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ARTICLE

Bridging scales in disordered porous media by
mapping molecular dynamics onto intermittent
Brownian motion
Colin Bousige 1, Pierre Levitz 2✉ & Benoit Coasne 3✉

Owing to their complex morphology and surface, disordered nanoporous media possess a

rich diffusion landscape leading to specific transport phenomena. The unique diffusion

mechanisms in such solids stem from restricted pore relocation and ill-defined surface

boundaries. While diffusion fundamentals in simple geometries are well-established, fluids in

complex materials challenge existing frameworks. Here, we invoke the intermittent surface/

pore diffusion formalism to map molecular dynamics onto random walk in disordered media.

Our hierarchical strategy allows bridging microscopic/mesoscopic dynamics with parameters

obtained from simple laws. The residence and relocation times – tA, tB – are shown to derive

from pore size d and temperature-rescaled surface interaction ε/kBT. tA obeys a transition

state theory with a barrier ~ε/kBT and a prefactor ~10−12 s corrected for pore diameter d. tB
scales with d which is rationalized through a cutoff in the relocation first passage distribution.

This approach provides a formalism to predict any fluid diffusion in complex media using

parameters available to simple experiments.
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F luid diffusion in porous media involves complex phenomena
arising from the restricted diffusivity imposed by the host
porous geometry and the fluid/solid interaction1–4. While the

medium morphology and topology impact the fluid dynamics at
almost any pore lengthscale d, the effect of fluid/solid forces roughly
scales with the porous surface to volume ratio S/V ~ d−1 5,6. This
leads to rich dynamics in nanoporous media (for which d is of the
order of the intermolecular force range ζ) with intriguing aspects
such as anomalous single-file diffusion, intermittent Brownian
dynamics, stop-and-go diffusion with an underlying surface resi-
dence time, etc.7.

For simple pore morphologies (e.g., planar, cylindrical), a
unifying picture has emerged with well-identified dependence on
temperature T, fluid density ρ, mean free path λ, pore size d, fluid
molecule size σ, etc.5,8,9 Single-file diffusion is restricted to d ~ σ
while the diffusion mechanism for d≳ σ depends on ρ and λ;
Knudsen diffusion for fluids with λ≫ d and molecular diffusion
for λ≲ d. For materials with large S/V, diffusion involves inter-
mittent dynamics with subsequent surface adsorption and in-pore
relocation steps10,11. When relocation is negligible (i.e. at low T
and/or ρ where the pore center is depleted in fluid), diffusion is
governed by surface diffusion described using the Reed–Ehrlich
model12,13. In contrast, when relocation contributes to the overall
dynamics (non-negligible pore center density), the intermittent
Brownian motion is a rigorous formalism to upscale the local
microscopic dynamics to any upper scale14. Diffusion in dis-
ordered porous media is far more complex as coupled geometrical
and surface interaction effects lead to novel phenomena15–17. The
fluid diffusion in such heterogeneous solids involves a non-trivial
diffusivity landscape as surface diffusion/in-pore relocation
boundaries are ill-defined. Diffusion in such rough landscapes is
even more puzzling for nanoporous media as (1) the underlying
propagators – i.e., the probability that a molecule moves by a
quantity r in a time t – are not necessarily Fickian18, and (2) non-
vanishing surface interactions in the pore leads to self-diffusivity
Ds different from the bulk even far from the surface19.

Due to the continuum hypothesis breakdown at the
nanoscale1,16, statistical mechanics is the appropriate formalism
for complex diffusion in disordered media7. In particular, gen-
eralization of molecular intermittence to heterogeneous media
using the Fokker-Planck or path integral formalisms allows
linking microscopic to macroscopic dynamics20. However, while
these approaches rely on available material parameters (e.g.
porosity ϕ, S/V ratio, structure factor S(q)), fluid dynamics con-
cepts such as surface residence, in-pore relocation, and their time
constants are often used as guessed inputs (typically, relocation/
surface diffusion are assumed to be Fickian with diffusivities
equal or orders of magnitude slower than the bulk14). While this
qualitatively captures the complex dynamics at play, there is a
strong need to establish physical laws from simple parameters
such as pore size d and fluid/solid interaction strength ε. In this
context, hierarchical simulations13,21,22 allow upscaling the
microscopic dynamics assessed from atom-scale simulations into
kinetic Monte Carlo simulations; a precalculated free energy map
ΔF(r) is used in a random walk approach with corrected hoping
rates k � exp½�ΔFðrÞ=kBT�23,24. However, extension to dis-
ordered solids is almost intractable because of their large repre-
sentative elementary volume. Moreover, despite their robustness,
such extensive simulations do not provide simple laws based on d,
T, ε, ϕ, etc. because they are performed for a peculiar system
under some given thermodynamic and dynamical conditions.

Here, we address the problem of fluid diffusion in ultra-
confining disordered nanoporous materials by reporting robust
physical laws established in the framework of surface/pore dif-
fusion intermittence. By mapping molecular dynamics (MD)
simulations onto mesoscopic random walk (RW) calculations

accounting for surface residence, our hierarchical approach cap-
tures the fluid diffusion in disordered nanoporous media and
their underlying complex diffusivity landscapes. Moreover, by
varying the matrix porosity ϕ and pore size d but also the fluid/
solid interaction strength ε, the proposed approach provides a
means to quantitatively bridge the microscopic and mesoscopic
dynamics in such complex environments using simple para-
meters. Both the typical surface residence and relocation times –
tA, tB – are found to derive from physical laws involving the pore
size d and the fluid/solid interaction strength normalized to the
thermal energy ε/kBT. In more detail, tA is shown to obey a
transition state theory tA � t0A expð�ΔF=kBTÞ where ΔF ~ ε is the
free energy barrier that must be overcome to escape from the
interaction field generated by the solid and 1=t0A is the char-
acteristic escape attempt frequency. t0A is found to be of the order
of ~ 10−12 s (a commonly accepted value) with a correction that
accounts for pore diameter d/ξ (with ξ ~ σ, i.e. the molecule size).
As for the relocation time tB, it is shown to scale with d as
quantitatively predicted by introducing a time cutoff tc ~ d2/D0 in
the relocation first passage probability distribution.

Results
Our coarse grain model is developed in the spirit of the con-
tinuous time random walk (CTRW) as first proposed by Montroll
and Weiss25 and later extended by Shlesinger and Klafter26 to the
Levy walk model and other variants. The intermittent dynamics
proposed in our approach involves a waiting time distribution at
the pore surface coupled to a bridge statistics taking into account
the first passage probability to connect one point at the interface
to another through a random walk in the accessible pore network.
The latter statistics couples distance and time as in the Levy walk
(coupled memory) which also pertains to the Knudsen regime27.
In the present approach, we will mainly consider the time dis-
tribution of these bridge statistics which are mapped onto atom-
scale dynamics simulations to establish a bridge between the
microscopic and mesoscopic scales. While the mapping proposed
in this paper is derived for a simple fluid confined in prototypical
models of highly disordered materials, we believe it can be
extended to a much broader class of fluid/solid couples. However,
such generalization must be performed with caution as there are a
number of limitations which can lead to departure from the
simple intermittent Brownian motion at the heart of our
approach. Depending on the nature of the confined fluid and host
solid, different molecular interactions are at play which are either
short (e.g. dispersion, repulsion) or long (e.g. electrostatic,
polarization) ranged. While such molecular interactions often
lead to similar confined diffusivity mechanisms, they can induce
more complex behaviors that are not entirely captured by a
simple stop-and-go process. Moreover, for host solids with
spatially-extended pore correlations (e.g. fractal solids), additional
complexity and/or additional specific effects are expected.

Different topological porous media. Fluid diffusion in disordered
nanoporous media was investigated by considering a set of 13
heterogeneous carbon structures with different densities ρs, poros-
ities ϕ, and pore sizes d. These structures—referred to as CSx with x
the density ρs ranging from 0.5 to 1.4 g/cm3—were created using a
quenching procedure (see Methods for full details). Typically, using
a cubic box of length 100 Å containing ~ 25,000 to ~ 70,000 carbon
atoms depending on ρs, molecular dynamics in the NVT ensemble
was used with the reactive empirical bond order potential28 in
LAMMPS29 to allow for bond formation/breaking during a 5 ns
quench from 3000 K to 300 K. As an example, Fig. 1a shows the
sample CS0.70 filled with fluid molecules at their boiling point (as
described in the Methods section, the adsorbed fluid density was
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estimated using standard Monte Carlo simulations in the Grand
Canonical μVT ensemble). Figure 1b shows the porosity ϕ as a
function of ρs where ϕ is determined using a Monte Carlo algo-
rithm; by inserting N probe molecules at random positions inside
the simulation box containing the porous structure, the porosity can
be estimated as the ratio ϕ ~Nv/N (where Nv is the number of probe
molecules that do not overlap with any of the porous structure
atoms). For each structure, provided a large number Nv is con-
sidered, the pore size distribution f(r) can be assessed from the
diameter of the largest sphere containing each of the Nv points
(Supplementary Fig. 4)30,31. As expected, both the porosity ϕ and
the mean pore size d= ∫rf(r)dr decrease upon increasing ρs with
ϕ∈ [ ~ 0.1, ~ 0.5] and d varying from a few to ~15 Å.

Only structures with connected porosity were retained to
investigate multiscale diffusion as unconnected porous samples
necessarily yield zero self-diffusivities in the long time limit. For each
sample, as described in the Methods section, the connectivity of the
porous subspace accessible to a diffusing molecule was determined
using the retraction graph associated with the digitized pore network
(which conserves the topology at all scales). Such digitized binary
sets are used to compute the connection number32–34:

ct ¼ �ðα0 � α1Þ=α0 ð1Þ
where α0 and α1 are the number of vertexes (either isolated or
connected) and links, respectively. ct, which is a simple intensive
parameter related to the number of irreducible paths per vertex, is
invariant under any continuous pore network deformation. For
structures with no isolated vertexes, the number of vertexes is
smaller than the number of links, i.e., α0 < α1, so that ct > 0 with a
value that increases with pore network connectivity—in this case,
the average number of links around a connected vertex is given by
<Nc> ¼ 2ðct þ 1Þ. On the other hand, for poorly connected pore
networks, α0 > α1 so that ct < 0 with ct∈ [−1, 0]—in this case,
<Nc> ! 0 as ct→−1 so that the topological structure reduces to a
set of isolated vertexes. In the above picture, the crossover ct= 0 is
generally assumed to correspond to a percolation threshold 32,33.
Figure 1b shows that ct > 0 for ρs ≤ 1.0 g/cm3 as expected for a
connected pore network (although ct is lower than typical values for
very open networks ct ~ 0.5−0.732,33). On the other hand, ct < 0 for
ρs > 1.0 g/cm3, therefore indicating a long-range network disconnec-
tion for these dense porous structures.

Intermittent Brownian motion with underlying stop-and-go
diffusion. Diffusion in the disordered media with connected
porosity (ct > 0) was investigated using MD for a simple
Lennard–Jones (LJ) fluid at constant temperature and for varying
fluid/solid interaction strengths. For such subnanoporous mate-
rials with strongly disordered pore morphologies, provided the
number of adsorbed/confined molecules is low enough, the self-
diffusivity Ds is close to the collective diffusivity Dc as cross-terms
between fluid molecules are negligible (because fluid-solid inter-
actions largely prevail over fluid-fluid interactions)16. As a result,
due to the formal equivalence between permeance and collective
diffusivity, i.e. K=Dc/ρkBT ~Ds/ρkBT, the self-diffusivity also
provides key insights into transport mechanisms under flow
conditions as induced by pressure/chemical potential gradients.
The LJ fluid parameters (σ0= 3.81Å, ε0/kB= 148.1 K) were
chosen to match those for methane—a simple nearly spherical
probe. An isotropic molecular model—known as the united atom
model—was used to describe the methane molecule. Such a
simplified model was selected as it simply corresponds to a
Lennard–Jones potential that is representative of a broad class of
atomic and molecular liquids. Despite this simple fluid hypoth-
esis, we believe that our approach can be extended to more
complex fluids such as dipolar molecules. In particular, even if
complex molecular structures lead to richer surface thermo-
dynamics behavior with strong adsorption in specific sites and/or
relocation with large inherent activation energies, the present
approach remains relevant as such complexity is embedded—at
least in an effective fashion—into the mean relocation and resi-
dence times. For each disordered porous structure, different fluid/
solid strengths were considered: ε/kBT= n with n= 0.01, 0.1, 0.2,
0.3, 0.5, 0.8, and 1. Varying ε drastically affects the porosity seen
by the confined fluid since it also modifies the repulsive inter-
action contribution—thus inducing large changes in the effective
diffusivity of the confined fluid. To probe fluid dynamics at
constant porosity while scanning a broad range of ε, the fluid/
surface LJ potential was modified using a smoothing procedure
involving a sigmoid function to rescale the potential well-depth at
nearly constant repulsive contribution (see Methods for details).
The temperature was chosen equal to T= 450K ~ 3ε0/kB to ensure
that the Fickian regime is reached in all cases over the typical
simulation run length (20 ns).

Fig. 1 Prototypical disordered nanoporous structures. a Molecular configuration for methane in a disordered nanoporous carbon (here CS0.70, box length
100Å). The cyan spheres are methane molecules while the yellow surface represents the carbon porous network. b Mean pore diameter d (top), porosity
ϕ (middle), and connection number ct (bottom) as a function of structure density ρs of the digitized pore networks. The same color code applies throughout
the manuscript. The samples obtained at larger densities—shown as white/open circles—possess unconnected porous networks (ct < 0) so that no
diffusion is observed in the long time limit.
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Supplementary Fig. 6 shows the mean square displacement
<jrðtÞ � rð0Þj2> as a function of time t for methane confined in
the different disordered nanoporous materials (only data for
ε/kBT= 0.1 are shown for clarity). Typically, for the disordered
materials considered here, the Fickian regime is reached after a
few ns as each molecule diffuses over a length scale of the order of
the simulation box size L ~ 10 nm. While such convergence is
reached within typical timescales probed using molecular
dynamics for these disordered materials with connected porosity
(ct > 0), there are materials classes where the long-time limit
extends to much longer timescales. This includes solids with long-
range pore correlations such as in fractal media or strong
persistence length such as in one-dimensional pores. As shown in
the inset in Fig. 2a, for all systems, the self-diffusivity Ds – which
is inferred from the Fickian regime in the long time limit Ds ¼
lim t!1<jrðtÞ � rð0Þj2>=6t – is lower than the bulk self-
diffusivity D0

s . As a result, the tortuosity τMD ¼ D0
s =Ds – defined

as the ratio of the bulk to the confined self-diffusivities—is larger
than 1 as shown in Fig. 2a. As expected, upon increasing ε/kBT,
the average fluid/surface energy 〈Ufw〉 becomes more negative
(attractive) so that τMD increases due to the increased tortuosity
adsorption/residence contribution. Moreover, τMD increases upon
increasing the solid density ρs as more severe confinement leads
to smaller diffusivity (as shown in Fig. 1, the pore size d � ρ�x

s
with x ~ 1). The underlying microscopic diffusion mechanism in
such ultra-confining materials can be identified by computing the
self-correlation function Gs(r, t). In particular, in an isotropic
medium, 4πr2Gs(r, t)dr is the probability distribution that a
molecule moves by a distance r over a time t. As shown in Fig. 2b
(see black dashed line), upon averaging over all molecules and
time origins, the mean square displacement <jrðtÞ � rð0Þj2>
displays a smooth behavior

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<ΔrðtÞ2>

q
� ffiffi

t
p

from which a
confined self-diffusivity can be derived. Yet, Fig. 2b reveals that
4πr2Gs(r, t) displays a complex behavior characteristic of stop-
and-go processes where the molecules switch from one location
to another through jumps (the data shown here correspond to the
sample CS0.70 but the same data can be found in Supplementary
Fig. 8 for different samples and fluid/surface interaction
strengths). In more detail, the probability distribution exhibits
marked vertical stripes indicating that molecules tend to remain
within the same spatial domain over a given time. The distance
between two stripes, which roughly corresponds to the fluid
molecule size σ0, corresponds to the jump amplitude. The typical
residence time at a given position is given by the decay along the t
axis. Such stop-and-go diffusion was already reported by Sahimi
and coworkers35 in molecular dynamics of gas diffusion in a
carbon nanotube/polymer composite and, more recently, by
Kulasinski et al. for water diffusion in amorphous hydrophilic
systems36.

To shed more light into the complex diffusivity landscape in

such disordered porous media, a single trajectory RðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðtÞ � rð0ÞÞ2

q
is provided as an example in Fig. 2b together

with a visualization of the corresponding molecular trajectory in
Fig. 2c (to interpret these different space-time domains,
Supplementary Fig. 9 provides additional individual trajectories).
Such individual trajectories are typical but not necessarily fully
representative as they were chosen to identify well-defined steps.
However, the mechanisms discussed below are common to all
molecules and lead to the heterogeneous behavior observed in
Gs(r, t). Before going into details, we define here a cavity as a
portion of the pore network of size d. The first narrow stripe
corresponds to molecules located in a given site with displace-
ments over short distances r much smaller than the molecule

size σ0. Such motions are illustrated by the green portion of the
individual trajectory in Fig. 2b (in this specific example, the
molecule is adsorbed in the vicinity of the host surface as shown
in c). This analysis is confirmed by the fact that the typical
residence time associated with this dynamical sequence increases

Fig. 2 Complex stop-and-go fluid dynamics. a Tortuosity τMD ¼ D0
s =Ds as

a function of the average fluid/surface energy <Ufw>=kBT as assessed from

MD for methane in a disordered nanoporous carbon (same color code as
Fig. 1). The dashed lines are linear fits (note that the plot shows ln ðτMDÞ).
The self-diffusion coefficients Ds are obtained from the mean square
displacements shown in Supplementary Fig. 6. The inset shows the in-pore
diffusivity Dp

s as a function of mean pore size d for various fluid/surface
interaction strengths ε/kBT. The dashed lines are fits against Eq. (2).
The different parameters of this effective fit are shown in Supplementary
Fig. 7. The error bars correspond to the standard deviations around

lim t!1<jrðtÞ � rð0Þj2>=6t. b Contour plot showing the self-correlation
function 4πr2 × Gs(r, t) as a function of r and t for methane in a disordered
nanoporous carbon (here CS0.70 with ε/kBT= 0.5). The local color at a
given r, t position indicates 4πr2 × Gs(r, t) with the color scale shown on the
right. The black dashed lines denote the mean pore size d and mean

displacement averaged over all molecules
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<ΔrðtÞ2>

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<jrðtÞ � rð0Þj2>

p
.

The multicolor solid line shows a typical yet representative displacement R
(t) for a given molecule. Each color region (green, blue, orange, and red)
indicates a portion of the 150 ps trajectory shown in (c) (see detailed
description in the main text). For a more direct visualization, the
corresponding trajectory is shown in (c) with successive molecular
positions shown as spheres of the corresponding color. The carbon-carbon
bonds in the porous structure are shown as gray sticks.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21252-x

4 NATURE COMMUNICATIONS |         (2021) 12:1043 | https://doi.org/10.1038/s41467-021-21252-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with increasing the fluid/surface interaction strength ε (Supple-
mentary Fig. 8). The second narrow stripe centered at about r ~
4 Å( ~ σ0) corresponds to molecules jumping to a neighboring
site. As illustrated in the individual trajectory (blue portion), such
displacements correspond to molecules relocating from an
adsorbed site to another while remaining within the same cavity
(r < d). The third narrow stripe centered at about r≲ d
corresponds to confined diffusion where molecules explore both
the pore center and surface region but remain within the same
cavity (as illustrated with the orange portion of the individual
trajectory). Finally, upon further increasing the time, the
displacement becomes larger than the pore size – r > d – as the
molecule is transferred from a cavity to another (as illustrated in
the corresponding red portion of the individual trajectory shown
in c). As expected, at large times/distances, typically when r > d,
the probability distribution becomes more homogeneous as the
detailed structural footprint of the disordered host matrix
averages out into a single effective parameter corresponding to
the tortuosity. In particular, in the long time limit, the dynamics
reach a Fickian regime as the molecules diffuse over distances r
large enough compared to the pore size d.

Despite the intrinsic complexity of diffusion in such rough
energy landscapes, the local, i.e. in pore, self-diffusivity can be
derived formally using effective approaches19,37,38. By in-pore
diffusivity, we refer here to the short time range where molecules
remain within the same cavities while reaching a pseudo-Fickian
diffusion regime (in other words, such transport coefficients at
the pore scale do not include network effects such as tortuosity
but contain the fingerprint of the pore geometry/morphology). In
more detail, considering the mean-square displacements shown
in Supplementary Fig. 6, Dp

s can be assessed from the linear
regime observed in the short time scale where <jrðtdÞ �
rð0Þj2>≤ d2 (where td is the time required to displace molecules
over a distance equal to the pore size d). To further validate the
inferred value, it was checked that it is consistent with the in-pore
diffusivity estimated as ~ d2/6td. The simplest effective framework
consists of writing the effective pore-scale diffusivity Dp

s as an
average over the whole pore volume, Dp

s ¼ 1=N ´
R
ρðrÞDsðrÞdr

where ρ(r) and Ds(r) are the local density and self-diffusivity at a
position r. Within the transition state theory, the bulk self-
diffusion coefficient can be written as an activated process D0

s �
exp½�ΔF0=kBT� where ΔF0 is the activation free energy to set the
molecules in motion. Here, we refer to the bulk phase taken at the
same temperature but also the same density as the confined
phase. Therefore, even if the bulk phase is a low-density gas (for
which diffusion does not involve any activation energy), D0

s
should be understood as the liquid-like diffusivity of the bulk
fluid taken at the same liquid-like density. For a confined fluid,
the activation energy for diffusion can be assumed to correspond
to the bulk activation energy augmented by the fluid/surface
potential ζ(r), ΔF= ΔF0− ζ(r) (the sign minus is due to the fact
that the interaction potential is attractive and, hence, negative so
that molecules are trapped in deeper energy sites with an escape
time requiring a larger activation energy). With this assumption,
DsðrÞ ¼ D0

s exp½ζðrÞ=kBT�19. For complex media, there is no
simple expression for ζ(r) but we use here a simple form where
ζ(r) is constant when the distance to the surface is smaller than σ
and decays exponentially beyond. Such a generic form leads to
the following local self-diffusivity: DsðrÞ ¼ Ds

s for r > d/2− σ
while DsðrÞ ¼ D0

s þ Ds
s � D0

s

� �
exp½� d=2� σ � rð Þ=r0� for r ≤ d/

2− σ (where Ds
s is the surface self-diffusivity in the vicinity of the

pore surface while D0
s is the bulk, i.e. unconfined, self-diffusivity).

This expression simply assumes that the self-diffusivity is equal to
the surface diffusivity Ds

s for distances within a critical size σ from

the surface while it decays exponentially with a characteristic
lengthscale r0 towards the bulk diffusivity D0

s as the distance to
the surface increases, as depicted on Supplementary Fig. 11. After
a little algebra, assuming the pore density is homogeneous, i.e.,
ρ(r) ~ ρ, one arrives at:

Dp
s ðdÞ ¼

Ds
s ð for d < 2σÞ

D0
s þ 2=d ´ Ds

s � D0
s

� �
σ þ r0 � r0 exp½�ðd � 2σÞ=2r0�ð Þ ð for d ≥ 2σÞ

(

ð2Þ
As shown in the inset of Fig. 2a, the above effective expression
provides an accurate description of the simulated in-pore
diffusivity Dp

s . Both the variations in pore size d and fluid/surface
interaction strength ε are accurately captured. The parameters Ds

s,
D0

s , r0 and σ extracted from the fit against Eq. (2) can be found in
Supplementary Fig. 7. As expected, the bulk self-diffusivity D0

s is
found to be constant at a value 14 ± 0.6 × 10−9m2/s. While the
confined fluid density is an ill-defined quantity that depends on a
given pore volume definition, we note that the bulk reduced
density ρ*= ρσ3 needed to match the bulk self-diffusivity D0

s ¼
14 ± 0:6´ 10�9 m2/s inferred from this simple in-pore diffusivity
model falls within the range [0.8–1] (see Supplementary Fig. 12
showing the self-diffusivity of bulk methane as a function of
density at the temperature considered here). Recalling that the
number of confined fluid molecules was obtained by filling each
porous material at the fluid boiling point, such reduced densities
further support the use of a simple effective model for the in-pore
diffusivity as they correspond to typical liquid densities. Similarly,
σ is independent of d and ε with a constant value of 2.4 ± 0.1Å so
that the critical distance σ for surface diffusion roughly
corresponds to the fluid molecular size. Interestingly, the quality
of this effective in-pore diffusivity model shows that the surface
diffusion Ds

s and scaling r0 can be treated as constant parameters
for a given ε. On the other hand, as expected, Ds

s is found to
decrease upon increasing ε while r0 increases upon increasing ε.
Typically, upon varying ε/kBT from 0.1 to 1.0, Ds

s decreases from 3
to 0.5 × 10−9m2/s while r0 increases from 0.8 to 2Å. The fact that
the scaling parameter r0 depends on ε can be rationalized as
follows. Even if the surface/fluid interaction potential decay is
independent of ε, it generates a free energy landscape ζ(r) that
includes many body—fluid/fluid and fluid/wall—effects which
lead to an effective scaling r0 that depends on ε.

While the combination rule above provides a quantitative
description of the molecular dynamics data, it remains mostly
effective as it relies arbitrary choices combined with an empirical
description of the diffusivity landscape explored by the fluid
molecules. First, ζ(r) should be seen as an effective free energy
field that modulates the bulk self-diffusivity by accounting for
local intermolecular interactions but also for local density/
packing effects. Therefore, even with simple pore geometries,
instead of a robust free energy field rigorously derived from
intermolecular interactions, ζ(r) is an effective function which is
used to describe the self-diffusivity decay upon increasing the
distance to the pore surface. The constant surface diffusivity at
the pore surface is used to account for the fact that adsorbed
molecules explore homogeneously the surface region ~ 2σ. More-
over, even if the conclusions above are qualitatively independent
of the different assumptions involved, the decomposition into
surface and bulk-like diffusions is also sensitive to the exact
scaling defined in Eq. (2) and the parameter 2σ used to define the
surface layer. In particular, other efficient decomposition rules
have been proposed such as a simple weighted sum of surface and
volume diffusivities which was found to accurately describe the
dynamics of water in nanoconfinement39. Moreover, such
surface/volume partition and the resulting predictions in terms
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of in-pore diffusivities Dp
s are also dependent on the geometry

choice—usually far from any realistic description—made to
describe the pores in such disordered materials (planar,
cylindrical or spherical). In practice, as will be shown in the rest
of this paper, to avoid relying on such effective frameworks, the
intermittent Brownian formalism mapped onto molecular
dynamics data provides a means to describe stop-and-go
processes in such disordered and ultraconfining materials without
invoking any definition for the surface layer and the self-diffusion
decay as molecules get closer to the pore surface.

The stop-and-go, i.e. intermittent, diffusion observed in our
atom-scale dynamics simulations suggests that the corresponding
data can be analyzed using the framework of intermittent
Brownian dynamics. Indeed, as shown in Fig. 2b, while ensemble
averaging over each molecule leads to a Fickian regime with an
effective self-diffusivity, each individual trajectory involves
intermittent motion with alternate series of in-pore diffusion
and surface adsorption. In more detail, within this formalism,
the mesoscopic, i.e., coarse-grained, dynamics beyond molecular
time and length scales is governed by two parameters: the
residence time tA during which a molecule remains adsorbed to
the surface and the relocation time tB between two adsorption
periods10,14. To probe such intermittent dynamics, the pore space
Ω available for the dynamics of spherical molecules inside the
carbon matrix was extracted by mapping a 3D lattice network
having a voxel size Δ= 0.2 Å (as explained in the Methods
section). A voxel belongs to the pore space if its distance x to any
carbon center is x > σ where σ is the LJ parameter for the fluid/
surface interaction. The surface boundary ∂Ω of Ω is made of
surface voxels which are at the frontier between Ω and its
complementary space. This allows defining a continuous space
for molecular diffusion limited by the surface boundary. With the
aim to simulate long-range intermittent dynamics, only the

greatest connected part Ωc of Ω is considered (in the present
study, for all samples ct > 0, Ωc percolates through the periodic
minimal image). Intermittent Brownian motion was then
simulated using the following advanced random walk approach.
An interfacial volume is defined as ∂Ωc × x0 where x0= 0.2 pm is
an infinitesimal thickness. Diffusion in the pore cavities is
described using regular random walk simulations with a bulk-like
self-diffusivity Dp

s estimated from molecular dynamics. When a
molecule center of mass reaches ∂Ωc × x0, it remains stopped for a
time tS distributed according to an exponential probability density
function having a first moment tA. After tS, the center of mass is
placed at the distance x0 from ∂Ωc for a new relocation step. The
procedure above leads to intermittent Brownian motion where
the residence and relocation steps are distributed according to
two underlying probability density functions ψA(t) and ψB(t)
(having tA and tB as first moments). On the one hand, as
illustrated in Fig. 3a, the residence times obey a statistics given by:

ψAðtÞ ¼ 1=tA ´ exp �t=tAð Þ ð3Þ
where ψA(t)dt is the probability that the residence lasts a time
between t and t+ dt. While the exponential decay in Eq. (3)
provides a generic description of the residence time distribution,
power-law distributions can be observed in other specific situations
such as in media with surface heterogeneity or complex surface
dynamics. However, as will be illustrated below, among possible
behaviors, the exponential decay is important as it corresponds to a
well-defined underlying thermodynamic picture where desorption
corresponds to an activated mechanism. Moreover, considering the
mapping between microscopic and mesoscopic tortuosities pro-
posed in what follows, it only relies on the mean residence time and
not the exact time distribution. On the other hand, ψB(t) is the
bridge statistics which describes the time distribution between a
desorption event and the next first re-encounter within the

Fig. 3 Mapping microscopic dynamics onto mesoscopic intermittent brownian motion. (a) Typical residence statistics ψA(t) with tA= 0.1 ns. The dashed
line shows the expected scaling ψAðtÞ / e�t=tA . (b) Bridge statistics ψB(t) for CS1.0 with two fluid/surface interactions ε/kBT as indicated in the graph. The
solid lines are fits against Eq. (4), with tc= 42 ± 0.5 ps for ε/kBT= 0.3 and tc= 51 ± 0.7 ps for ε/kBT= 0.5. The dashed lines indicate the main regimes:
ψB(t)∝ t−3/2 and ψBðtÞ / e�t=tc . (c) Random walk tortuosity τRW as a function of the residence time tA (dashed lines). Only data obtained for ε/kBT= 0.5 are
shown here for the sake of clarity, but data for other surface/fluid interaction strengths show similar behavior. The data points are the projection of the
molecular dynamics tortuosities τMD onto the Random walk tortuosities τRW to obtain the residence (tA) and relocation (tB) times; i.e. τMD � τ0RW½1þ tA=tB�.
The schematics on the right illustrate this mapping. In MD simulations, the self-diffusivity is probed by measuring the mean square displacement of the fluid
molecules (here, a single molecule is marked in red but the self-diffusivity is averaged over each individual molecule). In RW calculations, the self-diffusion of
particles is probed using a specific algorithm which physically accounts for the adsorption and relocation times tA and tB as illustrated in the corresponding
schematic. The vertical error bars are the same as in Fig. 2 while the horizontal error bars are their projection onto the dashed lines.
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proximal zone ∂Ωc × x0. Such generic bridge statistics in confine-
ment is illustrated in Fig. 3b which shows ψB(t) for methane
confined in the disordered sample CS1.0 with different fluid/surface
interactions. On the one hand, after a plateau in the very short time
range (≲ps), ψB(t) decays as a power law ψB(t) ~ t−3/2. On the other
hand, in the long time regime, ψBðtÞ / expð�t=tcÞ as strong
confinement in the sample cavities introduces a time cutoff tc in the
relocation process since every confined molecule eventually returns
to the surface within a finite time. This generic behavior for such a
finite i.e. confining medium can be described as40:

ψBðtÞ / ψ1
B ðtÞ exp½�t=tc� ð4Þ

where ψ1
B ðtÞ corresponds to the bridge statistics for a semi-infinite

medium (denoted by the symbol ∞). As shown in Supplementary
Notes, ψ1

B ðtÞ can be determined by considering the trajectory of a
molecule starting at a distance x0 from the adsorbing region located
in x= 0 and crossing this interface for the first time at a time t41:

ψ1
B ðtÞ ¼ x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDp
s t

3
p exp � x20

4Dp
s t

� �
�

t�x20=D
p
s

x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDp

s t
3

p ð5Þ

In this equation, the second equality corresponds to the solution in
the limit t � x20=D

p
s . Such expressions are valid for a semi-infinite

medium where the probability to return to the surface becomes
vanishingly small in the long time limit.

Figure 3c shows the tortuosity τRW as a function of the
residence time tA as obtained using random walk simulations for
the different CSx samples (only data for ε/kBT= 0.5 are shown
here for the sake of clarity). The dashed lines in Fig. 3c are RW
results obtained by varying tA in a quasi-continuous manner. As
expected, the tortuosity can be rescaled as:

τRW ¼ τ0RW 1þ tA
tB

� �
ð6Þ

where τ0RW and tB only depend on the specific CSx sample
considered. While tB is the typical relocation time, τ0RW

corresponds to the geometrical tortuosity obtained for a
vanishing residence time (tA→ 0). As shown in Fig. 3c, projecting
the τMD values obtained by MD (points) onto the ones obtained
by RW (lines), i.e. τMD= τRW, allows mapping the molecular and
mesoscopic tortuosities. This provides a means to estimate for
each sample CSx the residence (tA) and relocation (tB) times as a
function of the fluid/surface interaction strength ε/kBT (values
that cannot be assessed using MD for such complex disordered
materials). In more detail, tA and tB are such that
τMD ¼ τ0RWð1þ tA=tBÞ. Considering that τ0RW and tB for a given
sample and ε/kBT are uniquely defined from the slope and
intercept in Fig. 3c, there is only one set (tA, tB) that verifies
τMD= τRW. As shown in our previous work14, it should be
emphasized that tA and tB can be directly estimated from
molecular dynamics when simple pore geometries are considered.
However, such calculations turn out to be extremely challenging
for disordered porous media because the surface/volume decom-
position is a complex ill-defined problem. Energy-based criteria
such as surface-fluid energy cutoffs or geometrical criteria such as
positions to the interface can be used but they rely on arbitrary
choices. In contrast, the approach proposed in the present work
provides a means to split the complex diffusivity behavior into
residence and relocation steps without having to rely on these
arbitrary choices.

Bridging molecular/mesoscopic dynamics in disordered media.
The residence and relocation times are upscaled parameters
which provide a mean to quantitatively bridge the microscopic
and mesoscopic dynamics in porous media through the inter-
mittent Brownian motion formalism. Yet, beyond simple map-
ping procedures like matching molecular and coarse-grained
tortuosities, there is a need to establish robust and quantitative
physical behaviors for tA and tB. With this aim, the effect of mean
pore size d and fluid/surface interaction strength ε/kBT on tA and
tB is shown in Fig. 4. In what follows, we first report a molecular

Fig. 4 Residence and relocation times. a Logarithm of the residence time tA as a function of ε/kBT where tA is obtained by mapping the molecular and
mesoscopic tortuosities as shown in Fig. 3c. The dashed lines are fits in the form tA ¼ t0A expðαε=kBTÞ with t0A the characteristic residence time for vanishing
fluid/surface interactions. The error bars are those given in Fig. 3c. b Impact of pore size d on the dimensionless parameter α; α= 3.6 ± 0.4 ∀ p. The error
bars correspond to fitting errors. c Characteristic residence time t0A as a function of mean pore size d. The dashed line is a fit against an effective decaying
function t0A / t0A;1 1þ γ exp �d=ξ

� �� �
with the critical pore size ξ= 2.1 ± 0.5Å and t0A;1 � 0:07 ps. d Relocation time tB ´D

p
s as a function of the mean pore

size d for ε/kBT= 1. As expected, tB / d=Dp
s as the finite time spent upon relocation in the cavities introduces an upper bound in the survival probability

(see text).
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model for the residence time tA and then discuss the behavior of
the relocation time tB using the formalism of first passage
processes.

Residence time tA. Figure 4a suggests that tA follows an activation
law for all samples: tA ¼ t0A exp½�ΔF�=kBT� with ΔF*=−αε. In
this transition state theory, ΔF* corresponds to the free energy
barrier that must be overcome by a fluid molecule to escape from
the interaction field generated by the host surface. As for 1=t0A, it
corresponds to the frequency with which the molecule attempts
to escape the free energy minimum where it is located. While the
activated behavior observed for tA might appear as a surprising
result, it can be rationalized through simple thermodynamic
arguments. Let us consider a thermodynamic model where the
molecule is either adsorbed in the vicinity of the pore surface or
in the pore center. As a first-order approximation, it can be
assumed that the free energy difference ΔF ~Nsε where Ns is the
number of surface atoms interacting with the fluid molecule. In
other words, with this assumption, the free energy of an adsorbed
molecule corresponds to the sum of the interaction energies with
each neighboring surface atom while the entropy and fluid-fluid
interaction contributions are treated as constant. Considering that
ΔF*= δΔF with δ≳ 1 (since the free energy barrier is necessarily
larger than or equal to the free energy difference between the
adsorbed/non-adsorbed physical states), the scaling in Fig. 4a
indicates that α=Nsδ. As shown in Fig. 4b, for all samples (i.e.
regardless of pore size d), α ~ 3.6 which leads to Ns≲ 3.6. Such a
value, which is independent of the considered structure, seems
realistic as this corresponds to an underlying molecular picture
where an adsorbed molecule interacts with Ns ~ 3 to 4 structure
atoms. To validate this interpretation, we calculated for all
interaction strengths ε/kBT and porous materials CSx, the radial
distribution function g(r) between host carbon atoms and
methane molecules. The number of local carbon neighbors Nc

contributing to the free energy barrier involved in the escape time
from surface residence was then estimated by integrating g(r) up
to the location corresponding to the Lennard–Jones potential
minimum rmin ¼ 21=6σ, i.e. Nc ¼

R rmin
0 4πr2gðrÞρdr. Considering

all structures and interactions strengths, we found <Nc> ¼
3:6 ± 1 which is consistent with the value obtained for α in Fig. 4b.

Figure 4c shows that the prefactor t0A, which corresponds to the
characteristic timescale for activated molecular desorption from
the surface, is of the order of ~1 ps—a classical value used in
transition state theories and nucleation models in dense liquid
states. More importantly, t0A � t0A;1½1þ γ expð�d=ξÞ� where
t0A;1 � 0:07 ps corresponds to the value for infinitely large pores
(vanishing confinement). The typical decay length ξ ~ 2.1Å is of
the order of the molecule size σ, therefore indicating that the
correction to the escape attempt time is related to the pore size d.
This can be understood by the fact that, for a given free energy
barrier ΔF*, strong confinement leads to increasing residence
times due to the decrease in molecular paths leading to
desorption.

Relocation time tB. Figure 4d shows that the relocation time tB
scales as tB � d=Dp

s . This result is not completely intuitive as it
departs from a straightforward estimate obtained using the pore
diffusivity Dp

s and diffusion domain ~ d, i.e. tB � d2=Dp
s . Yet, as

described quantitatively in what follows, the scaling tB ~ d can be
rationalized by accounting for the fact that the diffusion, i.e. relo-
cation, time within the confining cavities has necessarily an upper
bound (due to the finite pore size, each molecule eventually read-
sorbs to the surface). This constraint, which is at the root of the
scaling tB ~ d, can be quantitatively predicted by introducing a time
cutoff tc in the relocation first passage probability ψB(t). In addition

to tc, we also introduce a short time cutoff t0 as ψB(t) is necessarily
equal to zero for times shorter than the time t0 needed for a
molecule to travel the minimum bridge of extension xmin.

As derived in the Supplementary Notes, with the lower/upper time
limits t0 and tc, ψB(t) simply writes ψBðtÞ ¼ C ´ exp �t=tcð Þ=t3=2
for t∈ [t0, tc] where C ¼ 2 expð�t0=tcÞ=

ffiffiffiffi
t0

p � 2
ffiffiffiffiffiffiffiffiffi
π=tc

p�
erfc

ffiffiffiffiffiffiffiffiffi
t0=tc

p� ���1 is obtained by writing the normalization conditionR1
0 ψBðtÞdt ¼ 1. The first passage distribution for relocation ψB(t)

allows estimating the mean relocation time tB as:

tB ¼
Z1
0

tψBðtÞdt ð7Þ

As shown in Supplementary Notes, upon inserting ψBðtÞ �
exp �t=tcð Þ ´ t�3=2 for t > t0 (0 otherwise) into Eq. (7), it can be
shown that: tB ¼ C ´

ffiffiffiffiffiffi
πtc

p
erfc ð ffiffiffiffiffiffiffiffiffi

t0=tc
p Þ. By writing that t0≪ tc

(i.e. C � ffiffiffiffi
t0

p
=2), this expression simplifies as:

tB �
ffiffiffiffiffiffiffiffiffiffi
πtct0

p
2

� t0 �
xmin

4Dp
s
½ ffiffiffiπp

βd � 2xmin� ð8Þ

tc is associated with a geometrical cut-off length rc which indicates
the maximal extension of a bridge. rc is of the order of the pore
diameter d and can be written as rc= βd, where β ~ 1 is related to the
accessible in-pore horizon. Assuming Fickian diffusion upon
relocation, we can write t0 � x2min=2D

p
s and tc � β2d2=2Dp

s . As
shown in Fig. 4d, by assuming that xmin is independent of the pore
structure, Eq. (8) provides a reasonable description of the observed
scaling tB ~ d with a negative intercept in d= 0. Yet, as detailed
in Supplementary Notes, xmin can be estimated from the probability
density function of the bridge displacement θ(r) where r the is the
end-to-end Euclidean distance of a Brownian bridge42 [see
Supplementary Fig. 10a]. With this refined analysis, as shown in
Supplementary Fig. 10b, xmin does depend on the pore diameter d.
Taking into account this dependence, the simulated data tB ´D

p
s in

Fig. 4b as a function of d can be retrieved using a unique value β ~
0.7 for all values ε/kBT, as shown in Supplementary Fig. 10c.

Discussion
The statistical physics approach reported in this paper provides an
efficient mean to upscale microscopic dynamics in complex por-
ous media to the engineering, i.e., continuum, level. This general
and versatile method consists of upscaling molecular constants—
typically, the adsorption strength and self-diffusivity—as obtained
using molecular dynamics through the formalism of intermittent
Brownian motion. While this robust framework is well-established
for ordered materials with regular pore geometry and simple pore
network topology, the present work extends its scope to ultra-
confining disordered porous media with underlying complex free-
energy landscapes. In particular, despite the complex interfacial
dynamics in media involving ill-defined surface/volume regions,
mapping of molecular dynamics simulations onto intermittent
random walk provides a simple yet robust description through the
mean surface residence (tA) and in pore relocation (tB) times.
More importantly, using disordered porous materials with dif-
ferent porosities ϕ/pore sizes d but also fluid/surface interaction
strengths ε, tA and tB are found to derive from basic physical
models with parameters available to simple experiments. On the
one hand, the mean residence time tA is simply related to the
fluid/surface interaction strength ε as it corresponds to the char-
acteristic molecular escape time from a low (molecule in the
surface vicinity) to a higher (bulk-like molecule in the pore center)
free energy state separated by a free energy barrier ΔF* ~ ε/kBT.
On the other hand, tB can be simply predicted from the confined
in-pore self-diffusivity Dp

s and the corresponding mean-first
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passage probability distribution which is truncated to account for
the finite relocation time in confining cavities. Considering the
mesoscopic, i.e., coarse-grained, description adopted in this
approach, it is remarkable that all the problem complexity is
embedded into two characteristic timescales that are related using
simple physical laws to intrinsic material/fluid descriptors.

Such upscaling strategy could prove to be useful in numerous
fields involving fluid adsorption and transport in porous mate-
rials: chemistry (e.g., adsorption, catalysis), chemical engineering
(e.g., separation, chromatography), geosciences (e.g., pollutant
transport), etc. In particular, among important examples relevant
to such practical fields, the present approach can help describe
molecular diffusion in the following applications: phase separa-
tion of gaseous or liquid effluents through porous media, filtra-
tion of small micro-pollutants such as organic/biomolecules,
metallic and ionic complexes in water remediation, kinetics of
products, reactants and by-products in catalytic processes, etc.
From a practical viewpoint, conducting the exact upscaling
strategy as reported in this paper can be quite involved; it requires
building realistic porous material models and conducting both
atom-scale and mesoscopic random walk simulations. However,
the physical behavior of tA and tB as established above provides
simple rules to predict the long-time fluid diffusion within a given
porous material. In practice, all parameters needed to predict this
macroscopic behavior are easily accessible experimentally; this
includes the pore size d, the fluid/surface energy ε, and the self-
diffusivity Dp

s . While d can be estimated using adsorption-based
techniques or derived using structural data, the fluid/surface
energy can be probed from calorimetry or simply estimated from
data for similar fluid/solid couples. As for Dp

s , a good approx-
imation is to take this parameter equal to its bulk counterpart but
more accurate data can be estimated by measuring the confined
diffusivity using neutron scattering or NMR relaxometry. Inver-
sely, starting from experimentally measured self-diffusivity in
confinement, tA and tB can be extracted to shed light on physical
phenomena occurring upon fluid adsorption, catalysis, etc. in a
given porous material. In this context, our strategy can be coupled
with free energy landscape computation to estimate the residence
and relocation times. Such calculations are suitable for regular
porous materials such as zeolites or metal-organic frameworks
(for which dealing with a small porous subspace is sufficient
thanks to symmetry considerations). However, such free energy
approaches are nearly impossible for disordered porous materials
with large representative elementary volume so that an effective
approach based on simple physical laws is sound and robust.

Beyond regular adsorption/diffusion processes, our upscaling
approach can be used to predict long-time effective diffusivity in
problems involving more complex phenomena as observed in
natural or anthropic disordered materials (wood, cement, etc.).
This includes fluid/solid systems in which desorption is an acti-
vated process43 but also processes involving reactive
transport44,45 and poromechanical effects such as adsorption-
induced swelling46. Finally, the present approach can be used to
obtain the elementary bricks to be implemented in mesoscopic
numerical techniques such as finite elements calculations, pore
network models47, Lattice Boltzmann simulations but also more
formal statistical physics approaches20,48–50. As already stated,
our mapping procedure is expected to apply to a broad class of
fluid/solid couples but some possible limitations must be con-
sidered as they can lead to more complex behaviors. Such lim-
itations include the possible role of rich molecular interactions
that are potentially long-ranged (e.g. electrostatic). Complex host
solids with long-range pore correlations (fractal, low dimension)
can also lead to additional complexity. In particular, in extremely
narrow pores, confinement induces specific mechanisms such as
molecular sieving51 or single file diffusion18 that depart from the

Fickian regime considered here. Moreover, by considering only
percolating matrices (ct > 0), the present study does not address
connectivity aspects which can lead to anomalous temperature
behavior depending on the ratio of adsorption and connectivity
effects51.

Methods
Porous material models. Different samples of densities ranging from 0.5 g/cm3 up
to 1.4 g/cm3 were produced using the following method. For a given density ρs, the
atoms are placed randomly in a cubic box of a size 100Å (an H/C atomic ratio ~
0.091 was selected as it corresponds to a typical, realistic value for such disordered
porous carbons52,53). Starting from a large temperature, each molecular structure
was quenched using molecular dynamics performed using the large-scale atomic/
molecular massively parallel simulator (LAMMPS29). Molecular interactions were
described using the reactive empirical bond order (REBO) potential28 to allow for
bond formation/breaking. The quenching procedure is performed in the NVT
ensemble by continuously decreasing the temperature from 3000 K down to 300 K
in the course of a 5 ns simulation run. Three representative structures are presented
in Supplementary Fig. 1 and all .xyz structure files are available upon request.

Grand canonical Monte Carlo. We simulated methane adsorption isotherms at
111.7 K in the various host structures (Supplementary Fig. 2) using Grand Cano-
nical Monte Carlo (GCMC) with the Lennard–Jones parameters gathered in
Supplementary Table 2. The saturating vapor pressure of methane at this tem-
perature is P0= 101325 Pa (boiling point). In GCMC simulations, we consider a
system at constant volume V (the host porous solid) in equilibrium with an infinite
reservoir of molecules (methane) imposing its chemical potential μ and tempera-
ture T. For a given set T; μð Þ, the adsorbed amount is given by the ensemble
average of the number of adsorbed molecules versus the pressure P of the gas
reservoir (the latter is obtained from the chemical potential according to the
equation of state for the bulk gas). The adsorption isotherm is simulated by
increasing or decreasing the chemical potential of the reservoir.

The skeleton is considered rigid and the energy Uαβ(i, j) between the site i of
type α and the site j of type β is given by54:

Uαβði; jÞ ¼
X
i;j

4εαβij
σαβij

rαβij

 !12

� σαβij

rαβij

 !6
2
4

3
5 ð9Þ

Equation (9) describes interactions through a 6–12 Lennard–Jones potential with

parameters σαβij (size) and εαβij (energy). The Lennard–Jones parameters are reported
in Supplementary Table 2 for the interactions between sites of the same type, the
cross interactions being computed from the Lorentz–Berthelot rules:

σαβ ¼ 1
2

σαα þ σββ
� �

εαβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
εααεββ

p
ð10Þ

Molecular dynamics. The methane-saturated structures obtained by GCMC are
then used as starting structures for molecular dynamics (MD) simulations. All MD
simulations are performed with LAMMPS29 using the lj/cut potential with the
same same-site parameters as the ones used for the GCMC simulations. In all
simulations, the porous solid is kept frozen while the probe molecules are simu-
lated at a temperature of 450 K for a NVE production run of 20 ns after a NVT
thermalization run of 500 ps. The integration time step is 1 fs and the configura-
tions are saved every 1 ps. To assess the influence of fluid/surface interaction on the
effective diffusivity—and, hence, the tortuosity—the fluid/surface interaction
strength ε was varied. In so doing, the repulsive interaction felt by the fluid
molecules decreases upon decreasing ε so that the porosity explored by the con-
fined molecules increases (inset Supplementary Fig. 3). Consequently, due to this
effect, the tortuosity for a given structure strongly evolves with ε without being
per se an effect of the interaction strength. To correct this effect, we developed a
modified Lennard–Jones potential that keeps the repulsive contribution constant.
This modified interaction potential uses a smooth sigmoid function U(r) defined as:

UðrÞ ¼ L�ðrÞesrc þ LþðrÞesr
esrc þ esr

ð11Þ

where s= 50 and rc= 0.97σ are the slope and center of the sigmoid, respectively.
L−(r) and L+(r) are the connected functions defined for r < rc and r > rc. To keep
the repulsive interaction constant, L(r) was maintained fixed as:

Lþ=�ðrÞ ¼ 4εþ=�
σ

r

	 
12
� σ

r

	 
6� �
ð12Þ

with ε−= kBT. As shown in Supplementary Fig. 3, upon varying ε+, a modified
Lennard–Jones potential with different fluid/surface interaction strengths can be
defined while keeping the repulsive part constant.

Topology characterization and diffusion pore space. The pore space Ω available
for the dynamics of the spherical methane molecule inside the carbon matrix was
determined as follows. A 3D lattice network is first defined with a voxel size 0.02
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nm. A voxel belongs to Ω if its distance to any carbon centers is above 3.605Å (this
value is used as it corresponds to the Lennard–Jones parameter σ for the fluid/
surface interaction). A voxel belonging to Ω is set to 1 (0 otherwise). Such 3D
lattice network allows defining the surface boundary ∂Ω of Ω made of surface
voxels at the border between Ω and its complementary space. This allows us to
define a continuous space for molecular diffusion which is limited by the surface
boundary. An interfacial volume is defined as ∂Ωc × x0 where x0 is a thickness equal
to 0.2 pm. Supplementary Fig. 5 illustrates this procedure by showing for the
sample CS1.0 the resulting digitized pore network and the corresponding retraction
graph obtained with a porosity ϕ= 0.177. The molecular trajectory can be
described as an alternate succession of a surface adsorption step on ∂Ωc × x0 fol-
lowed by a Brownian motion in the confined bulk Ωc leading to a new relocation
on the surface. The time step for the Brownian motion is set to 0.1 ps and the self-
diffusion coefficient is estimated from molecular trajectories (mean square dis-
placements) as obtained from molecular dynamics at very early time steps.

Data availability
The data sets and molecular configurations generated during and/or analyzed during the
current study are available from the corresponding authors upon request. All MD
simulations were performed using the software LAMMPS (stable release from August
31st, 2018).

Received: 23 October 2020; Accepted: 15 January 2021;

References
1. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc.

Rev. 39, 1073–1095 (2010).
2. Kärger, J. & Valiullin, R. Mass transfer in mesoporous materials: the benefit of

microscopic diffusion measurement. Chem. Soc. Rev. 42, 4172–4197 (2013).
3. Kärger, J., Ruthven, D. M. & Theodorou, D. N.Diffusion in Nanoporous

Materials (John Wiley & Sons, 2012).
4. Sahimi, M. Flow and Transport in Porous Media and Fractured Rock: From

Classical Methods to Modern Approaches (John Wiley & Sons, 2011).
5. Coasne, B. Multiscale adsorption and transport in hierarchical porous

materials. N. J. Chem. 40, 4078–4094 (2016).
6. Deroche, I., Daou, T. J., Picard, C. & Coasne, B. Reminiscent capillarity in

subnanopores. Nat. Commun. 10, 4642 (2019).
7. Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media:

statistical mechanisms, models and physical applications. Phys. Rep. 195,
127–293 (1990).

8. Kärger, J. & M. Ruthven, D. Diffusion in nanoporous materials: fundamental
principles, insights and challenges. N. J. Chem. 40, 4027–4048 (2016).

9. Bhatia, S. K., Bonilla, M. R. & Nicholson, D. Molecular transport in
nanopores: a theoretical perspective. Phys. Chem. Chem. Phys. 13,
15350–15383 (2011).

10. Levitz, P. Random flights in confining interfacial systems. J. Phys.: Cond. Mat.
17, S4059 (2005).

11. Coppens, M.-O. & Dammers, A. J. Effects of heterogeneity on diffusion in
nanopores—from inorganic materials to protein crystals and ion channels.
Fluid Phase Equilibria 241, 308–316 (2006).

12. Reed, D. A. & Ehrlich, G. Surface diffusion, atomic jump rates and
thermodynamics. Surf. Sci. 102, 588–609 (1981).

13. Smit, B. & Maesen, T. Molecular simulations of zeolites: adsorption, diffusion,
and shape selectivity. Chem. Rev. 108, 4125–4184 (2008).

14. Levitz, P., Bonnaud, P., Cazade, P.-A., Pellenq, R.-M. & Coasne, B. Molecular
intermittent dynamics of interfacial water: Probing adsorption and bulk
confinement. Soft Matter 9, 8654–8663 (2013).

15. Valiullin, R. et al. Exploration of molecular dynamics during transient
sorption of fluids in mesoporous materials. Nature 443, 965–968 (2006).

16. Falk, K., Coasne, B., Pellenq, R., Ulm, F.-J. & Bocquet, L. Subcontinuum mass
transport of condensed hydrocarbons in nanoporous media. Nat. Commun. 6,
6949 (2015).

17. Obliger, A., Pellenq, R., Ulm, F.-J. & Coasne, B. Free volume theory of
hydrocarbon mixture transport in nanoporous materials. J. Phys. Chem. Lett.
7, 3712–3717 (2016).

18. Hahn, K. & Kärger, J. Deviations from the normal time regime of single-file
diffusion. J. Phys. Chem. B 102, 5766–5771 (1998).

19. Bhatia, S. K. & Nicholson, D. Modeling mixture transport at the nanoscale:
departure from existing paradigms. Phys. Rev. Lett. 100, 236103 (2008).

20. Roosen-Runge, F., Bicout, D. J. & Barrat, J.-L. Analytical correlation functions
for motion through diffusivity landscapes. J. Chem. Phys. 144, 204109 (2016).

21. Maginn, E. J., Bell, A. T. & Theodorou, D. N. Dynamics of long n-alkanes in
silicalite: a hierarchical simulation approach. J. Phys. Chem. 100, 7155–7173
(1996).

22. Camp, J. S. & Sholl, D. S. Transition state theory methods to measure diffusion
in flexible nanoporous materials: application to a porous organic cage crystal.
J. Phys. Chem. C 120, 1110–1120 (2016).

23. Abouelnasr, M. K. F. & Smit, B. Diffusion in confinement: kinetic simulations
of self- and collective diffusion behavior of adsorbed gases. Phys. Chem. Chem.
Phys. 14, 11600–11609 (2012).

24. Kim, J., Abouelnasr, M., Lin, L.-C. & Smit, B. Large-scale screening of zeolite
structures for CO2 membrane separations. J. Am. Chem. Soc. 135, 7545–7552
(2013).

25. Montroll, E. W. & Weiss, G. H. Random walks on lattices. II. J. Math. Phys. 6,
167–181 (1965).

26. Shlesinger, M. F., Zaslavsky, G. M. & Klafter, J. Strange kinetics. Nature 363,
31–37 (1993).

27. Levitz, P. From Knudsen diffusion to Levy walks. EPL 39, 593 (1997).
28. Brenner, D. W. et al. A second-generation reactive empirical bond order

(REBO) potential energy expression for hydrocarbons. J. Phys.: Cond. Mat. 14,
783 (2002).

29. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
Comp. Phys. 117, 1–19 (1995).

30. Gelb, L. D. & Gubbins, K. Pore size distributions in porous glasses: a computer
simulation study. Langmuir 15, 305–308 (1999).

31. Coasne, B. & Ugliengo, P. Atomistic model of micelle-templated mesoporous
silicas: Structural, morphological, and adsorption properties. Langmuir 28,
11131–11141 (2012).

32. Han, M., Youssef, S., Rosenberg, E., Fleury, M. & Levitz, P. Deviation from
Archie’s law in partially saturated porous media: Wetting film versus
disconnectedness of the conducting phase. Phys. Rev. E 79, 031127 (2009).

33. Levitz, P., Tariel, V., Stampanoni, M. & Gallucci, E. Topology of evolving pore
networks. Eur. Phys. J. Appl. Phys. 60, 24202 (2012).

34. Lin, C. & Cohen, M. H. Quantitative methods for microgeometric modeling. J.
Appl. Phys. 53, 4152–4165 (1982).

35. Lim, S. Y., Sahimi, M., Tsotsis, T. T. & Kim, N. Molecular dynamics
simulation of diffusion of gases in a carbon-nanotube–polymer composite.
Phys. Rev. E 76, 011810 (2007).

36. Kulasinski, K., Guyer, R., Derome, D. & Carmeliet, J. Water diffusion in
amorphous hydrophilic systems: a stop and go process. Langmuir 31,
10843–10849 (2015).

37. Schneider, D., Mehlhorn, D., Zeigermann, P., Kärger, J. & Valiullin, R.
Transport properties of hierarchical micro–mesoporous materials. Chem. Soc.
Rev. 45, 3439–3467 (2016).

38. Chemmi, H. et al. Noninvasive experimental evidence of the linear pore size
dependence of water diffusion in nanoconfinement. J. Phys. Chem. Lett. 7,
393–398 (2016).

39. Chiavazzo, E., Fasano, M., Asinari, P. & Decuzzi, P. Scaling behaviour for the
water transport in nanoconfined geometries. Nat. Commun. 5, 3565 (2014).

40. Levitz, P. Probing interfacial dynamics of water in confined nanoporous
systems by NMRD. Mol. Phys. 117, 952–959 (2019).

41. Redner, S. A Guide to First-Passage Processes (Cambridge University Press,
2001).

42. Levitz, P., Grebenkov, D. S., Zinsmeister, M., Kolwankar, K. M. & Sapoval, B.
Brownian flights over a fractal nest and first-passage statistics on irregular
surfaces. Phys. Rev. Lett. 96, 180601 (2006).

43. Lee, T., Bocquet, L. & Coasne, B. Activated desorption at heterogeneous
interfaces and long-time kinetics of hydrocarbon recovery from nanoporous
media. Nat. Commun. 7, 11890 (2016).

44. Coppens, M.-O. A nature-inspired approach to reactor and catalysis
engineering. Curr. Opin. Chem. Eng. 1, 281–289 (2012).

45. Hansen, N. & Keil, F. J. Multiscale modeling of reaction and diffusion in zeolites:
from the molecular level to the reactor. Soft Mater. 10, 179–201 (2012).

46. Chen, M., Coasne, B., Guyer, R., Derome, D. & Carmeliet, J. Role of hydrogen
bonding in hysteresis observed in sorption-induced swelling of soft
nanoporous polymers. Nat. Commun. 9, 3507 (2018).

47. Fatt, I. The network model of porous media. Trans. AIME 207, 144–181
(1956).

48. Hlushkou, D., Bruns, S., Seidel-Morgenstern, A. & Tallarek, U.
Morphology–transport relationships for silica monoliths: from physical
reconstruction to pore-scale simulations. J. Sep. Sci. 34, 2026–2037 (2011).

49. Monson, P. A. Mean field kinetic theory for a lattice gas model of fluids
confined in porous materials. J. Chem. Phys. 128, 084701 (2008).

50. Tallarek, U., Hlushkou, D., Rybka, J. & Höltzel, A. Multiscale simulation of
diffusion in porous media: from interfacial dynamics to hierarchical porosity.
J. Phys. Chem. C 123, 15099–15112 (2019).

51. Boţan, A., Vermorel, R., Ulm, F.-J. & Pellenq, R. J.-M. Molecular simulations
of supercritical fluid permeation through disordered microporous carbons.
Langmuir 29, 9985–9990 (2013).

52. Jain, S., Gubbins, K., Pellenq, R. J.-M. & Pikunic, J. Molecular modeling and
adsorption properties of porous carbons. Carbon 44, 2445–2451 (2006).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21252-x

10 NATURE COMMUNICATIONS |         (2021) 12:1043 | https://doi.org/10.1038/s41467-021-21252-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


53. Coasne, B., Jain, S. K. & Gubbins, K. E. Freezing of fluids confined in a
disordered nanoporous structure. Phys. Rev. Lett. 97, 105702 (2006).

54. Billemont, P., Coasne, B. & De Weireld, G. Adsorption of carbon dioxide,
methane, and their mixtures in porous carbons: Effect of surface chemistry,
water adsorption, and pore disorder. Langmuir 29, 3328–3338 (2013).

Acknowledgements
This work was supported by the French Research Agency (ANR TAMTAM 15-CE08-
0008 and ANR TWIST ANR-17-CE08-0003).

Author contributions
C.B. built and characterized the models and performed the molecular dynamics simu-
lations. P.L. performed the morphological/topological analysis of the samples and carried
out the mesoscopic simulations. All authors analyzed the data and developed the theo-
retical model. B.C. wrote the manuscript with inputs from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21252-x.

Correspondence and requests for materials should be addressed to P.L. or B.C.

Peer review informationNature Communications thanks Pietro Asinari, Marc-Olivier
Coppens, and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21252-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1043 | https://doi.org/10.1038/s41467-021-21252-x | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-021-21252-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Bridging scales in disordered porous media by mapping molecular dynamics onto intermittent Brownian motion
	Results
	Different topological porous media
	Intermittent Brownian motion with underlying stop-and-go diffusion
	Bridging molecular/mesoscopic dynamics in disordered media
	Residence time tA
	Relocation time tB

	Discussion
	Methods
	Porous material models
	Grand canonical Monte Carlo
	Molecular dynamics
	Topology characterization and diffusion pore space

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




