Secure distribution of Factor Analysis of Mixed Data (FAMD) and its application to personalized medicine of transplanted patients - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Secure distribution of Factor Analysis of Mixed Data (FAMD) and its application to personalized medicine of transplanted patients

Résumé

Factor analysis of mixed data (FAMD) is an important statistical technique that not only enables the visualization of large data but also helps to select subgroups of relevant information for a given patient. While such analyses are well- known in the medical domain, they have to satisfy new data governance constraints if reference data is distributed, notably in the context of large consortia developing the coming generation of personalised medicine analyses.In this paper we motivate the use of distributed implementations for FAMD analyses in the context of the development of a personalised medicine application called KITAPP. We present a new distribution method for FAMD and evaluate its imple- mentation in a multi-site setting based on real data. Finally we study how individual reference data is used to substantiate decision making, while enforcing a high level of usage control and data privacy for patients.
Fichier principal
Vignette du fichier
Sayadi2021_Chapter_SecureDistributionOfFactorAnal.pdf (788.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03141653 , version 1 (05-05-2021)

Identifiants

Citer

Sirine Sayadi, Estelle Geffard, Mario Südholt, Nicolas Vince, Pierre-Antoine Gourraud. Secure distribution of Factor Analysis of Mixed Data (FAMD) and its application to personalized medicine of transplanted patients. AINA 2021: 35th International Conference on Advanced Information Networking and Applications, May 2021, Toronto, Canada. ⟨10.1007/978-3-030-75100-5_44⟩. ⟨hal-03141653⟩
388 Consultations
1232 Téléchargements

Altmetric

Partager

More