N

N

Secure distribution of Factor Analysis of Mixed Data
(FAMD) and its application to personalized medicine of
transplanted patients
Sirine Sayadi, Estelle Geffard, Mario Stidholt, Nicolas Vince, Pierre-Antoine

Gourraud

» To cite this version:

Sirine Sayadi, Estelle Geffard, Mario Stiidholt, Nicolas Vince, Pierre-Antoine Gourraud. Secure dis-
tribution of Factor Analysis of Mixed Data (FAMD) and its application to personalized medicine of
transplanted patients. AINA 2021: 35th International Conference on Advanced Information Network-
ing and Applications, May 2021, Toronto, Canada. 10.1007/978-3-030-75100-5_44 . hal-03141653

HAL Id: hal-03141653
https://hal.science/hal-03141653

Submitted on 5 May 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03141653
https://hal.archives-ouvertes.fr

®

Check for
updates

Secure Distribution of Factor Analysis of Mixed
Data (FAMD) and Its Application
to Personalized Medicine of Transplanted
Patients

Sirine Sayadil’z(g), Estelle Geffard?, Mario Siidholt!, Nicolas Vince?,
and Pierre-Antoine Gourraud?

I STACK Team, IMT Atlantique, Inria, LS2N, Nantes, France
{Sirine.Sayadi,Mario.Sudholt}@imt-atlantique.fr
2 University of Nantes, Nantes University Hospital, INSERM, Research Center in
Transplantation and Immunology, UMR 1064, ATIP-Avenir, Nantes, France
Estelle.Geffard@etu.univ-nantes.fr,
{Nicolas.Vince,Pierre-Antoine.Gourraud}@univ-nantes.fr

Abstract. Factor analysis of mixed data (FAMD) is an important statistical tech-
nique that not only enables the visualization of large data but also helps to select
subgroups of relevant information for a given patient. While such analyses are
well-known in the medical domain, they have to satisfy new data governance
constraints if reference data is distributed, notably in the context of large consor-
tia developing the coming generation of personalised medicine analyses.

In this paper we motivate the use of distributed implementations for FAMD
analyses in the context of the development of a personalised medicine application
called KITAPP. We present a new distribution method for FAMD and evaluate its
implementation in a multi-site setting based on real data. Finally we study how
individual reference data is used to substantiate decision making, while enforcing
a high level of usage control and data privacy for patients.

1 Introduction

Big data analysis techniques are increasingly popular to extract new information from
massive amounts of data to improve decision making, notably in the medical sector.
A major challenge for clinicians consists in safely making correct treatment decisions
based on ever growing amounts of patient data. This problem calls for new analysis
techniques and algorithms, in particular, for precision medicine.

Precision Medicine, that is using genetic or molecular profiling for optimizing care
of small patient groups, will probably become the standard of care in the next decades.
It represents a deep revolution in health care also because not only patients will be cov-
ered but also healthy individuals. For this (r)evolution of medicine to become reality,
it is necessary to deliver the evidence of the efficiency and cost-effectiveness of preci-
sion medicine. This, in turn, requires decisions concerning patients to be substantiated
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by an analysis of large-scale reference data that is relevant for their personal situation
compared to others [2].

Dimension reduction is a major technique for transforming large multi-dimensional
data spaces into a lower dimensional subspaces. This is while preserving significant
characteristics of the original data. Among dimension reduction methods, the most
common method is Principal Component Analysis (PCA) [3], which enables dimen-
sion reduction for quantitative data variables. Other methods are Factor Analysis of
Mixed Data (FAMD) [5], which performs dimension reduction for mixed (quantitative
and qualitative) data variables, and dictionary learning (DL) [4] one of the most power-
ful methods of extracting features from data.

FAMD analysis provides simplified representations of multi-dimensional data
spaces in the form of a point cloud within a vector subspace of principal components.
If two points are close to each other in this cloud, a strong global similarity exists
between them with respect to the selected principal components. In the biomedical field,
this kind of analysis is frequently used to present patients groups in a simplified and
visual way for a large range of complex clinical data encompassing quantitative data
(for example obtained from biological exams) and qualitative data (for example gen-
der information). The result are actionable representations of each patient’s individual
characteristics compared to those of others.

In the context of a French public-private partnership KTD-innov and a H2020 EU
project EU-train, FAMD has been used for dimension reduction as part of the clinical
decision support system KITAPP (the kidney transplant application) [6]. This precision
medicine web-application computes predictive scores and represents distributions of
patients’ variables in a subgroup of reference patients after kidney transplantation. The
application is conceived to relay the intuition and experience of clinicians by means
of on-demand computations and graphical representations. One of KITAPP’s key func-
tionalities consists in the “contextualization” of patients relative of a population of ref-
erence (POR). To this end, it first uses FAMD for dimension reduction, then applies a
percentile statistical modelling [21] algorithm, and visualizes the relations of patients
to the POR.

Medical studies often involve large national or international collaborations (such as
our KTD-innov and EU-Train projects). Simple centralization schemes for the place-
ment of data and computations are frequently not applicable in this context because data
and computations may not be shared due to legal reasons, security/privacy concerns
and performance issues). To deploy this kind of medical services in larger contexts dis-
tributed systems and algorithms for precision medicine have to be provided. One of the
main lines of research around the KTD-innov and EU-TRAIN projects is the imple-
mentation of a reference database integrated into a distributed computing infrastructure
allowing a secure access to data while respecting the European GPDR data protection
regulation [12]. However, very few distributed algorithms have been developed for and
applied to the domain of precision medicine.

Data sharing and analysis placement are generally difficult due to governance, reg-
ulatory, scientific and technical reasons. Analyses are often only possible “on premise.”
Furthermore, researchers and institutions may be averse to lose control over both data
usage. In addition, huge volumes of data are intrinsically difficult to share or transfer,
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notably because of cost of the use of computational, storage and network resources.

On the other hand distributed architectures enable more flexible data governance
strategies and analysis processes by freeing them from centralization constraints [9].
Decentralized databases enable performing local calculations on patient data, without
any individual data circulating outside the clinical centers generating the data. To this
end, one may strive for distributed statistical calculations. Fully-distributed analyses
have been proposed, see Sect. 2, for contextualizing the state of a patient relative to
POR data stored in a distributed database. Such algorithms have to meet requirements
of scalability, security and confidentiality [10], as well as availability properties and
right to privacy properties [11]. These criteria are difficult to satisfy, however, because
the statistical significance and accuracy of analyses often directly depend on the number
of cases or individuals included in the database.

A solution to these problems can be based on harnessing distributed analyses that
manipulate sensitive data on the premises of their respective owners and harness dis-
tributed computations if non sensitive, aggregated, summarized or anonymized data is
involved.

In this paper, we present two main contributions:

— We motivate and define requirements for distributed algorithms for dimension reduc-
tion in the context of the KITAPP project.

— We present a novel distributed FAMD algorithm for dimension reduction in the pres-
ence of sensitive data in precision medicine and apply it to a contextualization prob-
lem.

The rest of this article is organized as follows. Section?2 presents related works.
Section 3 presents the kidney transplantation application (KITAPP) and its use of FAMD
dimension reduction. Section 4 presents our distributed algorithm FAMD and a corre-
sponding implementation. Section 5 provides experimental results, notably concerning
privacy requirements, and a performance evaluation. Finally, Sect. 6 summarizes our
findings and proposes some future work.

2 Related Work

Parallel versions of PCA dimension reduction algorithms have already been proposed.
Liang et al. [14] propose a client-server system and send singular vectors and singu-
lar values UXV from the client to the server. Feldman et al. [15] have shown how to
compute PCAs by sending smaller matrices UZX instead of sending all matrices of a sin-
gular value decomposition, thus improving on the communication cost. Wu et al. [16]
have introduced an algorithm that improves on the storage and data processing require-
ments and harnesses Cloud computing for PCA dimension reduction. These proposals
send matrices of synthesized data of the original data and not real data. This is very
interesting for biomedical analyses in order to ensure privacy of patient data. Imtiaz
et al. [17] have improved Feldman et al.s’ proposal by adding privacy guarantees using
differential privacy.
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To the best of our knowledge, no distributed FAMD algorithm has already been
proposed. In this paper, we propose a distributed FAMD on the basis of a distributed
PCA algorithm. Our algorithm is structured into two parts (similar to Pages [5]):

1. Transform qualitative data into quantitative one using complete disjunctive
tables [13], thus transforming the original FAMD dimension reduction problem into
a PCA one.

2. Perform the dimension reduction of the distributed PCA based on Feldman et al. s’
proposal [15].

3 The Kidney Transplantation Application (KITAPP)

Chronic kidney failure affects approximately 10% of the world population and can pro-
gressively lead to end-stage kidney disease requiring replacement therapy (dialysis or
transplantation). Kidney transplantation is the best treatment for end-stage kidney dis-
ease [19].

3.1 KITAPP Overview

Data from approximately 1500 renal transplantation, including clinical and immuno-
logical items, were collected since 2008 as part of a French national project.

KITAPP enables personalized contextualization algorithm to be harnessed to com-
pare data trajectories of a given patient (POI) to a sub-population with similar charac-
teristics (POR) selected by filters or distance measures. The information relative to a
graft is selected from similar cases at the time of the graft. With the help of clinicians
and knowledge of the existing body of research, we defined a set of variables to select
the sub-population of reference.

We propose three population contextualization algorithms: compare a given
patient’s data to PORs with

1. similar characteristics selected by filters or approaches based on statistical analysis;
2. the nearest neighbor method or
3. the cluster method.

With our filter approach (1), the POR is defined according to selected filters made avail-
able to the clinician, such as age, gender and Body Mass Index (BMI). Methods (2) and
(3) are based on the results of an FAMD. Following this analysis, we can then select
a POR by close neighbor method (2): by selecting the N individuals most similar to a
POI or we can select a POR by clustering (3): by selecting the individuals in the same
cluster as our POL

The visualization of contextualized information is done by comparing a POI’s bio-
logical data (creatinemia) and its evolution over time post-transplantation (clinical vis-
its) to a POR that is represented by their median and percentile values.
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3.2 Motivation for Distributed Analyses for KITAPP

We intend to harness the KITAPP application as part of large-scale cooperations with
many (national and international) partners. To meet the challenge of harnessing medical
data while keeping sensitive data on premise or ensure strong data protection if data
is moved, computations are often performed today over distributed databases that are
linked to a computation integrator that enables a center to interact with and access
some data from remote sites. Each clinical center collects, stores and controls their own
patients’ data. The founding principle of the architecture is that no data of individuals
circulates outside the centers. However, this sharing paradigm is very restrictive and
inhibits a large range of potential analyses to be performed - either because sensitive
data cannot be appropriately protected or the analysis cannot be performed sufficiently
efficient.

The need for local storage and distribution of reference data is motivated by the
actionable value and publication value. It provides the possibility of controlling locally
who has accessed to data, what are the usages of the local data and how to limit then
should it be needed. The use of distributed infrastructure is a central element of multi-
stakeholders data governance.

We are therefore working on more general distributed analysis architectures and
implementations that ease collaboration as part of multi-centric research projects, where
each center can control and account for their own patients’ data usage even if located
remotely. Contextualization then has to be performed with respect to large-scale dis-
tributed medical databases that are maintained at different sites.

4 Distributed FAMD

In the following we first provide an overview over the architecture and properties of our
algorithm before defining it in detail.ce

4.1 Overall Architecture and Properties

Factor analysis of mixed data (FAMD) [5] is a method of dimension reduction of vari-
ables including mixed quantitative and qualitative data into fewer components for infor-
mation synthesis reasons. This analysis can defined, for instance using matrix opera-
tions, as follows:

FAMD = PCA+ MCA (1)

where PCA is a principal component analysis dimension reduction for quantitative vari-
ables and MCA is a multiple correspondence analysis dimension reduction for qualita-
tive variables.

Overall, our algorithm works as follows. As a first step, we transform the qualitative
variables into quantitative ones using complete disjunctive coding (CDC) [20] that is
performed locally on each site. In a second step we perform dimension reduction by
means of a distributed PCA in order to obtain a secure and distributed FAMD algorithm.
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Fig. 1. Collaboration architecture

We harness the distributed cooperation architecture shown in Fig. 1. Data transfor-
mation and dimension reduction analysis are performed locally at multiple sites sepa-
rately. The coordination between the sites is done by an aggregator site, which receives
synthetic data and performs the overall dimension reduction. Imtiaz et al. [17] have pro-
posed a secure and distributed algorithm for PCA dimension reduction. This algorithm
uses differential privacy as a security technique and synthetic data for communication
between nodes.

The resulting algorithm has two important properties :

e Low communication cost: The communication cost of parallel and distributed
FAMD algorithms essentially depends on the size of the matrices transferred
between sites. Many dimension reduction algorithms require matrices of size D x D
to be sent, where D is the number of data items to be analyzed (that is, transplanta-
tion data in our case). In contrast, Imtiaz ef al.” [17] algorithm requires matrices to
be sent of type D x R where R is the number of variables and (typically) R < D.

e Security/privacy awareness: Our algorithm satisfies two interesting characteristics:
(1) differential privacy is used for data protection and (2) communication between
the sites and the aggregator involves only synthesized data Ps and not the original
data, which minimizes possibilities of data theft and also supports data protection.

We harness the same principle and properties while providing two new contribu-
tions: (1) a transformation of qualitative variables into quantitative variables to obtain
a secure and distributed algorithm FAMD dimension reduction and (2) a scalable dis-
tributed implementation and evaluated it by analyzing real-world biomedical data on a
realistic grid environment.

4.2 Algorithm Definition

Algorithm 1 presents our secure and distributed FAMD algorithm. Lines 1-16 imple-
ment the first step, the transformation of a full FAMD problem into a (qualitative)
PCA problem. Each site begins by calculating, for each quantitative variable, the cor-
responding mean L, standard deviation oy and Centering and Reduction Function
Xy = Gik(x,-’k — W). For each qualitative variable, Complete Disjunctive Coding using
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Algorithm 1: Distributed FAMD Algorithm

Input : Data matrix X; € RP*M for s € [S] of N elements and P variables, with C
quantitative variables and M qualitative variables; €, §: privacy parameters; j :
reduced dimension;

Output: V;: Matrix of eigenvectors on top j

1 foreach site s € S do
2 foreach element i € N do
3 foreach element k € C do
4 Compute the mean of the variable pi;
5 Compute the standard deviation of the variable oy;
6 Compute the Centering and Reduction Function X; ; = aik (X g — Mg)s
7 return X; ;;
8 end
9 foreach element k € M do
10 Apply the Complete Disjunctive Coding using (ade4 package on R);
11 Compute the effective of the modality Ny;
12 Compute the proportion p; = Ny /N;
13 Compute the Indicator Weighting Function X; ; = %;
14 return X; ;;
15 end
16 end
17 Compute A; = N%XSXXT;
18 Generate D x D symmetric Matrix E where E; ; : i € [D], j < i drawn i.i.d. from
N(O,Aéa) where Ag 5 = ﬁ 210g(%), Eij=Ej;;
19 Compute Ay =A;+E;
20 | Perform SVD(A,) =UXUT;
21 ComputePszUZI]/z;
22 Send P; to the aggregator;

23 end

24 Compute A=135_ PPT;
25 Perform SVD(A) = VAVT;
26 Send V; to all sites ;

27 return V;;

the ade4 package from the R language is then applied in order to transform the qualita-
tive variables into a quantitative variable, followed by the computation of the modalities
Ny and proportions py = Ni/N to compute the indicator weighting function X; 4.

The second step, the dimension reduction proper, is implemented on lines 17-23.
Each site calculates the (second moment) matrix Ay = NLSXSXST. The application of the
scheme of differential privacy (following Dwork ef al.” proposal [18]) is performed by
generating the noise matrix E of size D x D and the estimated differential privacy matrix
As; = A;+ E on line 19. Each site then performs the Singular Value Decomposition
SVD(Ay)) of matrix A, to compute the matrix (P, = UZ'/?) and broadcast it to the
aggregator.
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At the aggregator site, the server computes, see lines 24-26, the matrix A =
%2?:1 PP of all sites. It performs next the global Singular Value Decomposition
SVD(A) =VAVT,

5 Experimentation

In this section we report on experiments involving analyses over real medical data that
we have carried out on a real heterogeneous large-scale grid infrastructure. We report
on our setup, and evaluate our implementation w.r.t. three criteria.

5.1 Setup

Our experiments have been carried out on renal transplantation data available in the
European database Divat [22]. In order to compare with results from the KiTAPP
project, we have applied our distributed algorithm to its analyses on 11,163 transplanta-
tion data. We started by divided the data file before transfer and analysis on the different
sites.

We have implemented our distributed algorithm and executed it in a grid-based envi-
ronment featuring different distributed architectures, ranging from placing all clients on
different (geo-distributed) machines to placing them as one cluster on only one machine.
This distributed environment constitutes a realistic architecture of a medical collabora-
tion involving the research and clinical centers, the partners of the KITAPP project.
We have implemented our distributed algorithm using the Python and R programming
language using 860 lines of code. The whole distributed system can be deployed and
executed on an arbitrary number of sites of the Grid’5000 infrastructure using a small
script of only eight commands.

The Grid’5000 platform is a platform, built from eight clusters in two European
countries for research in the field of large-scale distributed systems and high perfor-
mance computing. For our experiment, we have reserved a machine as a server (aggre-
gator) executing a Python program to manage the analysis, client interactions and gen-
eration of the final result. To create a number of client sites we have reserved machines
distributed over five different sites in France.

5.2 Results and Performance Evaluation

The Ki1TAPP-motivated FAMD dimension reduction analysis we employed as a test
case has been executed on the basis of 11,163 transplantation operations characterized
using 27 qualitative and quantitative variables distributed over five sites. We have set
the dimension reduction parameter j on the server to two. Figure 2 shows the resulting
two-dimensional subspace after application of our distributed FAMD analysis.

In order to distribute the POR selection for POI contextualization between sites, we
have applied the K-means unsupervised clustering technique to the result of the dis-
tributed FAMD dimension reduction analysis. FAMD and clustering enables grouping
of patient data according to their similarity and proximity relative to principal compo-
nents. Figure 3 presents the result of k-means clustering, three independent data clusters
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Fig. 2. Distributed FAMD for 5 sites. Fig. 3. Clusterning of distributed FAMD.

that correspond exactly to the result of the (centralized) sequential algorithm that is used
as part of the KITAPP project.

Each cluster is characterized by specific variables combinations. The green cluster
corresponds to living donors. The yellow cluster corresponds to deceased donors and
the purple one to deceased donors with expanded criteria, such as aged we > 50 years or
subject to hypertension or creatinine levels > 133 umol/L. Note that we always obtain
the same clusters independent from the number of sites that participate in the distributed
FAMD analysis if we operate it with the same data, which shows a strong scalability
potential of our proposed algorithm.

In the following we evaluate three properties of our implementation: (i) the quality
of the reduction technique in the presence of noise introduced by the differential pri-
vacy technique using a notion of captured energy, (2) execution time and (3) commu-
nication cost. For evaluation purposes we consider three architectures: our distributed
FAMD reduction technique (denoted“DPdis” below), a more centralized version where
W where all the second moment matrix A of each clients are aggregated at the server
(denoted “fulldis”), and a fully-centralized FAMD version (denoted “pooled”).

Captured Energy/Utility. Following Imtiaz et al. the captured energy g is used to
evaluate the quality of V; principal directions based on the difference in information
utility between the case where all data is centralized gpooicq, all second moment matrix
Ay of each site are distributed gg,4;; and secure distributed proposed FAMD algorithm
qppais by data size and number of sites.

The captured energy is defined as the matrix multiplication g = tr(V;(A)TAV;(A)
measuring the amount of optimal eigenvalues captured in the subspace FAMD. For any
other sub-optimal sub-spaces, the value would be less than the optimal value.

— Energy per site. We have varied the number of S sites that participate in this analysis
by keeping the total number of samples N = 11163 (i.e. we decreased the size N;
of each site). Figure 4 shows a deterioration in the performance of g4is and gppais
for an increasing number of sites. This decrease in performance is explained by the
decrease in the number of elements per site. In addition, the presence of high vari-
ance noise degrades the number of eigen-directions stronger than the noise which
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are detected by the PCA instead of capturing all the j directions which present the
data.

— Energy by data size. Figure 5 shows an increase in performance of captured energy
q as a function of the elements number per site. ggqis and gppgis have almost the
same performance in captured energy for the two variation of sites number and data
size, qpootea aAlways keeps better performance.
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Fig.4. Captured energy Fig. 5. Captured energy (q) Fig. 6. Execution time by sites
(q) by sites number. by data size. number.

Execution Time. We have varied the number of S sites by keeping the global number
of samples N = 11163 (i.e. we decreased the size Ny of each site) and we have measured
the execution time. Figure 6 shows that execution time decreases with increasing sites
number. Our proposed approach dpdis always keeps the least execution time. This is
due to the Lower communication cost explained in 4.1 section.

Communication Cost/Data Sharing: The lower cost of communication of our pro-
posed algorithm introduced in the previous section allows for a minimum sharing of
data (matrices Ps are shared and not Ay). In the case of our experiments with distri-
bution on 5 sites with global samples equal to 11,163 and 27 features, the quantity of
data shared by all clients is equal to 11,163 x 27 = 301.401 values instead of sending
sqr(11,163) = 124.612.569 values.

6 Conclusion and Future Work

FAMD dimension reduction is an important tool for transforming complex data into
lower-dimensional sub-spaces while preserving important characteristics of the orig-
inal data. This technique is generally useful to reduce complexity and support deci-
sion making. In this paper, we have motivated the use of dimension reduction for geo-
distributed biomedical collaborations that require distributed models and implementa-
tions of biomedical algorithms with distributed implementation. Its evaluation on a real
geo-distributed grid infrastructure using real data has valided its efficiency, scalability,
privacy protection properties.

As future work, we will focus on extensions of federated learning as a more general
method for the definition of secure and distributed biomedical analyses.
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