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Abstract: This paper compares the latency, accuracy, training time and hardware costs of neural
networks compressed with our new multi-objective evolutionary algorithm called NEMOKD, and
with quantisation. We evaluate NEMOKD on Intel’s Movidius Myriad X VPU processor, and
quantisation on Xilinx’s programmable Z7020 FPGA hardware. Evolving models with NEMOKD
increases inference accuracy by up to 82% at the cost of 38% increased latency, with throughput
performance of 100–590 image frames-per-second (FPS). Quantisation identifies a sweet spot of
3 bit precision in the trade-off between latency, hardware requirements, training time and accuracy.
Parallelising FPGA implementations of 2 and 3 bit quantised neural networks increases throughput
from 6 k FPS to 373 k FPS, a 62× speedup.

Keywords: quantisation; evolutionary algorithm; neural network; FPGA; Movidius VPU

1. Introduction

Neural networks have proved successful for many domains including image recog-
nition, autonomous systems and language processing. State-of-the-art models have an
enormous number of parameters, making them highly computationally and memory in-
tensive. For example, AlexNet [1] is a Convolutional Neural Network (CNN) consisting of
60 million parameters and 650 k neurons with an architecture comprising five convolutional
layers, multiple max-pooling layers, three fully-connected layers and a final softmax layer.
GPUs are often used to train and use neural networks because they can deliver the highest
peak arithmetic performance for 32 bit floating point neural network inference compared
with CPUs and FPGAs. At the time when the AlexNet model was proposed (2012), the
network was too large to fit on a single GPU. This problem was overcome by distributing
the model across two GPUs for training. The use of 200+ Watt GPUs for such purposes
over days and weeks is prohibitively expensive [2].

In recent years, a new class of hardware has emerged to significantly improve
performance-per-Watt for deep learning. Accelerator devices such as the Intel Movid-
ius Myriad X VPU [3] and the Coral/Google Edge TPU [4] accommodate deep learning
workloads because they provide a trade off between compute performance and power
consumption. The extreme on the hardware spectrum is programmable hardware like
FPGAs, which provide extremely high throughput performance of fixed-point deep learn-
ing inference [5]. This is essential for real-time domains with low latency throughput
requirements, e.g., remote computer vision and automated stack market trading.

It is widely accepted that neural network models exhibit a high level of redundancy.
Most parameters contribute little or nothing to the final output [6], and the precision of
arithmetic calculations are unnecessarily precise [7]. Removing redundant bloat offers the
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opportunity of mapping sophisticated models to energy efficient devices. Methods for
compressing neural networks include precision reduction, removing redundant parameters
or structure, and transferring knowledge from large models to smaller models [8].

The aim of compression is usually to reduce the hardware footprint of a model to
increase its inference throughput (decreasing its inference latency), without overtly affecting
inference accuracy.

Compressing neural network can:

• Speed up inference time: The size of neural network models are limited by memory
capacity and bandwidth. Training and inference computations switch from compute-
bound to memory-bound workloads as model sizes increase. This memory capacity
bottleneck limits the practical use of very large models [9].

• Improve energy efficiency: It costs orders-of-magnitude more energy to access off-chip
DDR memory compared to on-chip memory e.g., SRAM, BRAM and cache memory.
Fitting weights into on-chip memories reduces frequency of energy inefficient off-chip
memory accesses. Quantised fixed-point representations can significantly reduce
energy costs [10], e.g., less than 5 Watts on FPGAs [11].

• Reduce verification costs: Recent SMT-based verification approaches aim to prove
a neural network’s robustness against adversarial attacks e.g., [12,13]. SMT solvers
generally do not support non-linear arithmetic so activation functions must be lin-
earised. This approximates a model for the purpose verification, rendering verification
results unreliable. Quantising activation functions can increase reliability of verifying
neural networks robust [14], because it is the same model being verified and deployed.
Moreover quantised models can be as robust against adversarial attack as their full
precision version, possibly because quantisation acts as a filter of subtle adversarial
noise [15].

Neural network models vary hugely in their sizes, i.e., from 60 thousand parameters
up to 900 million parameters. Figure 1 shows how compression such as quantisation and
knowledge distillation can put relatively large models within reach of high throughput
hardware accelerators [16–20].
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Figure 1. Meeting in the Middle: Compressing Neural Networks for Acceleration

Neural network models vary hugely in their sizes, i.e. from 60 thousand parameters
up to 900 million parameters. Figure 1 shows how compression such as quantization and
knowledge distillation can put relatively large models within reach of high throughput
hardware accelerators.

This paper evaluates the accuracy, throughput, training time and resource costs of two
compression approaches applied to different sized models: (1) an evolutionary algorithm to
modify the structure of 16 bit precision neural networks targeting the Intel Movidius Myriad X
VPU, and (2) 1-8 bit precision quantization of fixed neural networks targeting the Xilinx Z7020
FPGA.

Contributions

This paper makes the following contributions:

• A new framework called NEMOKD for hardware aware evolution of knowledge-
distilled student models (Section 3).

• An evaluation of neural network quantization by measuring inference accuracy,
throughput, hardware requirements and training time, targeting programmable FPGA
hardware (Section 4.2).

• An evaluation of NEMOKD showing its ability to minimise both latency and accuracy
loss on Intel’s fixed Movidius Myriad X VPU architecture (Section 4.3).

• A comparison of NEMOKD and quantization performance on these architectures
(Section 4.4).

2. Quantization Methodology
2.1. Quantization for FPGAs

Floating point precision permits individual neural network parameters a range of ex-
ponent values. Higher precision values (larger exponents) can induce more computational
overhead, leading to higher power consumption and longer compute times. Fixed-point
quantized models use (usually smaller) fixed exponent values for all network parameters.
This imposed restriction brings a range of benefits such as faster and more power efficient
mathematical operations but can also potentially impact a model’s accuracy [21].

Quantization [22] shifts values from 32 bit floating point continuous values to reduced
bit discrete values. In a neural network, weights between neurons and activiation
functions can be quantized.

Figure 1. Meeting in the middle: compressing neural networks for acceleration.

This paper evaluates the accuracy, throughput, training time and resource costs of two
compression approaches applied to different sized models: (1) an evolutionary algorithm
that modifies the structure of 16 bit precision neural networks targeting the Intel Movidius
Myriad X VPU, and (2) 1–8 bit precision quantisation of fixed neural networks targeting
the Xilinx Z7020 FPGA.
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Contributions

This paper makes the following contributions:

• A new framework called NEMOKD for hardware aware evolution of knowledge-
distilled student models (Section 3).

• An evaluation of neural network quantisation by measuring inference accuracy,
throughput, hardware requirements and training time, targeting programmable FPGA
hardware (Section 4.2).

• An evaluation of NEMOKD showing its ability to minimise both latency and accuracy
loss on Intel’s fixed Movidius Myriad X VPU architecture (Section 4.3).

• A comparison of NEMOKD and quantisation performance on these architectures
(Section 4.4).

2. Quantisation Methodology
2.1. Quantisation for FPGAs

Floating point precision permits individual neural network parameters a range of ex-
ponent values. Higher precision values (larger exponents) can induce more computational
overhead, leading to higher power consumption and longer compute times. Fixed-point
quantised models use (usually smaller) fixed exponent values for all network parameters.
This imposed restriction brings a range of benefits such as faster and more power efficient
mathematical operations but can also potentially impact a model’s accuracy [21].

Quantisation [22] shiftsvalues from 32 bit floating point continuous values to reduced
bit discrete values. In a neural network, weights between neurons and activiation
functions can be quantised.
Binarisation [23] is a special case of quantisation that represents weights and/or
activation function outputs with a single bit. These methods replace arithmetic
operation with bit-wise operations, reducing the energy consumption and memory
requirements.

Quantised neural networks can signifiantly outperform binarised neural networks
and can compete with the accuracy of full precision models [22].

2.2. FINN Framework

Section 4.2 evaluates very low precision neural networks, quantising precision from
32 bits to 1–8 bits to fit within the resource constraints of FPGAs. Xilinx’s FINN quantisation
framework and FPGA backend is used in these experiments. FINN initially supported
binarised neural networks [7], then was extended for quantised networks [24] and Long-
Short Term Memory Neural Networks (LSTM) [25]. Our experiments in Section 4.2 use
FINN functionality from [24].

FINN employs quantisation aware training at the Python level, before generating
synthesisable C++ for hardware. The weights and activation functions during training in
Python operate on floating point values but Python functions simulate quantisation to limit
weights and activation function outputs to discrete values permitted by the chosen quanti-
sation configuration. When generating hardware, the arithmetic precision of weights and
activation functions in the C++ match the quantised bit widths simulated during training.

2.3. Weight Quantisation for Training

FINN discretises the range of full precision values by rounding to a close neighbour
to fixed point quantised values for weights. The min and max values for the quantisation
range are related to the quantisation precision n, they are defined as:

max = 2− 1
2n−2 min = −2 +

1
2n−2
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The quantisation formula for x ∈ [min; max] is shown in Equation (1).

QuantiseWeights(x) =
b2nx + 2n−1 − 1c

2n−2 − 2 +
1

2n−2 (1)

Table 1 shows examples of quantised values with min = −2 and max = 2 with 2n − 1
values in this interval. The values are all strictly positive but the quantisation range is
symmetric. The step between each quantised value is 1

2n−2 . When n increases, the number
of quantised values increase and we can obtain values close to the upper and lower bound
of the interval.

Table 1. Quantised weight values between 0.136 and 2 with min = −2 and max = 2.

Value Precision (bits)
1 2 3 4 5 6 7 8

0.136 1 0 0 0.25 0.125 0.125 0.125 0.140625
0.357 1 0 0.5 0.25 0.375 0.375 0.34375 0.359375
0.639 1 1 0.5 0.75 0.625 0.625 0.625 0.640625
1.135 1 1 1 1.25 1.125 1.125 1.125 1.140625

2 1 1 1.5 1.75 1.875 1.9375 1.96875 1.984375

2.4. Activation Function Quantisation for Training

The quantisation of activation functions works similarly to weight quantisation. For
the quantised hyperbolic tangent function tanh(x) = ex−e−x

ex−+e−x , the range of values in Table 1
is optimal because the function has two asymptotes towards -1 and 1, e.g., tanh(2) = 0.964.
The saturation plateau of the activation function is almost attained. Figure 2 shows the
shape of tanh for different quantisation precisions.

Figure 2. Hyperbolic tangent with different quantisation configuration.

3. NEMOKD: Knowledge Distillation and Multi-Objective Optimisation of
Neural Networks

This section presents our new NEMOKD framework. Its aim is to produce accurate
neural networks small enough to fit onto hardware accelerators to achieve high throughput.
Section 3.2 describes its knowledge distillation based training. Section 3.3 shows its multi-
objective optimisation that evolves encoded neural network hyper-parameters to find
optimal trade-offs between accuracy and throughput. Section 3.4 presents the NEMOKD
methodology for hardware-aware optimisation, which measures inference latency on the
intended target device to feed into the evaluation of evolved CNN architectures.

3.1. Evolutionary Algorithms

Evolutionary deep learning approaches [26] have been proposed as an alternative
training approach to stochastic gradient descent. However, due to the enormity of the
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search space for state-of-the-art neural networks that comprise millions of parameters,
evolutionary algorithms often fail to discover optimal solutions.

Recent neuro-evolution techniques retain stochastic gradient descent and back propa-
gation for training, before using evolutionary algorithms to search for optimal architectural
configurations. Device-aware Progressive Search for Pareto-Optimal Neural Architec-
tures [27] is a method of neural architecture search that has been shown to simultaneously
optimise device-related objectives such as inference time and device-agnostic objectives
such as accuracy. This search algorithm uses progressive search and mutation operators to
explore the trade-offs between these objectives. Applying this algorithm to problems on a
range of different hardware devices from a NVIDIA Titan X GPU to a mobile phone with
an ARM Cortex-A35, the authors of [27] were able to obtain higher accuracy and shorter
inference times compared to the state-of- the-art CondenseNet [28].

Neural-Evolution with Multi-Objective Optimisation (NEMO) [29] is a neural network
optimisation algorithm. It is a machine learning technique that uses multi-objective evolu-
tionary algorithms to simultaneously optimise both accuracy and inference time of neural
networks by evolving their architecture.

3.2. Knowledge Distillation

Neural networks often have a softmax output layer that produce probabilities of given
inputs belonging to each class. The cross entropy loss function measures the similarity of
the softmax output vector against a ground truth vector defined by the training set. Given
ground truth label vector y, N classes in the vector, and a softmax prediction vector p, the
cross entropy loss is:

H(y, p) = −
N

∑
i

yi ln(pi) (2)

Knowledge distillation incorporates an additional hyper-parameter, temperature (T),
into this softmax calculation. Softer probability distributions over classes are obtained by
using higher temperatures [8]. Knowledge distillation employs a loss function that uses
two weighted objective functions:

1. Student loss: cross entropy of the student’s standard softmax output (T = 1) with
the ground truth vector.

2. Distillation loss: cross entropy of the teacher’s high temperature (T = τ) output
with the students high temperature output.

The loss function for knowledge distillation (from [30]) is:

L(x; W) = αH(y, σ(zs; T = 1))︸ ︷︷ ︸
Student Loss

+ βH(σ(zt; T = τ), σ(zs; T = τ))︸ ︷︷ ︸
Distillation Loss

(3)

where x is an input, W are the parameters of the student network, y the ground truth
vector and σ(z; T = τ) is the softmax function applied to logit vector z and temperature
T = τ. The student and teacher logit vectors are s and t, and hyper-parameters α and β are
arbitrary constants.

In the NEMOKD methodology (Section 3.4), student models in the initial CNN archi-
tecture population are partially trained using knowledge distillation.

3.3. Multi-Objective Optimisation

Multi-Objective Optimisation solves optimisation problems with at least two con-
flicting objectives. For a solution space A that contains all permissible neural networks
configurations, the two objectives of NEMOKD are (1) minimise inference latency (latency)
and (2) minimising accuracy loss (error):

mina∈A(latency(a), error(a)) (4)
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NEMOKD generates this solution space A by encoding and evolving hyper-parameters
of student models (Section 3.3.1) then evolving these to optimise for Equation 4 (Section 3.3.2).

3.3.1. Encoding Student Models for Evolution

The evaluation of NEMOKD in Section 4.3 uses two baseline student architectures:
FlexStudent and Resnet8x4. We encode certain features of these model into genotypes to
evolve their hyper-parameters.

We encode the FlexStudent model with 11 genes. Genes 1 and 2 determine the
number of convolutional and fully connected layers respectively. Genes 3–7 determine the
number of output channels in convolutional layers. Genes 8–11 encode the number of fully
connected layers. Figure 3 shows how NEMOKD decodes the genotype representation of
the baseline FlexStudent model into a CNN architecture.

Figure 3. Decoding the genotype representation of the baseline FlexStudent.

For the Resnet8x4 student we encode hyper-parameters to evolve the number of layers
in the output channels from convolutional layers. The number of layers are fixed.

3.3.2. Multi-Objective Evolution

We employ the Non-Dominated Sorting Genetic Algorithm version II (NSGAII) [31] to
facilitate evolutionary multi-objective optimisation, starting from the baseline architecture
trained with knowledge distillation. Model mutations with NSGAII are both fine and
coarse grained. Mutation in our NEMOKD framework modifies four hyper-parameters:
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1. The number of convolutional layers.
2. The number of Fully Connect layers.
3. The number of output channels.
4. The number of Fully-Connected neurons.

NEMOKD uses NSGAII to generate a set of CNN architecture solutions from one
population member. Student models (either FlexStudent or Resnet8x4) are first encoded
into a genotype sequence (Figure 3). The evolutionary process then happens in two steps:
(1) crossover generates a new solution by combining genotypes of two parents; (2) ranking
and selection chooses the fittest members of the population, based on the best trade-off
between accuracy and latency when evaluated on the VPU. For every solution, mutation
alters one or more genes at random.

For the two objectives of minimising latency ( f1) and error ( f2), a solution a dominates
solution b if it outperforms for one of these objectives and is not worse in the other:

∀i ∈ [1, 2], ∃j ∈ [1, 2] : fi(a) ≤ fi(b) and f j(a) < f j(b) (5)

NEMOKD uses NSGAII to search for Pareto optimal solutions. A CNN architecture
solution a is Pareto optimal if it is not dominated by any other solution in a solution space
A:

∀b ∈ A, ∀i ∈ [1, 2], ∃j ∈ [1, 2] : fi(a) ≤ fi(b) and f j(a) < f j(b) and a 6= b (6)

The final output from NEMOKD is a population of evolved models, which includes
those in the Pareto optimal set.

3.4. NEMOKD Methodology

The NEMOKD methodology combines knowledge distillation and the multi-objective
evolutionary algorithm above. The methodology comprises two phases:

Phase 1: Knowledge Distillation: A baseline model is trainedwith knowledge dis-
tillation to provide a comparison for NEMOKD performance. NEMOKD uses that
baseline architecture as a starting point to generate variants using evolutionary multi-
objective optimisation.
Phase 2: Model Evolution: Each generation produces 10–20 variations of the baseline
model, each then trained using knowledge distillation. The two objectives, minimising
latency and minimising error, are measured for each model on the VPU device. The
Pareto optimal models are retained to form part of the next generation. The other
models are discarded. This process repeats for a specified number of generations. In
our NEMOKD evaluation (Section 4.3), generations range from 14 to 27.

The NEMOKD methodology is shown in Figure 4. A population N is initialised. Each
member of this population is a genotype that represents a CNN student architecture in
the solution space (Section 3.3.1). To increase the chance of finding comparable or better
solutions in a small number of generations, random perturbations are then applied to half
the population to encourage more diverse solutions.

First, each genotype is decoded to construct a CNN model. These are then partially
trained with knowledge distillation and are then converted to the ONNX format and finally
a half-precision Intermediate Representation for VPU deployment. The fitness of each
individual genotype is then assessed on the VPU device based on accuracy and latency
performance. Genotype evaluation results are passed to NSGAII for evolution of student
model hyper-parameters (Section 3.3.2).

NSGAII selects genotypes based on their fitness values to add new members. Crossover
and mutation are applied to this member set, to add to the overall population. This evolve/
decode/select process repeats until a specified number of NEMOKD generations. The algo-
rithm outputs the final population including the Pareto optimal set (Equation (6)). This set
of solutions provides optimal trade-offs between the two objectives in the objective space.
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Figure 4. NEMOKD methodology.

3.5. NEMOKD versus NEMO

Our NEMOKD methodology extends NEMO [29] in three ways:

1. Knowledge distillation replaces standard training in the learning phase of the evalua-
tion procedure.

2. To conserve time and computational resources in the learning phase, partial training is
provided with only 30 epochs (in phase 1) as opposed to fully training each member
of initial population.

3. Latency and accuracy is measured on the VPU device to asses the fitness of population
members. This evaluation data is fed into the evolutionary NSGAII algorithm.

Accuracy after 30 epochs is indicative of performance should full training later be
performed. Therefore to save time and energy costs of fully training all evolving student
variants, a developer might select a fully evolved partially trained model that meets latency
requirements, then subject it to more training with 200+ epochs.

We say NEMOKD’s evolutionary optimisation is hardware-aware , because fitness is
measured on the processor architecture (Intel’s Movidius VPU) intended for deploying
the model. This is based on the idea that a model’s latency performance depends on
the processor architecture used, and that optimising a model for one architecture may be
ineffective if deploying to another [27].

4. Evaluation
4.1. Hardware Platforms

This section evaluates quantisation for programmable hardware, and our NEMOKD
evolutionary algorithm for the fixed VPU architecture. The dataset and neural network
model for the experiments are shown in Table 2.

For the programmable hardware experiments we target the mid-range Xilinx Zynq Z7020
140 mm × 87 mm FPGA on the Xilinx PYNQ-Z2 development board which uses ≈13.8 W
energy. This FPGA has 53 k Lookup Tables (LUT), 106 k Flip Flops (FF) and 560 KB of
Block RAM (BRAM) memory. Of the 64 quantised neural networks in Section 4.2, only four
fit on this FPGA. This validates the need for aggressive compression approaches such as
quantisation, on small to medium sized FPGA devices.
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Table 2. Quantisation and model evolution experiments

Device Model Dataset Section

Xilinx Z7020 FPGA 3 layer fully
connected MLP MNIST Sections 4.2.1

and 4.2.2

(quantisation) 3 layer fully
connected MLP FASHION-MNIST Section 4.2.3

Intel Movidius
Myriad X VPU Teacher Student

MobileNetV2 FlexStudent CIFAR10 Section 4.3
(model evolution) Resnet32x4 FlexStudent CIFAR100 Section 4.3

Resnet32x4 Resnet8x4 CIFAR100 Section 4.3

For the fixed hardware experiments we use a USB-based Intel Neural Compute Stick 2
(NCS2) accelerator using a 72.5 mm × 27 mm Intel Movidius Myriad X Visual Processing
Unit (VPU) which uses ≈1.5 W energy. The NCS2 comprises dedicated accelerators with
the 16 programmable 128-bit VLIW Vector Processors optimised for processing highly
parallel workloads. The device can compute up to 1 Tera Operation Per Second (TOPS).
The centralised 2.5 MB of on chip memory facilitated by the intelligent memory fabric
enables memory access latencies of 400 GB/s and reduces the requirements for more costly
off-chip data transfer. The NCS2 device has 512 MB of LPDDR4 memory [3].

4.2. Quantisation Results

This section investigates the design space granted by FINN’s ability to independently
quantise weights and activation functions of a Multilayer Perceptron (MLP) network
with three Fully-Connected (FC) layers. We created 64 quantised models from a baseline
model by independently and exhaustively varying the bit-widths of weights and activation
functions from 1 to 8. For 64 neural network quantisation configurations, the evaluation in
this section measured:

1. Absolute accuracy and hardware resource costs of the 64quantised neural networks
(Section 4.2.1).

2. Relative performance comparison of accuracy and hardware resource costs, compared
with the other 63 quantised models (Section 4.2.2).

The training was done using 50,000 images from the MNIST dataset. A validation
dataset of 10,000 images was then used to minimise overfitting. Accuracy was measured
using a testing dataset, to test how well the model generalised to new data. FINN’s backend
converted the model to a binary weight file and a synthesisable C++ implementation
for hardware.

4.2.1. Absolute Performance
Absolute Accuracy Performance

Each of the 64 neural networks was labelled with a quantised weight W-X and quan-
tised activation function A-Y with X, Y ∈ [1; 8]. Accuracy is measured after 10, 20, 30, 50
and 100 epochs.

Figure 5 plots the inference error rate for each of the 64 quantised neural networks
after training with 10, 20, 30, 50 and 100 epochs. Using 1–3 bits weights had a noticeable
effect on accuracy, i.e., between 3.9–4.7% dropping down to below 3.7% using 4 bits or
more. Training further with 40–100 epochs shifted the noticeable accuracy boundary to
just 1 bit weight, meaning that with enough training, 2 bit weights achieved almost the
same inference accuracy as 3–8 bit weights. The quantisation of activation functions had
a steady impact on accuracy, i.e., higher precision activation functions result in better
accuracy, however, this was not as dramatic as the impact that quantised weight precision
has on accuracy. With increased training time, the accuracy performance flattened, where
absolute difference in accuracy between the best and worst quantisation configuration
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greatly diminished. Additionally, we observed a major gap between 1 and 2 bit weights
versus 3–8 bit weights, especially for 10 and 20 epochs. Training beyond 40 epochs allowed
weights to be quantised from 3 to 2 bits without noticeable accuracy loss.

Figure 5. Accuracy of Quantised Neural Networks (QNN) with increasing training

Absolute Resource Utilisation Performance

Figure 6 shows the trade-off between quantised precision and hardware resource
use. The X axis is the number of bits for weights, the Y axis is the number of bits for the
activation functions. The colour in the heat maps represents the relative measurement of
the respective performance metric compared to the other 63 models.

(a) LUTs (b) FFs

(c) BRAMs
Figure 6. Hardware resources required for 64 quantised neural networks.
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Figure 6a shows that both weight precision and activation function precision con-
tributed evenly to LUTs costs. Figure 6b shows that the precision of activation functions
determined FF costs. While FFs and LUTs could store small amounts of data, BRAMs
had greater storage capacity and were used by hardware synthesis tools for larger data
structures such as arrays. Figure 6c shows that BRAM consumption was determined
exclusively by weight precision.

4.2.2. Relative Performance

Table 3 gives the best and worst relative performance numbers for the 64 quantised
neural networks. The three radar plots in Figure 7 represents different quantised neural
network configurations, comparing accuracy and resource use (LUTs, FFs and BRAMs)
performance relative to the best and values in Table 3. Each metric defines one branch in a
radar chart. The three precision variations in Figure 7 are:

1. Weight oriented distribution (Figure 7a) increased the weight precision and kept the
activation function constant at 4 bits, i.e., W1–A4, W3–A4, W6–A4 and W8–A4.

2. Activation oriented distribution (Figure 7b) increased the activation function precision
and kept the weight precision constant at 4 bits, i.e., W4–A1, W4–A3, W4–A6 and
W4–A8.

3. Linear distribution (Figure 7c) increased both the weight and activation function
precision across the diagonal from the heat maps in Figure 6, i.e., W1–A1, W2–A2,
W4–A4 and W7–A7.

Table 3. Relative performance for radar plots in Figure 7.

Metric Relative Performance
Worst Best

Accuracy loss 2.07% 1.52%
BRAM 1643 224

Flip Flops 226,282 31,954
Look Up Tables 223,910 53,336

(a) Weight oriented distribution (b) Activation oriented distribution (c) Linear distribution

Figure 7. Radar charts for different quantisation configurations

The radar plots compare the relative performance of these quantisation configurations.
The models were ranked on LUT, BRAM and FF requirements (fewer was better), and their
accuracy (higher was better). These scores were then normalised between 0 and 1. For
example the model with the highest accuracy had a score of 1 and was plotted outermost
in the radar plot in the Accuracy dimension, whereas the model withlowest accuracy was
plotted at the centre point. Likewise for hardware requirements, e.g., the neural network
requiring the fewest BRAMs was plotted outermost in the BRAM dimension.
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When activation functions were set to 3 bits, increasing weights from W1 to W3 caused
the greatest relative accuracy score improvement (Figure 7a). When weights were fixed at 4
bits, all accuracy scores were in the top half, with increases of activation function precision
costing significantly more LUT and FF resources, with BRAM costed largely the same
(Figure 7b). Scaling both precision linearly had an equal impact on FF, LUT and BRAM
scores, yet their accuracy score were all in the top quartile when weights were 2–8 bits
(Figure 7c). In summary if top-half relative accuracy performance was the goal, the most
important constraint was 2+ bits for representing weights.

The importance of the trade-offs is highlighted by the fact that most of the neural
networks did not fit on the target device (Xilinx Zynq Z7020). It had 280 BRAMs and only
seven of the networks met this constraint, and 106,400 FFs with 22 of the networks within
this constraint.

4.2.3. Parallel Speedups

FINN supports parallelisation on a layer-by-layer basis. The amount of parallel
hardware resources used to implement each layer of a neural network is user definable.
Parallelism is controlled with two settings: (1) the number of hardware processing elements
(PE) to process each output channel, and (2) the number of input channels processed within
one clock cycle (SIMD) [24]. Using more parallel hardware for a layer shortens the layer’s
clock cycle latency, at the cost of increased hardware requirements. If the layer is on the
critical path, i.e., is has the highest latency cost, then parallelisation of that layer should
shorten overall latency thereby increasing throughput.

Our throughput evaluation used a multi-layer perceptron with three fully connected
layers with the FASHION-MNIST dataset. Each quantised model was tested for accuracy
and throughput on the Xilinx Z7020 FPGA on the PYNQ-Z2 board. Each model was trained
with 40 epochs. The results compared:

1. Inference accuracy.
2. Frames-Per-Second (FPS) image throughput.
3. Quantisation configurations W2A2, W3A3 and W4A4.
4. The parallelism degree for PE and SIMD for all layers, setting both at 2, 8 then 16.

Figure 8 shows throughput results. The model with 2-bit precision achieved 84.9%
accuracy. Increasing parallelism did not affect accuracy because each time it was the
same model, just implemented with more parallel hardware. Increasing to 3-bit and 4-bit
precision increased accuracy to 85.5% and 85.7%. Setting PE and SIMD to 2 achieved
a throughput of 6 k FPS. Increasing these parallelism parameters to 8 and 16 increased
throughput to 96 k and 373 k FPS for the 2 and 3 bit models—a 62× speedup. The W4A4
quantised model did not fit within the Xilinx Z7020 FPGA’s available resources when PE
and SIMD is 16, and hence is not shown in Figure 8.

4.2.4. Quantisation Results Discussion

The sweet spot in the quantisation design space for the MNIST and FASHION-MNIST
datasets is about 3 bit weights and 3 bit activation functions. Beyond 3 bit quantisation and
with enough training, there is no significant improvement to accuracy performance. This
confirms results in [25]. Our methodology for evaluating the trade-off between accuracy,
throughput and hardware efficiency is similar to [32]. We extend that work by also measur-
ing the impact of varying training of quantised models, and a more fine grained benchmark
suite measuring weight precision independently of activation function precision.

In summary, our quantisation experiments show:

• LUT and FF resources increase with increased activation function precision, because
increasing arithmetic calculation complexity increases the number of required pro-
cessing units.

• BRAM increases with increased weight precision, because weight parameters are
stored in BRAM memories.
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• Inference accuracy is highest with higher precision, i.e., least aggressive quantisation.
The biggest improvement in accuracy with a 1 bit increment is switching from 1 to 2
bits weight precision.

• With enough training beyond 50 epochs, 2 bit precision achieves almost the same
inference accuracy as 3–8 bit precision.

• Increasing the parallelisation of hardware neural network implementations signifi-
cantly increases throughput performance from 6.1 k FPS to 373 k FPS, a 62× speedup.

• The trade-off between precision, throughput and accuracy is the W3A3 model with
16 for PE and SIMD, achieving 373 k FPS and 85.5% accuracy for the FASHION-
MNIST dataset.

PE/SIMD:2

PE/SIMD:8

PE/SIMD:16

PE/SIMD:2

PE/SIMD:8

PE/SIMD:16

PE/SIMD:2

PE/SIMD:8
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Figure 8. Throughput and accuracy performance of parallel FPGA designs for FASHION-MNIST.

4.3. NEMOKD Results

For the NEMOKD experiments in this section, we used two student models as our
solution space for hyper-parameter evolution:

1. FlexStudent , a model that we constructed with a simple five layer model to provide
a starting point for the NEMOKD evolution process (Section 3). A similar model
performs well as a student architecture on the CIFAR10 dataset [33].

2. A version of the Resnet8x4 architecture, modified to enable the NEMOKD hyper-
parameter evolutionary process.

Our NEMOKD framework was measured with three benchmarks:

1. The MobileNetV2 model distilled into a FlexStudent student model with the CIFAR10
dataset.

2. The Resnet32x4 model distilled into a FlexStudent student model with CIFAR100.
3. The Resnet32x4 model distilled into a Resnet8x4 student model with CIFAR100. For

this experiment, the number of layers remained fixed.
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The experiments used 30 epochs for knowledge distillation and the number of NSGAII
generations varies for each experiment, ranging from 14 to 27. For our pruning benchmarks
we used Platypus [34] for multi-objective optimisation, RepDistiller [35] for knowledge
distillation, and OpenVino’s Python API to execute trained exported PyTorch models on
the NSC2 device.

4.3.1. Knowledge Distillation Parameter Search

Figure 9 shows knowledge distillation error with 30 epochs. It illustrates how different
combinations of knowledge distillation parameters affected the accuracy of the baseline
model after 30 epochs. The α value determined how much the distillation loss and student
loss contributed to the overall loss e.g., if α = 0.5, then both terms in the knowledge
distillation loss function were weighted evenly. The softmax function in the distillation
loss term was parametrised by the temperature. This softened the output distribution
revealing extra information about which classes the model found most alike. The blue
surface illustrates the error rate of the baseline model with respect to different combinations
of knowledge distillation hyper-parameters. The orange plane indicates the baseline test
error performance without knowledge distillation.

(a) MobileNetV2/FlexStudent (b) Resnet32x4/FlexStudent

(c) Resnet32x4/Resnet8x4

Figure 9. Knowledge distillation parameter search for Teacher/Student distillation

For the MobileNetV2 teacher, a FlexStudent student model and CIFAR10 in Figure 9a,
any choice of knowledge distillation hyper-parameters provided a significant increase in
accuracy over the baseline model.

Figure 9b shows that some combinations of the knowledge distillation parameters
had a negative effect on the accuracy of the baseline model. We observed that this method
produced better accuracy than could be obtained by distilling knowledge into the baseline
model, once again at the expense of latency. The MobileNetV2/FlexStudent experiment
in Figure 9a is similar to Figure 9b, but rather than CIFAR100 it used the simpler CI-
FAR10 dataset. In this case, every combination of knowledge distillation hyper parameters
provided significant improvement over baseline.
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In Figure 9c, the majority of combinations of knowledge distillation hyper-parameters
had a negative impact on the baseline model accuracy, though certain combinations did
provide improvements as shown in Figure 9c. In this case, no major trends were observed
with respect to the individual hyper-parameters. We observed that this method, once again,
produced better accuracy than could be obtained by distilling knowledge into the baseline
model with 30 epochs of training.

4.3.2. Efficacy of NEMOKD Evolution

Figure 10 shows the latency and accuracy performance of student models after
30 epochs for student models. It shows the baseline model trained with just knowledge
distillation (green diamonds). The red and blue points show performance of the models
at intermediate and final generations of student models. As with the quantisation experi-
ments, accuracy was measured using a testing dataset to asses how the models generalised
to new unseen data.

(a) MobileNetV2/FlexStudent (b) Resnet32x4/FlexStudent

(c) Resnet32x4/Resnet8x4

Figure 10. Student latency and accuracy performance for Teacher/Student distillation

Figure 10a shows FlexStudent student performance with the MobileNetV2 teacher.
The chosen knowledge distillation hyper-parameters for this experiment greatly increased
the accuracy of the baseline model. With 30 epochs of training, many students in the final
generation evolved to attain a better accuracy than the baseline model but with the same
or better latency. The same was also true of the baseline model trained with knowledge
distillation. The most accurate students, however, had larger latency values with respect
to the baseline model. The best latency/accuracy trade-off for Resnet32x4/FlexStudent
distillation with CIFAR10 was an evolved model with five convolutional layers with a
relatively small number of output channels and just two fully connected layers. It has a
low to moderate number of neurons of about 125–150 neurons.

Figure 10b shows FlexStudent student performance with the larger Resnet32x4 teacher
model, for the CIFAR100 dataset. Student models evolved from the same baseline FlexStu-
dent as the experiment in Figure 10a. Figure 10b illustrates the population at two distinct
generations of the evolutionary process, in addition to the baseline architecture from which
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all the students evolved. Interestingly, the combination of knowledge distillation hyper-
parameters we chose for this experiment had a negative impact on the accuracy of the
baseline model. However, the evolved students appeared to adapt their architecture to
accommodate these parameters, resulting in student models with significant accuracy im-
provements for the same inference latency. The best accuracy produced by the NEMOKD
algorithm was obtained by an architecture with a higher latency. In contrast to Figure 10a,
every student model in the final generation evolved to have the same layer structure as the
baseline model.

Figure 10c shows Resnet8x4 student performance student performance with the
Resnet32x4 teacher, for the CIFAR100 dataset. It differs from Figures 10a,b in two ways:
(1) a different evolutionary starting point is used for the ResNet8x4 student; and (2) the
layers of this student model are fixed, only the output channels of the convolutional layers
were modified in the NEMOKD evolutionary process.

4.4. Discussion
4.4.1. Quantisation for FPGAs

Our quantisation experiments (Section 4.2) use the quantisation scheme implemented
in Xilinx’s FINN framework. Developing compression algorithms for embedded devices is
a research area of its own, e.g., a dynamic precision data quantisation algorithm in [36],
performed layer-by-layer from a corresponding floating point CNN, with the goal of
improving bandwidth and resource utilisation. Other compression approaches are focused
on specific goals e.g., reducing power consumption, or target specific hardware e.g., GPUs
or FPGAs, or target specific domains or even specific application algorithms.

Device Specific Quantisation

Recent work explores the performance trade-offs between reduced precision of neural
networks and their speed on GPUs, e.g., performance aware pruning can lead to 3–10 times
speedups [37]. Multi-precision FPGA hardware for neural networks significantly reduces
model sizes, which in [38] enables an ImageNet network to fit entirely on-chip for the
first time, significantly speeding up throughput. Another recent study [25] measures the
hardware cost, power consumption, and throughput for a High Level Synthesis extension
of FINN that supports Long Short-Term Memory (LSTM) models on FPGAs. [39] proposes
a design flow for constructing low precision, low powered FPGA-based neural networks
with a hybrid quantisation scheme. [40] shows that resource-aware model analysis, data
quantisation and efficient use of hardware techniques can be combined to jointly map
binarised neural networks to FPGAs with dramatically reduced resource requirements
whilst maintaining acceptable accuracy.

Domain Specific Quantisation

Some quantisation methods target specific algorithms, e.g., a resource-aware weight
quantisation framework for performing object detection in images [41].

4.4.2. NEMO with Knowledge Distillation for the VPU

Knowledge distillation parameters for the NEMOKD experiments (Section 4.3) greatly
increase the accuracy of the baseline model. With 30 epochs of training, many students in
the final generation evolve to attain a better accuracy than the baseline model but with the
same or better latency. The most accurate students, however, have larger latency values
with respect to the baseline model. The best trade-off model evolved five convolutional
layers with a small number of output channels and just two fully connected layers, with a
low to moderate number of neurons of about 125–150 neurons.

Our NEMOKD approach significantly increases inference accuracy at a modest ex-
pense of latency. The method consistently provides higher accuracy students than could be
obtained through an exhaustive knowledge distillation parameter search with the baseline
model, irrespective of the choice of knowledge distillation hyper-parameters. This high-
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lights the importance of the student’s architecture in the knowledge distillation process.
Evolving students appears to enable models to adapt and accommodate an arbitrary choice
of knowledge distillation hyper-parameters, even if the choice was initially detrimental to
the accuracy of the baseline model.

4.4.3. Comparing Quantisation and NEMOKD

The quantisation and NEMOKD results are shown in Figure 11. Both compression
approaches start from baseline models: ResNet32x4 and MobileNetV2 for NEMOKD,
and a 32 bit Multi-Layer Perceptron model for quantisation. Quantisation reduces the
arithmetic precision without changing a model’s architecture, i.e., the number of hidden
layers and number of neurons are unchanged. Training with the FINN framework is
quantisation-aware, with performance sweet spots for our benchmarks at around 2–4 bits.

In contrast, the NEMOKD framework changes the model’s architecture whilst leaving
arithmetic precision unchanged during training. After training, models are converted into
the OpenVINO IR format with 16-bit half precision for deployment on the VPU.

Typically, 30 image FPS throughput is considered real-time computer vision perfor-
mance [42]. Quantisation and the NEMOKD framework both achieve real-time image
processing: 590 FPS on the VPU and 373 k FPS on the FPGA.
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Figure 11. Varying Precision and Model Archiectures

The quantization and NEMOKD results are shown in Figure 11. Both compression
approaches start from baseline models: ResNet32x4 and MobileNetV2 for NEMOKD, and a
32 bit Multi-Layer Perceptron model for quantization. Quantization reduces the arithmetic
precision without changing a model’s architecture, i.e., the number of hidden layers and
number of neurons are unchanged. Training with the FINN framework is quantization-
aware, with performance sweet spots for our benchmarks at around 2–4 bits.

In contrast, the NEMOKD framework changes the model’s architecture whilst leaving
arithmetic precision unchanged during training. After training, models are converted into
the OpenVINO IR format with 16-bit half precision for deployment on the VPU.

Typically, 30 image FPS throughput is considered real-time computer vision perfor-
mance [43]. Quantization and the NEMOKD framework both achieve real-time image
processing: 590 FPS on the VPU and 373 k FPS on the FPGA.
5. Conclusions and Future Work
5.1. Conclusions

This paper explores two optimisation approaches for neural networks for programmable
hardware and a fixed AI processor: (1) quantization precision of fixed models, and (2)
evolving hyper-parameters of student models in conjunction with knowledge distillation.
There is a sweet spot of 3 bit quantization in the trade-off between latency, hardware
requirements, training time and accuracy. Parallelising hardware implementations of
neural networks increases FPS from 6 k to 373 k, a 62× speedup. Evolving student models
increases inference accuracy by up to 82% at the cost of 38% increased latency. The lowest
inference latencies were 1.7 ms for the FlexStudent model distilled from MobileNetV2,
1.4 ms for FlexStudent distilled from Resnet32x4, and 2 ms for Resnet8x4 distilled from
Resnet32x4. This is a throughput of between 100 and 590 FPS.

5.2. Future Work
Larger datasets and models

Our experiments use four datasets: MNIST and FASHION-MNIST for quantization,
and CIFAR10 and CIFAR100 for NEMOKD. The quantization experiments are based on a
five layer fully-connected network and the NEMOKD experiments use two student models.
More work is required to scale accuracy-preserving compression methods to real world
computer vision applications e.g., from 28× 28 MNIST and FASHION-MNIST images, and
32× 32 CIFAR10 and CIFAR100 images, to much higher dimensions such as 400× 150 road
lane detection images for autonomous driving [44]. Scaling compressing experiments to (1)
deeper models with tens/hundreds of hidden layers, and (2) datasets with thousands of
classes e.g., ImageNet, would be an intermediate step in that direction.

Figure 11. Varying precision and model architectures.

5. Conclusions and Future Work
5.1. Conclusions

This paper explores two optimisation approaches for neural networks for programmable
hardware and a fixed AI processor: (1) quantisation precision of fixed models, and (2)
evolving hyper-parameters of student models in conjunction with knowledge distillation.
There is a sweet spot of 3 bit quantisation in the trade-off between latency, hardware
requirements, training time and accuracy. Parallelising hardware implementations of
neural networks increases FPS from 6 k to 373 k, a 62× speedup. Evolving student models
increases inference accuracy by up to 82% at the cost of 38% increased latency. The lowest
inference latencies were 1.7 ms for the FlexStudent model distilled from MobileNetV2,
1.4 ms for FlexStudent distilled from Resnet32x4, and 2 ms for Resnet8x4 distilled from
Resnet32x4. This is a throughput of between 100 and 590 FPS.

5.2. Future Work
5.2.1. Larger Datasets and Models

Our experiments use four datasets: MNIST and FASHION-MNIST for quantisation,
and CIFAR10 and CIFAR100 for NEMOKD. The quantisation experiments are based on a
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five layer fully-connected network and the NEMOKD experiments use two student models.
More work is required to scale accuracy-preserving compression methods to real world
computer vision applications e.g., from 28× 28 MNIST and FASHION-MNIST images, and
32× 32 CIFAR10 and CIFAR100 images, to much higher dimensions such as 400× 150 road
lane detection images for autonomous driving [43]. Scaling compressing experiments to (1)
deeper models with tens/hundreds of hidden layers, and (2) datasets with thousands of
classes e.g., ImageNet, would be an intermediate step in that direction.

5.2.2. Profile Guided Automating Compression

Our quantisation benchmarks were exhaustive in the design space of 1–8 bits for
activation functions and weight values. The quantisation was homogeneous across the
entire network each time, i.e., each quantisation configuration applied to all parameters.
Combining layer-specific dataflow optimisation and layer-specific quantisation allows
models to fit entirely in on-chip BRAM, thereby removing off-chip memory accesses which
improves throughput performance [44]. In [45], mixed precision quantisation scheme
applies layer-wise priority in inverse order of their layer depth, based on findings that
binarising different layers has a widely-varied effect on accuracy loss. FINN supports
per-layer activation function and weights precision, as well as layer-by-layer clock cycle
profiling and accuracy testing. This opens up the opportunity for automating profile guided
layer-by-layer quantisation methodologies in simulation i.e., without having to run models
on hardware, to find the optimal trade-off between throughput and accuracy for each
combination of model and dataset.

When using evolutionary algorithms with knowledge distillation for larger datasets
and models, enabling more parameters to be the subject of mutation throughout the
evolutionary process could prove beneficial in automating search for optimal compressed
models. Recent teacher-student methods [35] outperform knowledge distillation in a wide
range of problems. Designing a flexible student model that accommodates both evolution
and more complex distillation methods would be considerably more challenging, but
given the positive results we report for NEMOKD we believe this would be important
future work.

5.2.3. Performance Portability of Compressed Models

The two compression methods in this paper were tested on one hardware platform
each. Our NEMOKD approach is hardware-aware, since the multi-objective optimisation
phase is measured on the Intel Movidius VPU device. Evolving the same initial model
with the goal of minimising latency and accuracy loss may produce quite different models
for different devices due to different memory latencies, cache size and the number of
parallel processing elements on each device. For quantisation, the amount of on-chip
BRAM memory ranges from 0.5 to 8 MB for different FPGA devices, meaning aggressive
quantisation and binarisation is needed for low-end devices, necessitating auto-tuning of
model precision to be device specific.

5.2.4. Combining Knowledge Distillation with Quantisation

Previous work shows that combining compression methods can achieve superior
performance compared with using them in isolation, e.g., combining pruning and knowl-
edge distillation [46]. The approach in [47] shows that distilling knowledge to shallower
quantised architectures can achieve accuracy comparable with state-of-the-art full-precision
models. There are other compression methods such as weight sharing [48] to consider
for hybrid compression. A complete study of neural network compression approaches is
in [21].

More work is required to evaluate these hybrid neural network compression tech-
niques at the scale of state-of-the-art real world problems. Not only may hybrid methods
achieve superior throughput performance and energy efficiency, reducing precision and
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removing unimportant redundancy at scale may make verification of large real-world deep
learning models possible.
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