laero, Toulouse, France) in the strict respect of the cold chain.

From May 2017 to April 2019, the total rainfall amount was 1942 mm and the collected rain samples
represent a total of 1814 mm with 189 \samples. Table 1 presents the annual total precipitation (Pt) in
mm, the percent total precipitation (%TP) and the interannual variability as a percentage relative to
the mean annual rainfall for/the 1985-2019 period. As defined by (WMO 2004), %TP is the ratio
between the annual precipitation (Pt),and the collected precipitation (Pc). The annual and quarterly

Percent Coverage Length (%PCL) is also indicated in Table 1.
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Table 1: Rainwater collection at Mbita (2017-2019): Annual Total Precipitation (Pt, mm), Interannual
variability (%), Collected precipitation (Pc, mm) and Number of collected rain event (Nc), Percent total
precipitation (%TP), Annual percent coverage length (%PCL) and in brackets: %PCL for each quarter (0 and 1
means 0% and 100% respectively).

oNOYTULT D WN =
P WN -

9 Year 2017 2018 2019
1 [Pt(mm 930.95 1070.7 1004 :
E Inter annual Variability (%) -26% -15% -20%

e [P (mm)and Ne 592.25 (70) 10042 (94) 2075@5)
o % TP (%) 64 94 20 0
s | % PCL Annually 75 100 25 & "
;(1) % (quarterly) ©0111) (1111) ooy

293w %TP only concerns four months of collection (January-April)

244 According to the quarterly %PCL, data from April to Decembetin2017:and from January to April in
2615 2019 will only be used to calculate monthly averages of Volume Weighed Mean (VWM) and Wet
2816  Deposition (WD). Annual VWM and WD for Mbita will be compgted only for year 2018 where the
30t7  %IP 15 94% and the PCL 100% (Table 1). In reference tothe WMO international standards, we assume
318 the precipitation collection at Mbita in 2018 to be representative of the studied period according to the

3319  parameters calculated in Table 1.

3?1 2.4. Analytical methods and quality procedure

382  The chemical analyses of the samplesswere,performed at the Chemical Laboratory of the Laero, in
4®3  Toulouse for the major inorganic (Na®, NH4*, K¥, Mg?* Ca?*, Cl-, NOs", SO4>, NO>") and organic ions
424 (HCOO, CH3COO, C:HsCOOy, CzO}‘) using lonic Chromatography (IC) as described in Galy-
435 Lacaux and Modi (1998) and at the Laboratoire d'Ecologie fonctionnelle et environnement (Toulouse,
46  France) for TDN (For detailed procedures, see Sup. Mat.).

4727

158 2.5 Satellite data

g?z9 Observations of atmospheric . NH3 (ANNI-NNv3) from the Atmospheric Infrared Sounding

580 Interferometer(TASI)omboard the European Space Agency's Metop-A were analyzed, providing near-

53
581  daily global coverage. As for NO2, NASA's standard IMO NO> v3 tropospheric column density

géaz product,/on board NASA's Aura satellite, was used. (For more details, see Sup. Mat.).

5733
58
59
60
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2.6. Back trajectories

Back trajectories initiated at Mbita (0.44°S, 34.18°E, 1125 m MSL equivalent to 890 hPa pressure
level) were used to identify the origin of air masses, for three initial pressure levels at 850 hPa (about
1550 m altitude), 800 hPa (2065 m), and 750 hPa (2610 m), using ERA-5 climate reanalysis, from
ECMWEF (Hersbach et al 2020).

3. Results and discussion

3.1 Chemical composition of precipitation and wet deposition fluxes

The most important ions in Mbita rainwater samples in 2018 are NH4* and Ca?" (Tablé 2) representing
about 52% of total cations VWM concentrations. NO3” and HCOO" are the.mest abundant anions
representing 38% of total anions VWM concentrations. Concentration of cations follow a general
pattern NH4"> Ca?" > Na"> K*>Mg?*, while concentrations of anions follow a general pattern NOs"

>HCOO >Cl > SO4* > CH3COO" > HCO3 > C,04* > C2HsCOO: >NO, 4
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Species VWM WD
H' 4.21 0.05
Na® 6.62 1.63
NH," 36.75 5,80%
K" 5.57 2.33
Ca* 15.22 3.30
Mg** 3.01 0.40
NOy 8.88 L3
cr 7.02 2.66
SO 6.94 1.20*
NOy 0.07 0,01%*
HCOO 8.79 (8.51) (4.10)
CH;COO° 6.98 (5.71) (3.61)
C:HsCOO" 0.32 (0.25) (0.19)
C,04” 1.85(1.75) (0.82)
HCOy 5.13 3.35
pH 58+0,6°
Pt (mm) 1070.7°

N

VWM in brackets are dissolved part of organic acids and associated WD
* WD is calculated in kgN or S ha™ yr.

® Mean pH and standard deviation
€2018 annual precipitation

Table 2: Annual Volume Weighted Mean (VWM) (neq L) and Wet Deposition (WD) (kg ha™ yr') in 2018.

10
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Marine and terrigenous contribution

The CI/ Na" ratio at Mbita (1.06) is close to the seawater ratio (1.16). The high correlation between
Na® and CI' (r=0.99) associated to the Enrichment Factor (EF, defined in Sup. Mat.) of{Cln(<1)
indicates that both compounds have a marine origin (Cao et al 2009). Lower correlations are found
between Na* and K*, Mg?" and SO4* (r = 0.40, 0.29 and 0.33 respectively), suggesting a non-marine
additional origin for these species. Sea Salt Fractions (SSF, for Ca?", Mg?", K™ and SO4* represent
2%, 50%, 3% and 12% respectively.

Monthly variations of ionic VWM concentrations indicate the predominance/of NH4" for all months
(Fig. 3a), except in July, August and September (JAS) 2017 where the maring ions Na* and Cl- are the
most abundant. Indeed, during the rain event of 15 July, very high contents of Na™ (285.6 peq L") and
of CI" (293.8 peq L') were measured. The analysis of back trajectoriesiarriving in Mbita on 15 July
2017 1900 UTC (Fig. 4a, 4b) from 850 to 750 hPa pressure level§.confirms that the air is of oceanic
origin owing to a southeasterly flow which crosses the central Kenyan highlands and the Rift valley
before arriving over the Lake Victoria plateau. The duration of the trip from the Indian Ocean to Mbita
is about 3.5 days for the air observed at 800 and 750 hPa at Mbita. The same course took 5.5 days for
the 850 hPa level with strong ascent from 1500 to 4500 m-altitudes on 11 July 2017 probably in relation
with cloud formation on the high terrain slopes, leadingto rainfall at Mbita strongly loaded in Na* and
CI. From July to September 2017, 7 rain_.events of this type were registered leading to maximum
monthly VWM concentrations from 65 to 96ueq L*¥(Fig. 3a), clearly originating from the Indian
Ocean (figures not shown) whereas the majority of rain events over the period 2017-2019 show
concentrations ten times lower (1 to50 peg.L"). The analysis of monthly Aerosol Optical Depth
(AOD) measurements by Boiyo et al\(2019, 2018b) obtained at Mbita ICIPE from 2007 to 2015
confirms this marine influence with a/peak in June, July, August (JJA) associated to marine aerosols.

The authors indicate that 26% of the aeresols in Mbita originate from marine sources.

The Ca*" contribution i§" the,second most important after NH4* (Table2). Ca*" is significantly
correlated to K, Mg>*and SO4> (r = 0.80, r = 0.97, r = 0.88) emphasizing the contribution of potential
crustal (terrigenous) and biomass burning sources. Non-Sea Salt Fraction (nSSF) contributions for
Ca?", Mg?*, K*, SO4%7are 98%, 50%, 97%, 88% respectively. Monthly VWM evolution of Ca?*, Mg?*,
K+, SO4* concentrations over the period 2017-2019 exhibit two peaks in JJA and in January (Fig. 3a).
The analysisrof backrajectories arriving at Mbita on 5 January 2018 0700 UTC (Fig. 4c, 4d) from

850 to 750 hPa pressure levels confirms that the air is of continental origin owing to a northerly flow
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which crosses South Sudan and Uganda before arriving over the Lake Victoria plateau. During the
southern hemisphere summer, high temperatures at surface and in the low atmosphere south of the
Equator lead to a cross-equatorial flow which brings relatively dry and dusty air to Lake Victoria. The
airflow arriving at Mbita at 800 and 750 hPa is relatively strong as it took about 24 h to cover 500 km
at 5.8 m s”!' (Fig. 4d). The origin of air at 850 hPa is much closer as it stays very close to the surface
level. Ca?" is usually used as a reference element for continental crust and considered as a typical
lithospheric element (Ding et al 2013). The positive relationship between K, Mg?>*, SOsrand Ca**
confirms the importance of the particles coming from arid and semiarid regions in, the chemical
composition of rainfall. The North African desert areas (Sahel and Sahara) as well as the Arabian
Peninsula are probably the most important mineral aerosol sources (Jish Prakashrefal/ 2015, Kaufman
2005). Boiyo et al (2019, 2018b, 2018a) show that long-range transport of'acrosols from Saharan and
Arabian desert enhances dust atmospheric loading during the local dry season in Mbita. Due to the
partial dissolution of soil dust terrigeneous components, rain in the tropical rural site of Mbita is loaded
with dissolved calcium and carbonates (calcite). In addition to calcite, dust contains dolomite and
gypsum, which may explain the enrichment of Mg?*, S@4* and K" (Avila et al 1997). Terrigenous
contributions were also found in other African ecosystems and regio.ns of the world influenced by arid
areas (Celle-Jeanton et al 2009, Desboeufs et al 2010, Galy-Lacaux et al 2009, Kulshrestha et al 2009,
Laouali ef al 2012).
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Figure 4: Back trajectories initiated in Mbita on'the.horizontal (left side) and vertical (right side) plans (a,b):15
July 2017 1900 UTC and (c,d) 5 January 2018 0700 UTC for 850 hPa (red line), 800 hPa (green line) and 750
hPa (blue line).

In addition to this terrigenous contribution, Ca%f; Mg?*, K, SO4> particles can also be emitted to the
atmosphere by biomass burning; furthérmore, K in the sub-micron mode is considered as an
atmospheric tracer of biomass burning (Andreae et a/ 1983, de Mello 2001) and SO4* as a tracer of
ammonium sulfate aerosols (Malavelle et a/ 2019). Maximum monthly VWM K* concentrations (10
to 16 peq L), twice as(large as the annual VWM (5.57 peq L), are measured in JJA 2018. The
analysis of the mean monthly annual cycle of burned area from 2017 to 2019 using GFED4s fire
emissions shows two periods of strong influence of biomass burning in the region: one in December,
January, February (DJF) coming from the Northern part of Africa (South Sudan, Central African
Republic and Democratic Republic of Congo) and one in JJA coming from the southern part of Africa
(Tanzania and southrof the Democratic Republic of Congo) (Fig. 5). These results are consistent with

annual African biomass burning temporal dynamics described by Roberts ez a/ (2009). In Mbita, Boiyo
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et al (2018a) showed that high AOD in JJA was attributed to a combination of fine and coarse mode
particles emphasizing the combined sources of dust and biomass burning. The fine mode of biomass
burning in JJA is two times larger than in DJF, and in DJF coarse mode dust aerosols are predominant
in mixture with fine combustion aerosols. Fig. 5 confirms the influence of biomass burningsin the two
seasons with a closer vicinity of burned surface in the south of Mbita in JJA and in theaorth in DJF.
Mbita aerosols from biomass burning are related to biomass burning at the continental scale but also
to neighboring agricultural zones and industrial-vehicular emissions due to the proximity ofurbanized
regions and roads (Boiyo et al 2017b, Makokha and Angeyo 2013). The main source contributing the
most to aerosols from biomass burning are local activities linked to agriculture. Indeed, every year,
bush fires are lit by farmers in different parts of the lake basin in order to prepare the land for
cultivation (Makokha and Angeyo, 2013; Boiyo et al., 2017b). DuringdMarch, April, May (MAM) and
DJF, Mbita experiences significant local activities (land clearing and biomass burning) (Boiyo ef al
2017b). The mixed type of aerosols combining marine and tertigenous contributions, combustion
aerosols from biomass burning and anthropogenic activities is present imall seasons at Mbita, with the

highest contribution in JJA as confirmed by maximum<monthly, VWM concentrations of marine,

4
terrigenous and biomass burning tracers in JJA (Fig. 3).
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Figure 5 : Monthly mean burned area using GFED4s fire emissions from January 2017 to May 2019. The site

of Mbitalis marked as a blue star.
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1
2
3 Tropical rural site- Mbita Wet savanna- Djougou Dry savanna- Banizoumbou Dry savanna- Louis Trichardt
4 Kenya (2018) This study* Benin (2005-2009) Akpo et al. (2015) Niger (1994-2009) Laoualiet al. (2012) S, Africa (2009-2014)* Conradie et al. (2016)
5 M
arine
6 " %
7 itrogenous
8 Organic
9 = Terrigenous Q
10 = Acidity ‘
11
121
135 Figure 6: Estimation of the marine, nitrogenous, organic, acidity and terrigenous contributionsito the rain
1: 3 chemical content measured at the tropical rural site of Mbita (Kenya) (*terrigenous in this, study represents a
4  mixture terrigenous/biomass burning as for Louis Trichardt) compared to two West and Central African sites:
16 . . . . . . .
17 5 awet savanna in Benin (Djougou) and a dry savanna in Niger (Banizoumbou), and to a south African remote
18 6 dry savanna (Louis Trichardt).
197 ~
208
;; 9  The annual marine contribution to the total ionic precipitation content was calculated with Sea Salt

230  Fraction VWM concentrations as: ([Na*]+ SSF [K*]+ SSF [Ca?"]%SSF [Mg*|+ [CI']+ SSF [SO4*])/
2511 Total VWM ionic concentrations. The terrigenous/biomass burning contribution to the total ionic
5712 precipitation content was calculated with Non-Sea Salt Fraction (nSSF) VWM concentrations as:
283 (nSSF [K*]+ nSSF [Ca*"]+ nSSF[Mg2* ]+ nSSF [SO4>])/ Total VWM ionic concentrations. For 2018,
3014  the marine and terrigenous/biomass burning contribution to the rain chemical composition at Mbita

3215 was 14% and 28% respectively (Fig. 6).This contribution is comparable to the South African dry

2216 savanna (Conradie et al 2016) influenced by.combustion and crustal sources (31%) but lower than in

2217 the Sahelian dry savanna (Laouali et a/ 2012) and the Benin wet savanna (Akpo ef al 2015) where it

3718  contributes to 45 to 51% (Fig. 6).

38
3919 WD fluxes are modulated by the monthly precipitation amounts and maximum monthly WD were

2?20 recorded in MAM in the core of the 2Q18 wet season (Fig. 3b). Marine species maximum monthly

421 WD were measured from June to October 2017 with a combination of high VWM and high unexpected

4Q2  rain depth at this period. Biomass burning and terrigenous influence in DJF is more important in 2019

45 . . .. . . .
43  than in 2018 due to largerrain amounts. The combination of large concentrations and high rain in

227324 August 2018 leads to large WD for all compounds (Fig. 3).

495

50 .
5126  Acidity

§§7 The main poténtial acidifying components of rains are SO4>" and NOs™ for mineral acidity and HCOO"

;4;28 , CH3COQO:;,C>04% and C,HsCOO- for organic acidity (Table 3). These concentrations reflect potential
529  contributions to<the acidity in Mbita rains of NOs™ (27.72%), HCOO" (26.56%), SO4* (21.66%) ,
57
530  CH3COO™ (17:83%), C204* (5.48%) and C;HsCOO (0.77%), and a negligible contribution of
59
60
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CoHsCOOr. Organic and mineral acids represent 50.63% and 49.37% of the potential acidity,
respectively (Table 3). Acetic and formic acids are generally derived from vegetation, biomass burning
and bio fuel, fossil fuel, agricultural emissions and soils (Paulot ef al 2011). Wet deposition is one of
the major sinks of organic acids. Monthly VWM concentrations of organic species in rain‘exhibit
peaks in JF and JAS. Mbita rain presents a total VWM organic acids concentration of 46.22 peq L
representing 15% of the total ionic content in rain. This result is comparable to values found'in the
wet savanna of Djougou in Benin (Akpo et al 2015) and in the South African dry savanna(14-16%,
Conradie et al 2016), but higher than in Sahelian dry savanna of Niger (5%, Laouwali et.a/ 2012) (Fig.
6).

The pH of the rainwater at Mbita for the year 2018 varies between 4.5 and 7.5 with'an annual average
value of 5.8 £ 0.6 (Fig. 7). Asa comparison, Visser (1961) observed amedian pHof 7.9 near Kampala
(Lake Victoria, Kenya side), Rodhe ef al (1981) reported a median of 6.1 for nine East African sites.
The pH distribution shows that 50.6% of the analyzed rains are alkaline;35.3% acid and 14.1% neutral
compared to a pH of 5.6 considered as neutral for rain (Fig. 7). Yobouéet.al (2005) observed a positive
gradient for rain acidity along the West African transect dfy savanna - wet savanna - equatorial forest
with average pH values of 5.67, 5.16 and 4.92 respectively. Mealz pH in Mbita presents a slightly
alkaline character and is close to pH in rural dry savanna areas. At the 2018 annual scale, VWM

concentrations of H* calculated from the mean pH is4.21 peqL .
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L

4  The pH value alone is not sufficient to give informationiabout acidity of rain water. Reactions between
335 acidic and alkaline species in rainwater determine the final rainwater pH values. Using potential
356 acidity (Sup. Mat. Eq. 1) and fractional acidity,(Sup. Mat. Eq. 2), 87% of potential rain acidity (27.8
377  ueq L") is found to be neutralized byalkaline ions (Table 3). Analyses of Neutralization Factors (Sup.
Mat. Eq. 3) suggest that NH4" and Ca?*are responsible for most of the acid neutralization with NF
4E 9  values for NH,, Ca?" of 1.32 and 0.55 r{spectively. The large NH4"/ NOs~ and NH47/SO4% ratios (4.14
4210  and 5.19) suggest that nitrogenous spécies.are completely neutralized in the atmosphere as a result of
4411 the formation of NH4NO; and (NH4)2SO4aerosols (Duan et al 2003, Seinfeld 1986). This is confirmed
4312 by the Ammonium availability Index (AAI, Sup. Mat. Eq. 4) of 161 % in 2018, indicating that
4713  ammonium is sufficient to completely neutralize the sulfuric and nitric acids in Mbita rainwater
4914  (Behera and Sharma2010)»Ratios between cations and anions (Ca?>*+Mg>*+NH4")/(NOs+S04%) =
§?15 3.48 and (NO3+SO42)/(Ca*+Mg?") = 0.87 reflect the alkaline nature of rainwater and the influence
526 of Ca®" and Mg?* compounds described earlier. In general, acidity was not correlated with mineral
547  acids, and weakly correlated with organic acids. These results confirm the presence of heterogeneous

55 . . . . . .
518  chemistry processes of neutralization between alkaline dust particles, gaseous nitric and sulfuric acid

;7319 and organiciions. Galy-Lacaux et al (2001) showed that this capture could be completed and could
59

60

18



Page 19 of 42 AUTHOR SUBMITTED MANUSCRIPT - ERL-110179.R1

W oONOOULID WN =
N

4516

530

explain to a large extent the neutralization processes of rain’s potential acidity. This result has been
widely emphasized in other parts of the world where desert soil dust emissions influence rain
chemistry, as for example in Spain or in the Mediterranean basin (Avila ef al 1998, 1997, Herut et a/

2000), and in Asia (Hu et al 2003, Kulshrestha ef al 2005, 2003).

Table 3: Analysis of potential contributions of mineral and organic acids to total acidity4n Mbita rain.in 2018

Organic Acidity VWM (neqL") | Mineral Acidity VWM (neqL™)
HCOO ~ 8.51 NOs~ 8:88
CH:COO ~ 5.71 SO 6.94
C:HsCOO - 0.25 -
C204* 1.75

Total Organic (TO) 16.22 Total Mineral (TM) 15.82
Potential Acidity (pA) | 32.04

=TO+TM

Calculated H* 4.21

PA-H 27.83 IS

Nitrogenous contribution

NH;4" is the dominant nitrogen ion in precipitation in:Mbita at both monthly and annual timescales
(Table 2). The predominance of NHy' in rainwater has also been observed in dry savanna (19.1 to
25.2 ueq L'; (Laouali ef al 2012)), including savannas influenced by industrial emissions (~29 peq L
I, (Conradie et al 2016)), as well as in.wet savanna sites (14.3 to 16.8 peq L'!; (Yoboué et al (2005);
Akpo et al (2015)), though concentraa)ns in Mbita are higher than in these studies. Annual VWM
NO; concentrations at Mbita.are eomparable to those obtained in wet savannas (8.2 to 8.9 ueq L,
Yobou¢ et al 2005, Akpo et al'2015), but lower than those found in dry savannas (10.4 to 14.6 peq L
!, Laouali et al 2012, Conradic et.al 2016).

The mean and standard deviation (=SD) of DIN concentrations (NH4" + NO3™ + NOy") in Mbita is
1.41+1.6 mgN.L:1, Tn  comparison to older studies in the same region, our results show higher values.
Indeed, data from thelliterature give DIN concentration of 0.87 mg.L-!' at Kampala (Uganda, Lake
Victoria shore, (Vissér 1961), 0.09 to 0.13 mg.L"! on the shore of Lake Malawi (Bootsma and Hecky
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1999), from 0.012 to 4.2 mgN L at Lake Victoria sites in Tanzania (Vuai et al 2013), and 0.92 mgN
L' on Lake Tanganyika (Gao et al 2018).

The sum of NH4", NO3™ and NO», VWM concentrations represents 39% of the total chemical content

of rain, in contrast to other remote African sites where the values ranged from 17 to 23% (Fig. 6).

Ammonium content in precipitation results from the inclusion of gaseous ammonia and partieles.
Nitrate content results from NO> and HNO3 concentrations in the atmosphere, further scavenged by
clouds. Major sources of NH3 include bacterial decomposition of urea in animal excreta and emission
by natural or fertilized soils (Delon et a/ 2012, Galy-Lacaux and Modi 1998, Sehlesinger and Hartley
1992). Biomass burning and domestic combustions are other principal sources of NH; (Brocard et al
1996, Galy-Lacaux and Modi 1998, Laouali et al 2012, Delmas et al 1995). In.Mbita, monthly NH4*
and NO3> VWM concentrations in rain exhibit maximum values inJJA and in January from 2017 to
2019 (Fig. 3a). As mentioned above, Mbita is largely influenced by biomass burning sources during
these two periods as well as additional local activities (land clearing and biomass burning) in DJF
(Boiyo et al 2017b) (Fig. 5). Moreover, monthly mean TASI'NHzyand OMI NO; Vertical Density
Columns from 2017 to May 2019 show the same. feature (Fig. 8). Results clearly indicate that NO»
are enhanced in DJ and JJA in relation with the biemass burning sources occurrence in the northern
and southern hemisphere. NH3; VCD maximum occurs in February and is certainly related to both
biomass burning and local land clearing by farmers’ agricultural burning to prepare their fields. It has
been reported that NH4" /NOs™ ratio‘for N deposition is usually less than 1 in areas with advanced
industrialization while areas with intensive agriculture are characteristic of high NH4" /NOs™ ratios
(>1) (Fahey ef al 1999, Zhao et al 2009\). In our study, the NH4" /NOs™ ratio of 4.13 indicates that NH3
emissions are certainly also related to0 mixed crops agriculture in Mbita region as well as livestock

presence.
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3.2 Nitrogen wet deposition budget and Dissolved Organic Nitrogen contribution

Monthly VWM concentrations of DIN and DON present larger values during the dry seasons (Fig.
9a), especially in JJA 2017, January 2018, JJASO 2018 and JF 2019. DIN concentrations were
discussed in the previous section, showing that Mbita is influenced by biomass burning sources from
both hemispheres during the dry season, as well as agriculture and livestock sources year round.
Concentration of DON in rainwater results from the presence of aerosols in the atmosphere, further
dissolved in rain. The total organic nitrogen content of these aerosols is composed of protein
compounds (Matos et al 2016, Poschl 2005, Zhang et al 2002). Atmospheric organic matter is
increasingly considered to be an indispensable part of the global nitrogen cyele(Wedyan and Preston
2008, Zamora et al 2011). In particular, the water-soluble fraction of aerosol orgaﬁc matter has direct
links to bioavailable nutrients. Protein compounds are characterized by their solubility in water (Matos
et al 2016), suggesting that water-soluble protein compounds are‘€xtremely important in the nutrient

cycle of atmospheric and biospheric nitrogen.

DON concentrations contribute from 7 to 60% (average 29+15%) of TDN concentrations, with the
highest value (60%) in August 2017. Air masses were found to be %articularly influenced by marine
sources from the Indian Ocean at that period, and this influence is retrieved in DON concentrations.
Indeed, oceans are a source of organic nitrogen (Calderon et al 2006), through aerosol sea spray
containing amino acids (Neff et a/ 2002), and from.metabolic processes in marine animals and bacteria
releasing amines in the gas phase (Yang et a/ 1994). The important contribution of DON WD fluxes
(nearly 31%) throughout the period of stady may be explained by biomass burning, livestock sources
and dust resuspension. Agricultural/sources of organic nitrogen include urea applied as fertilizer
(Cornell et al 1998, Mace 2003a);"andsaliphatic amines from animal husbandry operations (Schade
and Crutzen, 1995). Biomass combustion, particularly active in DJF and JJA, releases amino acids
(Mace 2003b, 2003a, Spitzy 1990), as well as other substances such as humic acid-like compounds
that can be photolyzed to release free amino compounds (Chan et a/ 2005, Matsumoto and Uematsu
2005). A lot of studies showed that biomass combustion, continental biogenic discharges (including
viruses, protozoa, algae, fungi, bacteria, pollen, spores, human and animal epithelial cells, and insect
and plant fragments)y and agricultural activities are the main sources of aerosolized protein materials

(Cape et al 2012, 2014, Matos et al 2016, Song et al 2017).
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The mean and standard deviation (range) of WD fluxes for NH4*-N, NO3™-N, and DON, are 0.42+0.28
(0.01-0.96), 0.10+0.06 (0.003-0.23), and 0.19+0.21 (0.001-0.92) kgN ha"' month™' respectively. On a
monthly time, scale, maximum DIN and DON deposition fluxes are observed during wet seasons (Fig.
9b). DON contribution varies from 4 to 58% of TDN, NH4"-N contribution from 30 to 78%;sand. NO3:
-N from 8 to 27%. DIN contribution at the monthly scale remains larger during the wholeperiod, with
a large predominance of NH4"-N wet deposition fluxes, except during the special petiod around July
2017 where DON contribution exceeds DIN contribution, due to the high unexpected marine
influence. Maximum DIN WD fluxes (> 1 kgN ha"! month™") are observed at thesbeginning of the long
rain season in March and April 2018, and in December 2018, because of strong rains and large DIN
concentrations. Gao et al (2018) also found large WD DIN fluxes (2.37/kgN hal month™'") into Lake
Tanganyika at the beginning of the rain season, attributed to soil preparation by farmers (stubble

burning) before short and intense rains.

The annual WD fluxes for NH4+"-N, NOs-N, and DON are 5.06, 1.25 and2.32 kgN ha'! yr! (Table2,
Table 4). Annual DIN WD represents 6.31 kgN ha! yr!, with long (MAM) and short (ON) rain seasons
accounting for 36 and 21% respectively, while rainfall amounts for the same seasons represent 47 and

22% respectively.

Annual DIN WD fluxes in Mbita are comparable to- WD measured in other sites of Lake Victoria by
Vuai et al (2013), and in other East African great lakes, such as Lake Tanganyika (Gao et al 2018,
Langenberg et al 2003), and Lake Kivu ((Namugize 2015), Table 4). The predominance of N-NH4" in
DIN WD fluxes reported by Gao et al (2018) is in accordance with our results. Similar DIN WD fluxes
were also measured in West and Central Africa(Galy-Lacaux and Delon 2014) and in industrialized
south African dry savannas (Conradieset,al 2016). In other tropical regions DIN WD fluxes show
comparable values (Amazoniana (1972) in Brazil; Eklund ef al/ (1997) in Costa Rica, Table 4). On the
other hand, DIN WD fluxes from our study are two times lower than those estimated from annual
rainfall and VWM given in Visser (1961) in Lake Victoria, and larger than those estimated from
Bootsma et al (1996)‘and Bootsma and Hecky (1993) in Lake Malawi. These differences may be
attributed to collection/ protocols and analysis techniques (colorimetric or spectroscopic) of the
samples as well as the time scales which differ from one study to another. Our study was carried out
over a much longer sampling period (2 years), continuously (at the rain event), thus giving a more
representative average characterization of the total N WD flux than previously found in older studies.

The sampling method of the cited authors was either in bulk, weekly or monthly, sometimes even
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seasonally and for shorter periods than the ones reported in this work. Local climatic conditions and
air mass movements could also explain this difference. Furthermore, few DON estimations are
available in the literature for tropical ecosystems, and are often inferred from bulk deposition, as given
by Van Langenhove et al (2020) for a tropical forest in French Guiana with 8.75 kgN ha™! y#*iy(Table
4), or in Bauters et al (2018) reporting DIN and DON contributions in the Congo forest{5.5 and 12.7
kgN ha'! yr'! respectively).

Wet N deposition (DIN+DON) in Mbita gives a WD flux of 8.54 kgN ha! yr'!.€from Kayombo and
Jorgensen (2006) we estimated a 38% contribution of dry deposition to the‘atmospheric (wet+dry)
deposition in Lake Victoria. With this value, a total atmospheric deposition(wet+dry) of 15 kgN ha’!
yr'! may be estimated from our results, to be compared to 12.43 kgN ha'yr in Lake Malawi and to
values ranging from 7.5 to 19 kgN ha"'yr! reported by Scheren et al (2000).for remote non marine
tropical watersheds. These values exceed the 10 kgN ha! yr'! threshold given by Bobbink et al (2010)
above which African ecosystems will be subject to stress due to N'deposition excess. According to the
global distribution map of mean critical loads for eutrophication (Bouwman et al/ 2002), the Lake

Victoria ecosystem is exposed to eutrophication. IS

From DIN WD fluxes reported in Table 4 and with.the surface’ of African great lakes, we estimated
the total DIN input in lakes Kivu (2, 400 km?), Tanganyika (32, 600 km?) and Victoria (68, 800 km?),
with 2, 176 tN yr!, 20, 000 tN yr! and 44, 032:tN. yr-hrespectively. Taking into account the total N
WD flux from this study, including DON estimation, Lake Victoria receives 58, 760 tN yr'!. According
to Zhou et al (2014), Nile river and fishery N export from Lake Victoria represent 40, 000 tN yr'! and
4, 000 tN yr!' respectively, leading to 14, 400 tN yr' staying in the lake and contributing to

eutrophication. N
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Table 4: Dissolved Inorganic Nitrogen (DIN), Dissolved Organic Nitrogen (DON) and Total Dissolved Nitrogen (TDN) in kgN ha™! yr' in tropical
g g g g g g y

ecosystems and African great lakes.

Page 26 of 42

Site Pi (mm) Characteristics N-NH,* N-NO;~ N-NO,” DIN DON TDN References
ILake Victoria
Kampala (Uganda) 1300 ND, 6.36" 5 11.36 (Visser 1961)
North shore (Kenya) ND ND 11.96 (Bootsma and Hecky 1993)
Itumbiri (Tanzania) 1000 Rural 7.7
Tanzania side 1050 Peri, Urban 6.8 (Vuai et al 2013)
Tanzania side 1050 Urban 6.4
ILake Victoria
Mbita (Kenya) 1070 Tropical Rural 5.14 1.25 0.01 6.4 232 854 This study
ILake Tanganyika
Burundi-RDC-Tanzania-Zambia 819 Tropicaliecosystem  4.18 1.67 5.86 (Gao et al 2018)
Burundi-Tanzania-Zambia 1200 Tropical-Agriculture 6.72 (Langenberg et al 2003)
- ND ND 12.05 (Bootsma and Hecky 1993)
ILake Malawi
Monkey Bay (Malawi) ND ND 0.85-1.56 (Bootsma and Hecky 1993)
Senga Bay (Malawi) ND ND 1.5 (Bootsma and Hecky 1999)
ILake Kivu (RDC)
Catchment ND Agricultural land 0.27 3.74 4.01 (Namugize 2015)
ILa Selva (Costa Rica) 3500-4500 Tropical forest 26-5 1.8-34 4.4-8.4 (Eklund et al 1997)
|[West and Central Africa
s;;elzijag;};:avannas 132?:?3‘7‘ 4 Rural sites 32;543 (Galy-Lacaux and Delon 2014)
Forest 1557 3.6
South Africa
Amersfoort 729.75 6.32
Vaal Triangle 956.43 Semi-arid 6.97 (Conradie et al 2016)
Louis Trichardt 728.2 1.87
Skukuza 583.23 2.12
(Other tropical regions
Paracou ( Erench Guiana) 3100 Tropical forest 0.677* 1.092* 8.75* Van Langenhove et al. (2020)
Lake Valencia (Venezuela) ND ND 2.43 128 0.05 3.76 1.33%* (Lewis 1981)
Amazon basin(Brazil) ND ND 3.15 2.52 5.67 (Amazoniana 1972)
Amazon basin(Venezuela) ND ND 21.4 (Jordan, et al 1979)
Congo forest (RDC) Tropical forest 5.46 12.74 18.20 (Bauters et al 2018)
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Conclusion

This study presents for the first time a complete characterization of the precipitation chemistry in a
tropical rural site in Kenya on the shores of the Lake Victoria, based on the monitoring of quality
controlled in situ measurements from May 2017 to April 2019. Wet deposition fluxes of major.ionic
species considered as important nutrient inputs to ecosystems were characterized and quantified at the
annual and monthly scales. We emphasize that wet deposition is influenced bysthe variation in
emission source strength, precipitation rate and the origin of air masses. In the Lake Victoria basin,
four main contributions to the chemical composition of precipitation werenrelated to potential
atmospheric sources of gases and particles of importance. Marine species, with a contribution of 14%,
were clearly related to marine air masses coming from the Indian Oceant The erganic contribution in
precipitation is estimated for the first time on the shores of the lake Vigtoria and represents about 15%,
due to VOC from biomass burning combustions from both the southern and northern hemisphere, and
by BVOC from vegetation (forests in the vicinity of the site). Terrigenous/species were attributed to
the crustal and biomass burning sources contributing 28% of the total sain chemical content, due to
biomass burning sources in both hemispheres and dust emissions from arid areas in the North and East
of Kenya. The most important result is the nitrogen species’ largest.contribution to the total chemical
content of the rains (39%), with the predominance of NH4"ion in precipitation due to local sources
such as livestock and fertilizers, as well as regional and:continental biomass burning and nearby
agricultural fires. This means that nitrogen deposition . to Lake Victoria is strongly influenced by
anthropogenic sources.

This study gives unprecedented insights,in the seasonality of N wet deposition inputs. DON
contribution to the high N load in rains is 26% of the total WD flux, highlighting the crucial need to
quantify organic N in rains in tropical?(:osystems. With a total N atmospheric input to Lake Victoria
0f 103, 200 tN yr*!' estimated thanksto our results and literature results, and according to critical loads

for N eutrophication, we assume that the Lake Victoria ecosystem is exposed to eutrophication.

In a near future, this study on wet N deposition on the Lake Victoria basin will be complemented by
a quantification of N'dry depesition fluxes. We highly recommend extensive and regular monitoring
of atmospheric deposition including wet and dry processes over seasonal representative temporal
periods in Kenya, Tanzania and Uganda both in-shore and off-shore to provide guidance and improve
the efficiency of nitrogen use in agricultural areas, and reduce losses to the Lake Victoria environment.
This could be done through the organization of awareness-raising campaigns toward end users. In

order to reduce nitrogen pollution of the lake, it will be necessary in the future to improve agricultural
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techniques and management of human and animal waste. Finally, ongoing and future studies on N
deposition are very important and should be communicated to policy makers to manage the unique
natural resource represented by the Lake Victoria and its catchment and to mitigate nutrient budgets

in the great African lakes ecosystems.
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