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Abstract

This article presents a theoretical, numerical and experimental study of resonant
structures undergoing very large amplitude vibrations. The purpose of this work
is to validate a model for the damping due to the action of the air on a structure’s
single-mode response in the steady-state. Experiments are performed on cantilever
beams and beam assemblies of various sizes, from centimetric to micrometric, un-
der harmonic base excitation. Dimensionless linear and nonlinear modal damping
coefficients are simultaneously identified by means of frequency-domain identifica-
tion techniques. These measurements demonstrate the pertinence of the presented
model.

Introduction
When a flexible structure is subjected to large amplitude vibrations, numerous nonlinear phenomena

take place. The vast literature on geometric nonlinearities helps to understand the peculiar effects (such as
coexisting possibly stable and unstable solutions, bifurcations, strong exchanges of energy between vibration
modes and chaotic responses, see [Nayfeh and Mook, 1979; Thomas et al., 2007; Touzé et al., 2011; Cadot
et al., 2016]), through the use of various models. However, most of the available studies include linear only
damping models, whereas nonlinear damping effects, associated with large amplitude vibrations, are often
observed experimentally and have been – relatively – overlooked. In this context, this work presents the
theoretical background and identification procedure of a nonlinear modal damping model adapted to thin
structures undergoing very large amplitude vibrations.

The recrudescence of studies on nonlinear damping stresses the interest in this topic, regarding structures
of all sizes. In the field of micro/nano-electro-mechanical systems (M/NEMS), nonlinear damping effects have
been observed for some time [Younis, 2010; Eichler et al., 2011], with only a handful of studies delving into
modelling the experimental observations (e.g. [Zaitsev et al., 2012]). In the case of macro-scale structures,
the dependance of the damping on the amplitude has been previously reported in the literature for plates
and shells (see e.g. the experiments reported in Alijani et al. [2016]; Amabili et al. [2016] and Figs. 14,
15, 16 of Thomas et al. [2007] in which a model with a linear viscous damping becomes inaccurate at large
amplitude). In a recent series of studies, this effect is attributed to the joint contribution of viscoelasticity
and geometrical nonlinearities, addressed both theoretically and experimentally in the case of plate and
shells in Balasubramanian et al. [2018]; Amabili [2018a,b, 2019].

On the other side of the size spectrum for man-made structures, a few studies in the field of civil
engineering illustrate that including the aerodynamic damping in the design of high-rise buildings is critical
[Zhang et al., 2019]. Structures for which a nonlinear damping model could be valuable (but has not yet
been studied) are micro and nano aerial vehicles (M/NAV). As the size of the system decreases, the ratio of
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Very Large Amplitude Vibrations of Flexible Structures

the surface forces over body forces increases [Rhoads et al., 2008]; air interaction has to be accounted for,
thus justifying the need for a nonlinear damping model for air-induced damping in micro scale structures.

The motivation for this work is the design of a structure for which vibrations are desired: we aim to make
a NAV take-off. This nano drone is described hereunder. It differentiates itself from the other NAVs with two
main features. The first is the use of microfabrication techniques [Bontemps et al., 2013], that produce a fully
flexible polymer structure (SU-8 for the frame and Parylene-C for the membrane). Its second characteristic
is the lift generation mechanism, which does not rely on passive wing rotation, but on the combination of
two vibration modes, a bending one and a twisting one, excited in phase quadrature by a harmonic point
forcing [Faux et al., 2018]. The peculiar wing trajectory thus created replicates the dipteras’ wing motion
[Fry et al., 2003] and generates lift. Therefore, this nano drone is making use of an entirely flexible structure
to activate the wings vibration, which justifies the novel denomination "vibrating-wing nano air vehicle"
[VWNAV] [Doan et al., 2016]. The current prototypes achieve substantial vibrations amplitudes - around
30◦ of peak-to-peak flapping angle - and generate a lift equivalent to the drone’s weight before the saturation
of the actuator. Aiming at increasing this flapping amplitude, a refinement of our existing design model and
a deeper understanding of the damping effects of the surrounding fluid are needed. This article addresses
these points by considering structures with a gradual complexity, from simple cantilever beams of various
sizes to VWNAV wing prototypes.

Damping is the manifestation of the effects of various phenomena dissipating energy within an oscil-
lating system: internal dissipation within the material (thermoelastic and viscoelastic damping [Chaigne
and Lambourg, 2001; Schmid and Hierold, 2008; Amabili, 2019]), fluid-structure interaction (squeeze-film
[Hosaka et al., 1995], air flow damping [Hosaka and Itao, 1999; Nouira et al., 2007], and acoustic radiation
[Chaigne and Lambourg, 2001]), or imperfect boundary conditions (such as clamping loss [Hao et al., 2003;
Chouvion et al., 2012] or friction in joints [Dion et al., 2013]). Due to its many possible sources, including
damping in a model is not straightforward and many models include linear modal terms which coefficients
are experimentally estimated. This uncoupled modal model is theoretically justified if the damping is low,
for linear (low amplitude) vibrations (see e.g. [Géradin and Rixen, 1994]). In the case of the tested struc-
tures of this article, we assume that for small amplitude vibrations those assumptions are valid and that
a linear damping term embeds all the above physical sources of damping. This is further justified by the
weakly viscoelastic behaviour of the materials of the tested structures (high-yield steel and SU-8, which
has a loss modulus about 40 times smaller than the storage modulus at the frequency and temperature
ranges of interest [Schmid and Hierold, 2008; Le Rouzic et al., 2009]). For larger amplitude of vibrations, we
identified that the interaction with the surrounding fluid, which leads to quadratic nonlinear terms in the
equations, is a predominant damping effect. Other nonlinear damping sources, such as viscoelastic effects
combined with geometrical nonlinearities can also have an effect, but at a higher (cubic) order. This article
mainly addresses the use and the effect of a quadratic damping term due to the interaction of the structure
vibrations with the air flow, and verify experimentally that it is predominant for the tested structures.

Many models for air interaction exist, with varying degrees of complexity. A basic approach is to
consider that the force applied to the structure by the fluid can be separated into two components: (i)
a conservative added mass term, proportional to an acceleration term (which effect is mainly to decrease
the natural frequency), and (ii) a drag damping term, depending on the velocity [Keulegan and Carpenter,
1958]. The underlying hypothesis for this "structural" approach is to consider a steady (or quasi-steady)
flow for the surrounding fluid. When this hypothesis is not verified, more advanced approaches are required.
Indeed, as unsteady flows produce complex phenomena (such as the Wagner effect or the Magnus effect,
related to respectively the delayed stall and the rotational circulation – two lift generating mechanisms for
insects during the flapping cycle [Dickinson et al., 1999]), the corresponding fluid loads are very diverse
[Bidkar et al., 2009]. In this approach, the vast majority of the models requires a numerical solver for the
Navier-Stokes equations [Aureli and Porfiri, 2010; Phan et al., 2013]. The analytical models proposed in
[Ansari et al., 2006; Pedersen and Żbikowski, 2006] are noteworthy as they provide analytical aerodynamic
models accounting for quasi-steady and unsteady flows (in the context of the development of a MAV). The
simulations perform well on the experimental data from [Sane and Dickinson, 2001], but the model applies
to rigid plates.

A general expression of fluid-induced damping is in the form: c|vn−1(t)|v(t), with c a scalar and v the
velocity of the structure with respect to the surrounding media. The case n = 1 is the linear – or Stokes –
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model and n = 0 can be related to dry friction [Géradin and Rixen, 1994]. The most usual model for the
aerodynamic drag is n = 2 [Anderson et al., 1996; Malatkar and Nayfeh, 2003; Egorov et al., 2018]. The
case n = 3 (equivalent to cv3) can also be found in the literature to model the damping due to air on a
structure [Gottlieb and Habib, 2012; Zaitsev et al., 2012]. It originates in investigations on ship roll damping
equivalents (see [Haddara, 1973; Dalzell, 1976; Bikdash et al., 1993]), as the case n = 2 is mathematically
strenuous to use when the structure’s dynamic response involves more than one mode (which is the case
for the random excitation of waves on a ship). Although independent of fluid-induced damping, the study
[Elliott et al., 2015] provides a detailed analytical and numerical study on the general cn|vn−1(t)|v(t) model.
It proposes several examples in the literature and formulates an equivalent damping obtained by retaining
the fundamental term in a harmonic balance analysis.

The topic of identification of nonlinear systems is vast and covers many applications [Kerschen et al.,
2006], but there are few techniques to identify nonlinear damping in the steady state, and even fewer
techniques use the frequency domain [Doughty et al., 2002]. Model-based frequency-domain identification
techniques are mostly due to Pr. Nayfeh’s team work. For cantilever beams, one can refer to [Nayfeh, 1985]
and especially [Krauss and Nayfeh, 1999; Malatkar and Nayfeh, 2003], applied to single-mode responses of
weakly nonlinear structures. The model includes nonlinear damping in the form of cv|v|, and measurements
are made on third and fourth modes of a macroscopic steel beam. In [Malatkar and Nayfeh, 2003], the
parametric identification consists in a frequency response curve-fitting, whereas in [Krauss and Nayfeh, 1999],
the technique is based on curve-fitting fixed points of the system. These studies are of utmost importance
since they present a model that distinguishes the linear and quadratic modal damping coefficients, and take
into account geometric nonlinearities that arise when the amplitude of motion is large.

The geometric nonlinearities of a cantilever beam have been studied analytically in the seminal article
[Crespo da Silva and Glynn, 1978]. It establishes the equations of motion of bending (about two princi-
pal axes) and torsion of an inextensional beam through an expansion in Taylor series truncated at order
3. From there, [Pai and Nayfeh, 1990] demonstrated that the first mode presents a slightly hardening be-
haviour, which was confirmed later on in several publications. This hardening behaviour manifests itself by
a shift of the frequency response towards the high frequencies as the amplitude increases. Yet, the critical
review [Sabater and Rhoads, 2017] apprises of the possible errors that third-order geometric nonlinearity
approximation can engender on parametric system identification techniques using perturbation methods in
resonant micro/nano systems. In particular, for a linearly damped microresonator, fifth-order simulations
show that the normalised amplitude at resonance decreases as the forcing amplitude increases, which would
be caused by the geometric nonlinearities.

The core contributions of this work are the determination of a nonlinear damping model for the effect
of air-induced damping in the steady-state vibration of cantilever structures and the presentation of a novel
identification technique. This paper is organised as follows. Section 1 presents the linear beam model, which
serves to identify key parameters in obtaining large amplitude vibration, as well as the nonlinear beam
model including the geometric nonlinearities. The second section presents the nonlinear damping model,
inspired from [Krauss and Nayfeh, 1999; Malatkar and Nayfeh, 2003], comparing it in subsection 2.3 to
other nonlinear damping models in use, and validating its parametric identification in subsection 2.4. Next,
section 3 presents the materials and methods used for the experimental identification. The section 4 presents
the experimental results and discusses the identified damping coefficients and the procedure.

1. Theory
In this section, we consider a cantilever beam because analytical models, either for linear and geometri-

cally nonlinear vibrations, are at hand and very realistic. Our purpose is to introduce all our methodology
and highlight all parameters relevant to obtain very large amplitudes of vibration. We first recall the linear
model of the beam, which is then enriched with nonlinear terms accounting for geometric nonlinearities
before adding nonlinear damping terms in the next section.

We consider a straight cantilever beam of length L with a uniform cross-section of area S and second
moment of area I, made of a homogeneous and isotropic elastic material of density ρ and Young’s modulus
E. We restrict our attention to transverse vibrations in one direction only. The considered models are based
on the classical Euler-Bernoulli kinematics, for which each cross-section is rigid and remains orthogonal to
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the neutral line. The transverse displacement of the cross-section at abscissa x and time t is written w(x, t).

1.1. Linear beam model
In this section, we first consider the classical linear model for the cantilever beam. In this case, w(x, t)

verifies the following equation:

EIw′′′′ + ρSẅ = p, (1)

where p is the load per unit length and •′ = ∂ • /∂x and •̇ = ∂ • /∂t. It is then convenient to rewrite Eq. (1)
in a dimensionless form. For that, we decide to set the length of the beam L as the characteristic length,
leading to the following dimensionless quantities denoted by overbars:

x̄ =
x

L
; w̄ =

w

L
; p̄ =

pL3

EI
and t̄ =

t

t0
=

t

L2

√
EI

ρS
(2)

Introducing Eqs. (2) into Eq. (1) yields:

w̄′′′′ + ¨̄w = p̄, (3)

where, when applied to dimensionless quantities, •̄′ = ∂•̄/∂x̄ and ˙̄• = ∂•̄/∂t̄.
The natural modes of the beam (ωk,Φk(x̄)) are solutions of the eigenvalue problem:

Φ′′′′ − ω2
kΦ = 0. (4)

with the following boundary conditions in the case of the cantilever beam:

Φ(0) = 0; Φ′(0) = 0; Φ′′(1) = 0; Φ′′′(1) = 0. (5)

The mode shapes are written as follows:

Φk(x̄) =
1

2

(
cosh (βk x̄)− cos (βk x̄) +

cosβk + coshβk
sinβk + sinhβk

(sin (βk x̄)− sinh (βk x̄))

)
, (6)

and the dimensionless natural frequencies are ωk = β2
k, where βk is the k-th solution of cosβk coshβk+1 = 0.

The first 4 values are:

β1 = 1.8751, β2 = 4.6941, β3 = 7.8548, β4 = 10.996. (7)

Besides, the normalisation of the mode shapes in Eq. (6) leads to |Φk(1)| = 1,
∫ 1

0
Φ2
k(x̄) dx̄ = 1/4, ∀k ∈ N∗.

Using the time constant t0 of Eq. (2), the k-th. dimensioned frequency, in [Hz], verifies:

fk =
ωk

2πt0
=

β2
k

2πL2

√
EI

ρS
=

β2
k

4
√

3π

h

L2

√
E

ρ
, (8)

where the last equation is valid in the case of a rectangular cross section of thickness h.
We expand the transverse displacement of the beam on the natural modes basis:

w̄(x̄, t̄) =

+∞∑
k=1

Φk(x̄)qk(t̄). (9)

Substituting Eq. (9) into Eq. (3) and using the orthogonality properties of the modes leads to the following
equations, for all k ∈ N∗:

q̈k + 2ξkωkq̇k + ω2
kqk = Qk, (10)

where ξk is a linear modal damping factor added a posteriori and with

Qk(t̄) =

∫ 1

0
Φk(x̄) p̄(x̄, t̄) dx̄∫ 1

0
Φ2
k(x̄)dx̄

. (11)
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1.2. Obtaining large amplitude vibrations
We address in this section the parameters of the considered thin structures that limit their maximum

amplitude in vibration. This point is relevant in the case of our VWNAV, for which we want to increase
as much as possible the vibrations amplitude in operating conditions. It is also of interest when designing
a specific experimental test of vibrations of thin structures in very large amplitude, to estimate the limits
under which one has to stay in order to avoid damaging or breaking the tested specimen. To obtain simple
criteria, we focus on the linear model introduced in the previous section. Even if a cantilever beam is
considered, the obtained results can be extended to more complex structures, provided they are thin, such
as the beam assemblies of our VWNAV considered in the experimental sections 3, 4 of the present article
and fully described in [Faux et al., 2019].

1.2.1. Maximum resonant amplitude criterion
Considering a beam of rectangular cross section (width b and thickness h), excited by a sine point

forcing of dimensioned amplitude Fe (in [N]) at abscissa x̄e, and assuming a single-mode response for the
displacement in Eq. (9), Eq. (10) leads to the expression of the modal coordinate amplitude at resonance
(Ω ≈ ωk) and thus to the tip displacement of the beam (at x̄ = 1) as a function of the applied force:

wk,max

L
=

6 Φk(1)

β4
k

∫ 1

0
Φ2
k(x̄) dx̄︸ ︷︷ ︸

Modal

L2

bh3︸︷︷︸
Geo.

1

E︸︷︷︸
Mat.

1

ξk︸︷︷︸
Damp.

Φk(x̄e)Fe︸ ︷︷ ︸
Forcing

, (12)

where the expression of p̄ in Eq. (2) has been used.
Eq. (12) presents five independent terms originating from different types of contributions: the modal

properties (that are inherent to the shape of the structure itself regardless of the dimensions), the geometric
parameters (length and geometry of the cross-section), the material’s properties, the damping ratio and the
forcing itself. Moreover, even if the present equations are valid for a single cantilever beam, if the material
is homogeneous, all interpretation can be easily extended to beam assemblies subjected to a point forcing
(e.g. the VWNAV with its electromagnetic actuator [Faux et al., 2019]).

As a consequence, in order to maximise the tip (maximum) displacement of the structure at resonance, one
can act on several of these contributions. First is the design of the geometry: the more slender the geometry
is, the higher the vibrations amplitude is (L � h, b). The second lever is the choice of an appropriate
material: it should be flexible (E low) but its intrinsic material damping should be low as well, to reduce ξk
as much as possible. The damping ratio ξk also includes the effects of imperfect boundary conditions and
air interaction; one has thus to limit the clamping losses by designing proper boundary conditions, the air
losses being the subject of the remaining of this paper. The last lever is to maximise the forcing and select a
forcing point x̄e where the amplitude is high. In addition, one can remark that the index k of the mode has
also an influence, gathered in the value of βk (for the beam, Φk(1) and

∫ 1

0
Φ2
k(x̄) dx̄ are independent of k),

that increases with the value of k (see Eqs. (7)). Consequently, for a given geometry, material, and damping
ratio, the lower the mode is, the higher its amplitude at resonance is.

1.2.2. Yield limit criterion
When considering large amplitude vibrations, one should verify that the maximum stress in the beam

domain σ is lower than the yield strength of the material σe, to avoid a non-reversible change of shape
due to plasticity. Basic strength of material theory, based on the Euler-Bernoulli kinematics used in the
model, gives σ = −Mh/(2I), with the bending moment M = EIw′′. Substituting into these equations the
displacement from Eq. (9) on which is used the single-mode approximation, one can write the maximum
displacement of a beam before yield:

wk,yield

L
=

2Φk(1)

max
x̄

(Φ′′k)︸ ︷︷ ︸
Modal

L

h︸︷︷︸
Geo.

σe
E︸︷︷︸

Mat.

. (13)

Similar contributions to those identified in the previous criterion (Eq. (12)) can be highlighted here: the
structure should be as slender (L � h) as possible, which concurs with the resonant criterion (although
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width b is no longer determinant), and the dimensionless ratio σe/E should be as high as possible for the
selected material.

1.2.3. Material selection remarks

E [GPa] ξ σe [MPa] Resonant criterion Eq. (12) Yield criterion Eq. (13)
S235 steel 210 0.1% 235 1 1
Aluminium 70 0.1% 110 - 300* 3 1.4-3.8

High yield steel 175† 0.1%† 850 - 1200* 1.2 4.34-6.13
Silicon 170‡ 0.1-1%‡ 170 - 1700* 0.12-1.23 0.89-8.9
SU-8 4.88† 1%† 50 - 80* 5.22 9.16-14.6

Table 1
Comparison of different materials with maximum amplitude criteria.
†-noted values are extracted from measurements detailed in sections 3-4 assuming a perfect clamp boundary condition. ‡-noted
values are extracted from [Naeli and Brand, 2009]. (* Yield strength values are estimated from manufacturers data sheets).

The two criteria introduced in the preceding sections stress the importance of the geometric design as well
as the choice of the material. To illustrate the pertinence of choosing an apropriate material, we selected
four different materials. The first material is a widely used S235 steel, which is chosen as the reference
with base index 1. Then, aluminium, that has a smaller Young’s modulus and a comparable yield limit, is
considered. In addition, a high yield steel is also considered, to assess the benefit of choosing an enhanced
material (on the second criterion in particular). As most MEMS are fabricated using silicon, it is interesting
to see its potential compared to steel. Finally, the SU-8 – an epoxy-based photoresist polymer commonly
used in MEMS – was selected since the elastic structure of our VWNAV is made of this material. It was
initially chosen because SU-8 and real insects wing veins show close mechanical properties [Bao et al., 2011].

The materials are compared using the two criteria and results are compiled in Table 1. The different
values of the resonant criterion show that high yield steel and silicon are not particularly better suited for
large amplitude vibrations than structural steel. For the yield criterion, as one could expect, using high
yield steel enhances the performance and selecting a high yield silicon can be useful as well. Aluminium is
a suitable choice that yields satisfactory results for both the resonant and the yield criteria. Overall, SU8 is
a material that will enhance the large amplitude vibrations of a flexible structure as it is a better material
than all the other classical materials in the comparison.

1.3. Nonlinear beam model: geometric nonlinearities
In the above sections, a linear model for the cantilever beam has been considered, valid for small displace-

ments only. If the transverse displacement is increased, one has to consider geometrical nonlinearities. In
the case of restrained ends in the axial direction, the geometrical nonlinearities come from an axial / bending
coupling and a von Kármán model is enough, necessary if w(x, t) is of the order of magnitude of the thickness
h of the beam. In the present case of a cantilever beam, one has to consider higher-order models that take
into account the effects of large rotations of the cross-section, necessary for higher transverse amplitude if
w(x, t) is of the order of magnitude of the length L of the beam (see e.g. [Lacarbonara and Yabuno, 2006;
Thomas et al., 2016]). The dimensionless variables of Eqs. (2) have been chosen accordingly. We use here
a so-called geometrically exact equation of motion of an inextensible cantilever beam in transverse motion,
valid with no restriction on the rotation amplitude of the cross-sections of the beam [Thomas et al., 2016]:

ρSẅ + EI
θ′′′

(cos θ)′
− ρS

(
tan θ

∫ x

L

ü dx
)′

= p (14)

with u the axial displacement, θ the rotation of the cross-section and other notations previously defined.
Using the inextensionality constraints (1 +u′)2 + (w′)2 = 1 and tan θ = w′/(1 +u′), and expanding Eq. (14)
in Taylor series truncated at order three in w, leads to:

EIw′′′′ + ρSẅ + EI(w′w′′2 + w′2w′′′)′ +
ρS

2

[
w′
∫ x

L

∂2

∂t2

(∫ x

0

w′2dx
)
dx
]′

= p, (15)
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which is the well-known model of a cantilever beam in nonlinear vibrations, first introduced in [Crespo da
Silva and Glynn, 1978].

We consider the case of a base excitation. One can decompose the total displacement of a cross-section
of the structure w(x, t) as:

w(x, t) = we(t) + wr(x, t), (16)

where we(t) is the base displacement and wr(x, t) is the relative displacement of the cross-section with
respect to its base. Substituting Eq. (16) into Eq. (15) gives:

EIw′′′′r + ρSẅr + EI(w′rw
′′
r

2 + w′r
2w′′′r )′ +

ρS

2

[
w′r

∫ x

L

∂2

∂t2

(∫ x

0

w′r
2dx
)
dx
]′

= −ρSẅe. (17)

Note that Eq. (17) is similar to Eq. (15) with p = −ρSẅe. For a harmonic base excitation, it is possible to
write the prescribed acceleration

ẅe = γe cos (2πfet), (18)

with γe and fe the amplitude and frequency of excitation. Using the dimensionless form presented in Eqs. (2),
Eq. (17) becomes:

w̄′′′′r + ¨̄wr + (w̄′rw̄
′′
r

2 + w̄′r
2w̄′′′r )′ +

1

2

[
w̄′r

∫ x̄

1

∂2

∂t̄2

(∫ x̄

0

w̄′r
2dx̄
)
dx̄
]′

= −γ̄e cos (Ωt̄), (19)

where

γ̄e = γe
t20
L

= γe
ρSL3

EI
, Ω =

2πfe
t0

=
2πfe
L2

√
EI

ρS
. (20)

One can see that this is the linear equation of motion Eq. (3) appended with 2 nonlinear terms stemming
from the geometrical nonlinearities. Then, expanding w̄r(x̄, t̄) onto the natural modes basis as in Eq. (9),
substituting this equation into Eq. (19) and using the orthogonality properties of the modes, one obtains
the following set of equations for the modal coordinates, for all k ∈ N∗ :

q̈k + ω2
kqk +

+∞∑
i=1

+∞∑
j=1

+∞∑
l=1

[
Γkijlqiqjql + Πk

ijl(q̈jql + q̇j q̇l)qi

]
= −γ̄eRk cos (Ωt̄), (21)

with

Rk =

∫ 1

0
Φk(x̄)dx̄∫ 1

0
Φ2

k(x̄)dx̄
, Γk

ijl =

∫ 1

0
Φk

(
Φ′iΦ

′′
j Φ′′l + Φ′′′i Φ′jΦ

′
l

)′ dx̄∫ 1

0
Φ2

k(x̄)dx̄
, Πk

ijl =

∫ 1

0
Φk

(
Φ′i
∫ x̄

1
(
∫ x̄

0
Φ′jΦ

′
ldx̄)dx̄

)′
dx̄∫ 1

0
Φ2

k(x̄) dx̄
. (22)

2. Nonlinear damping
2.1. Quadratic damping model

The nonlinear beam model introduced in the previous section is conservative. To take into account
damping effects, we choose in this article to introduce damping terms directly in the modal oscillators Eq.(21).
The main interest of using a modal damping model is that it can be easily experimentally identified, as it
will be shown in the following. Since the identification procedure is based on a single resonance, we assume
that it is possible to consider a single-mode response, valid for harmonic excitation, modes well separated
in frequency and no internal resonances; consequently, Eqs. (21) are restricted to the k-th. oscillator only.

As in section 1.1, we first add a linear modal damping of factor ξk. We then add a supplementary
quadratic modal damping term νkq̇k|q̇k| (with | • | the absolute value of •), with coefficient νk, equivalent
to a modal force proportional to the square of the velocity and always opposite to its direction. It stems
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from an aeroelastic drag term, restricted to a single mode and thus neglecting the possible couplings with
the others (see Appendix A). Even if higher order damping terms can be considered (see section 2.3), we
restrict ourselves to the quadratic case since it will be shown in section 4 that this model is sufficient for
the highly flexible structures considered in this article. Finally, omitting the k subscripts/superscripts for
clarity purpose, Eq. (21) becomes:

q̈ + 2ξω0q̇ + νq̇|q̇|+ ω2
0q + Γq3 + Π(q̈q2 + q̇2q) = −γ̄eR cos (Ωt̄), (23)

where

Γ = 8

∫ 1

0

Φ′2Φ′′2dx̄ Π = 4

∫ 1

0

(∫ x̄

0

Φ′2(x̄)dx̄
)2

dx̄, R = 4

∫ 1

0

Φ(x̄)dx̄, (24)

that can be calculated from Eqs. (22) with successive integration by parts (see for example [Arafat, 1999])
and because

∫ 1

0
Φ2
k(x̄) dx̄ = 1/4 with the mode shape definition in Eq. (6). In Eq. (23), the ν parameter is

modal, it may depend on the cross-section’s width and the fluid mass density [Bidkar et al., 2009; Egorov
et al., 2018].

The method of multiple scales [Nayfeh and Mook, 1979] [MS], limited to the first order, leads to a pure
sine solution:

q(t̄) = a cos (Ωt̄− φ). (25)

The development of calculations covering this case and the one presented in subsection 2.3 is given in
Appendix B. It shows that a and φ can be determined in the steady state with the system:

ξω0a+ ηω0a
2 =− γ̄eR

2ω
sinφ

aσ − (3Γ− 2ω2
0Π)

8ω0
a3=

γ̄eR

2ω
cosφ,

(26)

where η = 4ν/3π and σ = Ω − ω0, the detuning parameter for a primary resonance. By eliminating φ
between the two equations in Eq. (26), one can obtain the frequency response of the system near resonance
[Malatkar and Nayfeh, 2003]:

Ω− ω0 =
(3Γ− 2ω2

0Π)

8ω0
a2 ±

√
(γ̄eR)2

4ω2
0a

2
− ω2

0 (ξ + η a)
2
. (27)

With this model, valid only in the vicinity of a resonance, one can notice that the the effects of geometric
nonlinearities – appearing in the first term with coefficients Γ and Π – and the damping – appearing in the
second (square root) term – are independent. At the resonance point, the forcing energy and the damping
loss offset each other, the term with the square root is zero and the first term gives the evolution of the
frequency at resonance with respect to the amplitude a of the motion, which is here a quadratic relation.
Then, the square root term in Eq. (27) includes an equivalent damping term:

ξeq = ξ + ηa. (28)

Naturally, ξ is a dimensionless damping factor and thus its numerical value has a general meaning, inde-
pendent of the structure and the mode considered. On the contrary, the quadratic term ηa is linear in the
modal amplitude a of the motion. It thus depends on the mode shape scaling and more generally on the
vibration amplitude scaling. For ξeq to be as general as ξ, the scaling must be defined accordingly. Referring
to Eqs. (2), (9) and (25), the transverse displacement w(x, t) and a are scaled with the characteristic length
L of the structure, which leads to:

ξeq = ξ +
η

Φmax

wmax

L
= ξ + η̂

wmax

L
, (29)
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where wmax is the amplitude of the transverse motion of the structure where the deformed shape is maximum
and Φmax = maxx̄ |Φ(x̄)| is the corresponding value of the latter. The above equation shows that η depends
on the mode shape scaling whereas η̂ = η/Φmax does not. In this article, to confer a general meaning to the
quadratic damping coefficient, we choose to use η̂ (or η if the mode shapes are scaled such that Φmax = 1,
which is the case for the mode shapes of Eq. (6)). As a consequence, the physical meaning of the quadratic
damping coefficient η̂ can be inferred as the equivalent modal damping factor when the maximum amplitude
of vibration wmax of the structure is equal to the characteristic length L. Coefficient η = 4ν/3π has the
same physical meaning, but is less general since it depends on the mode shape normalisation, as explained
above.

2.2. Identification methods
Equation (27) leads to two methods to identify the damping coefficients ξ and η̂ from the frequency

domain: a classical half-power bandwidth identification of the equivalent damping, and a model-based
identification technique, that is similar to what is proposed in [Krauss and Nayfeh, 1999].

2.2.1. Method 1 (M1): half-power bandwidth
In the case of a linear damping model, for small values of the damping factor ξ and well separated

resonances, one can use the half-power bandwidth ∆ω to identify ξ since ξ ' ∆ω/(2ω0). Consequently, one
can extend this method to estimate the equivalent damping factor ξeq for increasing values of the vibration
amplitude, as long as the resonance frequency does not change much with the amplitude. For this, we
measure the resonant response of the structure at a point of abscissa x̄m, for several input accelerations, and
we estimate wres, which is the amplitude, at resonance, of the displacement w(x̄m, t̄). Then, with Eq. (9),
wres = wmaxΦ(x̄m)/Φmax and for each resonance, ξeq can be written:

ξeq = ξ + c0wres, and η̂ = L
Φ(x̄m)

Φmax
c0. (30)

On the plot of ξeq as a function of wres, the intercept and the slope give respectively the linear and quadratic
modal damping coefficients (ξ, η̂). This method will henceforth be referred to as "M1".

Besides, one can notice that the present identification method is independent of any structural model for
the structure, since Eqs. (30) depend only on the characteristic length L of the structure and the relative
amplitude of the deformed shape Φ(x̄) between the point where it is maximum and measurement point x̄m.
In practice, one estimates ξ and c0 with a linear fit of the experimental points ξeq = f(wres) and deduces η̂
with L and a measurement of the mode shape.

2.2.2. Method 2 (M2a, M2b): amplitude at resonance
At resonance, the forcing energy and the damping loss offset each other. In other words, the term under

the square root in Eq. (27) vanishes, which gives an analytical relation between the amplitude at resonance
ares, the forcing amplitude and the damping:

γ̄eR

2ω2
0

= ξares + ηa2
res, (31)

that leads to a single meaningful root (positive and strictly decreasing in ξ and η):

ares =

√(
ξ

2η

)2

+
γ̄eR

2ηω2
0

− ξ

2η
. (32)

From Eq. (31), it is trivial to observe that for a linear modal damping model, the amplitude at resonance
increases linearly with the forcing amplitude, whereas Eq. (32) demonstrates that when the quadratic damp-
ing coefficient is a non-zero value, the amplitude at resonance increases only with the square root of the
forcing amplitude. In its dimensional form, Eq. (31) can be written:

γe = c1wmax + c2w
2
max, (33)
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with γe the prescribed base acceleration (see Eq. (18)), wmax defined in the previous section and with c1
and c2 two coefficients that can be extracted from measurements. By identifying Eq. (31) with Eq. (33) and
using Eqs. (2), (8) and (20), one obtains:

ξ =
RΦ(x̄m)

8π2f2
k

c1, and η̂ =
RΦ(x̄m)

8π2f2
k

L
Φ(x̄m)

Φmax
c2, (34)

with fk the natural frequency of the considered mode of the structure (measured at low amplitude). One
can notice that because RΦ(x̄m) (see Eq. (22)) does not depend on the mode shape normalisation, the same
property logically holds for (ξ, η̂). As a consequence, one has two alternatives for the identification.

First, if a structural model is known for the structure, one can calculate Φ(x̄m) and R from Eqs. (6) and
Eq. (22) respectively. This leads to a model-based identification technique, which is henceforth referred to
as "M2a", for which one has to measure the amplitude of the structure at a given point x̄m, at resonance,
for several values of the input acceleration γe. Then, c1 and c2 are identified by a quadratic fit of the
experimental points γe = f(wres) and Eq. (34) gives the value of (ξ, η̂).

Second, if no structural model is available, estimating Φ(x̄m) and R experimentally is not straightforward.
To overcome this difficulty, it is possible to first estimate ξ with a very low amplitude measurement (through
method M1 for instance) and then use it to estimate η̂ using the identified c1 and c2:

η̂ =
c2
c1
L

Φ(x̄m)

Φmax
ξ. (35)

As in method M1, all quantities (c1, c2, L,Φ(x̄m)/Φmax) can be estimated through simple experiments. This
method will be referred to as "M2b" from now on.

2.3. Higher order damping models
A number of nonlinear damping models exist in the literature, as presented in the introduction. To

investigate their effects on the dynamics with relation to the quadratic model introduced in the previous
section, two additional damping models are considered here. For this, Eq. (23) becomes:

q̈ + 2ξω0q̇ + ω2
0q + ν1q̇|q̇|+ ν2q̇

3 + ν3q
2q̇ + Γq3 + Π(q̈q2 + q̇2q) = F cos (Ωt̄). (36)

It corresponds to the oscillator equation studied in the previous section, Eq. (23), with a generic dimensionless
forcing F and two additional nonlinear damping terms, ν2q̇

3 and ν3q̇q
2. The former is introduced in [Gottlieb

and Habib, 2012] in addition to the linear damping and aerodynamic drag damping to model the effect of air
on a forced spherical pendulum. The latter models the viscoelasticity effects for plates in [Amabili, 2018a].
The forced response of the system in the steady state can be obtained with the method of multiple scales
(cf. Appendix B) from:

Ω− ω0 =
(3Γ− 2ω2

0Π)

8ω0
a2 ±

√
F 2

4ω2
0a

2
− ω2

0

(
ξ +

4ν1

3π
a+

[
3ω0ν2

8
+

ν3

8ω0

]
a2

)2

; (37)

in which the equivalent damping term is now:

ξeq = ξ + η1a+ (η2 + η3)a2 (38)

with η1 = 4ν1/(3π); η2 = 3ω0ν2/8 and η3 = ν3/(8ω0).
One can notice that Eq. (37) can also be applied to a nonlinear mode of a non-symmetric structure with

quadratic nonlinearities, such as a laminated plate or a shell with geometrical nonlinearities. In this case,
Π = 0 and the sign of Γ gives the hardening / softening behaviour of the considered nonlinear mode. There
is no need for an additional quadratic term in Eq. (36) since a normal form reduction, restricted to only one
invariant nonlinear mode [Touzé et al., 2004; Denis et al., 2018]), shows that a single cubic term embeds the
effects of all the non-resonant quadratic terms of the classical modal expansion.

As compared to the drag-like damping term associated to η1, linear in a, the two additional damping
terms linked to (η2, η3) are one order higher, quadratic in a. Moreover, it appears that for a given structure,
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it seems difficult to distinguish the contributions in terms of damping of ν2 or ν3, since their effects are
additive and appear at the same order. In the present study, those two additional higher order damping
terms will not be considered since the experimental results (figures 5(c), 7(c), 8(c), 9(c,e)) show that the
equivalent damping is well described by a linear function of a, with obviously no quadratic dependency.
Consequently, the most pertinent damping term to include is ν1|q̇|q̇ for the tested structures of this article.

2.4. Numerical validation of the identification methods
In this section, we test the validity of the identification methods proposed in subsection 2.2. A linear

oscillator and a Duffing oscillator – both appended with an aerodynamic drag damping term and both
harmonically forced – are used to assess the methods’ validity when applied to the numerical simulations of
these oscillators. The former could model roughly the first mode of a cantilever beam as it is only slightly
hardening. The latter is a simple model of more pronounced geometric nonlinearities effects. The reference
numerical simulations are performed using the MANlab software [Cochelin et al., 2007; Lazarus and Thomas,
2010; Guillot et al., 2019], which combines periodic solution continuation with the harmonic balance method.
More details have been postponed in Appendix C.

2.4.1. Linear oscillator with aerodynamic drag damping
The first oscillator tested is:

q̈ + 2ξq̇ + q + νq̇|q̇| = F cos (Ωt̄). (39)

The oscillator’s nondimensional natural frequency has been set to 1; it would have been possible to reduce
this equation to only 2 independent variables - (ξ, F ) or (ξ, η) - by rescaling Eq. (39) in amplitude. This
would have led to universal results, however, in order to simulate the beams tested experimentally, we chose
to keep this formulation with these three coefficients. Indeed, since the damping depends on the vibration
amplitude, the simulated frequency responses have (dimensionless) amplitudes in the range similar to that
obtained experimentally, thanks to the tuning of the forcing amplitude.

To estimate the accuracy of our identification methods, we work on the simulated frequency responses
of Eq. (39), plotted in dots (and captioned "MANlab") in Fig. 1(a) with the implemented values for the
coefficients (ξ, η̂) = (0.001, 0.01), through ν = 3πη̂/4. The phase of the frequency responses is plotted
in the graph of Appendix D. We use these frequency responses to test successively M1, M2a and M2b.
First, following M1, we estimate ξeq using the half-power bandwidth method and plot it with yellow squares
in Fig. 1(b), as a function of the amplitude at resonance ares. This plot also shows with red circles the
different values of ξeq computed with the implemented values (ξ, η̂). Following Eq. (30), a linear fit gives
(ξ, η̂) = (1.08 10−3, 1.22 10−2) estimated by the M1 method. Whereas the value of ξ is well recovered, the
value of η̂ is slightly overestimated, which is qualitatively observed in Fig. 1(b) since the slopes of the two
lines are different. Then, we also tested M2a and M2b by plotting F as a function of ares (Fig. 1(c)) and
estimating (ξ, η̂) = (1.05 10−3, 0.99 10−2) and (ξ, η̂) = (1.08 10−3, 1.02 10−2) respectively, with a quadratic
fit (Eqs. (33), (34) and (35)). In this latter case, the identifications are much more precise.

Once these coefficients are obtained, one can reconstruct the frequency responses for the five different
dimensionless forcing amplitudes (differentiated by colours) on Fig. 1(a). We use 2 different models for the
reconstruction: a linear model ("Lin") for which we plot the modulus of the following complex function
1/(1−Ω2 + 2iξeqΩ), with ξeq = ξ + η̂ares, and the MS model of Eq. (27). In both cases, the values of (ξ, η̂)
are those estimated with M1 and M2a. All resulting curves are plotted in Fig 1(a). The frequency responses
using the M1-coefficients underestimate the amplitude at resonance (dotted and dashed lines), which is
logical since the damping is overestimated, Fig 1(b). Furthermore a linear model using M2a-coefficients
does not correlate exactly for high amplitude vibrations (solid lines) contrary to the multiple scales solution,
that seems to fit quite well the numerical solution in the frequency range considered (dash-dotted lines).

Overall, this numerical analysis shows that the resonant amplitude-based method seems to be suited for
the identification of our systems, and the multiple scales model is a good reconstruction method.

2.4.2. Duffing oscillator with aerodynamic drag damping
The structures of interest do not exhibit a significant nonlinear behaviour due to geometric nonlinearities

when excited on their first mode (section 4). On other modes or structures with more pronounced geometrical
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(b)(a)

(c)

Figure 1: Validation of the identification methods, without geometric nonlinearities.
(a). Simulated and reconstructed frequency responses using M1 and M2 combined with a linear or a multiple scales model, (b).
Illustration of M1 method, with identified ξeq values in squares and the fit (dashed line), to be compared with the ξeq values calculated
with (i) the implemented coefficient values (ξ=0.001, η̂=0.01) in circles and (ii) the coefficients identified using M2a (dash-dotted
line), (c). Illustration of M2 method (crosses), with the MS Forcing calculated with Eq. (31) and implemented damping coefficients
(circles).

nonlinearities, jump phenomena are observed in the frequency responses, which prevent the application of
the half-power bandwidth method, thus making the damping identification more complex. It is possible to
apply the method at very low amplitude and then use a linear model damping, but this method does not
yield optimal results at large amplitude, as the response is overestimated. An example can be found in the
experimental frequency responses shown in [Thomas et al., 2003, 2007] for plate and shell vibrations. The
proposed identification method M2a may still be applied though, and its validity can be tested numerically.
For this purpose, we consider the following oscillator which includes a cubic term:

q̈ + 2ξq̇ + q + νq̇|q̇|+ Γq3 = F cos (Ωt̄). (40)

Re-scaling this equation can reduce the number of independent variables to 3.
The same process used for the oscillator of the previous section is applied here. The corresponding results

are displayed on Fig. 2, with the same implemented damping coefficients (ξ, η̂) = (0.001,0.01) and with Γ=-1.
These simulations show that the method is still relevant for structures displaying geometric nonlinearities
effects, although the equivalent damping reconstructed with the identified coefficients (dash-dotted line, with
(ξ, η̂)=(1.7 10−3,6.8 10−3)) does not match as well the equivalent damping calculated with the implemented
coefficients (solid line) Fig 2(b). Indeed, using the identified coefficients on the reconstructed frequency
responses (M2a+MS) yields good results at high amplitude Fig 2(a). On the other hand reconstruction using
the MS model with the implemented coefficients is accurate for amplitudes up to 0.3a, but underestimates
the amplitude beyond that. Overall, the reconstructions with the identified coefficients fit better to the
"real" solutions. This standout result is due to the fact that Eq. (31) is not accurate for high amplitudes,
see Fig. 2.(c), which is directly related to the validity limit of first order approximation in the multiple scales
.

In addition, MANlab also gives the amplitude of the other harmonics of the solution. In accordance with
the theory and the multiple scales development (see Appendix B), the amplitudes of the constant value and
the second harmonic of the solution are de facto null (5 orders of magnitude lower, near the float resolution).

Colin et al.: Preprint submitted to Elsevier Page 12 of 27



Very Large Amplitude Vibrations of Flexible Structures

(b)(a)

(c)

Figure 2: Validation of the second identification method, with geometric nonlinearities.
(a) Simulated frequency responses with Γ=-1, superimposed with the frequency responses reconstructed with the damping coefficients
identified using M2a or directly the implemented coefficients (ξ=0.001, η̂=0.01), (b). Comparison of the ξeq obtained with M2 and
the implemented values, (c). Illustration of M2 (crosses), with the forcing calculated with Eq. (31) and the implemented damping
coefficients (circles).

The plot is not reproduced here for synthesis purpose. For the oscillator of the previous section, the third
harmonic amplitude was also limited; whereas the amplitude of Eq. (40) solution’s third harmonic is more
and more important as the forcing increases, due to the geometric nonlinearities. This may explain the
various degrees of accuracy of the MS model, as the approximation of a solution in the form of a pure sine
function is verified or not.

However, the correlation for these reconstructions is in much better agreement than a strictly linear
damping model, for the values of the damping coefficients that were chosen in the range obtained experi-
mentally. Indeed, for such a model, the amplitude at resonance is inversely proportional to the damping,
and since the equivalent damping at high amplitude is around five times the damping at low amplitude
Fig. 2.(b), this would lead here to an overestimation of the response at high amplitude by a factor 5.

3. Experimental setup
The identification techniques proposed in subsection 2.2 are used to identify the damping coefficients of

several structures, presented in subsection 3.1. The whole measurement process is described in subsection 3.2.

3.1. Specimens
The different structures tested are presented in Fig. 3. A photograph of the maximum amplitude obtained

is presented as well when it is significant.
The first structure tested is a steel ruler, as it is readily available and easy to measure, which allows

validating the identification method and the set-up. Figure 3(a) displays the ruler clamped at the desired
length, set on the shaker, ready for the measurement, with an accelerometer at its base and a vibrometer
targeting the measuring point. Figure 3(b) shows the beam vibrating in profile. The trace is in light green
and the maximum positions of the beam are highlighted. The second tested structure is a micro beam,
hereinafter referred to as µ-beam, made of SU-8 polymer (Figs. 3(c,d)). It has a comparable width-to-
thickness ratio with the steel ruler. Its testing helps determining the influence of material and scale on
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(a) (b)

(c)

(h)(g)

(e)

(f)

(d)

Figure 3: Photographs of tested specimens.
(a). Steel ruler at rest, (b). Maximum amplitude obtained for steel ruler, (c). µ-beam at rest, (d). Maximum amplitude obtained
for the µ-beam, (e). L-beam at rest, (f). WS (Wing skeleton) at rest, (g). Maximum amplitude obtained for WS, (h). Wing at rest.

damping. A similar set-up is used, however, for the present µ-beam and all the other micro-structures
introduced below, the clamping is made by gluing them on a flat surface: the head of a given countersunk
screw that has a first axial mode much higher than the frequency range of interest.

The other tested structures are micro-scale beam assemblies which are ever more looking alike a wing
of our VWNAV. The first beam assembly tested is the simplest possible: it is 2 beams which are assembled
perpendicularly (the resulting "L" shape justifies the notation L-beam). Figure 3(e) presents the L-beam
(and its gluing surface) and an adjacent 1-cent coin, which serves as a scale. The second beam assembly
tested is a structure resembling our VWNAV, but without membrane [Faux et al., 2018]. By testing this
structure and a "real" VWNAV wing, it is possible to estimate the contribution to damping of the membrane.
This "wing skeleton" structure (shortened to "WS") is presented on Figs 3(f,g). Each trace of its beams
is coloured in light blue, green and pink respectively, and the maximum positions of each beam are again
highlighted. The last tested structure is a wing (or simply W), sampled from an existing prototype. Its
characterisation can serve the design of future prototypes. Fig. 3(h) presents the wing set on the shaker.

The main geometric parameters are detailed in Table 2. The recurring characteristic length of 8 millime-
tres has been chosen specifically for comparison purposes with the VWNAV wing, as well as the cross-sections’
geometry.

3.2. Measurement process and materials
3.2.1. Experimental set-up

A stepped-sine experiment is performed with the set-up presented in Fig. 4. The excitation amplitude
is set to a given value of acceleration that is maintained constant throughout the measurement to establish
a frequency response. The computer generates a signal that a digital-to-analogue converter (DAC) feeds
to a power amplifier to activate an electromagnetic shaker (Brüel & Kjær 4808). The base acceleration
is measured with an accelerometer and is looped back into a controller to counter the interaction of the
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Structure L h b

Steel ruler 130 0.5 1.3
µ-beam 12 0.08 1.6
L-beam 8 0.08 0.08
WS 8 0.08 0.08
Wing 8 0.08 0.08

Table 2
Characteristic geometric parameters of the tested structures (Length L, thickness h and width b, in millimetres).
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Figure 4: Experimental setup for the measurement of the frequency response curves.

structure with the shaker, avoiding force drops off near resonance [Varoto and de Oliveira, 2002]. The
displacement of the beam is measured with a laser Doppler vibrometer (Polytec PSV400 scanning laser
vibrometer). Thanks to an ad-hoc lense system, the laser beam focus can be made compatible with the
structure’s small geometry; one can see the laser spot in Figs. 3(a,c,d). The amplitudes of the first harmonics
of the beam’s velocity and base acceleration signals are then extracted using a homodyne detection in the
steady state. Then the relative displacement can be calculated and plotted for each tested frequency.

3.2.2. Homodyne detection
Let s(t) be a given periodic time signal, that one can write s(t) = s0 +

∑N
k=1 ak sin (kωt+ φk). We are

searching for a1 and φ1, the amplitude and phase of the first harmonic of that signal (the calculation may
be applied to any harmonic). We first multiply s(t) by a cosine and a sine function at the frequency of the
first harmonic: sc(t) = s(t) cos (ωt), ss(t) = s(t) sin (ωt). By calculating the mean of each product 〈sc(t)〉
and 〈ss(t)〉, one can show that 〈sc(t)〉 ≈ sin (φ1) a1/2, 〈ss(t)〉 ≈ cos (φ1) a1/2, if the duration T of the mean
is large compared to the largest time period of the signal (i.e. T � 2π/ω), and the phase is not random.
Amplitude and phase are then:

a1 ≈ 2
√
〈sc(t)〉2 + 〈ss(t)〉2 and φ1 ≈ arctan

(
〈sc(t)〉
〈ss(t)〉

)
. (41)

3.2.3. Relative displacement calculation
The displacement wr is obtained by subtracting the displacement of the base we to the total dis-

placement w, according to Eq. (16). Using the homodyne detection (3.2.2) for the first harmonics of
the vibrometer signal and the accelerometer signal (respectively noted vvib(t) = V cos (2πfe t+ ψv) and
ae(t) = γe cos (2πfe t+ ψa)) and then integrating them gives:

w(t) =
V

2πfe
cos (2πfe t+ ψv − π/2), and we(t) =

γe
(2πfe)2

cos (2πfe t+ ψa − π). (42)

Denoting by W and α the amplitude and phase of the first harmonic of the seeked relative displacement
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and applying Eq. (41) yields:

W =
1

2πfe

√
V 2 +

γ2
e

4π2f2
e

− V γe
πfe

cos (ψv − ψa + π/2)

α = arctan
2π V fe sin (ψv − π/2)− γe sin (ψa − π)

2π V fe cos (ψv − π/2)− γe cos (ψa − π)
.

(43)

This process is crucial as the beam total displacement is not measured at the tip to limit the effect of axial
displacement at very large transverse amplitude. Therefore, it presents an antiresonance that is marked
increasingly with a decreasing abscissa along the beam’s length.

3.2.4. Data processing for identification and reconstruction
A synoptic description of the data processing is the following:

1. Plot the frequency response of the relative displacement for all tested acceleration amplitudes
2. Plot γe as a function of maximum amplitude wmax

3. Extract the polynomial coefficients of the fitting curve
4. Extract ξ and η̂, either using

• Eq. (34), i.e. M2a

• M1 to identify ξ, and Eq. (35) to extract η̂, i.e. M2b

5. Reconstruction of the frequency responses either using

• the MS model

• the linear model

4. Experimental results
For all tested structures, the materials properties were determined individually. With the mass of the

samples (obtained with a precise balance) and their volume (calculated), one can calculate the density ρ:
for the ruler’s steel and SU-8, it led to ρS = 7920 kg.m-3 and ρSU-8 = 1290 kg.m-3 respectively. Assuming
a perfect clamped boundary condition gives Eq. (8) for the natural frequencies. By adjusting the slope
of the theoretical versus analytical frequencies of the first four modes of the cantilever beams, we find the
Young’s modulus of the tested beam experimentally (we also assume it does not vary between the different
fabricated structures). The identified values of Young moduli are included in Table 1. Besides, for all
experimental frequency responses processing, a smoothing filter was used to minimise the impact of artefacts
of measurements on the identification. The filter used is the Savitzky-Golay algorithm, (Matlab sgolayfilt
function from the Signal Processing Toolbox). The only plot displaying filtered data is the comparison of
the identification methods and reconstruction models on experimental frequency responses (Fig. 6), and
mentions it explicitly in the caption: -(filt). As explained in section 2, since the values of the identified
coefficients c1 and c2 depend on the scaling, they are not given in this paper. However the identified values
of ξ and η̂ (directly related to c1 and c2) are detailed in Table 3 for all tested structures.

4.1. Cantilever beams
Figure 5 presents the identification for the macroscale steel ruler of Figs. 3(a,b). Very large amplitudes

have been tested, up to 0.3 times the length of the beam, more than half of it for the peak-to-peak amplitude.
A few of the measured frequency responses near the first mode are plotted in Figs. 5.(a,b). The hardening
behaviour predicted analytically is perceptible, but not significant. Furthermore, if the damping was linear,
the phase would be independent of the forcing amplitude. In Fig. 5.(b), the phase variation at the vicinity
of the resonance is reduced – it becomes more and more "flat" – as the forcing increases. This effect is
also observable in Appendix D, with the plot of the amplitude and the phase of the simulated frequency
responses. This effect was noticed in the study [Ramananarivo et al., 2011] as well. Figs 5.(c,d) show the
fits for the two identification methods M1 and M2a. Both can be well described by a linear or quadratic
function of a, depending on the method used.
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(a) (c)

(d)

(b)

Figure 5: Damping coefficients extraction for the ruler’s first mode.
(a). Measured frequency responses, (b). Measured phase of the frequency responses, (c). Illustration of M1 applied to the ruler, (d).
Illustration of M2a applied to the ruler. R2 gives the coefficient of determination to confirm the fit.
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Figure 6: Experimental validation of identification methods and models for a steel ruler-(filt).

Figure 6 is analogous to Fig. 1 with data from experiments, i.e. the different identification methods
and reconstruction models are compared on experimental data. Similar observations can be made on the
identification techniques: the half-power bandwidth method M1 combined with a linear model does not yield
the best correlation, whereas the combination of the second identification technique M2a (or M2b) and the
multiple scales model should be the preferred method.

Figures 7(a,b) display the frequency responses in the vicinity of the first mode of the micro beam shown
on Figs. 3(c,d). Very large amplitudes were obtained, with the maximum dimensionless amplitude around
0.4 times the length of the beam, which corresponds to 80% in peak-to-peak amplitude. Figs. 7(c,d) illustrate
the identification methods 1 and 2 respectively. As M1’s accuracy depends on the quality of the frequency
response, and the last two frequency responses function present higher experimental error, only the four first
points were used for the fit. One can verify that the last two points do not represent a change in the damping
behaviour by examining the results of M2 in Fig. 7(d). The reconstructed frequency responses (Fig. 7a) use
the second identification method (M2a) and the multiple scales model. The correlation is satisfactory up to
very high amplitudes.
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(a) (c)

(d)

(b)

Figure 7: Measurement, identification and reconstruction for µ-beam (mode 1).
(a). Measured and reconstructed frequency responses in both dimensional and dimensionless scales, (b). Measured phase of the
frequency responses, (c). M1 illustration, (d). M2 illustration

4.2. Beam assemblies
This section addresses the vibratory response of the beam assemblies shown on Figs. 3(e,f,g,h). As

explained in section 2.2.2, we need a structural model to apply M2a identification. Since, as it will be
shown, the frequency responses of those structures do not show any hardening or softening behaviour, a
linear structural model should be accurate enough (Fig. 1.(a)), as the one presented in [Faux et al., 2019].
Some discrepancies in the natural frequencies where observed between the measured ones and the ones
from the model, attributed to unavoidable imperfections in the geometry and the boundary conditions.
Therefore, we prefer here to use the M2b identification method, which does not need any structural model
of the structure.

Besides, the L-beam and the wing skeleton displayed in-plane vibrations that caused a loss of focus of the
vibrometer, thus preventing measurements at large amplitude. This explains the weak maximum measured
amplitude obtained on the graphs when compared to the photograph Fig 3.(g). This may be related to the
choice of a square cross-section for these structures [Pai and Nayfeh, 1990].

We first consider the L-shaped beam of Fig. 3(e), with the main beam of length 8 millimetres and the
perpendicular segment of 4 millimetres. The measured and reconstructed frequency responses are displayed
on Figs. 8(a,b), with the identifications illustrated in Figs. 8(c,d). Again, it is shown that the proposed
identification method allows to obtain a good correlation between the measured and reconstructed curves
which validates its use for the case of single-mode responses of beam assemblies.

Then, we consider the wing skeleton and NAV wing of Figs. 3(f,g,h). As compared to the previous
structures, these have been designed to have the first two modes very close in frequency [Faux et al., 2018],
which is clearly seen on the frequency responses, Figs. 9-10(a). Therefore, the structural response at fre-
quencies between the two natural frequencies includes the contribution of both modes due to the frequency
closeness of the modes, which invalidates the single-mode hypothesis of the damping model proposed here.
To circumvent this problem, it could be possible to perform a study of the interaction between these de-
grees of freedom, but this is out of the scope of this article, as deriving a multi-mode model including a
quadratic damping coupling is not straightforward, mainly because of the non-direct modal expansion of
the velocity modulus (see Appendix A). For these structures, the identification methods have been tested
separately on the two resonances considering two separate oscillators. In the immediate vicinity of both
resonances, the reconstructed frequency responses of the WS and NAV wing match quite well the measured
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(a)

(b)

(c)

(d)

Figure 8: Measurement, identification and reconstruction for L-beam (mode 1).
(a). Measured and reconstructed frequency responses in both dimensional and dimensionless scales, (b). Measured phase of the
frequency responses, (c). M1 illustration, (d). M2 illustration.

(a) (c)

(d)

(b)

(e)

(f)

Figure 9: Measurement, identification and reconstruction for the Wing skeleton (bending and twisting modes).
(a). Measured and reconstructed frequency responses in the vicinity of both modes, (b). Measured phase of the frequency responses,
(c). M1 on twisting mode, (d). M2 on twisting mode, (e). M1 on bending mode, (f). M2 on bending mode.

frequency responses, which would indicate that the damping coefficients are well captured and the single-
mode approximation holds at resonance. In addition, the effect of nonlinear damping may be seen clearly
on Figs. 9(b,f).

Last, for the specific case of the wing removed from a prototype of our VWNAV, one may notice that
the two resonances appear for frequencies lower than in the case of the wing skeleton. This may be due to
the added mass effect of the surrounding fluid. For the first mode, the first point has been discarded from
the fit to improve its quality. The apparent overestimation of the damping for this point may be related to
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(a) (c)

(d)

(b)

(e)

(f)

Figure 10: Measurement, identification and reconstruction for the "true" wing (bending and twisting modes).
(a). Measured and reconstructed frequency responses in the vicinity of both modes, (b). Measured phase of the frequency responses,
(c). M1 on bending mode, (d). M2 on bending mode, (e). M1 on twisting mode, (f). M2 on twisting mode.

the modal combination. Indeed, at low amplitude, the half-power bandwidth of a mode may be impacted by
the other mode. For higher amplitudes, this can still be true for the second mode as its peak is lower. Since
Eq. (35) uses the linear damping coefficient identified with the half-power bandwidth method, which does
not yield good results here (Fig 10(c,e)), the validity of the damping coefficients identified is not guaranteed.
Moreover, the quadratic damping coefficient of the twisting mode was found negative – the displacement
amplitude range is very limited, which reduces the significance of the identification. The addition of the
membrane strengthens the coupling of the structure with the fluid, which increases the nonlinear coupling
between the modes and renders the assumption of single-mode response less valid.

4.3. Damping comparison
The measurements led to the identification of various damping coefficients. Figure 11 presents the

equivalent damping ξeq reconstructed with Eq. (29) and the identified (ξ, η̂) coefficients, for the various tested
structures, on the amplitude range tested. The first conclusion to be drawn is that the SU-8 structures have
a higher linear modal damping than the steel ruler. It may be related to the viscoelasticity of the material.
Furthermore, one can notice that the structures with larger widths (the cantilevers) have higher aerodynamic
damping which is consistent with the aerodynamic force parameters [Bidkar et al., 2009]. The quadratic
damping coefficient is also smaller for the wing skeleton’s twisting mode than for the bending mode, which
would indicate a priori a lower lift generation for the twisting mode. For weakly damped structures, taking
into account a quadratic damping term allows a better correlation, as the equivalent damping varies in
the range of tested amplitudes. In the case of the L-beam and the NAV wing second mode, the phase
plots (Figs. 8,10(b)) do not display a significant dependence on the excitation amplitude, which could be
interpreted as a low quadratic damping (with the converse reasoning of section 4.1). Hence a linear damping
model could be sufficient.

As explained in the previous section, the identification method for the drone wing gives low confidence
values. This said, the linear damping coefficient values are localised around 0.04-0.05. It is interesting to
note that it is around five times higher than the coefficient in absence of membrane, which was unexpected
as the effect of the membrane was believed to increase the quadratic damping coefficient only. It could
be due to the limit of the identification method, however the membrane does have an effect even for very
small amplitude vibrations, which correspond to the Stokes regime (Re<1), (in which the action of air on
the structure is taken into account with a Stokes drag that depends linearly on the velocity [Stokes, 1851]).
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Structure Macro µ-beam L-beam WS,b WS,t W,b W,t
ξ % 0.26 1.22 1.15 0.78 1.05 5.05* 4.32*
η̂ % 2.20 3.24 0.80 1.23 1.00 30.6* *

Re (Lc = b) 2.8 103 3.1 102 2.01 14.6 11.5 0.85 0.31

Table 3
Damping coefficients and Reynolds numbers at maximum measured amplitude for the different modes of the tested
structure. (* Damping coefficient values of W have a low confidence)
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Figure 11: Reconstructed equivalent damping ξeq, computed with the values identified using M2a (cantilever beams) and
M2b (beam assemblies) for the tested modes.

In this regime, the action of air on the structure is then easily translatable into a linear modal damping.
Therefore an increase in the linear damping factor may not be absurd.

Conclusion
In this article, we investigated several aspects of a nonlinear quadratic damping term, due to fluid

structure interactions, and its application to the large amplitude vibrations of cantilever highly flexible
structures. An initial result was that such a model can be viewed in a certain sense as a classical linear
damping model with an equivalent damping coefficient that depends linearly on the amplitude of motion.
In order to confer a general meaning to this quadratic damping coefficient, special care was taken to make
it dimensionless, so that its influence on the dynamics can be compared from one structure to another one,
as it is usually done with a linear damping ratio. It was also demonstrated, in the case of the considered
structures, that this model was both necessary – since the equivalent damping values vary significantly
in the range of tested amplitudes – and sufficient compared to other nonlinear damping models – as the
experimental equivalent damping is well described by a line function of the displacement amplitude.

We also proposed and tested original identification techniques for experimental estimation of the linear
and quadratic modal damping coefficients. These techniques are applicable to single-mode responses only,
therefore for structures with a weak fluid-structure interaction. A first technique is based on the linear
damping model; it uses the half-power bandwidth method to identify the two damping coefficients. The
model gives rise to another original technique that is based on the measurement of the amplitude at resonance
of the considered mode, for several amplitudes of excitation in the steady state. Two versions were presented:
(a) a fully analytical version that uses the structural model, and that has the advantages of being self-
sufficient and applicable to structures displaying geometric nonlinearities, and (b) a hybrid version that uses
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the half-power bandwidth method to determine the linear modal damping factor. These techniques were
validated numerically thanks to simulations in the frequency domain as well as with several experimental
tests, showing that one of them has a better accuracy. Because our identification technique is based on
the measurement of the system nonlinear frequency response in the vicinity of a given resonance, recent
experimental continuation techniques (see [Denis et al., 2018] and reference therein) could be more convenient
than the stepped sine experiments used in the present study. Their investigation is left for further studies.

Finally, our quadratic air flow model was theoretically compared to other nonlinear damping models of
the literature – all cubic – showing that in the case of a complete model, the equivalent damping ratio was
a quadratic function of the vibration amplitude. In our experiments, it was shown that the quadratic order
was the leading one, since the damping ratio was found linear with respect to the amplitude, demonstrating
that our fluid structure damping was predominant over other sources of damping. This was probably due to
the cantilever boundary conditions of our structures, which favours their high flexibility and thus very high
amplitude displacements for low driving forces. For more constrained structures such as plates and shells,
the classical bending / membrane coupling gives rise to geometrical nonlinearities for lower amplitudes of
displacement and viscoelastic effects have been identified as the main source of nonlinear damping, with a
damping term most of the time identified as cubic (see Fig. 7 of Amabili [2018a] and Amabili [2018b, 2019]).
It could be interesting to study and identify on such structures both a quadratic – aeroelastic drag like
model – in addition to the viscoelastic one, to experimentally verify the contribution of both effects, confirm
and explain the predominance of a viscoelastic cubic damping. This is left for further studies.
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A. Aerodynamic drag force
In order to account for the action of air on the structure, a local term should be added in Eq. (15), of

the form ẇ|ẇ|. Assuming ẇe is negligible compared to ẇr, this term leads in Eq. (21) to an additional term
of the form:

+∞∑
i=1

q̇i(t̄)

∫ 1

0

Φk(x̄)Φi(x̄)

∣∣∣∣∣∣
+∞∑
j=1

Φj(x̄)q̇j(t̄)

∣∣∣∣∣∣ dx. (44)

Using the single-mode approximation, one recovers Eq. (23). Otherwise, the drag produces a global
nonlinear quadratic coupling between the modes, whose spatial dependence cannot be separated from the
time dependence. In the case of base excitation, if the assumption ẇe � ẇr is not verified, then the
excitation motion cannot be pulled out of the absolute value and the term of Eq. (44) is even more complex.

B. Method of multiple scales
In this section, the oscillator equation is the following:

q̈ + 2ξω0q̇ + ω2
0q + ν1q̇|q̇|+ ν2q̇

3 + ν3q
2q̇ + Γq3 + Π(q̈q2 + q̇2q) = F cos (Ωt̄). (45)

In order to use the method of multiple scales [Nayfeh and Mook [1979]], the terms in Eq. (45) are adjusted
in powers of ε, a book-keeping parameter, to have a valid analytical solution:

q̈ + ω2
0q = −ε2ξω0q̇ − εν1q̇|q̇| − εν2q̇

3 − εν3q
2q̇ − εΓq3 − εΠ(q̈q2 + q̇2q) + εF cos (Ωt̄), (46)
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First, new time variables are introduced:

Tn = εnt̄, ∀n ∈ N, (47)

which leads to the following expressions of the partial derivatives with respect to the Tn:

d
dt̄

= D0 + εD1 + ε2D2 + ..., (48)

d2

dt̄2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + ... (49)

where Dn = ∂
∂Tn

. Then, q is developed in powers of ε:

q(t̄) = q0(T0, T1, T2, ...) + εq1(T0, T1, T2, ...) + ε2q2(T0, T1, T2, ...)... (50)

Substituting Eq. (50) into Eq. (46) and equating the coefficients of ε to zero, we obtain:

D2
0q0 + ω2

0q0 =0, (51)

D2
0q1 + ω2

0q1 =− 2D0D1q0 − 2ξω0D0q0 (52)

− ν1D0q0|D0q0| − ν2(D0q0)3 − ν3q
2
0(D0q0)

− Γq3
0 −Π((D0q0)2q0 +D2

0q0q
2
0) + F cos (ΩT0).

Equation (51) leads to a solution q0 of the form:

q0 = A(T1)ejω0T0 + cc, (53)

with cc referring to the complex conjugate of what precedes in the right-hand side of the equation. Focusing
on the primary resonance of the system, we set the detuning parameter such that Ω = ω0 + εσ. Substituting
Eq. (53) into Eq. (52) gives:

D2
0q1 + ω2

0q1 =−A2Ā(3Γ− 2ω2
0Π)ejω0T0 − 2jω0(D1A+Aξω0 + (

3

2
ν2ω

2
0 +

1

2
ν3)A2Ā)ejω0T0

− (Γ− 2ω2
0Π)A3e3jω0T0 + j(ν2ω

3
0 − ν3ω0)A3e3jω0T0 +

F

2
ej(ω0T0+σT1) + cc (54)

− ω2
0ν1j(Ae

jω0T0 − Āe−jω0T0)|j(Aejω0T0 − Āe−jω0T0)|.

Eliminating the secular terms from Eq. (54) requires all terms in the right-hand side of the equation pro-
portional to ejω0T0 to be zero. For the last term of Eq. (54), we develop it into Fourier series and calculate
the first harmonic’s amplitude to set it to zero (we note τ = ω0T0):

0 =− 2jω0(D1A+Aξω0 + (
3

2
ν2ω

2
0 +

1

2
ν3)A2Ā)−A2Ā(3Γ− 2ω2

0Π) +
F

2
ej(σT1)

− jω2
0ν1

2π

∫ 2π

0

(Aejτ − Āe−jτ )|j(Aejτ − Āe−jτ )|e−jτdτ. (55)

Now, expressing A in the polar form (A(T1) = 1
2ae

jβ(T1)) and switching variable φ = τ + β [Anderson et al.
[1996]], yields:

0 =

(
2ω0a

∂β

∂T1
− 2ω0j(

∂a

∂T1
+ aξω0 +

a3

16
(3ν2ω

2
0 + ν3))− 3Γ− 2Πω2

0

8
a3

)
ejβ

+
F

2
eσT1 +

ω2
0ν1

2π
a2

∫ 2π+β

β

sinφ| sinφ|e−jφ︸ ︷︷ ︸
f(φ)

dφ ejβ .
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As f(φ) is 2π-periodic, we have
∫ t

0
f(φ)dφ =

∫ 2π+t

2π
f(φ)dφ and one can calculate

∫ 2π

0
f(φ)dφ = − 8j

3 .
Multiplying by e−jβ , and separating real and imaginary parts in the previous equation leads to:{

a ∂β
∂T1

=
3Γ−2Πω2

0

8ω0
a3 − F

2ω0
cos (σT1 − β) = 0

∂a
∂T1

= −a(ξω0 + 4
3πω0ν1a+ ( 3

8ω
2
0ν2 + 1

8ν3)a2) + F
2ω0

sin (σT1 − β)= 0
(56)

Let γ = σT1 − β. Furthermore, being in steady-state regime comes down to ∂a
∂T1

= ∂γ
∂T1

= 0. Eq. (56) is
now: 

aσ − (3Γ− 2ω2
0Π)

8ω0
a3 =− F

2ω0
cos γ,

ξω0a+
4

3π
ν1ω0a

2 + (
3

8
ω2

0ν2 +
1

8
ν3)a3=

F

2ω0
sin γ

The forced response of the system in steady-state can be obtained from:

Ω− ω0 =
(3Γ− 2ω2

0Π)

8ω0
a2 ±

√
F 2

4ω2
0a

2
− ω2

0

(
ξ +

4ν1

3π
a+ (

3ω0ν2

8
+

ν3

8ω0
)a2

)2

. (57)

Note: Given the fact that the nonlinear function related to the aerodynamic damping in the oscillator
equation (Eq. (45)) presents a central symmetry, the constant value and the even harmonics of the solution
are zero (see the appendix of [Vakilinejad et al. [2020]]), although this term presents a quadratic nonlinear-
ity. Surely, in Eq. (54), there are no constant value or harmonic of order 2. Indeed, one can verify that
the constant value and the Fourier series coefficient of the second harmonic of the term −jω2

0ν1(Aejτ −
Āe−jτ )|(Aejτ − Āe−jτ )| are zero.

C. Manlab implementation of the nonlinear equations
In the framework of MANlab, the problem to solve must be written under the form of a first-order

dynamical system with quadratic nonlinearities only [Guillot et al.]. As Eq. (39) is a simplified version of
Eq. (40), the latter only is detailed here. We introduce r = q̇ to transform Eq. (40) into the first order
dynamical system:

q̇ = r (58)

ṙ = F cos (Ωt̄)− (2ξr + q + νr|r|+ Γq3).

We introduce two more variables s = q2 and u = |q̇| = |r|. This last equation is non-smooth so we replace
it by a regularised version δ = r2 − u2, with δ the regularisation parameter chosen as small as possible. In
practice, convergence tests demonstrated that δ = 0.001 was low enough. The problem can now be expressed
as the following first-order dynamical system with quadratic nonlinearities only:

q̇ = r, (59)
ṙ = F cos (Ωt̄)− 2ξr − q − νru− Γqs,

0 = s− q2,

0 = δ − r2 + u2.

It is necessary to initialise MANlab with a starting point: we choose the linear solution ql = F/(1 −
Ω2 + 2iξΩ). We set a starting frequency at Ω = 0.01. The starting point is described with the Fourier
coefficients of q, r, s and u: qcos = Re(ql), qsin = −Im(ql), rcos = Ωqsin, rsin = −Ωqcos, s0 = q2

cos/2 + q2
sin/2,

s2cos = q2
cos/2− q2

sin/2, s2sin = qcosqsin, u0 = 2Ω|qcos|/π, and u2cos = −Ω|qcos|4/(3π). The other parameters
values are ξ = 0.001, ν = 0.03π/4, and F varies between 0.0005 and 0.005.

D. Phase of the simulated frequency responses with MANlab
In Fig. 12, the phase variation at the vicinity of the resonance is reduced – it becomes more and more

"flat" – as the forcing increases.

Colin et al.: Preprint submitted to Elsevier Page 27 of 27



Very Large Amplitude Vibrations of Flexible Structures

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02

/
0
 [n.d.]

0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de
 [n

.d
.]

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02

/
0
 [n.d.]

0

0.2

0.4

0.6

0.8

1

P
ha

se
 [

-r
ad

]

F=5e-4
F=1.5e-3
F=2.5e-3
F=3.75e-3
F=5e-3

Figure 12: Simulated frequency responses with MANlab
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