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In this paper, we establish a local regularity result for W 2,p loc solutions to complex de- generate nonlinear elliptic equations F (D 2 C u) = f when they are comparable to the Monge-Ampère equation. Notably, we apply our result to the so-called k-Monge-Ampère equation.

Introduction and main results

In this work, we are interested in the local regularity theory for nonlinear complex degenerate elliptic equations of the form

F (D 2 C u) = f, (1) 
where D 2 C u denotes the complex Hessian of u.

Such equations have been studied extensively in the literature, going back to the celebrated work [START_REF] Caarelli | The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian[END_REF] on the Dirichlet problem in the real case and its counterpart [START_REF] Li | On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian[END_REF] for the complex setting. We recall that an important feature of degenerate equations is that, unlike uniformly elliptic equations, the C 2,α -regularity may fail. Perhaps one of the most important equation of the form (1) is the complex Monge-Ampère equation:

det(D 2 C u) = f > 0.
(2)

The regularity of the solution of this equation is studied in the literature by many authors and by dierent tools. It was rst proved in pioneering work [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF] that the solution u to the Dirichlet problem in a ball B belongs to C 1,1 (B) ∩ C 0 (B) provided that the right-hand side f ∈ C 2 (B) and the boundary data is C 2 (∂B). Another important regularity result concerning the Dirichlet problem associated with (2) in a strictly pseudoconvex domain, established in [START_REF] Caarelli | The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations[END_REF], is the smooth regularity up to the boundary of its solution when the right-hand side, the boundary data and the domain are all smooth (the strict positivity of the right-hand side is also essential).

The local regularity of (2) (no boundary data) was also studied. A sharp result was obtained in [START_REF] Bªocki | A local regularity of the complex Monge-Ampère equation[END_REF] by developing some methods in [START_REF] Trudinger | Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations[END_REF]: solutions u ∈ W 2,p loc of (2) with f ∈ C ∞ are necessarily C ∞ whenever p > n(n -1), and no smaller exponent p can be expected in general.

The local regularity of other equations of the form (1) were also studied. Notably, in [START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF], a counterpart of [START_REF] Bªocki | A local regularity of the complex Monge-Ampère equation[END_REF] was proved for the so-called complex k-Hessian equation under the assumption that u belongs to W 2,p loc with p > n(k -1).

The goal of the present paper is to extend the approach of [START_REF] Bªocki | A local regularity of the complex Monge-Ampère equation[END_REF] and [START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF] to more general nonlinear complex degenerate elliptic equations. We will introduce simple conditions on the nonlinearity F to obtain general local regularity results, thus considerably broadening the eld of application of this method.

In particular, we shall see that our results apply to the so-called complex k-Monge-Ampère equation or MA k -equation, k ∈ {1, . . . , n}, that has recently received much attention ([HL09, Sad18, Din20b, Din20a]):

1≤i1<...<i k ≤n λ i1 (D 2 C u) + . . . + λ i k (D 2 C u) = f,
where λ 1 (D 2 C u), . . . , λ n (D 2 C u) denote the eigenvalues of D 2 C u. For k = 1 we have the Monge-Ampère equation det(D 2 C u) = f and for k = n this is the Poisson equation ∆u = f .

Interior estimates for this equation in the real setting have been studied recently in [START_REF] Dinew | Interior estimates for p-plurisubharmonic functions[END_REF].

In the complex setting this operator was discussed in [START_REF] Sadullaev | Further developments of the pluripotential theory (survey), Algebra, complex analysis, and pluripotential theory[END_REF] and, in the special case k = n -1, also in [START_REF] Tosatti | The Monge-Ampère equation for (n -1)plurisubharmonic functions on a compact Kähler manifold[END_REF]. It has been shown in [START_REF]m-subharmonic and m-plurisubharmonic functions on two problems of Sadullaev[END_REF] that this operator does not satisfy an integral comparison principle, which makes the associated potential theory much harder to be developed.

Finally, let us also mention that the Dirichlet problem associated to this operator was studied in [START_REF] Zhou | Representation and regularity for the dirichlet problem for real and complex degenerate hessian equations[END_REF] using a probabilistic approach.

The outline of the paper is as follows. After recalling some basic notations, we precise in • Let H n be the set of n × n Hermitian matrices. The (i, j)-th entry of a matrix A ∈ H n will be denoted by a i j . We recall that H n is a vector space over the eld R of dimension n 2 . The inner product on H n is the standard Frobenius inner product:

A, B H n = Trace (AB) ∈ R, A, B ∈ H n .
The n × n identity matrix will be denoted by Id.

We will use the classical cones 

C n = {A ∈ H n | A > 0} , C 1 = {A ∈ H n | Trace (A) > 0} . • The Fréchet derivative at A ∈ C of a function F ∈ C 1 (C, R),
DF (A)B = 1≤i,j≤n ∂F ∂a i j (A)b i j , B ∈ H n .
• In this work we use the following convention for ellipticity. We say that a function F :

C -→ R is: (degenerate) elliptic in C if A ≤ B =⇒ F (A) ≤ F (B),
for every A, B ∈ C, where we recall that A ≤ B (resp. A < B) means that the Hermitian matrix B -A is non-negative-denite (resp. positive-denite).

uniformly elliptic in C if there exist 0 < m ≤ M such that

A ≤ B =⇒ m B -A H n ≤ F (B) -F (A) ≤ M B -A H n , for every A, B ∈ C.
For instance with these conventions the equation ∆u = f is (uniformly) elliptic.

• The complex Hessian is denoted by D 2 C u = u i j 1≤i,j≤n , where we use the standard notations u j and uj to denote, respectively, ∂u ∂zj = 1 2 ∂u ∂xj -i ∂u ∂yj and ∂u

∂ zj = 1 2 ∂u ∂xj + i ∂u ∂yj .
The Laplacian is denoted by ∆u = n j=1 u j j = Trace (D 2 C u) ∈ R. Note that it is the complex Laplacian, so it is one fourth the real Laplacian.

• Finally, we shall denote by C(n), C(n, Ω), etc. a positive number that may change from line to line but that depends only on the quantities indicated between the brackets.

Main results

Throughout this work we will always make the following assumptions: (e) Concavity:

F 1/d is concave in C.
(f ) Comparison with determinant: there exists C > 0 such that

F (P ) 1/d ≥ C(det(P )) 1/n , ∀P ∈ C n . (3) 
Some examples will be presented in Section 3 below.

The key assumption here is the assumption (f ), that will help us to compare our general nonlinear equation F (D 2 C u) = f with the complex Monge-Ampère equation and thus use the recent uniform estimates obtained in [START_REF] Abja | Uniform estimates for concave homogeneous complex degenerate elliptic equations comparable to the Monge-Ampère equation[END_REF].

The assumption (a) is quite standard (see e.g. [START_REF] Caarelli | The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian[END_REF]). Note that this excludes the case of the whole space C = H n . It is important to point out that we cannot only consider homogeneous functions of degree 1 by normalizing F into F 1/d since this normalization is not in general regular up to the boundary (e.g.

F (A) = det(A) 1/n in C = C n ).
Finally, by concavity and homogeneity, we can check that F satises (3) for every A ∈ C if, and only if,

F (A + P ) 1/d ≥ F (A) 1/d + C (det P ) 1/n ,
for every A ∈ C and P ∈ C n . In particular, F is necessarily elliptic in C (but, in general, not uniformly elliptic). We refer for instance to [ADO20, Remark 1.3] for more details.

The rst result of the present paper is the following:

Theorem 1.1. Let C and F satisfy the above standing assumptions (a), (b), (c), (d), (e) and

(f ). Let f > 0 in Ω with f 1/d ∈ C 1,1 (Ω). Let u ∈ W 2,p loc (Ω) with (D 2 C u)(z) ∈ C for a.e. z ∈ Ω satisfy (almost everywhere) F (D 2 C u) = f in Ω, and assume that p > n max {d -1, 1} . (4) 
Then, for every non empty open subset ω ⊂⊂ Ω, we have ∆u ∈ L ∞ (ω) with

sup ω ∆u ≤ R, for some R > 0 depending only on n, p, d, dist (ω, ∂Ω), D 2 C u L p (Ωε) , ∆(f 1/d ) L ∞ (Ωε) and inf Ωε f if d > 1 (resp. sup Ωε f if d < 1),
where Ω ε = {z ∈ Ω | dist (z, ∂Ω) > ε} and ε > 0 is some number depending only on dist (ω, ∂Ω).

Theorem 1.1 generalizes [BD11, Theorem] and [DK14, Theorem 4.1], where the particular cases of the complex Monge-Ampère equation and the complex k-Hessian equation were considered.

An important consequence of Theorem 1.1 and of the classical theory for uniformly elliptic real equations from [START_REF] Caarelli | Fully nonlinear elliptic equations[END_REF] will be the following local regularity result: Corollary 1.2. Under the framework of Theorem 1.1, assume in addition that F satises the following property:

(g) Sets of uniform ellipticity: there exists R 0 > 0 such that, for every R > R 0 , F is uniformly elliptic in C R , where

C R = A ∈ C Trace (A) < R, 1 R < F (A) . (5) 
Then, we have the property

F ∈ C ∞ (C), f ∈ C ∞ (Ω) =⇒ u ∈ C ∞ (Ω). (6) 
Remark 1.3. Note that C R is convex because F is concave. However, it is never a cone and it does not contain C n . Note as well that lim R→+∞ C R = C.

We also point out that we do not need to assume that C R is compact. For instance, C R is not bounded for the simplest example F (A) = Trace (A) on A ∈ C 1 (n ≥ 2). However, this is a rather pathological case and we will see in Proposition 3.1 below that C R is always bounded whenever ∂C ∩ ∂C 1 = {0} .

Remark 1.4. Whether the condition (4) yields the smallest value of p to induce the C ∞regularity (6) may depend on the equation itself. This condition is for instance sharp in the case of the Monge-Ampère equation, see [START_REF] Bªocki | A local regularity of the complex Monge-Ampère equation[END_REF]p. 412], but it is still an open problem for other equations such as the complex k-Hessian equation, the k-Monge-Ampère equation (see Section 4.3 below), etc.

The rest of the article is organized as follows. In the next section we prove our main results.

In Section 3 we present some examples of Hessian equations that are covered by our framework.

Finally, in Section 4, we discuss a bit more in detail the case of the k-Monge-Ampère equation.

2

Proofs of the main results

The proof of Theorem 1.1 is inspired from the proof of [Tru80, Theorem 1] and the ideas of [START_REF] Bªocki | A local regularity of the complex Monge-Ampère equation[END_REF] (see also [START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF]Section 4]).

We introduce the normalization

G(A) = (F (A)) 1/d , A ∈ C. Clearly, G is elliptic in C. The equation F (D 2 C u) = f then becomes G(D 2 C u) = f 1/d .
Throughout Section 2 the notation L u is exclusively saved for the linearization of

G about A = (D 2 C u)(z): (L u w)(z) = 1≤i,j≤n ∂G ∂a i j ((D 2 C u)(z))w i j (z). (7) 
Note that L u is (degenerate) elliptic and that its coecients are Lebesgue measurable (as composition of a continuous function with a Lebesgue measurable function).

Preliminaries

Geometric conguration. Let ω ⊂⊂ Ω and set δ = dist (ω, ∂Ω) > 0. For z 0 ∈ ω, let

ω = ω ∩ B δ/4 (z 0 ),
where B R (z 0 ) ⊂ C n denotes the open ball of center z 0 and radius R > 0. Up to the transformation z → (z -z 0 )/(δ/2), we can always assume that B δ/2 (z 0 ) is the open unit ball, that will simply be denoted by B 1 in the sequel. Thus, B δ (z 0 ) becomes B 2 (0), that will simply be denoted by B 2 . Therefore, from now on, we are in the following geometric conguration:

ω ⊂⊂ B 1 ⊂⊂ B 2 ⊂⊂ Ω, dist (ω, ∂B 1 ) ≥ 1 4 dist (ω, ∂Ω). (8) 
Approximation of the Laplacian. In order not to consume too much regularity, we will need a suitable approximation of the Laplacian. This is done as in [BD11, p. 415] and [DK14, Lemma 4.2] (see also [BT76, Proposition 6.3]).

Lemma 2.1. For every

0 < ε < 1, let T ε : L p (B 2 ) -→ L p (B 1 ) (1 ≤ p ≤ ∞)
be the linear operator dened by

(T ε u)(z) = n + 1 ε 2 (u ε (z) -u(z)) , with u ε (z) = 1 µ n (B ε (z)) Bε(z) u dµ n ,
where here and in what follows µ n denotes the Lebesgue measure in C n . Then, we have the following properties:

(i) Positivity: If u is subharmonic in B 2 , then (T ε u)(z) ≥ 0 for every z ∈ B 1 . (ii) Regularity: If u ∈ C 0 (B 2 ), then T ε u ∈ C 0 (B 1 ). If u ∈ W 2,p (B 2 ) and p < ∞, then u ε ∈ W 2,p (B 1 ) with D 2 C u ε = (D 2 C u) ε (with a slight but obvious abuse of notation). (iii) Convergence: If u ∈ W 2,p (B 2 ) and p < ∞, then T ε u ∆u weakly in L p (B 1 ) as ε → 0. (iv) Uniform bound: If u ∈ W 2,p (B 2 )
then, for every 0 < ε < 1, we have

T ε u L p (B1) ≤ C(n, p) ∆u L p (B2) .
The A uniform estimate for strong supersolutions. Recently, it was obtained in [ADO20, Theorem 1.4] some new type of Alexandrov-Bakelman-Pucci estimate for various nonlinear complex degenerate equations. Thanks to the assumptions of the present article, it applies in particular to our linearized operator L u dened in (7) for which it results in the following:

Theorem 2.2. Let r, q > n. For every g ∈ L q (B 1 ) and every

w ∈ W 2,r loc (B 1 ) ∩ C 0 (B 1 ) such that L u (-w) ≤ g in B 1 , w ≤ 0 on ∂B 1 ,
we have sup

B1

w ≤ C(n, r, q) g + L q (B1) ,

where g + = max(g, 0) denotes the positive part of g.

Estimate of the operator norm. We will need the following estimate:

Lemma 2.3. There exists C > 0 such that, for every A ∈ C,

DG(A) L(H n ,R) ≤ C(G(A)) 1-d A d-1 H n . (9) 
Proof. By continuity of DF on the compact A ∈ C A H n = 1 and the fact that DF is homogeneous of degree d -1, we have, for some C > 0,

DF (A) L(H n ,R) ≤ C A d-1 H n , ∀A ∈ C.
The desired estimate (9) then follows from the computation

DG(A)B = 1 d (F (A)) (1/d)-1 DF (A)B, A ∈ C, B ∈ H n .
We point out that it is only to show (9) that we use that F is C 1 up to the boundary.

Despite not needed, we mention that the inequality (9) also shows that the coecients of the operator L u belong to L ∞ if d = 1, and to L p/(d-1) if d > 1, which are then in L n by the assumption (4).

Jensen's inequality in convex subsets of 

1 µ n (Ω) Ω H(z) dµ n ∈ C,
and

G 1 µ n (Ω) Ω H(z) dµ n ≥ 1 µ n (Ω) Ω G (H(z)) dµ n ,
(the right-hand side possibly being equal to -∞).

Proof of Theorem 1.1

We are now ready to prove our rst main result.

1) Strategy of the proof.

Let 0 < ε < 1. For α, β ∈ [2, +∞) (to be determined later) let us introduce an auxiliary function w given by w

(z) = η(z)(T ε u(z)) α , z ∈ B 1 , where η(z) = dist (z, ∂B 1 ) 2β = 1 -|z| 2 β
.

Note that:

• w is unambiguously dened since T ε u ≥ 0 by item (i) of Lemma 2.1 and subharmonicity of u, which follows from the assumptions that D 2 C u ∈ C ⊂ C 1 (see e.g. [Kli91, Theorem 2.5.8]).

• w ∈ C 0 (B 1 ) by item (ii) of Lemma 2.1 since u ∈ C 0 (Ω) by the Sobolev embedding W 2,p loc (Ω) ⊂ C 0 (Ω) as p > n by assumption (4). • w ∈ W 2,p loc (B 1 ) thanks to the regularity of u and Sobolev embeddings (using that p ≥ n).

The goal will be to bound sup B1 w from above by a positive number depending only on the quantities indicated in the statement of Theorem 1.1. This will also provide an upper bound for sup ω T ε u since η(z) ≥ (dist (ω, ∂Ω)/4) 2β > 0 for z ∈ ω (recall (8)). This will in turn imply that ∆u ∈ L ∞ (ω) with the same bound as for T ε u. Indeed, denoting by C a bound for T ε u we will have shown that T ε u ∈ S, where

S = g ∈ L ∞ (ω), g L ∞ (ω) ≤ C .
We can check that this set is closed in L p (ω) (using for instance the partial converse of the Lebesgue dominated convergence theorem [Rud87, Theorem 3.12]). Since it is also clearly convex, it is then weakly closed in L p (ω) (see e.g. [Rud91, Theorem 3.12]). As T ε u ∆u weakly in L p (ω) (item (iii) of Lemma 2.1) and T ε u ∈ S, it follows that ∆u ∈ S as well, which is exactly what we want. Now, in order to bound sup B1 w we are going to use the condition (4) on p to show that (L u (-w)) + ∈ L q (B 1 ) for some q > n, with estimate

(L u (-w)) + L q (B1) ≤ C sup B1 w 1-2/β + 1 , (10) 
for some C > 0 depending only on the quantities indicated in the statement of Theorem 1.1. The conclusion will then follow from the uniform estimate of Theorem 2.2 with g = (L u (-w)) + . Note that w = 0 on ∂B 1 (in fact, this is the (only) obstruction to simply take η = 1).

2) Computation of L u (-w).

We have

w i = η i (T ε u) α + ηα(T ε u) α-1 (T ε u) i ,
and

w i j = η i j (T ε u) α + η i α(T ε u) α-1 (T ε u)j + ηjα(T ε u) α-1 (T ε u) i + ηα(α -1)(T ε u) α-2 (T ε u)j(T ε u) i + ηα(T ε u) α-1 (T ε u) i j .
Consequently,

L u (-w) = 1≤i,j≤n - ∂G ∂a i j (D 2 C u)w i j = I + II,
where (using also the identity v i = vī for any real-valued function v)

I = 1≤i,j≤n - ∂G ∂a i j (D 2 C u)η i j (T ε u) α + 2α(T ε u) α-1 Re   1≤i,j≤n - ∂G ∂a i j (D 2 C u)η i (T ε u)j   + 1≤i,j≤n - ∂G ∂a i j (D 2 C u)ηα(α -1)(T ε u) α-2 (T ε u)j(T ε u) i ,
and

II = 1≤i,j≤n - ∂G ∂a i j (D 2 C u)ηα(T ε u) α-1 (T ε u) i j .
3) Estimate of the term I.

To estimate this term we will make use of the ellipticity and of the estimate (9). Let us introduce the following sesquilinear form on C n :

ϕ(a, b) = 1≤i,j≤n - ∂G ∂a i j (D 2 C u)a i b j , a, b ∈ C n .
This form is nonpositive by ellipticity of G. Therefore, we can use the basic inequality 2Re

ϕ(a, b) ≤ -ϕ(a, a) -ϕ(b, b) with a i = 1 √ t η i and b j = √ t(T ε u) j (t > 0 to be chosen below), to obtain 2Re   1≤i,j≤n - ∂G ∂a i j (D 2 C u)η i (T ε u)j   ≤ - 1 t 1≤i,j≤n - ∂G ∂a i j (D 2 C u)η i ηj -t 1≤i,j≤n - ∂G ∂a i j (D 2 C u)(T ε u) i (T ε u)j.
Taking now t = (α -1)η/T ε u > 0, this removes the third term in I to give

I ≤ (T ε u) α 1≤i,j≤n - ∂G ∂a i j (D 2 C u) η i j - α (α -1)η η i ηj . Let B = (b i j ) 1≤i,j≤n , b i j = -η i j + α (α -1)η η i ηj.
Direct computations show that

η i = -β zi η 1-1/β , η i j = -βδ ij η 1-1/β + β(β -1)z i z j η 1-2/β ,
where δ ij denotes the Kronecker delta. Since η ≤ 1, we obtain

B H n ≤ C(α, β, n)η 1-2/β = C(α, β, n)w 1-2/β 1 (T ε u) α(1-2/β) .
Consequently, using (9), we have

I ≤ C(α, β, n)C (f, d) D 2 C u d-1 H n (T ε u) 2α/β w 1-2/β , where C (f, d) = (inf B2 f ) (1/d)-1 if d ≥ 1 and C (f, d) = (sup B2 f ) (1/d)-1 if d < 1.
Note that we cannot use the better estimate (3) since B ∈ C n .

4) Estimate of the term II.

For this term, we will use the concavity of F to show that

II ≤ ηα T ε (f 1/d ) (T ε u) α-1 .
To prove such an estimate, we would like to use the concavity inequality

G(B) ≤ G(A) + DG(A)(B -A), A, B ∈ C, (11) with A = (D 2 C u)(z), B = (D 2 C u ε )(z). But rst observe that B = (D 2 C u) ε (z) (see Lemma 2.1
) and apply Jensen's inequality (Lemma 2.4) to see that indeed B ∈ C for a.e. z ∈ B 1 with, in addition,

G((D 2 C u) ε ) ≥ G(D 2 C u) ε .
We can now use (11) to obtain the desired estimate:

1≤i,j≤n

- ∂G ∂a i j (D 2 C u)(T ε u) i j ≤ n + 1 ε 2 G(D 2 C u) -G(D 2 C u) ε = -T ε (f 1/d ).
5) Choices of α and β.

In summary, we have obtain the inequality

(L u (-w)) + ≤ C(α, β, n)C (f, d) D 2 C u d-1 H n (T ε u) 2α/β w 1-2/β + ηα T ε (f 1/d ) (T ε u) α-1 .
Thanks to the condition (4) on p, we can nd q > n such that p/q ≥ 1 and (p/q)-(d-1) > 0.

Consequently, taking

α = 1 + p q , β = 2α p q -(d -1)
,

we have α, β ≥ 2 and (L u (-w)) + ∈ L q (B 1 ), with the following estimate (by Hölder's inequality and (iv) of Lemma 2.1):

(L u (-w)) + L q (B1) ≤ C(α, β, n)C (f, d)C(n, p) D 2 C u d-1 L p (B1) ∆u 2α/β L p (B2) sup B1 w 1-2/β + ηαC(n, p) ∆(f 1/d ) L ∞ (B2) ∆u p/q L p (B2) .
This yields the desired estimate (10).

C ∞ regularity

In this section, we show how to deduce Corollary 1.2 from Theorem 1.1 and the classical theory for uniformly elliptic real equations from [START_REF] Caarelli | Fully nonlinear elliptic equations[END_REF].

We follow the presentations of [START_REF] Wang | On the C 2,α -regularity of the complex Monge-Ampère equation[END_REF][START_REF] Tosatti | α estimates for nonlinear elliptic equations in complex and almost complex geometry[END_REF]. Let S 2n be the space of 2n × 2n real symmetric matrices. The inner product on S 2n is the standard Frobenius inner product.

In this section, a function u of n complex variables (z 1 , . . . , z n ) will also be a considered as a function of 2n real variables (x 1 , . . . , x n , y 1 , . . . , x n ), where z j = x j + iy j . The real Hessian of u is then denoted by

D 2 R u =     u xixj u xiyj u yixj u yiyj     ∈ S 2n .
The open ball in R 2n of center 0 radius r > 0 will be denoted by B r .

Corollary 1.2 is essentially a consequence of the following fundamental general result and Schauder's estimates:

Theorem 2.5. Let F : S 2n -→ R be concave and uniformly elliptic, and let f ∈ C 0,β (B 1 )

(0 < β ≤ 1). If u ∈ W 2,p loc (B 1 ) is a strong solution to F (D 2 R u) = f in B 1
, and p ≥ 2n, then there exist α ∈ (0, 1) and ε ∈ (0, 1) such that

u ∈ C 2,α (B ε ).
We recall that strong solution simply means that the equation holds almost everywhere. This theorem is a consequence of [CC95, Theorem 8.1] (see e.g. [Wan12, Section 2] for details).

In this reference the result deals in fact with C-viscosity solutions, but we recall that a strong solution u ∈ W 2,p loc with p ≥ 2n is a C-viscosity solution, see [Lio83, Section III].

In order to apply this result we need two preliminary observations: rstly, we have to associate to our equation F (D 2 C u) = f an equation for the real Hessian F (D 2 R u) = f and, secondly, this F has to be dened over the whole space S 2n . This is done in a standard way (see e.g.

[Bªo99, Wan12, TWWY15], etc.):

• We identify n × n Hermitian matrices with the subspace of S 2n given by matrices invariant by the canonical complex structure:

ι(H n ) = A ∈ S 2n AJ -JA = 0 , J = 0 -Id Id 0 ,
where the map ι : H n -→ S 2n is given by

ι(A + iB) = A -B B A .
Let us also introduce the projection π : S 2n -→ ι(H n ) given by π(S) = S + J Tr SJ 2 .

The complex and real Hessians are then related by the identity

ι(2D 2 C u) = π(D 2 R u). As a result, if u solves F (D 2 C u) = f , then it solves as well F (D 2 R u) = f,
where F : E R -→ R is given by

F (A) = F 1 2 ι -1 (π(A))
,

and E R ⊂ S 2n is dened by E R = π -1 (ι (2C R )) .
We recall that C R is dened in (5) and that it is not a cone, so that the factor 2 cannot be removed.

It is clear that E R is an open convex set and that F is concave in E R . Since F is uniformly elliptic in C R by assumption of Corollary 1.2, it is also clear that F is uniformly elliptic in E R .

• Let us now extend F to S 2n . This is done by considering F : S 2n -→ R dened by

F (A) = inf L(A) L : S 2n -→ R ane linear, mId ≤ DL ≤ M Id, L ≥ F in E R ,
where 0 < m ≤ M denote the ellipticity constants of F . We can check that F is concave and uniformly elliptic in S 2n , and that we have F = F in E R (see e.g. [TWWY15, Lemma

4.1]).

Corollary 1.2 is now an easy consequence of the previous results.

Proof of Corollary 1.2. After translation and dilation of the coordinates if necessary, it is sucient to show that u ∈ C ∞ (B ε ) for some ε ∈ (0, 1) when B 1 ⊂⊂ B 2 ⊂⊂ Ω.

From Theorem 1.1 we know that, for some R 1 > 0, ∆u < R 1 in B 2 .

On the other hand, by our assumptions on f , there exists R 2 > 0 such that

F (D 2 C u) = f > 1 R 2 .
Consequently, for any R > max {R 0 , R 1 , R 2 } we have

D 2 C u ∈ C R .
It now follows from the previous discussion that u is a strong solution to the concave and uniformly elliptic real equation

F (D 2 R u) = f in B 1 . Besides, u ∈ W 2,p (B 1 ) for every 1 ≤ p < ∞ by Calderón-Zygmund estimates since u, ∆u ∈ L ∞ (B 2 ).
We can then apply Theorem 2.5 and obtain that u ∈ C 2,α (B ε ) for some α ∈ (0, 1) and ε ∈ (0, 1).

As a result, u

∈ C 2,α (B ε ) solves F (D 2 R u) = f in B ε . Since F ∈ C ∞ (C) =⇒ F ∈ C ∞ (E R ),
it follows that u ∈ C ∞ (B ε ) from the classical Schauder's estimates, see e.g. [CC95, Proposition 9.1] (the proof in this reference is carried out for E R = S 2n but all the arguments go through after noticing that tD 2 u(x

+ he k ) + (1 -t)D 2 u(x) t ∈ [0, 1], x ∈ H, 0 ≤ h ≤ dist (H, ∂Ω)/2 is a compact set of S 2n which is included in E R ).

Application to Hessian equations

Let us now present some examples covered by our framework. We emphasize that our results

Theorem 1.1 and Corollary 1.2 do not require that our equations are Hessian, but all the examples of application that we present here will be Hessian equations.

Let us rst recall some notations.

• For A ∈ H n , its eigenvalues (which are real) will always be sorted as follows:

λ 1 (A) ≤ λ 2 (A) ≤ • • • ≤ λ n (A).
We then introduce λ : H n -→ R n dened by λ(A) = (λ 1 (A), . . . , λ n (A)).

• A function F : C -→ R is said to be a Hessian operator if there exist a set Γ ⊂ R n and a function F : Γ -→ R such that

C = λ -1 (Γ), F (A) = F (λ(A)), ∀A ∈ C.
The notation Γ will always be saved for sets of R n whereas the notation C will always be saved for sets of H n .

• For k ∈ {1, . . . , n}, we introduce the classical cones

Γ k = {λ ∈ R n | σ (λ 1 , . . . , λ n ) > 0, ∀ ∈ {1, . . . , k}} ,
where σ k is the k-th elementary symmetric polynomial:

σ k (λ) = (i1,...,i k )∈E k n λ i1 • • • λ i k ,
where, here and in the rest of this article, we use the notation

E k n = (i 1 , . . . , i k ) ∈ {1, . . . , n} k i 1 < . . . < i k .
We recall that card

E k n = C k n = n!/(k!(n -k)!).
• We recall that a set S ⊂ R n is symmetric if (λ τ (1) , . . . , λ τ (n) ) ∈ S for every (λ 1 , . . . , λ n ) ∈ S and every permutation τ . A function F : S -→ R is symmetric if F (λ τ (1) , . . . , λ τ (n) ) = F (λ 1 , . . . , λ n ) for every permutation τ .

Let us now provide practical conditions on Γ and F to guarantee that C = λ -1 (Γ) and F = F • λ satisfy the assumptions of our main results.

Proposition 3.1. Let F ∈ C ∞ (R n , R) be a symmetric polynomial, homogeneous of degree d ∈ N * , satisfying, for some C > 0, F (λ) 1/d ≥ C n i=1 λ i 1/n , ∀λ ∈ Γ n , (12) 
and let Γ ⊂ R n be a nonempty open symmetric convex cone such that

Γ n ⊂ Γ ⊂ Γ 1 , ∂Γ ∩ ∂Γ 1 = {0} , F > 0 in Γ, F = 0 on ∂Γ, F 1/d is concave in Γ.
Then, C = λ -1 (Γ) satises (a) and F = F • λ satises (b), (c), (d), (e), (f ) and (g).

We emphasize that the map λ has few nice properties, so this result is far from being trivial. The proof of Proposition 3.1 is postponed to the end of this section for the sake of the presentation.

Remark 3.2. The concavity assumption is satised by a large class of polynomials, namely, the hyperbolic polynomials. We recall that a polynomial F homogeneous of degree d ∈ N * is called hyperbolic with respect to e ∈ R n if F (e) = 0 and if, for every λ ∈ R n , the one-variable polynomial t ∈ C -→ F (λ -te) has only real roots. In this case, F 1/d is concave in the open convex cone (called hyperbolicity cone)

Γ = λ ∈ R n F (λ -te) = 0, ∀t ≤ 0 .
We refer to [CNS85, Section 1] and [START_REF] Gårding | An inequality for hyperbolic polynomials[END_REF] for more details.

Let us now nally present some concrete examples.

• The complex Monge-Ampère equation:

F (λ) = n i=1 λ i , Γ = Γ n .
The degree of homogeneity is obviously d = n and the comparison property ( 12) is trivial. This polynomial is hyperbolic with respect to e = (1, 1, . . . , 1). We can check that the associated hyperbolicity cone is indeed Γ n . It clearly satises all the desired assumptions.

• The complex k-Hessian equation: for k ∈ {1, . . . , n},

F = σ k , Γ = Γ k .
The degree of homogeneity is obviously d = k and the comparison property (12) follows from Maclaurin's inequality: for any k ≥ 2,

Γ k-1 ⊂ Γ k , σ k C k n 1/k ≤ σ k-1 C k-1 n 1/(k-1) in Γ k-1 .
This polynomial is hyperbolic with respect to e = (1, 1, . . . , 1). We can check that the associated hyperbolicity cone is indeed Γ k . It clearly satises all the desired assumptions (k > 1).

• For s ∈ [0, 1), let F (λ) = (1 -s) 2 λ 1 λ 2 + s(λ 1 + λ 2 ) 2 = (λ 1 + sλ 2 )(sλ 1 + λ 2 ), Γ = Γ 2-s = λ ∈ R 2 λ 1 + sλ 2 > 0, sλ 1 + λ 2 > 0 .
The cones Γ 2-s interpolate between Γ 2 and Γ 1 . The degree of homogeneity is obviously d = 2 and the comparison property ( 12) is trivial since F (λ) ≥ (1 -s) 2 λ 1 λ 2 . The cone clearly satises all the desired assumptions ( F is also a hyperbolic polynomial with respect to e = (1, 1) but the concavity of F 1/2 is easily checked by a direct computation here).

• The complex k-Monge-Ampère equation: for k ∈ {1, . . . , n},

F = MA k , Γ = Γ k .
where

MA k (λ) = (i1,...,i k )∈E k n (λ i1 + . . . + λ i k ) , Γ k = λ ∈ R n λ i1 + . . . + λ i k > 0, ∀(i 1 , . . . , i k ) ∈ E k n .
The degree of homogeneity is d = C k n . The comparison property ( 12) is a consequence of the following inequality: for any k ≥ 2,

Γ k-1 ⊂ Γ k , 1 k (MA k ) 1/C k n ≥ 1 k -1 (MA k-1 ) 1/C k-1 n in Γ k-1 . ( 13 
)
This property will be detailed in Section 4.2 below. This polynomial is again hyperbolic with respect to e = (1, 1, . . . , 1). We can check that the associated hyperbolicity cone is indeed Γ k . It clearly satises all the desired assumptions (k < n).

We conclude this section with the proof Proposition 3.1.

Proof of Proposition 3.1. We only establish the non obvious properties.

1) Regularity of F . Since F is a symmetric polynomial, by Newton's fundamental theorem of symmetric polynomials we can write

F (λ) = p(σ 1 (λ), . . . , σ n (λ)),
for some polynomial p. Since all the functions A ∈

H n -→ σ k (λ(A)) are C ∞ (H n , R) (recall that they are equal to (-1) k (∂ n-k h/∂t n-k )(0, A) where h ∈ C ∞ (R × H n , R) is the function h(t, A) = det(tId -A)), we deduce that F ∈ C ∞ (H n , R) by composition.
2) Convexity of C and concavity of F 1/d . We point out that the concavity of F 1/d is also shown in [CNS85, Section 3] but we would like to present a dierent proof here. Let

A, B ∈ C and t ∈ [0, 1] be xed. We have to show that

λ(tA + (1 -t)B) ∈ Γ, F (λ(tA + (1 -t)B)) 1/d ≥ tF (λ(A)) 1/d + (1 -t)F (λ(B)) 1/d .
To this end, it is convenient to make use of the theory of majorization, for which we refer to [START_REF] Marshall | Inequalities: theory of majorization and its applications[END_REF]. The starting point is that, for every k ∈ {1, . . . , n}, the function

A ∈ H n -→ λ 1 (A) + . . . + λ k (A) is concave.
From this property, we have that tλ(A)

+ (1 -t)λ(B) majorizes λ(tA + (1 -t)B), that is              k j=1 λ j (tA + (1 -t)B) ≥ k j=1 (tλ j (A) + (1 -t)λ j (B)) , ∀k ∈ {1, . . . , n -1} , n j=1 λ j (tA + (1 -t)B) = Trace (tA + (1 -t)B) = n j=1 (tλ j (A) + (1 -t)λ j (B)) . (14) 
It follows that (see e.g. [MOA11, Chapter 1, B.1. Lemma])

λ(tA + (1 -t)B) Tr = T N T N -1 • • • T 1 (tλ(A) + (1 -t)λ(B)) Tr ,
for some matrices T 1 , . . . , T N ∈ R n×n of the form

T i = t i Id + (1 -t i )P i ,
for some t i ∈ [0, 1] and some elementary permutation matrix P i ∈ R n×n (i.e. switching only two components). Since Γ is convex and symmetric, it is clear that such transformations map Γ into itself. As a result, we have λ(tA

+ (1 -t)B) ∈ Γ.
On the other hand, since F 1/d is concave and symmetric, it is Schur-concave (see e.g.

[MOA11, Chapter 3, C.2. Proposition]), meaning that the majorization (14) implies that

F (tλ(A) + (1 -t)λ(B)) 1/d ≤ F (λ(tA + (1 -t)B)) 1/d .
Using again the concavity of F 1/d , we obtain the concavity of F 1/d .

3

) Uniform ellipticity of F in C R . Let R > 0 be xed. Let Γ R = λ ∈ Γ n i=1 λ i < R, 1 R < F (λ) .
We rst show that the assumption ∂Γ ∩ ∂Γ 1 = {0} implies that Γ R is bounded. To this end, it is sucient to prove that there exists ε > 0 such that

Γ ⊂ λ ∈ Γ ε |λ| < n i=1 λ i .
To show this property, we argue by contradiction and assume that there exists a sequence

(λ ε ) ε>0 ⊂ Γ such that ε |λ ε | ≥ n i=1 λ ε i . (15) 
Since Γ ⊂ Γ 1 , we have in particular that λ ε = 0 and we can normalize the sequence by considering λε = λ ε / |λ ε |. We have λε ∈ Γ since Γ is a cone. We can extract a subsequence, still denoted by ( λε ) ε>0 , that converges to some λ ∈ Γ. Besides, λ = 0 since λ = 1.

Passing to the limit ε → 0 in (15), we obtain that

0 ≥ n i=1
λi .

Since Γ ⊂ Γ 1 , it follows that λ ∈ ∂Γ ∩ ∂Γ 1 and thus λ = 0 by assumption, a contradiction.

As a result, Γ R is compact and there exist real numbers m ≤ M such that, for every i ∈ {1, . . . , n},

m ≤ ∂ F ∂λ i (λ) ≤ M, ∀λ ∈ Γ R . (16) 
Let us now prove that m > 0. To this end, it is sucient to show that

0 < ∂ F ∂λ i (λ), ∀λ ∈ Γ, ∀i ∈ {1, . . . , n} , Γ R ⊂ Γ.
The inclusion Γ R ⊂ Γ immediately follows from the assumption that F = 0 on ∂Γ.

Let us now prove the inequality. We use some ideas of the proof of [CNS85, Corollary, pp.

269-270]. Let i ∈ {1, . . . , n} be xed. Let e i denote the i-th canonical vector of R n . We have e i ∈ Γ n ⊂ Γ. From the concavity and homogeneity of Ĝ = F 1/d , which belongs to

C 1 (Γ) ∩ C 0 (Γ) since F > 0 in Γ, we have 0 ≤ Ĝ(e i ) ≤ Ĝ(λ) + D Ĝ(λ)(e i -λ) = D Ĝ(λ)e i = ∂ Ĝ ∂λ i (λ).
Let us now prove that this inequality is strict. Assume not, and let then λ * ∈ Γ be such that (∂ Ĝ/∂λ i )(λ * ) = 0. Since Γ is open, there exists ε > 0 such that λ * + te i ∈ Γ for every t ∈ [0, ε]. By concavity, we then have

D Ĝ(λ * + te i ) -D Ĝ(λ * ) (te i ) ≤ 0, ∀t ∈ [0, ε]. As a result, ∂ Ĝ ∂λ i (λ * + te i ) = 0, ∀t ∈ [0, ε]. Since F > 0 in Γ, this is equivalent to ∂ F ∂λ i (λ * + te i ) = 0, ∀t ∈ [0, ε].
By analyticity, we deduce that this identity holds for any t ∈ R, in particular for negative ones. Let then

T (λ * ) = inf {t ∈ R | λ * + te i ∈ Γ} . Since Γ ⊂ Γ 1 , we necessarily have T (λ * ) > -∞. Integrating the identity (∂ F /∂λ i )(λ * + te i ) = 0 over [T (λ * ), 0] then yields F (λ * ) = F (λ * + T (λ * )e i ).
This is a contradiction since F > 0 in Γ λ * , whereas F = 0 on ∂Γ λ * + T (λ * )e i .

Therefore, (16) holds with m > 0. To conclude, it remains to show that this implies the uniform ellipticity of 

F = F • λ in C R . Let then A, B ∈ C R with A ≤ B.
m B -A H n ≤ F (B) -F (A) ≤ M B -A H n ,
for some 0 < m ≤ M (that do not depend on A, B). We only prove the rst inequality, the other one being proved similarly. Since B -A ≥ 0, the rst inequality is equivalent to

m Trace (B -A) ≤ F (B) -F (A),
for some 0 < m . Since Trace (B -A) = Trace (B) -Trace (A), this is equivalent to the following property for F :

m n i=1 (µ i -λ i ) ≤ F (µ) -F (λ). (17) 
Let us then prove this inequality. By denition, we have λ, µ ∈ Γ R . Assume rst that

(µ 1 , . . . , µ n-1 , λ n ) ∈ Γ R , (µ 1 , . . . , µ n-2 , λ n-1 , λ n ) ∈ Γ R , . . . (µ 1 , λ 2 , . . . , λ n ) ∈ Γ R . (18) 
Then, taking t(µ 1 , . . . , 16), iterating this process and summing all the obtained inequalities, we eventually obtain (17) with m = m.

µ n-1 , µ n ) + (1 -t)(µ 1 , . . . , µ n-1 , λ n ) ∈ Γ R in (16) and integrating over t ∈ [0, 1], we have m(µ n -λ n ) ≤ F (µ 1 , . . . , µ n-1 , µ n ) -F (µ 1 , . . . , µ n-1 , λ n ). Taking then t(µ 1 , . . . , µ n-1 , λ n )+(1-t)(µ 1 , . . . , µ n-2 , λ n-1 , λ n ) ∈ Γ R in (
The general case can be deduced from the case (18) by an approximation argument (using the compactness of Γ R ).

for λ ∈ Γ k-1 . This is equivalent to show that

(i1,...,i k )∈E k n (λ i1 + . . . + λ i k ) ≥ k k -1 C k n    (j1,...,j k-1 )∈E k-1 I k λ j1 + . . . + λ j k-1    C k n /C k-1 n .
Using (19) and the inequality of arithmetic and geometric means (note that card E k-1

I k = k), we have λ i1 + . . . + λ i k = k k -1 (j1,...,j k-1 )∈E k-1 I k λ j1 + . . . + λ j k-1 k ≥ k k -1    (j1,...,j k-1 )∈E k-1 I k λ j1 + . . . + λ j k-1    1/k .
To conclude, it remains to observe the identity

(i1,...,i k )∈E k n    (j1,...,j k-1 )∈E k-1 I k λ j1 + . . . + λ j k-1    =   (j1,...,j k-1 )∈E k-1 n λ j1 + . . . + λ j k-1   kC k n /C k-1 n ,
which can be established as before by counting the terms λ j1 + . . . + λ j k-1 that appear in the left-hand side (note that kC k n /C k-1 n = n -k + 1).

A lower bound for p

Let us conclude Section 4 by mentioning that, even if the condition p > n(C k n -1) is not known to be sharp, it is however necessary for the conclusion of Theorem 4.1 to be true that p is not too small. More precisely, we will show that it cannot be smaller than

p * = (n -k)C k n .
Note that p * is only equal to n(C k n -1) for k = 1 (and k = n but we have excluded this value).

This follows from the following type of Pogorelov's example, which is built on the one of [START_REF] Bªocki | On the regularity of the complex Monge-Ampère operator[END_REF].

Proposition 4.5. Let 1 ≤ m < n and β > 0. The function

u(z , z ) = 1 + |z | 2 |z | 2β , where (z , z ) ∈ C m × C n-m , satises: (i) u ∈ C ∞ (C n \N ), where N = {z ∈ C n | z = 0}, and (D 2 C u)(z) > 0 for every z ∈ C n \N . (ii) u ∈ W 2,p loc (C n ) (p ≥ 1) if, and only if, β ≥ 1 or β < 1 and p < n -m 1 -β . ( 20 
) (iii) u ∈ C 1,α loc (C n ) (α ∈ [0, 1]) if, and only if, α ≤ 2β -1. (iv) For β = 1 -C k m /C k n (C k m = 0 if m < k), we have MA k (λ(D 2 C u)) ∈ C ∞ (C n ) with MA k (λ(D 2 C u)) > 0 in C n . For β = 1 -1/C k
n , the largest p that we can obtain from the condition (20) is when m = k and it gives p < (n -k)C k n . Consequently, we have constructed an example that satises

u ∈ W 2,p loc (C n ), ∀p ∈ 1, (n -k)C k n , D 2 C u > 0 in C n \ {z ∈ C n | z = 0} , MA k (λ(D 2 C u)) ∈ C ∞ (C n ), MA k (λ(D 2 C u)) > 0 in C n ,                        but u ∈ C 1,α loc (C n ), ∀α > 1 - 2 C k n .
Remark 4.6. The same function can be used to obtain lower bounds for various degenerate elliptic equations (Monge-Ampère, k-Hessian equation, etc.), although not always optimal.

Proof of (i). 

(D 2 C u)(z) =     δ ij |z | 2β β zi z j |z | 2β-2 β zi z j |z | 2β-2 β 1 + |z | 2 (β -1)z i z j |z | 2β-4 + δ ij |z | 2β-2     , (21) 
where δ ij denotes the Kronecker delta and 1 ≤ i, j ≤ m for the left upper block, 1 ≤ i ≤ m and m + 1 ≤ j ≤ n for the right upper block, etc.

Let us now nd all the eigenvalues of (D 2 C u)(z). From this expression we see that: 

-m) = m -1. • Similarly, β 1 + |z | 2 |z | 2β-2
is an eigenvalue of multiplicity at least n -m -1. Besides, in case of equality with the rst type of eigenvalue, it is then of multiplicity n -2.

Therefore, in every case we know n -2 eigenvalues and to nd the two remaining ones, we are going to nd their sum S and product P . The computation of S is easy. Indeed, the sum of the eigenvalues is

Trace (D 2 C u) = S + (m -1) |z | 2β + (n -m -1)β 1 + |z | 2 |z | 2β-2 .
On the other hand, from (21), we have

Trace (D 2 C u) = m |z | 2β + β 1 + |z | 2 (n -m + β -1) |z | 2β-2 . Therefore, S = |z | 2β + β 2 1 + |z | 2 |z | 2β-2 .
In order to nd the product P , we will use the relation with the determinant of D 2 C u. As product of the eigenvalues, we have

det(D 2 C u) = P |z | 2β m-1 β 1 + |z | 2 |z | 2β-2 n-m-1 = P β n-m-1 1 + |z | 2 n-m-1 |z | 2β(n-2)-2(n-m-1) . (22) 
Let us now compute det(D 2 C u) directly from (21). Doing the line substitutions To compute det(A), we note that it is the sum of a rank one matrix with an invertible matrix, for which we have the formula det(J + v 1 v Tr 2 ) = det(J)(1 + v Tr 2 J -1 v 1 ),

L i ← L i -
for any invertible J and vectors v 1 , v 2 . Using this formula we obtain Comparing with (22), we nally obtain that

P = β 2 |z | 4β-2 .
From the knowledge of the sum S and product P , the two remaining eigenvalues are given by

S + √ S 2 -4P 2 = φ(z) |z | 2β-2 and 2P S + √ S 2 -4P = β 2 φ(z) |z | 2β ,
where φ is the smooth positive function dened by

φ(z) = |z | 2 + β 2 1 + |z | 2 + |z | 2 + β 2 1 + |z | 2 2 -4β 2 |z | 2 2 .
Finally, note that all the eigenvalues are positive outside N .

Proof of (ii). We only investigate the integrability of the second order derivatives since we can check afterwards that the rst order derivatives yield a less restrictive condition on the exponent of integrability p. We recall that the only problem for the integrability of u i j is near N , see the expression (21). From this expression, we also see that the worst term is then

β 1 + |z | 2 (β -1)z i z j |z | 2β-4 ,
(unless β = 1 but in such a case we clearly have u i j ∈ C 0 (C n ) for every i, j). r 2(n-m)-1+2p+(2β-4)p dr.

It is well-known that this integral is nite if, and only if, the power of r is larger than -1, which gives the desired condition (20).

Proof of (iv). Let us now compute MA k (λ(D 2 C u)). We recall that MA k (λ) = 

•

  Section 1.2 what kind of nonlinear operators F are considered in this article and we present our main results. Their proofs are the purpose of Section 2. Some examples of Hessian equations covered by such a framework are then given in Section 3. Finally, in Section 4 we detail the case study of the MA k -equation. All along this work, Ω ⊂ C n (n ≥ 1) is a nonempty open bounded connected subset.

  (a) Domain: C ⊂ H n is a nonempty open convex cone such that C n ⊂ C ⊂ C 1 . (b) Regularity: F ∈ C 1 (C, R).(c) Positivity: F > 0 in C.(d) Homogeneity: F is positively homogeneous of degree d > 0 (i.e. F (αA) = α d F (A) for ever α > 0 and A ∈ C).

  of multiplicity at least m -1. Indeed, since the right upper block denes a matrix of rank at most 1, the rank of D 2 C u-|z | 2β Id is thus at most 1+n-m. By the rank-nullity theorem, |z | 2β is an eigenvalue of multiplicity at least n -(1 + n

β

  zi z r |z | -2 L r , for each i ∈ {m + 1, . . . , n}, we obtain det(D 2 C u) a ij = β β -1 + |z | 2 zi z j |z | 2β-4 + βδ ij 1 + |z | 2 |z | 2β-2 . Denoting by A = (a ij ) m+1≤i,j≤n we have det(D 2 C u) = |z | 2β m det(A).

  2 C u) = β n-m+1 1 + |z | 2 n-m-1 |z | 2βn-2(n-m) .

(

  Let us then consider the ball B R × B ε , with R, ε > 0, where B r (resp. B r ) denotes the open ball of C m (resp. C n-m ) with center 0 and radius r > 0. We recall that µ d denotes the Lebesgue measure in C d . We have1 + |z | 2 zi z j |z | 2β-4 p L p (B R ×B ε ) |z i | |z j |) p |z | (2β-4)p dµ n-m .The rst integral in the right-hand side is clearly nite. For the second one, using standard formula (see e.g. [Kli91, p. 23]) we have B ε (|z i | |z j |) p |z | (2β-4)p dµ n-m = C(n -m, ε, p) ε 0

(

  i1,...,i k )∈E k n (λ i1 + . . . + λ i k ) .

From 2 ..

 2 what precedes we know that there are m eigenvalues of the form |z | 2β and n -m eigenvalues of the form |z | 2β-2(by of the form we mean up to the multiplication by a smooth positive function). Now, observe that:• The sum λ i1 + . . . + λ i k is of the form |z | 2β if so is each element of the sum. There are C k m possibilities for this situation to happen (C k m = 0 if m < k).• In all the other cases, the sum λ i1 + . . .+ λ i k is of the form |z | 2β-Since there are C k n = card E k n products overall in MA k , this means that such sums appear C k n -C k m times.In summary, we haveMA k (λ(D 2 C u)) = ψ(z) |z | C k m (2β)+(C k n -C k m )(2β-2) ,for some smooth positive function ψ.Consequently, MA k (λ(D 2 C u)) ∈ C ∞ (C n ) whenthe power of |z | is exactly equal to zero, which gives the desired condition on β, namely β For this value of β we also have MA k (λ(D 2 C u)) = ψ > 0 in C n .

  It can be identied with the matrix

	∂F ∂a i j (A)	1≤i,j≤n	∈ H n through the formula

dened on a non empty open subset C ⊂ H n , will be denoted by DF (A) ∈ L(H n , R).

  We denote the eigenvalues of A (resp. B) by (λ 1 , . . . , λ n ) (resp. (µ 1 , . . . , µ n )). By denition, we have to show that

  It is clear that D 2 C u is smooth o N . Let z ∈ C n \N . A directcomputation shows that we have the block decomposition

Acknowledgements

Both authors were supported by the Polish National Science Centre Grant 2017/26/E/ST1/00955. The authors would like to thank Sªawomir Dinew for numerous discussions and fruitful suggestions.

4

Additional properties for the MA k -equation

In this section, we detail the case of the k-Monge-Ampère equation, which is important for applications.

Let us rst state explicitly the local regularity result that we have obtained for this equation. 

We recall once again that, unless k = 1 (the Monge-Ampère equation), it is not known if this condition on p is sharp. However, we will provide in Section 4.3 below an example that shows that a threshold does exist for such a result to be valid.

k-plurisubharmonic functions

The importance in the study of the operator MA k lies in its connection with the notion of k-plurisubharmonic function.

Denition 4.2. A function u : Ω -→ R is said to be k-plurisubharmonic in Ω if it is upper semi-continuous and if it is subharmonic whenever it is restricted to any ane complex plane of dimension k. We denote by k-plurisubharmonic the vector space of such functions.

For instance, 1-plurisubharmonic functions are the plurisubharmonic functions, and n-plurisubharmonic functions are the subharmonic functions.

To make clearer the link between k-plurisubharmonic functions and the operator MA k , we rst introduce some notations. 

By choosing the canonical basis of the complex space

D A can be identied with a matrix of size C k n × C k n , that will still be denoted by D A .

Example 4.4. Let A = u i j 1≤i,j≤n .

• For n = 3 and k = 2, we have

• For n = 4 and k = 3, we have

• For n = 4 and k = 2, we have

.

We can check that D A is Hermitian if so is A and that the spectrum of D A is exactly

and

This cone is linked to the notion of k-plurisubharmonic function as follows: when u ∈ C 2 (Ω), we have the characterization

For more information about k-plurisubharmonic functions we refer for instance the reader to [START_REF]Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds[END_REF][START_REF]p-convexity, p-plurisubharmonicity and the Levi problem[END_REF].

4.2

Comparison between MA k and MA k-1

In this section, we show that the crucial comparison property (12) holds for MA k . In fact, we prove the more precise property (13) that allows to compare MA k and MA k-1 . Let k ∈ {2, . . . , n} be xed. Let us rst show the inclusion

Let then λ ∈ Γ k-1 and let us show that λ i1 + . . . + λ i k > 0. For any (i 1 , . . . , i k ) ∈ E k n , we denote by

Then, the claim follows from the identity

To show this identity, we have to count how many λ i1 , λ i2 , . . . are in the sum of the left-hand side. For λ i1 the only possibility is to have j 1 = i 1 . Therefore, there are C k-1 k-2 = k -1 such terms. For λ i2 there are two and only two possibilities, namely j 1 = i 2 or j 2 = i 2 (in this second case, necessarily j 1 = i 1 ). This gives C k-1 k-3 + C k-2 k-3 terms, which is equal to C k-1 k-2 by Pascal's rule. Repeating this reasoning leads to (19).

Let us now show the inequality MA k (λ) ≤ MA k-1 (λ),