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Abstract

The paper discusses theoretical foundations that describe
principles and processes involved in defining semantics that
deal with similarity between arguments. Such semantics com-
pute the strength of an argument on the basis of the strengths
of its attackers, similarities between those attackers, and an
initial weight ascribed to the argument. We define a semantics
by three functions: an adjustment function that updates the
strengths of attackers on the basis of their similarities, an ag-
gregation function that computes the strength of the group of
attackers, and an influence function that evaluates the impact
of the group on the argument’s initial weight. We propose in-
tuitive constraints for the three functions and key rationality
principles for semantics, and show how the former lead to the
satisfaction of the latter. Then, we propose a broad family of
semantics whose instances satisfy the principles. Finally, we
analyse the existing adjustment functions and show that they
violate some properties, then we propose novel ones and use
them for generalizing h-Categorizer.

Introduction
Argumentation is a useful approach for solving various the-
oretical problems (Simari and Rahwan 2009) and practical
ones (Atkinson et al. 2017). It aims at increasing or decreas-
ing acceptability of claims by supporting them with argu-
ments. Roughly speaking, an argument is a set of premises
(or statements) intended to establish a definite claim. Its
strength depends on the plausibility of the premises, the na-
ture of the link between the premises and the claim, and
the prior acceptability of the claim. Generally, an argument
may be weakened by other arguments that undermine one or
more of its three components. Thus, evaluation of argument
strength is a crucial task, and a sizeable amount of meth-
ods, called semantics, has been proposed in the literature.
The very first ones are extension-based (Dung 1995) and the
recent ones are gradual semantics (Cayrol and Lagasquie-
Schiex 2005) that quantify strength and thus ascribe a value
(representing strength) to every argument.

Under gradual semantics, the strength of an argument de-
pends on the strengths of the argument’s attackers. There-
fore, it may be that each attacker has an (negative) impact
on the argument and contributes to decrease it strength. This
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property, called Counting (or strict monotony) in (Amgoud
et al. 2017), is satisfied by some existing gradual semantics
like h-Categorizer (Besnard and Hunter 2001) and its vari-
ants that are discussed in (Amgoud and Doder 2019). Let us
illustrate the property with the following example.
Example 1. Consider the three graphs G1,G2, and G3 of
the Figure 1. According to those semantics, A1 is strictly
weaker than A2 due to B2 which further weakens A1. It is
also strictly weaker than A3 due to B1 which decreases fur-
ther the strength of A1.

As defined in the literature, the Counting property seems
reasonable when the attackers of an argument are all differ-
ent, i.e, not redundant. However, it may lead to inaccurate
evaluations when similarities exist between them. Consider
again the four graphs of the Figure 1.
Example 1 (Cont) Assume that each argument Bi (i =
1, . . . , 4) supports the same claim “lowering taxes” with a
premise Pi, where:

P1 Better living standards for all.
P2 Improving quality of life.
P3 Better healthcare and social justice.
P4 Better working standards for all.

The two arguments B1 and B2 are identical or totally sim-
ilar since they support the same claim with the same evi-
dence. One of them is thus redundant, and considering both
in the evaluation ofA1 is questionable. A reasonable seman-
tics would declare A1, A2 and A3 as equally strong.
Consider now B1 and B3. They are partially similar since
each of them brings a new piece of evidence (eg., entertain-
ment for B1, and social justice for B3) in addition to the
common one (better healthcare which is part of better living
standards). Finally,B4 is based on a completely different ev-
idence, making it dissimilar to the three others. Hence, one
would expect to declare A2 (resp. A1, A3) as stronger than
A4 since the group {B1, B3} of A2’s attackers is weaker
than the group {B1, B4} of A4’s ones. Indeed, the former
contains some redundancy which should be removed, while
the latter does not (B1 and B4 being different).

To sum up, ignoring (total or partial) similarities would
lead to inaccurate evaluations of arguments, and thus to
wrong recommendations by argumentation systems. There-
fore, a semantics should be able to take them into account.
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Figure 1: w ≡ 1, s(B1, B2) = 1, s(B1, B3) = s(B2, B3) = α with 0 < α < 1, s(B4, Bi) = 0 for any i = 1, . . . , 3.

Two such gradual semantics, each of which extends
h−Categorizer (Besnard and Hunter 2001), have been pro-
posed in (Amgoud et al. 2018). They differ in the way they
modify the strengths of attackers on the basis of their sim-
ilarities. While those semantics seem reasonable, the fol-
lowed approach for defining them is not systematic as the
general rules guiding the definition of a semantics in gen-
eral, and the way of dealing with similarity in particular,
have not been discussed. The authors proposed some prop-
erties for bridging that gap, but it turns out that both seman-
tics violate some of them. Moreover, those properties are
not sufficient for comparing the two semantics. Hence, the
approach lacks theoretical foundations that describe princi-
ples and processes involved in the definition of semantics
that deal with similarity.

This paper proposes such theoretical foundations. Rather
than focus narrowly on a particular semantics, we propose
a general setting for defining systematically semantics that
consider similarities. The contributions are six-fold:

1. Clarify the process of defining semantics using three func-
tions (adjustment, aggregation, influence). Adjustment
function is responsible for modifying the strengths of at-
tackers based on their similarities if any.

2. Identify rules for handling similarities, i.e, key properties
of an adjustment function.

3. Propose principles that a gradual semantics dealing with
similarity would satisfy.

4. Provide a broad family of semantics that satisfy them.

5. Analyse the existing adjustment functions and show that
they violate some of the proposed properties.

6. Propose novel adjustment functions that satisfy the desir-
able properties, extend the h-Categorizer semantics with
the latter, and show that the new semantics are instances
of the novel family.

The paper is organised as follows: It starts by presenting
an abstract definition of gradual semantics dealing with sim-
ilarity. Then, it proposes properties that semantics should
satisfy. Next, it introduces a family of semantics that satisfy
the properties. Then, it discusses the properties of existing
adjustment functions, proposes novel ones and extends h-
Categorizer. The two last sections are devoted respectively
to related work and concluding remarks.

Similarity-based Gradual Semantics
Throughout the paper, we denote by U the universe of all
possible arguments, and consider an argumentation frame-
work as a tuple made of a non-empty and finite subset of
U , every argument has an initial weight that may represent
different information (certainty degree of the argument’s
premises (Benferhat, Dubois, and Prade 1993), credibility
degree of its source (da Costa Pereira, Tettamanzi, and Vil-
lata 2011), etc). For the sake of simplicity, those weights
are elements of the unit interval [0,1]. The greater the value,
the better it is for the argument. Arguments may attack each
other and may be more or less similar to others. Therefore,
we assume the availability of a measure that assesses the de-
gree of similarity between any pair of arguments. Examples
of such measures can be found in (Budan et al. 2020; Am-
goud and David 2018).

Definition 1. A similarity measure on a set X ⊆f U1 is a
function s : X ×X → [0, 1] such that:

• ∀a ∈ X , s(a, a) = 1,
• ∀a, b ∈ X , s(a, b) = s(b, a).
• ∀a, b, c ∈ X , if s(a, b) = 1, then s(a, c) = s(b, c).

A value s(a, b) represents the degree of similarity be-
tween a and b according to the measure s. The values 1
and 0 respectively denote total similarity and total differ-
ence (or dissimilarity). The three conditions above respec-
tively state that every argument is identical (totally similar)
to itself, similarity is a symmetric notion, and two identical
arguments are equally similar to any third argument.

Definition 2. An argumentation framework (AF) is a tuple
〈A,w,R, s〉, where A ⊆f U , w : A → [0, 1],R ⊆ A×A,
and s is a similarity measure on A.

For a, b ∈ A, w(a) denotes the initial weight of a, the nota-
tion (b, a) ∈ R means b attacks a (b being called attacker of
a), and Att(a) denotes the set of all attackers of a in an AF.
The notations w ≡ 1 and s ≡ 0 respectively mean that all
arguments have weight 1 and they are all dissimilar.

Regarding evaluation of arguments, we extend the gradual
semantics that were defined in (Amgoud and Doder 2019)
for AFs having s ≡ 0 and in (Cayrol and Lagasquie-Schiex
2005) for simple AFs with w ≡ 1 and s ≡ 0.

Roughly speaking, a gradual semantics dealing with sim-
ilarity proceeds in a recursive way. For any argument a, if a

1X ⊆f U means X is a finite subset of U .



is not attacked, then its strength is exactly the weight w(a).
Assume now that a is attacked by a1, . . . , ak. The seman-
tics starts by evaluating the strength of every attacker ai,
i = 1, . . . , k. Let x1, . . . , xk be numerical values represent-
ing those strengths. For computing the strength of a, the se-
mantics follows a three steps process:

1. It adjusts the values x1, . . . , xk according to the similar-
ities between ai, aj where i, j = 1, . . . , k. The goal is
to remove redundancy among the attackers, thus the se-
mantics weakens the attackers. Let x′1, . . . , x

′
k denote the

adjusted values, x′i being the new strength of ai.

2. It computes the strength of the group {a1, . . . , ak} by ag-
gregating the values x′1, . . . , x

′
k.

3. It adjusts the initial weight w(a) on the basis of the
strength of the group of attackers.

Example 1 (Cont) Consider the argumentation graph G1

of the Figure 1, where w ≡ 1, Att(A1) = {B1, B2, B3},
Att(Bi) = ∅ for i ∈ {1, 2, 3}, s(B1, B2) = 1, and
s(B1, B3) = α with 0 < α < 1. A reasonable gradual
semantics would assign strength 1 to each Bi since it is
not attacked. For A1, the semantics would start with the tu-
ple (1, 1, 1), the strengths of B1, B2, B3, and adjusts them.
Since s(B1, B2) = 1, the semantics would for example de-
cide to keep only one of them, say B1. Hence, it adjusts the
score ofB2 from 1 to 0. RegardingB3, it keeps only its novel
part compared to B1 hence 1 − α. The adjusted values are
thus (1, 0, 1−α). The semantics computes then the strength
of the group {B1, B2, B3} using, for instance, the sum ag-
gregation operator and returns the value 2 − α. Finally, it
evaluates the impact of the group on the initial weight of A1

using for instance the function ffrac(x1, x2) = x1

1+x2
, hence

the strength ofA1 = w(A1)
1+2−α = 1

3−α . Note that if the seman-
tics ignores the similarities, it assigns the score 1

4 to A1 and
thus A1 would be much weaker.

Each step of the process described above can be done in
different ways. For instance, a semantics may adjust dif-
ferently the strengths of B1, B2 by weakening both argu-
ments, may aggregate attackers differently, or may use an-
other function than ffrac. In what follows, we define a grad-
ual semantics in an abstract way using a tuple of three func-
tions, called evaluation method.

Definition 3. An evaluation method (EM) is a tuple M =
〈f ,g,n〉 such that:

• f : [0, 1] × Range(g) → [0, 1], where Range(g) denotes
the co-domain of g

• g :
⋃+∞
k=0[0, 1]

k → [0,+∞[

• n :
⋃+∞
k=0 [0, 1]k × Uk → [0, 1]k

Given the set of attackers of a given argument a in an AF,
the function n adjusts the strength of each attacker based
on its similarities with the other attackers of a, g computes
the strength of the group of attackers, and f evaluates how
the latter influences the initial weight of a. Note that the do-
mains of g and n are unions because the number of attack-
ers may vary from one argument to another. Note also that

n takes as input two kinds of information: k numerical val-
ues and k arguments. Let us illustrate the need of the set of
arguments. Consider the two arguments A3, A4 in Figure 1.
Recall that s(B2, B3) = α > 0 and s(B1, B4) = 0. Since
each Bi is not attacked, then its strength is 1. However, the
function n would not alter the values of B1 and B4 since
the latter are dissimilar, i.e., n(1, 1, B1, B4) = (1, 1) while
it modifies those of B2, B3, i.e., n(1, 1, B2, B3) = (x, y) as
there is some redundancy between the two arguments. This
means that the same values (here (1, 1)) may be adjusted in
different ways according to the arguments they refer to.

We propose below key properties that should be satis-
fied by each of the three functions f ,g,n of an evaluation
method. Those properties constrain the range of functions to
be considered, and discard those that may exhibit irrational
behaviours. Let us first recall the definition of a symmetric
function. A function t is symmetric iff

t(x1, . . . , xk) = t(xρ(1), . . . , xρ(k))

for any permutation ρ of the set {1, . . . , k}.
Definition 4. An EMM = 〈f ,g,n〉 is well-behaved iff the
following conditions hold:

1. (a) f is increasing in the first variable, decreasing in the
second one if the first variable is not equal to 0,

(b) f(x, 0) = x,
(c) f(0, x) = 0,

2. (a) g() = 0,
(b) g(x) = x,
(c) g(x1, · · · , xk) = g(x1, · · · , xk, 0),
(d) g(x1, · · · , xk, y) ≤ g(x1, · · · , xk, z) if y ≤ z,
(e) g is symmetric,

3. (a) n() = (),
(b) n(x, a) = (x),
(c) g(n(x1, · · · , xk, a1, · · · , ak)) ≤

g(n(x1, · · · , xk, b1, · · · , bk)) if
∀i, j ∈ {1, · · · , k} i 6= j, s(ai, aj) ≥ s(bi, bj),

(d) If ∃i ∈ {1, · · · , k} s.t. xi > 0 then
g(n(x1, · · · , xk, a1, · · · , ak)) > 0,

(e) g(n(x1, · · · , xk, a1, · · · , ak)) ≤
g(n(y1, · · · , yk, a1, · · · , ak)) if
∀i ∈ {1, · · · , k}, xi ≤ yi,

(f) n is symmetric,
(g) n(x1, · · · , xk+1, a1, · · · , ak+1) =

(n(x1, · · · , xk, a1, · · · , ak), xk+1) if
∀i ∈ {1, . . . , k}, s(ai, ak+1) = 0.

We say also that f ,g,n are well-behaved.

Note that the functions f ,g,n are defined without refer-
ring to any AF. The idea is to describe their general be-
haviour. The conditions (2c) and (2d) respectively state that
attackers of strength 0 have no impact on their targets, and
g is monotonic in that the greater the individual values,
the greater their aggregation. The conditions (3a, . . ., 3g)
represent the core principles for dealing with similarities.
Namely, (3b) states that if a group of attackers contains only



one element, then the adjusted value of the latter is equal
to the initial one. (3c) states that the greater the similarity
between arguments of a set, the weaker the set, and (3d) en-
sures that similarities do not inhibit the attack of a group of
arguments. Condition (3e) states that the stronger the indi-
vidual attackers, the stronger the group. (3g) is an indepen-
dence condition. It states that an argument which is dissimi-
lar to all elements of a group, has no effect on the adjustment
of the values of those elements. Furthermore, the argument
keeps its initial value.

From the condition (3c), it follows that similarities lead to
a decrease in the strength of a group of attackers.

Proposition 1. If g and n are well-behaved, then for all
x1, · · · , xk ∈ [0, 1], for all a1, · · · , ak ∈ U , it holds that:

g(x1, · · · , xk) ≥ g(n(x1, · · · , xk, a1, · · · , ak)).

From the condition (3g), it follows that if the arguments
of a set are independent (their similarities are all equal to 0),
then their initial values remain unchanged by n.

Proposition 2. Let x1, · · · , xk ∈ [0, 1] and a1, · · · , ak ∈ U
such that for all i, j ∈ {1, . . . , k}, with i 6= j, s(ai, aj) =
0. If n is well-behaved, then n(x1, · · · , xk, a1, · · · , ak) =
(x1, · · · , xk).

Let us now define formally a gradual semantics that deals
with similarity. It is based on an evaluation method and as-
signs a single value, called strength, to every argument.

Definition 5. A gradual semantics S based on an evaluation
methodM = 〈f ,g,n〉 is a function assigning to every AF
〈A,w,R, s〉 a weighting StrS : A → [0, 1] such that for
every a ∈ A,

StrS(a) =

f

(
w(a),g

(
n
(
StrS(b1), · · · , StrS(bk), b1, · · · , bk

)))
,

where {b1, · · · , bk} = Att(a). StrS(a) is the strength of a.

The above definition shows that evaluating arguments in
an AF amounts to solving a system of equations, one equa-
tion per argument. The question of existence of solutions
for such systems arises naturally. Note that existence of so-
lutions means also existence of a semantics. The following
result shows that if the three functions of an EM are contin-
uous, then a solution exists for every AF.

Theorem 1. IfM = 〈f ,g,n〉 is an evaluation method such
that f is continuous on the second variable, g is continuous
on each variable, and n is continuous on each numerical
variable, then there exists a semantics S based onM.

The following result goes further by showing that a sys-
tem of equations has a single solution for every AF. This
is particularly the case when the evaluation method is well-
behaved and satisfies some additional constraints. This result
shows there is only one semantics that is based on the EM.

Theorem 2. Let M be the set of all well-behaved evaluation
methodsM = 〈f ,g,n〉 such that:

• lim
x2→x0

f(x1, x2) = f(x1, x0), ∀x0 6= 0.

• lim
x→x0

g(x1, · · · , xk, x) = g(x1, · · · , xk, x0), ∀x0 6= 0.

• n is continuous on each numerical variable.
• λf(x1, λx2) < f(x1, x2), ∀λ ∈ [0, 1[, x1 6= 0.
• g(n(λx1, · · · , λxk, b1, · · · , bk)) ≥
λg(n(x1, · · · , xk, b1, · · · , bk)), ∀λ ∈ [0, 1].

For anyM ∈ M, for all gradual semantics S,S ′, if S,S ′
are based onM, then S ≡ S ′.

Properties of Semantics
So far we have presented a three-step process for defining
semantics; at each step a function that obeys to specific con-
ditions is used. We have seen that none of the three (adjust-
ment, aggregation, influence) functions refers to argumenta-
tion frameworks, making their impact on argument strength
in particular and on the behaviour of gradual semantics in
general not clear. This section bridges the gap by proposing
principles that gradual semantics should satisfy, and relating
them to the various conditions of evaluation methods.

Principles are useful properties for understanding under-
pinnings of semantics. They have recently generated a lot
of effort (eg. (Bonzon et al. 2016; Amgoud et al. 2017; Am-
goud and Ben-Naim 2018; Mossakowski and Neuhaus 2018;
Baroni, Rago, and Toni 2019)). Due to space limitation, we
do not recall all the existing principles, we only focus on
those that are impacted by similarity, namely Reinforcement,
Monotony and Neutrality from (Amgoud et al. 2017). We ex-
tend each of these three principles and propose a novel one,
Sensitivity to Similarity. Note that other principles from the
literature, like Anonymity, Directionality, Maximality, Pro-
portionality are also suitable in settings where s 6≡ 0.

The Reinforcement principle concerns strengths of attack-
ers. It states that the stronger an attacker, the greater its im-
pact on the strength of the argument it is attacking. The orig-
inal definition does not take into consideration similarities
among attackers, and hence may lead to counter-intuitive re-
sults in presence of redundancies. Assume for instance that
the attacker that is strengthened is redundant with another,
in this case it should be ignored by a semantics.
Principle 1 (Reinforcement). A semantics S satisfies rein-
forcement iff for any AF 〈A,w,R, s〉, for all a, b ∈ A, if
• w(a) = w(b),
• Att(a) \ Att(b) = {x}, Att(b) \ Att(a) = {y},
• ∀z ∈ Att(a) ∩ Att(b), s(x, z) = s(y, z),
• StrS(x) ≤ StrS(y),
then the following properties hold:
• StrS(a) ≥ StrS(b). (Reinforcement)
• If StrS(a) > 0 and StrS(x) < StrS(y), then
StrS(a) > StrS(b). (Strict Reinforcement)
The Monotony principle concerns the quantity of attack-

ers. Its original definition states “the more an argument has
attackers, the weaker it is”. Hence, an argument A that is at-
tacked by B and C is weaker than if it is only attacked by
B. This result is inaccurate when B and C are redundant. A
should have the same strength in both cases since one of the
attackers should be ignored. The new version of Monotony



avoids such inaccurate evaluations and states “the more an
argument has dissimilar attackers, the weaker it is”.

Principle 2 (Monotony). A semantics S satisfies monotony
iff for any AF 〈A,w,R, s〉, for all a, b ∈ A, if

• w(a) = w(b),
• Att(a) ⊆ Att(b),
• If Att(a) 6= ∅, then ∀x ∈ Att(b) \ Att(a), ∀y ∈ Att(a),
s(x, y) = 0,

then the following properties hold:

• StrS(a) ≥ StrS(b). (Monotony)
• If StrS(a) > 0 and
∃x ∈ Att(b) \ Att(a) such that StrS(x) > 0,
then StrS(a) > StrS(b). (Strict Monotony)

Neutrality states that attackers having strength equal to
0 have no impact on their targets. The new version of the
principle ensures that those lifeless attackers are dissimilar
to the other attackers.

Principle 3 (Neutrality). A semantics S satisfies neutrality
iff for any AF 〈A,w,R, s〉, for all a, b ∈ A, if

• w(a) = w(b),
• Att(b) = Att(a) ∪ {x} with StrS(x) = 0,
• If Att(a) 6= ∅, then ∀y ∈ Att(a), s(x, y) = 0,

then StrS(a) = StrS(b).

Sensitivity to similarity states that the greater the simi-
larities between attackers of an argument, the stronger the
argument. Recall that similarities means existence of redun-
dancies, and the latter should be removed by semantics.

Principle 4 (Sensitivity to Similarity). A semantics S is
sensitive to similarity iff for any AF 〈A,w,R, s〉, for all
a, b ∈ A such that w(a) = w(b), if there exists a bijective
function f : Att(a)→ Att(b) such that:

• ∀x ∈ Att(a), StrS(x) = StrS(f(x)),
• ∀x, y ∈ Att(a), s(x, y) ≥ s(f(x), f(y)),

then the following properties hold:

• StrS(a) ≥ StrS(b). (Sensitivity)
• If StrS(a) > 0 and ∃x, y ∈ Att(a) such that

(StrS(x) > 0 or StrS(y) > 0) and s(x, y) >
s(f(x), f(y)),
then, StrS(a) > StrS(b). (Strict Sensitivity)

Let us show how the above principles relate to the differ-
ent conditions of evaluation methods. The first result states
that any semantics that is based on a well-behaved evaluation
method satisfies the non-strict versions of the principles.

Theorem 3. Let S be a gradual semantics based on an EM
M. If M is well-behaved, then S satisfies reinforcement,
monotony, neutrality and sensitivity to similarity.

In order to guarantee the strict version of Reinforcement,
the evaluation method of a semantics should not only be
well-behaved but also satisfy the condition below, which is
a strict version of the constraint (3e) in Definition 4.
g(n(x1, · · · , xk, a1, · · · , ak)) < g(n(y1, · · · , yk, a1, · · · , ak))
if ∀i = 1, · · · , k, xi ≤ yi and ∃i = 1, · · · , k s.t. xi < yi. (C1)

Theorem 4. Let S be a gradual semantics based on an EM
M. IfM is well-behaved and satisfies (C1), then S satisfies
strict reinforcement.

Strict sensitivity to similarity is satisfied by a semantics
when its EM is well-behaved and enjoys the property (C2).
g(n(x1, · · · , xk, a1, · · · , ak)) < g(n(x1, · · · , xk, b1, · · · , bk))
if ∀i, j = 1, · · · , k i 6= j, s(ai, aj) ≥ s(bi, bj) and
∃i, j = {1, · · · , k} s.t. s(ai, aj) > s(bi, bj) and
(xi > 0 or xj > 0). (C2)

Theorem 5. Let S be a gradual semantics based on an
EMM. IfM is well-behaved and satisfies (C2), then S is
strictly sensitive to similarity.

Strict monotony is satisfied by a semantics when its EM
is well-behaved and enjoys the property (C3) below.

g(x1, · · · , xk, y) < g(x1, · · · , xk, z) if y < z (C3)

Theorem 6. Let S be a gradual semantics based on an eval-
uation methodM. IfM is well-behaved and satisfies (C3),
then S satisfies strict monotony.
Remark: It is worth mentioning that the conditions (C1),
(C2) and (C3) are not part of Def. 4 since they are more de-
manding than their large versions. In the same way, the large
versions of the principles are mandatory while the strict ones
are optional and their suitability depends on the application
and the type of arguments (deductive, analogical, etc).

Novel Family of Semantics
We now introduce a broad family of gradual semantics that
are able to deal with similarity between arguments. Its mem-
bers use evaluation methods from the set M (see Theorem
2). Recall that every EM in this set is well-behaved and sat-
isfies some additional properties, which guarantee that the
EM characterizes a single gradual semantics.
Definition 6. We define by S the set of all semantics that are
based on an evaluation method from M.

From Theorem 3, it follows that any member of S satisfies
all the large versions of the principles.
Theorem 7. Any gradual semantics S ∈ S satisfies Rein-
forcement, monotony, neutrality and sensitivity to similarity.

Obviously, if the evaluation method of a semantics S ∈
S satisfies in addition the three constraints (C1), (C2) and
(C3), then the semantics would satisfy the strict versions of
reinforcement, sensitivity to similarity and monotony. In a
next section, we show that the set S is not empty and we
discuss some of its instances.

Adjustment Functions
This section presents examples of adjustment functions.
Their core idea is that a modified value would represent the
novelty brought by an attacker to the group of attackers. This
amounts at computing approximately the similarity of the at-
tacker with the group by aggregating its similarity with every
argument of the group. A second central concern when deal-
ing with similarity is how to distribute the redundancy bur-
den among similar arguments. Consider the case of a group
of two attackers A,B such that s(A,B) = 1, the strength of



A is equal to 1 and the strength of B is 0.6. The question is:
where should a function n remove redundancy? There are
three possible strategies:

• Conjunctive: n removes the redundancy from the weakest
argument B.

• Disjunctive: n removes the redundancy from the strongest
argument A.

• Compensative: n distributes the burden to both.

We present three (families of) adjustment functions, one
per strategy. The first function was proposed in (Amgoud
et al. 2018). It is based on the average operator and follows
a compensative strategy.

Definition 7 (nrs). Let a1, . . . , ak ∈ U and
x1, . . . , xk ∈ [0, 1]. nrs(x1, . . . , xk, a1, . . . , ak) =(

avg
xi∈{x1,...,xk}\{x1}

(
avg(x1, xi)× (2− s(a1, ai))

2

)
, . . . ,

avg
xi∈{x1,...,xk}\{xk}

(
avg(xk, xi)× (2− s(ak, ai))

2

))
.

nrs() = () and nrs(x1, a1) = (x1) if k = 1.

Example 1 (Cont) Using the function nrs, we
get: nrs(1, 1, 1, B1, B2, B3) = (avg( 1×12 , 1×(2−α)2 ),
avg( 1×12 , 1×(2−α)2 ), avg( 1×(2−α)2 , 1×(2−α)2 )) =

( 3−α4 , 3−α4 , 2−α2 ). For α = 0.5, we get (0.625, 0.625,0.75).
Note that the function weakens both B1 and B2, which are
identical (s(B1, B2) = 1).

We show that the adjustment function nrs satisfies almost
all the constraints from Def. 4 except (3g). This means that
nrs modifies the values of attackers even when they are all
dissimilar. Therefore, nrs is not well-behaved.

Proposition 3. The following properties hold.

• nrs violates the condition (3g) of Def. 4.
• nrs satisfies the conditions (3a), . . ., (3f) of Def. 4.
• nrs is not well-behaved.

In what follows, we propose novel functions that com-
pute the degree of similarity of an argument with a set of
arguments by aggregating the pairwise similarities using the
max operator. They start by rank ordering the initial scores
of arguments using a fixed permutation. The new score of
an argument is equal to its old value times its novelty with
respect to the preceding arguments in the permutation.

Definition 8 (Parameterised Function nρmax). Let
a1, . . . , ak ∈ U , x1, · · · , xk ∈ [0, 1], and ρ a fixed
permutation on the set {1, . . . , k} such that if xρ(i) = 0
then xρ(i+1) = 0 ∀i < k, or i = k. nρmax() = (), otherwise:
nρmax(x1, . . . , xk, a1, . . . , ak) =(

xρ(1),

xρ(2) · (1− max(s(aρ(1), aρ(2)))),
· · · ,
xρ(k)·(1−max(s(aρ(1), aρ(k)), · · · , s(aρ(k−1), aρ(k))))

)
.

The following result shows that the parametrised func-
tions nρmax return values from the unit interval.

Proposition 4. For all a1, . . . , ak ∈ U , for all x1, · · · , xk ∈
[0, 1], for any permutation ρ on the set {1, . . . , k},
nρmax(x1, . . . , xk, a1, . . . , ak) ∈ [0, 1]k.

Example 1 (Cont) Consider the graph G1 in the Figure 1.
Recall that s(B1, B2) = 1, s(B1, B3) = s(B2, B3) = α,
0 < α < 1, and Att(A1) = {B1, B2, B3}. For any reason-
able semantics S, StrS(B1) = StrS(B2) = StrS(B3) =
1 since they are not attacked. Let xi = StrS(Bi).
We illustrate nρmax using two permutations. ρmin ranks ar-
guments from the weakest argument with maximal sim-
ilarity to the strongest but less similar to other attack-
ers. ρmax ranks arguments from the strongest with mini-
mal similarity to the weakest with more similarity. ρmin
follows thus a conjunctive strategy while ρmax a dis-
junctive one. Hence, ρmin(x1, x2, x3) = (x1, x2, x3)
(since B1, B2 are the most similar arguments) and
nρminmax (x1, x2, x3, B1, B2, B3) = (1, 0, 1 − α). And,
ρmax(x1, x2, x3) = (x3, x1, x2) (as B3 is less similar to the
others) and nρmaxmax (x1, x2, x3, B1, B2, B3) = (1− α, 0, 1).

We show next that the functions nρmax satisfy the condi-
tions (3a,. . .,3g) of Definition 4 and those of Theorem 2.
However, they violate the conditions (C1) and (C2) be-
cause the max operator considers only the greatest similar-
ity. Hence, increasing small similarity degrees would not im-
pact the result of nρmax.

Proposition 5. Let f ,g be well-behaved functions and g sat-
isfies the following property:

let λ ∈ [0, 1], x1, · · · , xk ∈ [0, 1], then
g(λx1, · · · , λxk) ≥ λg(x1, · · · , xk).

The following properties hold:

• nρmax is well-behaved.
• nρmax is continuous on numerical variables.
• g(nρmax(λx1, · · · , λxk, b1, · · · , bk)) ≥
λg(nρmax(x1, · · · , xk, b1, · · · , bk)), ∀λ ∈ [0, 1].

• nρmax violate the conditions (C1) and (C2).

From above, it follows that the functions nρmax are used
by evaluation methods of the set M, and thus by the novel
family of semantics.

Proposition 6. For all functions f ,g that are well-behaved
and satisfy the conditions of Theorem 2, it holds that
〈f ,g,nρmax〉 ∈M.

Instances of Semantics
We present instances of the broad family S that extend h-
Categorizer (Besnard and Hunter 2001). They use the well-
behaved functions ffrac and gsum defined below and the pre-
viously defined adjustment functions nρmax.

ffrac(x1, x2) =
x1

1 + x2
gsum(x1, . . . , xk) =

k∑
i=1

xi



Definition 9. Semantics Sn based on the EM 〈ffrac,gsum,n〉
is a function transforming any AF 〈A,w,R, s〉 into a func-
tion Strn from A to [0, 1] s.t for any a ∈ A, Strn(a) =

w(a)

1 +
k∑
i=1

(
n
(
Strn(b1), · · · , Strn(bk), b1, · · · , bk

)))
where Att(a) = {b1, · · · , bk}. If Att(a) = ∅, then
k∑
i=1

(
n
(
Strn(b1), · · · , Strn(bk), b1, · · · , bk

)))
= 0.

Example 1 (Cont) Let us consider the adjustment functions
nρmax and nrs.

Strn
ρmin
max (A1) =

1

1 + 1 + 0 + 1− α
=

1

3− α

Strn
ρmax
max (A1) =

1

1 + 1 + 1− α+ 0
=

1

3− α

Strnrs(A1) =
1

1 + 3−α
4 + 3−α

4 + 2−α
2

=
1

3.5− α

Note that Snρmax covers a range of semantics using different
permutations. We show that those semantics are all instances
of S. They thus satisfy all the (large versions of the) princi-
ples. In addition, they satisfy strict monotony, but violate the
strict versions of Reinforcement and sensitivity to similarity
due to the max operator.
Theorem 8. For any ρ, it holds that Snρmax ∈ S. Further-
more, Snρmax satisfies reinforcement, (strict) monotony, neu-
trality and sensitivity.

The semantics Snrs satisfies all the principles except Neu-
trality. Note that this semantics extends h-Categorizer which
satisfies Neutrality in settings where s ≡ 0.
Theorem 9. The semantics Snrs satisfies all the principles
except Neutrality. Furthermore, Snrs /∈ S.

When the arguments are all distinct (i.e., similarities are
equal to 0), the above semantics assign the same values to
all arguments, and coincide with the weighted h-categorizer
semantics that assigns to every argument a ∈ A,

Strh(a) =
w(a)

1 +
∑

bi∈Att(a)
Strh(bi)

(1)

Theorem 10. For any AF 〈A,w,R, s〉, if s ≡ 0, then

Strmax
ρ

≡ Strrs ≡ Strh.

This shows that these semantics extend weighted h-
Categorizer by considering similarity degrees of attackers.

Related Work
In the computational argumentation literature, there are
some works on defining measures that assess to what extent
two arguments are alike. (Amgoud and David 2018) pro-
posed several measures for logical arguments and (Misra,
Ecker, and Walker 2016; Stein 2016; Konat, Budzynska, and

Saint-Dizier 2016) investigated similarity between textual
ones. In our work, a similarity measure is given as input,
and we focus on how to integrate it in semantics.

To the best of our knowledge, there are three works that
tackled the question of dealing with available similarities.
The first one, (Amgoud, Besnard, and Vesic 2014), removes
redundancies at the level of arguments generation. It keeps
only one argument among totally similar ones. This ap-
proach does not deal with partial similarity. The second
work, (Budan et al. 2015, 2020), uses similarity at the level
of attacks. It forbids attacks between quite similar argu-
ments. The third work, (Amgoud et al. 2018), integrates sim-
ilarity at the level of semantics. However, the approach is
not systematics. The authors proposed particular semantics
rather than focusing on foundations (rules and processes in-
volved in the definition) of semantics. The design choices
are thus not clear. One of the three semantics assume sim-
ilarity between an argument and a set of arguments, which
is beyond the scope of our paper. We focused on similar-
ity measures between pairs of arguments. Their two other
semantics consider pairwise similarities. We have seen that
one of them is not well-behaved as it may alter the values
of arguments even when they are dissimilar. The third se-
mantics is quite complex as its adjustment function cannot
be isolated from the aggregation function. In (Amgoud and
David 2020), the authors proposed an adjustment function
and studied its properties.

Some principles for semantics were also proposed in
(Amgoud et al. 2018). However, they were tailored for spe-
cific strategies of adjustment, namely disjunctive ones. This
explains why they are violated by two of the semantics de-
fined in that paper. Our principles are more general as they
are compatible with any strategy followed by a function n.

Conclusion
The paper investigated theoretical foundations of gradual se-
mantics that deal with similarity between arguments. It anal-
ysed the principles underlying the management of similarity
and formalised the process of defining semantics in terms of
three functions, one of which is responsible for refining the
strengths of attackers in light of similarities between them.
The paper proposed also a broad family of semantics, which
can be instantiated in several ways. Its instances satisfy some
key properties witnessing thus their well-behaviour. The pa-
per discussed also three strategies for dealing with similari-
ties, and proposed concrete semantics per strategy.

This work can be extended in different directions. One of
them consists of studying fair adjustment functions, which
remove the exact amount of redundancy. We will also de-
fine adjustment function that allow satisfaction of the strict
versions of the proposed principles. Finally, we plan to ap-
ply the new semantics to some applications like analogical
reasoning, and evaluation of arguments in debate platforms.
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