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ABSTRACT

The dispersion of mechanical vibration limits nano-optomechanical modulation. In this work, we propose an optomechanical modulation
exploiting elastic local resonances, also called whispering-gallery modes (WGMs). We find that our structure supports two quadripolar and
two hexapolar elastic WGMs, which are nondispersive to avoid losses where the displacement field is localized on the gold nanodisks
(AuNDs). We numerically demonstrate that the coupling between localized surface plasmon resonance (LSPR) and WGMs are relative both
to the symmetry displacement of the elastic modes and to the strong isolation of phononic modes in the AuNDs. The amplitude of the
modulation is evaluated by computing the wavelength shift of dipolar LSPR under different deformations by four WGMs. A detailed com-
parison between the four WGMs allows us to determine the ones with more efficient coupling. Furthermore, this simultaneous confinement
gives a large acousto-plasmonic coupling that can be used to design a new mechanical sensor with the plasmonic response as a potential
application and innovation toward new acousto-plasmonic devices.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111819

I. INTRODUCTION

Phonon modes supported by noble metal nanoparticles (NPs)
have attracted particular attention since they interact with localized
surface plasmon resonances (LSPRs), leading to a strong modula-
tion of the plasmonic response.1–7 Understanding this modulation
is paramount for both fundamental and applied aspects. LSPRs are
associated with the collective resonant oscillation of conduction
electrons excited by an external electromagnetic field in metal NPs
whose light confining properties make it possible to overcome the
diffraction limit, which imposes the minimal dimensions of optical
devices. Also, it should be noted that the resonance frequency
depends on the shape and size of the NPs.8–10 The manipulation
and control of LSPR modes have led to the development of numer-
ous applications in various fields such as biosensitivity,11–16 surface

Raman spectroscopy,17–19 and solar cells.20–23 Besides, NPs support
elastic whispering-gallery modes (WGMs) that can have very high-
quality factors,24 with near-zero group velocities due to the local
resonance mechanism, and frequencies up to terahertz.25,26 The
properties of these phononic modes are widely used in phononic
crystals for filtering and detecting applications.27–29 The significant
excitation and confinement properties of LSPRs and WGMs
depend on size, shape, and nanostructuring, which allows us to
optimize plasmon-phonon interaction. Many experimental works
have been conducted to study the acousto-plasmonic interactions
either by Raman or pump-probe spectroscopies30–32 on NPs with
different geometries, allowing a wide range of light enhancement
and resonance wavelength. The mechanical vibration alters the
shape and the dielectric function of metal NPs, which can be used
to design a mass detector to weigh molecules.33
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Although the manipulation of the objects at the nanoscale
presents technical difficulties, many experiments were carried out
as early as the 1980s by very-low-frequency Raman scattering to
highlight acousto-plasmonic coupling.34 These oscillations not only
change the shape of the NPs but also alter their dielectric constant
in the crystal structure and will, therefore, slightly modulate their
plasmonic properties. For example, Mrabti et al.2 studied, numerically
and theoretically, the acousto-plasmonic coupling of metal-insulator-
metal (MIM) plasmon modes supported by metal film-particle
systems. The nature of these modes (MIM) is very different from the
localized modes supported by an isolated particle on a homogeneous
dielectric slab. Nonetheless, the shortcoming of this structure is that
it supports the very dispersive phononic modes, which in turn limits
the acousto-plasmonic coupling.

Plasmon-phonon coupling mechanisms are similar to photon-
phonon coupling. The optomechanical part modifies only the form
of the particles, and the photoelastic part, acting on the crystal
structure of the metal, modifies the dielectric function of the metals.
The latter is mainly responsible for observing breathing modes of
metal particles in the Raman experiments.35 However, the photoelas-
tic coupling can be described in metals from a Drude–Lorentz model
of dielectric constant: variations in the bulk plasmon frequency are
calculated from those of the conduction electron density, while the
modulation of the contribution interband is related to local stresses
and strain potentials associated with each of the transitions.8

A significant amount of work has been conducted to study the
strong acoustic vibration of metallic NPs by pump-probe31 and
Raman spectroscopies,36 leveraging signal amplification near the
LSPR mode. The modulation of a plasmon mode by an elastic
mode has been studied for a wide set of metal NPs such as
spheres,37 cubes,38 crosses,39 cylindrical nanowires,6 and nanorods.4

To have an order of magnitude of strain, Soavi et al.4 estimated
that the elongation of nanorods 150 nm long is in the order of
5 pm in a typical pump-probe experiment, which gives a strain of
3.3 × 10−5.

In this work, we propose a new structure that supports plas-
monic and elastic modes confined to the NPs for the application of
detection in nanosensing technology. Our structure is a glass slab
below a periodic system of dielectric Si3N4 ribbons supporting gold
nanodisks (AuNDs) regularly placed along the ribbons axis. The
AuND is characterized by the height hg and the radius R. The
dielectric ribbon is characterized by the height H and the width L.
The lattice parameter “l” is defined as the distance between two
nearest neighboring ribbons (see Fig. 1). We have limited our study
to the moving interface contribution.

The outline of our paper is the following: in Sec. II, we put
forward the definition of the geometrical parameters of the struc-
ture, and we calculate the dispersion and transmission curve of
the elastic waves along the ΓΧ direction. Besides, we demonstrate
the existence of WGMs while showing the displacement field of
four different modes. The numerical results, including dispersion
and transmission curves, are calculated by using the Finite
Element (FE) method with the COMSOL Multiphysics FE software.
In Sec. III, we calculate the optical transmission spectra with and
without the dielectric ribbon and highlight the dipolar nature of the
LSPR mode in each AuND. In Sec. IV, we study the coupling
between dipolar LSPR mode and four nondispersive elastic WGMs,

and then we calculate the modulation of the LSPR wavelength as a
function of the acoustic phase of these WGMs. In Sec. V, we summa-
rize and conclude the main results of this work.

II. ACOUSTICAL PROPERTIES

In this part of the study, the emphasis will be on the phononic
aspects and the study of the dispersion curve of the grating. The
parameters of the structure are chosen to obtain wide bandgaps,
where the localized modes will be excited with the AuNDs. The
parameters that we have chosen for the unit cell are the following:
for the AuND, a radius of R = 60 nm and a height of hg = 36 nm,
for the dielectric ribbon a height of H = 180 nm and a width of
L = 210 nm, and for the glass slab a height of h = 60 nm. We apply
Bloch-Floquet periodical boundary conditions along the x and y
directions of the system. The period is equal to l = 300 nm in the
two directions. The z axis is chosen to be perpendicular to the slab
and parallel to the AuND axis. The elastic constants for Au, glass,
and Si3N4 are extracted from Royer and Dieulesaint40 and are sum-
marized in Table I.

To understand the influence of the ribbons and AuNDs
on the dispersion curve of the slab, we performed different band
structure computations along the ΓX direction in the first Brillouin
zone. We considered single unit cell (see the right picture in
Fig. 1), and we applied periodic boundary conditions, using the
Bloch-Floquet equations, along the x and y directions.

Figure 2 shows the dispersion curves calculated for the slab
(a), slab with ribbon (b), slab with an AuND (c), and slab with a
ribbon and an AuND (d) systems. Using the displacement field
maps, we can identify three classes of the first-order lamb modes
supported by the slab: the longitudinal mode S0 (orange), the hori-
zontal shear mode SH0 (green), and the out of plan slow mode A0
(red) [Fig. 2(a)]. It is well known that the SH0 mode does not
interact with the S0 and A0 modes. In the case of slab and ribbon,
if we omit the SH0 mode that can be considered the deaf mode

FIG. 1. Sketch of the structure with the unit cell and corresponding geometrical
parameters.

TABLE I. Material constants of Au, glass, and Si3N4 used in the calculations.

Material Au Glass Si3N4

Density (kg/m3) 19 300 2651 3100
Young modulus (GPa) 78 70 250
Poisson’s coefficient 0.44 0.3 0.23
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[Fig. 2(b)], we obtain the opening of two bandgaps. For the first
bandgap, the opening of this gap results from the crossing between
A0 and S0 modes. The second two bandgaps are based on the
Bragg mechanism. The two branches between 10 GHz and 11 GHz
correspond to the flat modes that are completely localized in the
glass slab resulting from the contrast of slab toughness.

Figure 2(c) shows the calculated band structure along the ΓX
direction of the Brillouin zone. We can observe that all the modes
of the slab are shifted to lower frequencies resulting from their
mass sensitivity. We can note also the apparition of new branches
that correspond to AuND resonance (especially α* and β*). These
modes are completely mixed with the slab modes and consequently
will present leakage of mechanical energy through the slab.

In Fig. 2(d), we present the band structure of slab with ribbon
and AuND structure. We can notice that the bandgaps observed
for the case of slab with ribbon [Fig. 2(b)] still exist. In the upper
part of the band structure, the number of branches increases
resulting from their sensitivity to the mass effect, which in turn
induces a shift to lower frequencies. The principal point that can
be noticed in Fig. 2(d) is the existence of two nearly flat and iso-
lated branches (labeled α and β), especially inside the bandgap sit-
uated between 7.2 GHz and 9.7 GHz in Fig. 2(d). The equivalent
quadrupolar modes in case of the structure without the ribbon
[see Fig. 2(c)] are α* and β*, whose respective frequencies are
7.82 GHz and 8.27 GHz at the Γ point. These modes are very dis-
persive inside the Brillouin zone and do not present any isolated
branches. For all these reasons, the introduction of the ribbon is
crucial to isolate quasiflat modes and reduce the dispersion of the
phononic modes.

For the transmission spectra, we consider a finite system along
the x direction containing five unit cells and infinite along the y

direction [Fig. 3(a)]. Perfectly Matched Layers (PMLs), which can
absorb waves and avoid reflection, are applied on each side of the
structure along the finite length direction. We use a mechanical
excitation and detection; the incident wave is a S0 Lamb wave of
the slab launched by applying a prescribed harmonic acceleration
ax in the (y, z) plane at the left side of the crystal and propagating
along the x axis. The transmitted acceleration value is detected
and recorded in the far field on the right side of the crystal.
The transmission coefficient is normalized to the acceleration field
propagating in the homogeneous slab (slab without ribbons
and AuNDs).

Figure 3(b) presents the band structure of the phononic
crystal given in Fig. 2(d) and compares it with the transmission
spectrum through five periods along the y direction. The diagram
shows flat branches (labeled α, β, γ, and δ) corresponding to modes
confined within the AuND, whose respective frequencies are
8.77 GHz (α), 8.78 GHz (β), 11.55 GHz (γ), and 11.56 GHz (δ). The
color map in Fig. 3(c) shows the norm of the displacement vector
u ¼ (ux , uy , uz) at the Γ point. In Fig. 3(c), it shows that the α and
β modes are quadrupolar WGMs owing to their displacement field
distributions, while modes γ and δ are hexapolar WGMs and are
located inside the bandgap between 11.2 GHz and 11.8 GHz. On
the transmission spectrum, two peaks appear at 8.77 GHz and
11.55 GHz. Frequencies of those peaks are in agreement with the
position to the flat modes labeled α and γ. In the transmission
curve, we observe that the SH0 mode (3rd branch) does not con-
tribute to the transmission according to the excitation based on the
S0 Lamb mode. The modes β and δ are vibrating along [110]
resulting in no coupling to the S0 Lamb wave mode propagating
along the x direction. This explains their absence in the transmis-
sion spectrum.

FIG. 2. Dispersion curves along the ΓX direction of the first Brillouin zone: (a) slab, (b) slab with ribbon, (c) slab with an AuND, and (d) slab with a ribbon and an AuND.
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III. PLASMONIC PROPERTIES

In this section, we are in a position to discuss the optical pro-
prieties of the used materials. The glass slab has a refractive index
ns= 1.5 and the one of the dielectric ribbon Si3N4 is nr = 2. The
choice of these two materials can be explained by three main factors.
Firstly, glass and Si3N4 are two abundant materials extremely used in
plasmonics device industries. Thus, their fabrication technologies are
in an advanced stage. Secondly, since the extraordinary and ordinary
index values are very close together, the glass anisotropy does not
affect the plasmonic response. At last, the two over mentioned
dielectric materials are not absorbent in the visible spectrum. In
order to describe gold’s permittivity in the visible spectrum, we use
the Drude–Lorentz model, which is given by the following formula:

ε(ω) ¼ ε1 þ
XM
m¼0

fmω2
p

ω2
m � ω2 þ iωΓm

where ε1 is the relative permittivity at infinite frequency, ωp is the
plasma frequency, and ωm, fm, and Γm are the resonance frequency,
the strength, and the damping of the mth oscillator, respectively. We

use M = 5 damped harmonic oscillators in order to take the inter-
band transitions of gold into account. The values, taken from Palik,41

are listed in Table II.
Figure 4 shows the transmission spectra of our structure with

the AuND but with and without the ribbon. We excite our struc-
ture with an electric field in normal incidence (propagation along
the z axis, from below the glass slab) on the AuND, polarized along
the y direction to excite the surface plasmon mode. The black curve

FIG. 3. (a) 3D section of the model
adopted for calculating the transmis-
sion coefficient of the phononic crystal.
(b) Band structure of the phononic
crystal of Fig. 2(d) compared with the
transmission spectrum though five
periods of that system along the direc-
tion x. (c) Norm of the displacement
field for modes α, β, γ, and δ.

TABLE II. Values of the parameters of the Drude–Lorentz model describing the
gold dielectric constant in our FE code.

Oscillator m fm ωp(rad s
−1) ωm(rad s

−1) Γm(rad s
−1)

0 0.76 1.371 88 × 1016 0 8.052 02 × 1013

1 0.024 1.371 88 × 1016 6.304 88 × 1014 3.661 39 × 1014

2 0.01 1.371 88 × 1016 1.260 98 × 1015 5.241 41 × 1014

3 0.71 1.371 88 × 1016 4.510 65 × 1015 1.321 75 × 1015

4 0.601 1.371 88 × 1016 6.538 85 × 1015 3.789 01 × 1015

5 4.384 1.371 88 × 1016 2.023 64 × 1016 3.363 62 × 1015
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(labeled 1) gives us only one dipolar plasmonic mode, whose elec-
tric field is confined close to the slab at the bottom of the AuND.
The resonance wavelength of this mode is λ= 645 nm.

The mode corresponding to the peak labeled 2 on the red
curve with a wavelength of 753 nm is the same localized plasmon
as mode 1, but it shifts toward longer wavelength by about 100 nm.
This shift is because the ribbon has a refractive index that is higher
than that of the glass slab, which is consistent with other theories
and experiments in this field.13

IV. ACOUSTO-PLASMONIC MODULATION

We investigate now the modulation of the resonance wavelength
of the plasmonic dipolar mode under elastic deformation during an
acoustic period, through the moving interface mechanism: the elastic
wave travels through the system and during that process it deforms
the interface between two different materials. In fact, within a thin
layer in the vicinity of the interface whose thickness is proportional
to the displacement field normal to the interface, a switch in the
material occurs where the volume occupied by material 1 becomes
occupied by material 2 and vice versa. This process leads to a time-
varying modification of the dielectric constant, which then affects the
optical waves. The deformation is applied on a whole structure, and
the moving interface mechanism is then proportional to the displace-
ment field and to the difference between the dielectric constants of
the materials on both sides of the interface.

The deformation is computed for an eigenmode of the
mechanical system by imposing a maximal displacement equal to
2% of the radius of the AuND ( umax ¼ 1:6 nm). It should be noted
that the maximum sound deformation imposed is in the order of
2%, which is unrealistic at the crystalline scale. However, the values
we obtained numerically can be scaled to a more realistic case. It
results in the time-varying shift of the wavelength of the plasmonic
mode in the transmission spectrum, whose amplitude depends on
the acoustic phase f = 2πFt, where F is the eigenfrequency of the
considered acoustic mode and t is the time. Let us mention that we
have chosen the origin of the phase f = 0 such that the AuND is
undeformed for this value. In the following, we present the influ-
ence of the four previously identified phononic modes (α, β, γ, and
δ) on the optical properties of our system.

Figure 5 presents the modulation of the transmission spectra
under deformation by the two elastic modes α and β for different

acoustic phases. The quadrupole mode (α) (8.77 GHz) introduces
notable modifications in the LSPR wavelength around its value at
rest λref ¼ 753 nm, as shown in Fig. 5(a), while for the quadrupolar
mode β (8.78 GHz), the LSPR wavelength modulation is smaller
[Fig. 5(b)]. The same calculations done with the high-frequency
modes (γ: F = 11.55 GHz, δ: F = 11.56 GHz) show no modification
in the transmission spectra. Figure 5(c) displays the displacement
field distribution (color map corresponds to the norm of juj ) of the
4 elastic WGMs and the red arrows indicate the displacement itself
(red arrows represents the real part of u ). To better comprehend
the contribution of the multipolar modes in the acousto-plasmonic
coupling, we elucidate it with an analytical model. Concerning the
AuNDs, the equation of the wave is written as follows:

ΔkEz(r, w)� ξ2Ez(r, w) ¼ 0:

The solution of the above equation in polar coordinates (r, w) are
of the following form:

Ez ¼ E0cos(nw)Jn(ξr),

where E0 is the wave amplitude, n is a positive integer, and Jn is the
Bessel function of the order n. Since the dipolar plasmonic mode
induces a strong exaltation of the intensity of the electric field on
the edges of the AuND, a boundary condition has to be applied at
the edge of the AuND at r ¼ R,

J 0n(ξR) ¼ 0:

We ultimately get the following expression:

Er(r, w) ¼ E0cos(nw)Jn(x
0
nr=R),

with ξ ¼ x0n
R dispersion equation and the coefficients x0n represent-

ing the zeros of the derivative of the Bessel functions. The pho-
nonic modes are multipolar deformation, in which the radius of
the cavity oscillates periodically as a function of w,

R(w) ¼ R0 þ δRcos(mw), m = 0,

with R0 being the radius of the AuND at rest. To evaluate how the
LSPR dipolar mode is modified following the deformation of the

FIG. 4. (a) Transmission spectra
through the structure with and without
the presence of the dielectric ribbon.
The four electric field maps represent
modes 1 and 2 found together with the
representation of their surface charge
distribution.
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radius of the AuND, we develop the electric field of this mode in
the form of a linear combination of the solutions of the wave equa-
tion in cylindrical coordinates. The electric field can be developed
as a linear combination of the solution functions of the wave equa-
tion in (r, w, z) coordinates:

[Ez(r, w)] ¼
X1
n¼0

ancos(nw)Jn(ξr):

With aN � 1 and an � 1, n = N . The new boundary condition at
the limits can be written as follows:

[Ez]
l(R(w), w) ¼

X1
n¼0

ancos(nw)Jn[ξ(R0 þ δR cos(mw))] ¼ 0:

Since the amplitude deformation is weak, the ξR0 value remains
close to x0p and can be written as ξR0 ¼ x0n(1þ η). To the first-
order an, ε et δR=R0 along with J 0N (x

0
N ) ¼ 0,

J 00N (x
0
n) cos(Nw)ηþ δR

2R0
[cos((m� N)w)þ cos((mþ N)w)]

� �

þ
X
n=N

ancos(nw)J
0
n(x

0
n) ¼ 0:

The unique impact of this deformation is the modulation of
the resonance wavelength of the LSPR dipolar mode. Nonetheless,
m and η are different from zero only if N =m−N, and this only
happens if m is even (m = 2). In this case, the only modes affected
by the phononic deformation are for N =m/2, while for the

noncoupled modes, m is odd (m = 3) and we have

ηN ¼ δR
2R0

x0N ,

aN ¼ 1,

a3N ¼ δR
2R0

J 00N (x0N )
J 003N (x0N )

,

aN ¼ 0, n = N , 3N:

Therefore,
R(w) ¼ R0 þ δRcos(2w) for m ¼ 2,
R(w) ¼ R0 for m ¼ 3:

�

For hexapolar modes m = 3, the displacement of a half acous-
tic period generates a phase opposition, which results in a zero
acousto-plasmonic modulation. However, the displacement of the
acoustic quadrupole modes m = 2 is in phase, which in turn leads
to a strong acousto-plasmonic coupling. On the other hand, this
fact can be understood through considerations about the respective
symmetries of those elastic modes and the LSPR dipolar mode.
The α mode oscillates according to the periodicity of the AuNDs,
while the β mode oscillates in the [110] direction to the periodicity
of the AuNDs. The first elastic mode α moves essentially along the
principal axes of the array (Ox and Oy), and the charge distribu-
tion of LSPR mode is antisymmetric with respect to the zx plane
and symmetrical to the zy plane. These two symmetries couple per-
fectly, and a strong acousto-plasmonic coupling allows us to induce
a significant shift around λref. At 8.78 GHz (β), the displacement
fields undergo a rotation of π=4 compared to the (α) mode, which

FIG. 5. Evolution of the transmission spectra for different values of the elastic phase for the two elastic modes: (a) mode α and (b) mode β. (c) Norm of the displace-
ment field distribution [u ¼ (ux , uy , uz)] for α, β, γ, and δ modes at the Γ point (color map shows the norm of displacement field juj; red arrows represents the real
part of u ).
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breaks the symmetry with the principal axes and does not favor the
coupling with the dipolar mode since it couples only with projec-
tions of the displacements fields following the x and y directions.
This allows us to explain the weak modification around λref.

In Fig. 6(a), the resonance wavelength of the dipolar LSPR
undergoes sinusoidal modulation around the average value of
753 nm for the quadrupolar WGMs (α, β) due to the moving inter-
face during one elastic period. The corresponding modulation

FIG. 6. (a) Wavelength modulation of the plasmonic dipolar mode by each of the two quadrupolar elastic modes α and β. (b) Evolution of the LSPR wavelength as a
function of the sinus of the acoustic phase for each of the four elastic modes. (c) Left: distribution of the surface charges of the LSPR dipolar mode; right: y component of
the displacement field for the quadrupolar mode α and phases f ¼ �π=2 (left) and f ¼ �π=2 (right).

FIG. 7. (a) Wavelength modulation of the dipolar LSPR mode of the two quadrupolar elastic modes: (a) mode α* and (b) mode β*. (c) Norm of the displacement field dis-
tribution for α* and β* modes at the Γ point.
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amplitude are Δλα ¼ 15:35 nm and Δλβ ¼ 2:06 nm. No wavelength
modulation has been obtained with hexapolar modes γ and δ, and
then the corresponding slope is equal to zero. A clearer representa-
tion shows in Fig. 6(b) the evolution of the resonance wavelength of
the LSPR mode as a function of the sine of the phase of the WGMs,
under interaction with the two quadrupole modes α and β. We have
utilized a linear fit to represent this curve [Fig. 6(b)]. Notice that the
fitting errors are very weak, and the error bars are not noticeable
in the curve; therefore, they were not shown. We notice that the
wavelength depends linearly on the sine of the phase, so that we
can write Δλ ¼ p sin(f) where the parameter p is the slope. This
approximation stays valid because of the weak gap of the points
relative to the linear fit. The α mode, with the lowest frequency
(8.77 GHz), is the most sensitive to the deformation with a slope
equal to Δλ=sin(f) ¼ 7:64 nm. The enhanced sensitivity of the (α)
mode is since the y component of the displacement fields is
coupled to the dipolar LSPR mode and has the same symmetry
along the x axis. Besides, the maximum of the displacement field
coincides with the symmetry of the dipolar mode. The y compo-
nent of the quadrupolar elastic mode vibrates according to the
dipolar symmetry of the plasmonic mode; this will affect the
charge distribution in the vicinity of the interface of the AuNDs,
which will increase the acoustic-plasmonic sensitivity.

To draw an analogy between the structure with and without the
ribbon, Fig. 7 presents the modulation of the transmission spectra
under deformation by the two elastic modes α* and β* for different
acoustic phases. The α* mode (7.82 GHz) introduces notable modifi-
cations of the LSPR wavelength around its value at rest λref ¼
645 nm [Fig. 7(a)]. We note a low sensitivity of the α* mode com-
pared to the α mode in the presence of the ribbon. The same calcu-
lations are done with the β* mode (8.27 GHz), which presents a very
weak coupling with the dipolar LSPR mode [Fig. 7(b)]. This cou-
pling is very weak compared to the β mode (this mode is calculated
with the presence of the ribbon). Figure 7(c) illustrates the dispersive
nature of the α* and β* modes inside the slab. The figure shows the
existence of interactions between α* and β* modes and the Lamb
modes of the slab [see Fig. 2(c)], which make the displacement of
one part of the elastic energy of α* and β* WGMs in the slab. To
quantify the role of the added ribbon between the slab and the
AuND, we have calculated the sensitivity values of all modes and
have summarized them in Table III.

To compare our results with those of the literature, we divided
the sensitivity by the maximum displacement umax ¼ 1:6 nm. The
numerical results obtained show that the interaction between the
LSPR mode and the elastic quadrupole mode α is almost 7.68 times
more sensitive than in an AuND deposited directly on a slab. The

orders of magnitude of these values are in agreement with those
obtained in the literature for equivalent systems.2,6 The addition of
the ribbon, on the one hand, allowed the confinement of the quadru-
polar modes, and, on the other hand, it allowed the isolation of the
modes. In a nutshell, it can be concluded that the best confinement
of the phononic modes gives good acousto-plasmonic coupling.

V. CONCLUSION

We have numerically studied the plasmonic and elastic
response of AuNDs deposited on dielectric ribbons of Si3N4 lying
on a glass slab. It was pointed out from the optical and elastic
transmission curves that this structure supports localized modes of
different natures: dipolar LSPR for plasmonic and WGMs for
acoustic modes; they are both very confined in the AuNDs. The
calculated phononic dispersion and transmission curves showed
the appearance of elastic flat modes (WGMs); the latter are not dis-
persive and have an excellent intrinsic quality factor. We then
observed that the symmetry of displacement as well as the nature of
WGMs and deformation, significantly, affect the plasmonic response
up to Δλ= 15.35 nm for a maximal deformation of 1.6 nm and for
the phononic quadrupolar mode, which shows that the coupling is
very high compared to that found in optomechanical cavities. This
study shows that the optimization of the geometry of a metallic
nanostructure makes it possible to reach very high acousto-plasmonic
coupling sensitivities. However, it appears that this improvement is
made with strong confined phononic modes in the AuNDs. It is
found that without ribbons, the optomechanical coupling decreases.
The result presented in this paper is actually more general and may
appear as a bounding limit of acousto-plasmonic biosensors. We
believe that this new structure studied in this work is promising to
understand even more the interaction of plasmon-phonon nanostruc-
tures, which are well known for sensing applications, and that it
could pave the way for new devices in the future that take both the
elastic appearance and plasmonic to the nanoscale.
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