
HAL Id: hal-03141572
https://hal.science/hal-03141572

Submitted on 21 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving an integrated scheduling and routing problem
with inventory, routing and penalty costs

Hugo Chevroton, Yannick Kergosien, Lotte Berghman, Jean-Charles Billaut

To cite this version:
Hugo Chevroton, Yannick Kergosien, Lotte Berghman, Jean-Charles Billaut. Solving an integrated
scheduling and routing problem with inventory, routing and penalty costs. European Journal of
Operational Research, 2021, 294 (2), pp.571-589. �10.1016/j.ejor.2021.02.012�. �hal-03141572�

https://hal.science/hal-03141572
https://hal.archives-ouvertes.fr

Solving an integrated scheduling and routing problem with

inventory, routing and penalty costs

Hugo Chevroton

Université de Tours

LIFAT, EA 6300, ERL CNRS ROOT 6305

Tours, France

hugo.chevroton@univ-tours.fr

Yannick Kergosien

Université de Tours

LIFAT, EA 6300, ERL CNRS ROOT 6305

Tours, France

yannick.kergosien@univ-tours.fr

Lotte Berghman

Toulouse Business School

Toulouse, France

l.berghman@tbs-education.fr

Jean-Charles Billaut

Université de Tours

LIFAT, EA 6300, ERL CNRS ROOT 6305

Tours, France

jean-charles.billaut@univ-tours.fr

July 31, 2020

Abstract

This paper considers an integrated routing and scheduling problem where the routing part takes into

account routing costs and tardiness penalties and the scheduling part is modelled by a permutation flow

shop with inventory costs. We assume that each batch is served by a dedicated vehicle, and that the

number of batches and their compositions (the number of jobs and the parameters of those jobs) are

known in advance. The problem is to determine the starting times of the jobs for each machine in the

flow shop, the starting times of the batches and their delivery route, such that the total cost (sum of

inventory, routing and penalty costs) is minimised. A two-step approach is proposed. In a first step, the

optimal delivery routes for each batch and each possible departure date are calculated. This is possible

as determining the min cost route for a particular delivery batch and a particular departure date is easy.

As a result, we have a delivery cost function for each batch, depending on the departure date. In a second

step, we use those functions to find a schedule that minimises the total cost. Computational experiments

are performed on randomly generated instances.

Key Words: routing, scheduling, inventory costs, integrated problem, two-step approach

1

1 Introduction

Nowadays, storage is an expensive and complicated issue in a business environment. This is particularly true

in production areas where products are perishable, as for food or medical products. In a hospital context,

the effectiveness of a drug may decrease a few hours after manufacturing and degradation of the product is

very costly. In the case of short life span, synchronisation between the production and the distribution is

mandatory.

This paper considers an integrated scheduling and routing problem in a specific supply chain context.

There is a single manufacturer. The production is presented by a permutation flow shop. All orders are

known in advance and each job represents a customer order that has to be manufactured and delivered.

Inventory costs are considered: any waiting time of a job between two consecutive machines or between the

last machine and the departure time of the delivery vehicle generates a cost. Each job has to be delivered

at a given due date, otherwise a tardiness penalty cost is generated. The delivery is carried out by a 3PL

provider with a homogeneous fleet of vehicles, where each vehicle performs a single trip. We suppose that

contracts were signed in advance: jobs are grouped in batches in order to be delivered together (“delivery

batches are fixed in advance”). This assumption is also motivated by practical applications where several

customers belong to the same group and work with the same 3PL provider, Deliveries may be grouped by

geographic area, or for other logistical or political reasons. However, the route of each vehicle remains to be

determined and a vehicle cannot leave the production site before all his jobs are completed.

The problem consists in fixing the production starting times of the jobs on the machines, finding the best

departure date of each vehicle and determining the route of each vehicle, in order to minimise the sum of

the inventory, the routing and the penalty costs.

Even if we consider only one vehicle and only the penalty costs, the problem is strongly NP-hard. Indeed,

this problem can be reduced to a single-machine total weighted tardiness problem with sequence-dependent

setup times, which is strongly NP-hard [Ruiz and Stützle, 2008].

The main contributions of the paper are threefold. We present a MILP program for the presented

problem, we decompose the problem in two parts and we present different solution methods for both parts.

More concretely, the paper is organised as follows. Section 2 gives an overview of the relevant literature on

integrated scheduling and routing problems. Section 3 gives a formal description of the problem, a MILP

model, a greedy algorithm and the outline of the two-step resolution method. The first step – that consists

in determining the min-cost route per batch for each possible departure date – is detailed in Section 4 and

Section 5 presents an approach to solve the integrated problem. Section 6 describes the benchmark instances

used for the computational experiments and presents numerical results that compare the proposed methods.

Finally, a conclusion and future research directions are given in Section 7.

2

2 Literature review

While there is a large amount of literature on scheduling and routing problems individually, the studies

dealing with integrated problems are more recent but motivated by the possibility of making substantial

savings by solving both problems simultaneously. In this paper, we study an integrated scheduling and

routing problem where the composition of the batches is known. To the best of our knowledge, an integrated

problem with a flow shop and inventory costs has never been studied in literature.

A classification of integrated problems is proposed in [Chen, 2010]. This paper provides a notation for

integrated models based on different criteria such as the machines configuration, the delivery characteristics,

the number of customers, the objective function etc. The author also proposes a classification of the problems

in five sets, based on their delivery features. The problem studied in this paper belongs to the class Models

with batch delivery to multiple customers. In more recent survey on integrated models can be found in [Moons

et al., 2017], although there is a focus on studies where the delivery part is modelled as a VRP.

According to [Moons et al., 2017] and to the best of our knowledge, very few papers propose integrated

problems with a production flow shop in the scheduling part and a VRP problem in the routing part.

The most relevant paper is probably [Scholz-Reiter et al., 2010], where inventory costs are considered in

the production flow shop and where routing and tardiness penalty costs are considered in the VRP. A

mathematical model is presented and the performances of a commercial solver applied to small instances is

evaluated.

The literature contains more papers were the production environment consist of a single machine or a

set of parallel machines. For example, in [Amorim et al., 2013], the production and delivery of perishable

food is studied. A set of parallel machines with setup costs is considered and a routing cost in calculated. A

fleet of vehicles serves customers in different locations, taking hard time windows into account. A lot sizing

formulation is used to show the interest of splitting orders between different machines. In [Wang et al.,

2019b] the authors consider a 3-stage hybrid flow shop scheduling problem followed by a multi-trip vehicle

routing problem. The authors want to minimize the maximum delivery time. Two methods are proposed to

solve the problem: a variable neighborhood search-based procedure and a constructive heuristic combined

with VNS.

Numerous scheduling models in literature take inventory costs into account. An integrated scheduling

and routing model with inventory costs in studied in [Koç et al., 2017]. A set of jobs is transported from a

warehouse to a workshop facility in order to be processed and they are transported back to the warehouse

afterwards. A same set of vehicles is used for both transportation activities and the inventory holding

costs are taken into account when evaluating a solution. A branch-and-bound approach with several lower

bounds and different heuristics are presented. In [Bülbül et al., 2004], authors study a m-machine flow

3

shop earliness/tardiness scheduling problem with intermediate inventory holding costs and ready times.

They propose a heuristic based on the LP relaxation and a Dantzig-Wolfe reformulation that is solved

approximately by column generation. Even if this paper does not take a delivery part into account, it

encompasses most of the production aspect of this paper.

Inventory costs are also important in lot sizing problems where the product demand is known over a

certain number of periods and for each of those periods the quantities to produce and to store must be

determined. In [Neves-Moreira et al., 2019] and [Absi et al., 2015], a production routing problem that

combines a lot-sizing problem and a vehicle routing problem is studied. A meat producer problem where

the production of several types of goods is planned on parallel machines over several periods is addressed

in [Neves-Moreira et al., 2019]. For each period, customers are delivered by vehicles to satisfy daily demand.

Delivery time windows need to be respected and both inventory cost on customer sites and routing costs

need to be minimised. In [Absi et al., 2015], a two-step method is proposed to solve a problem with a single

product. The first step determines the quantities produced, stored and delivered to each customer over the

different periods and the second step determines the delivery routes. In [Absi et al., 2018], a comparison

between a sequential and an integrated approach for the previous problem is presented. The integrated

approach is solved with the state of the art heuristic, while the subproblems of the sequential approaches

are solved optimally. The computational results show that the quality of the approaches strongly depends

on the characteristics of the instance.

In integrated scheduling and routing problems, the customer satisfaction is often expressed with respect

to due dates or time windows. For example, in [Park and Hong, 2009], a deadline must be respected and

a soft due date is used to penalise solutions for which late deliveries occur. Setup costs and setup times

are taken into account during the production as well as routing costs during the delivery. The integrated

problem with a single machine and a set of vehicles to deliver items to customers is solved using a genetic

algorithm. In [Yağmur and Kesen, 2020], the authors proposed a problem where a set of jobs must be

scheduled on a permutation flow-shop and delivered to distant customers by a single vehicle. The objective

is to minimise the travel time and the delivery tardiness. The integrated problem is solved using a genetic

algorithm. In [Wang et al., 2019a], authors also use a set of parallel machines for production. Jobs are

delivered by an homogeneous fleet of vehicles with limited capacity and within a predefined time window.

An uncertain travel time is taken into account and the goal is to maximise the robustness of the solution.

A genetic algorithm is proposed. In [Chang et al., 2014], a solution is evaluated by a fixed vehicle usage

cost, the total travel costs and the delivered service to the customers. The later is defined as the weighted

sum of the job delivery times. An ACO algorithm is proposed to solve this problem with unrelated parallel

machines and a set of vehicles.

Some papers introduce the notion of short life-span constraints for jobs. In a chemotherapy production

4

context, like in [Kergosien et al., 2017], drugs have a short life-span between the production completion

time and the intervention date for the patient. The objective function is to minimise the maximum delivery

tardiness. Drugs are produced on parallel machines and delivered to different sites by a single vehicle.

A Benders decomposition-based heuristic with several cuts, upper and lower bounds is proposed to solve

this problem. Short life-span constraints also occur in home meal delivery services, like in [Dayarian and

Desaulniers, 2019]. The model ensures freshness of delivered product, customers satisfaction using time

window constraints and employees satisfaction. The meal production is modelled as a parallel machine

scheduling problem and deliveries are carried out by a homogeneous fleet of vehicles with limited capacity.

A branch-and-price algorithm and matheuristics are proposed as solution methods. In most of these articles,

the delivery part could assimilate to a simple vehicle routing problem.

The problem treated in this paper is an extension of two studies: [Rohmer and Billaut, 2015] and [Chevro-

ton et al., 2018]. In these two articles, the production part is a permutation flow shop, batches must be

determined and the delivery is ensured by a fleet of vehicles. The objective is to minimize the sum of the

inventory, routing and penalty costs. In [Rohmer and Billaut, 2015], only mixed integer linear programming

models are presented. In [Chevroton et al., 2018], the manufacturer assumes that the third part logistic

provider uses the earliest due date rule to serve his customers and schedules the production and decides the

batching and the vehicle departure dates accordingly. Heuristics are proposed to solve this problem.

3 Problem description and outline of the resolution method

3.1 Problem statement and notations

In the integrated problem that we consider, the production workshop is a permutation flow shop: all the

jobs are executed in the same order on the machines. Once the jobs are completed, they have to be delivered

to customers in predefined batches. Each job is already assigned to a given batch that corresponds to a

given vehicle and there is only one batch per vehicle. We assume that the fleet size is equal to the number

of batches. Each vehicle starts its route at the production site as soon as the last job of its delivery batch is

completed and comes back to the production site once the route is finished. The schedule of the jobs on the

machines and the routing of the vehicles have to be determined.

The n jobs to schedule on m machines M1,M2, ...,Mm are grouped into V batches. We denote by Jv the

set of jobs in batch v and nv = |Jv|, with v ∈ {1, . . . , V }.

The processing time of job j on machine Mi is denoted by pj,i. Furthermore, each job j is characterised

by a due date dj , a unitary tardiness delivery cost πj and a delivery site sj .

We consider inventory costs throughout the entire production process, from the arrival of raw materials

until the departure of the final product. The unitary initial inventory (START) cost hSTARTj represents the

5

storage cost of the raw materials of job j that are not processed yet, i.e. before the start of the processing on

machine M1. The unitary work-in-process inventory (WIP) cost hWIP
j,i represents the storage cost of job j

between its completion time on machine Mi and its starting time on machine Mi+1. The final inventory (FIN)

cost hFINj represents the storage cost of the final product between its completion time and the departure

date of its vehicle for delivery. Finally, we denote by ttj,k and tcj,k with j, k ∈ {0, . . . , n}2 the travel time

and travel cost between site sj and site sk. Note that index 0 represents the production site.

It is well known that finding the production sequence of jobs in a m-machine permutation flow shop

minimizing the makespan (corresponding to the departure date of a vehicle delivering all jobs) is a strongly

NP-hard problem [Garey et al., 1976]. Minimising the routing cost associated to one route is equivalent to

solving a travelling salesman problem which is also known to be NP-hard [Karp, 1975]. Clearly, the problem

that we consider is NP-hard.

3.2 Mixed Integer Linear Program

In this section, we propose an MILP formulation of the problem that we call GLOBALMILP . The decision

variables are the following:

yj,k =

1 if job j is scheduled just before job k

0 otherwise

∀j, k ∈ {0, . . . , n}2 and where job 0 is a dummy representing both the first and the last job.

xv,j,k =

1 if in the route of vehicle v the site sj is visited just before the site sk

0 otherwise

∀v ∈ {1, . . . , V } and ∀j, k ∈ {0} ∪ Jv and where index 0 represents the production site. Cj,i ≥ 0 is the

completion time of job j on machine Mi, ∀j ∈ {1, . . . , n},∀i ∈ {1, . . . ,m}. Gv ≥ 0 is the departure date

of vehicle v, ∀v ∈ {1, . . . , V }. Dj ≥ 0 is the delivery date of job j, ∀j ∈ {1, . . . , n}. Tj ≥ 0 is the delivery

tardiness of job j, ∀j ∈ {1, . . . , n}.

To formulate the objective function we use the following intermediate variables: IC is the total inventory

cost, ICSTART is the total starting inventory cost, ICWIP is the total work-in-process inventory cost and

ICFIN is the total final inventory cost. RC is the total routing cost and PC is the total penalty cost

associated to the delivery tardiness where PCv denotes the part related to batch v.

The expressions of these intermediate variables are the following (notice that some constant elements

could be deleted).

IC = ICSTART + ICWIP + ICFIN (1)

6

IC =

n∑
j=1

(Cj,1 − pj,1)hSTARTj +

n∑
j=1

m−1∑
i=1

(Cj,i+1 − pj,i+1 − Cj,i)hWIP
j,i +

V∑
v=1

∑
j∈Jv

(Gv − Cj,m)hFINj (2)

and

RC =

V∑
v=1

RCv =

V∑
v=1

∑
j∈{0}∪Jv

∑
k∈Jv

tcj,kxv,j,k (3)

PC =

V∑
v=1

PCv =

V∑
v=1

∑
j∈Jv

πjTj (4)

The formulation GLOBALMILP is the following.

Minimise IC +RC + PC (5)

n∑
k=1

yj,k = 1 ∀j ∈ {0, . . . , n} (6)

n∑
j=0

yj,k = 1 ∀k ∈ {0, . . . , n} (7)

pj,1 ≤ Cj,1 ∀j ∈ {1, . . . , n} (8)

Cj,i + pk,i −M(1− yj,k) ≤ Ck,i ∀j, k ∈ {1, . . . , n}2,∀i ∈ {1, . . . ,m} (9)

Cj,i + pj,i+1 ≤ Cj,i+1 ∀j ∈ {1, . . . , n},∀i ∈ {1, . . . ,m− 1} (10)

Cj,m ≤ Gv ∀v ∈ {1, . . . , V },∀j ∈ Jv (11)∑
k∈{0}∪Jv\{j}

xv,j,k = 1 ∀v ∈ {1, . . . , V },∀j ∈ {0} ∪ Jv (12)

∑
j∈{0}∪Jv\{k}

xv,j,k = 1 ∀v ∈ {1, . . . , V },∀k ∈ {0} ∪ Jv (13)

xv,k,j = 0 ∀j, k ∈ {Jv}2 : j < k, ttj,k = 0,∀v ∈ {1, . . . , V } (14)

Gv + tt0,j ≤ Dj ∀j ∈ Jv,∀v ∈ {1, . . . , V } (15)

Dj + ttj,k −M(1− xv,j,k) ≤ Dk ∀j, k ∈ {Jv}2,∀v ∈ {1, . . . , V } (16)

Dj − dj ≤ Tj ∀j ∈ {1, . . . , n} (17)

with M an arbitrary high value.

Constraints (6) ensure that each job (including the dummy first job) has exactly one successor in the

sequence (which might be the dummy last job). Constraints (7) ensure that each job (including the dummy

last job) has exactly one predecessor in the sequence (which might be the dummy first job). Constraints (8),

(9) and (10) give the values of the job completion times, respecting the processing order on the machines

and the disjunctive capacity of the resources. Constraints (11) ensure that a vehicle cannot leave the

production site before the completion of all the jobs in its batch. Constraints (12) ensure that each batch,

each customer site and the production site all have exactly one successor in the delivery sequence (which

7

might be the production site as final point). Constraints (13) ensure that each batch, each customer site and

the production site all have exactly one predecessor in the delivery sequence (which might be the production

site as starting point). Constraints (14) are symmetry breaking constraints that impose that the jobs in a

batch with the same location are delivered in increasing order of their index. Constraints (15) ensure that a

customer cannot be served before the vehicle departure date plus the travel time from the production site to

its location. Constraints (16) give the value to the job delivery dates respecting the travel times between the

different sites. Finally, Constraints (17) determine the tardiness of jobs. We can note that the elimination

of subtours is guarantied by the combination of Constraints (12), (13), (15) and (16).

This model contains O(n2 + V n2
k) binary variables, O(nm) continuous variables and O(n2m + V n2

k)

constraints (including O(n2m+ V n2
k) constraints with an high value).

3.3 Greedy algorithm

In order to present the added value of our methods, a greedy algorithm (GR) is proposed. This algorithm

builds a solution in a way that is close to what a human operator could do. This algorithm considers the

different batches produced one by one as a whole, i.e. all the jobs of a batch are produced successively. The

batches are produced in non-decreasing average delivery date. The jobs inside a batch are scheduled using

the NEH heuristic [Nawaz et al., 1983] and the schedule is left shifted. Afterwards, the deliveries inside a

batch are sequenced following the Nearest Neighbour rule.

3.4 Outline of the resolution method

Remember that two integrated problems have to be solved: the scheduling of the jobs on the permutation

flow shop and the sequencing of the delivery sites for each batch. These problems are linked by the vehicle

departure dates. Changing a departure date may change both the inventory costs and the penalty costs.

The resolution method is a two-step algorithm. In the first step, the min-cost delivery routes are found

for each possible departure date of each batch. The results are aggregated into a set of piecewise linear cost

functions, one for each batch, that we call “delivery cost functions” or DC functions. They are detailed in

Section 4.1 and different methods (exact and heuristic) to build these functions are given in Section 4.2.

Then, Section 5 presents the second step. Both a MILP model (Section 5.1) and a CP model (Section

5.2) including the DC functions are presented. Assuming that the production sequence of jobs is known,

an optimal evaluation function is given by a Linear Programming model presented in Section 5.3. A neigh-

bourhood search method to determine the best possible sequence of jobs is proposed in Section 5.4. Each

sequence is evaluated using the before mentioned function.

8

4 Preprocessing: Delivery cost (DC) functions

In this section we formally define the DC functions and propose some methods to build them.

4.1 Definition

For each batch, we have to evaluate the total cost for all possible departure dates comprised between 0 and

an upperbound T prod, the highest possible departure date of a delivery tour which is equal to the highest

possible completion time of a job. The sum of the routing and the penalty costs (RC + PC) which we will

call the delivery cost, is a function which increases linearly with the departure time.

We denote by DCv the function associated to batch v which gives for each departure date t ∈ {0, . . . , T prod}

the minimal delivery cost. For a particular route, this function is non decreasing and piecewise linear. In-

creasing the departure date increases the penalty costs if there is at least one late delivery. From a certain

departure date on, the optimal route always remains the same and the penalty cost for a job is a linear

function of the tardiness. Considering another route and taking the minimum cost of both also leads to

a piecewise linear function. So the DCv function associated to batch v is also piecewise linear. Figure 1

presents an example of a function profile.

0

DCv(t)

Departure date

tv,1

cv,1

cv,2

αv,0

αv,1

cv,3

αv,2

αv,3

Tprodtv,3tv,2

Figure 1: Routing and penalty cost of batch v

The notations are the following:

- Sv is the number of segments of the piecewise linear function associated to batch v,

- tv,s is the first departure date of batch v associated to segment s (1 ≤ s ≤ Sv),

- cv,s is the delivery cost of batch v for a departure date equal to tv,s,

9

- αv,s is the slope coefficient associated to segment s for batch v. Notice that this slope is equal to the

sum of the unitary penalty costs of the late jobs.

At date tv,s, two possible conditions might impose the creation of a new segment s. Either the same

delivery route is the less costly but when the departure date is equal to tv,s, there is at least one new tardy

job. Or another delivery route becomes less costly for the departure date tv,s. In the first case, the slope

generally increases. In the second case, the slope generally decreases.

We define the function DCv,r as the delivery cost function associated to a route r that delivers all the jobs

of batch v. This piecewise linear function can be obtained by identifying iteratively the inflexion points of

the function and by computing the delivery cost of r for each of these dates. In this way, DCv,r is computed

in O(n log(n)) with n = |Jv|. Afterwards, the DCv functions are determined by a minimum set of routes Rv
defined by: ∀t, DCv(t) = minr∈Rv DCv,r(t) and ∀r ∈ Rv,∃t ∈ {0, . . . , T prod}: DCv,r(t) = DCv(t).

Example: A batch is composed of three jobs a, b and c. Each job has a due date (da = 16, db = 15 and

dc = 22) and a tardiness penalty cost (πa = 1, πb = 3, πc = 3). The production site is denoted by PS. The

travel times are presented in Figure 2. We assume that the travel time and the travel cost are equal. Two

routes are considered: r and r′ with r = (b, a, c) and r′ = (a, c, b). Figure 3 gives the delivery dates of jobs

for each route according to the departure date t = 0.

c

a
PS

b

3

4
5

6

4

8

Figure 2: Distance matrix

t = 0
r •

Db = 5
•

Da = 13
•

Dc = 17
•

DPS = 21

t = 0
r′ •

Da = 3
•

Dc = 7
•

Db = 13
•

DPS = 18

Figure 3: Travel time and routing costs

Figure 4 and Figure 5 represent DCv,r and DCv,r′ functions for t ∈ [0, 16]. For example, for t = 8 the

routing and penalty cost of route r is DCv,r(8) = 35 (tardiness of jobs a and c plus routing cost). Figure 6

represents the result f(t) = min{DCv,r(t),DCv,r′(t)}: for intervals [0, 3] and [9, 16], the route r′ dominates

the route r and for interval [3, 9] the route r dominates the route r′.

4.2 Methods to build DC functions

Several methods can be used to build the DC function for a batch. We start with a mathematical program-

ming model. Afterwards we present the heuristic that we will use as an upper bound in our second exact

10

D
C
v
,r

(t
)

20 -

25 -

30 -

35 -

40 -

45 -

50 -

55 -

60 -

65 -

t0
+

5
+

10
+

15
+

a late

a, c late

a, b, c late

Figure 4: DCv,r(t)

D
C
v
,r
′ (
t)

20 -

25 -

30 -

35 -

40 -

45 -

50 -

55 -

60 -

65 -

t0
+

5
+

10
+

15
+

b late

a, b late

a, b, c late

Figure 5: DCv,r′(t)

m
in

(D
C
v
,r

(t
),

D
C
v
,r
′ (
t)

)

20 -

25 -

30 -

35 -

40 -

45 -

50 -

55 -

60 -

65 -

t0
+

5
+

10
+

15
+

r′

r

r′

Figure 6:

min(DCv,r(t),DCv,r′(t))

algorithm that is detailed at the end of this section and that is inspired by the Branch-and-Bound method.

4.2.1 MILP model to build DC functions

To determine the lowest delivery cost for all possible starting dates t ∈ {0, . . . , T prod} of batch v, we solve

the following MILP model. This model uses some constraints already presented in Section 3 that are limited

to batch v we add Constraints (18) to ensure that batch v is delivered with a departure date equal to t.

Minimise RCv + PCv

(12), (13), (14), (16), (17)

Dj ≥ t+ tt0,j ∀j ∈ Jv (18)

In order to generate the DCv(t) functions, this model is solved for each departure date t in {0, . . . , T prod}

and for each batch v.

11

4.2.2 Heuristic method

Because the DCv functions must be calculated for all batches, we propose a heuristic method that approx-

imates the DCv function within a short computation time. Algorithm 1 describes the main steps of the

heuristic. We denote by DCappv the approximation of the DCv function and by Rappv the corresponding set of

routes, such that: DCappv (t) = minr∈Rappv
DCv,r(t) and ∀r ∈ Rappv ,∃t ∈ {0, . . . , T prod}: DCv,r(t) = DCappv (t).

Algorithm 1

1: Rappv ← Initial route computation()

2: Tabu← ∅

3: while (Rappv \Tabu) 6= ∅ do

4: (t, r)← Route Selection(Rappv \Tabu)

5: {rbest,Rappv } ← Local Search(t, r,Rappv)

6: Tabu← Tabu ∪ rbest
7: end while

8: return Rappv

The first step of Algorithm 1 consists in initializing the set Rappv of routes using the procedure Initial

route computation(). Rappv is initially composed of a single route, obtained by one among the eight following

strategies:

- NN : the Nearest Neighbour first rule (NN rule) [Cover and Hart, 1967].

- NNrev: the reverse sequence of the NN rule.

- NN2,1: the second and the first half of the NN sequence are concatenated.

- NNrev
2,1 : the reverse sequence of NN2,1.

- EDD: the Earliest Due Date first rule.

- EDDrev: the reverse sequence of the EDD rule.

- EDD2,1: the second and the first half of the EDD sequence are concatenated.

- EDDrev
2,1 : the reverse sequence of EDD2,1.

Several possibilities are considered. In the 1-start method only the NN strategy is used, in the 2-start

method, both the NN and the EDD strategy are used and in the 8-start method, all eight strategies are

used. Remark that when we have more strategies, the final solution is obtained by the union of all Rappv

results determined by each strategy.

12

Before improving the routes in Rappv by a local search, an empty tabu list is created. This tabu list will

contain all routes that cannot be improved by the local search. At each iteration of the main loop (lines

3-7), a random route r ∈ Rappv that is not in the tabu list yet is selected and a date t is determined such

that t is the earliest departure from which the associated route r becomes the best route among all routes

in Rappv (i.e. minv DCappv (t) = DCv,r(t)). For route r, date t and set DCappv (t), a local search is launched

in line 5. Building the neighbourhood of a current route with a fixed departure date t consists in moving

one job to another place in the delivery sequence. We move each job to all possible places to obtain the

complete neighbourhood and the route that minimises the delivery cost for departure date t becomes the

next current route. The local search stops when the current route cannot be improved anymore using the

presented neighbourhood. Then, the final route is noted rbest and is added to the tabu list (line 6).

Whenever a neighbour route r′ can improve the current approximation function DCappv , i.e. ∃t ∈

{0, . . . , T prod}: DCappv (t) > DCv,r′(t), the route r′ is added to Rappv . After adding a route in Rappv , a

route r′′ is removed from Rappv if ∀t ∈ {0, . . . , T prod} DCappv (t) < DCv,r′′(t).

The main loop (line 3 to 7) stops when all routes in Rappv are included in the Tabu list (i.e. no route in

Rappv can be improved anymore by the local search).

4.2.3 Branch-and-Bound approach

In the Branch-and-Bound approach, a node of the search tree represents a partial delivery sequence σ of jobs,

associated to a set τ of possible departure dates. For each partial sequence σ, Aσ is the set of remaining jobs.

In the root node σ = ∅ and τ = {0, . . . , T prod}. The initial upper bound is given by the heuristic algorithm

presented in Section 4.2.2 which returns a value UB(t) for any t ∈ {0, . . . , T prod} and the associated sequences

for each t.

The branching consists in selecting the next job to deliver. A child node σ′ is composed of the sequence

of parent node σ and one additional job from Aσ. To determine the associated departure dates τ ′ of σ′,

a lower bound lbσ′(t) on the delivery cost is computed for any t ∈ τ and τ ′ = {t ∈ τ : lbσ′(t) < UB(t)}.

Whenever τ ′ is empty, the node is pruned, because the corresponding partial sequence will never lead to an

improvement of UB(t). A leaf of the tree may be a minimum cost sequence for some t ∈ {0, . . . , T} and in

that case UB(t) is updated. The procedure stops when all the remaining nodes are leaves and UB(t) is the

mincost DC function.

Lower bound computation The lower bound lbσ(t) on the delivery cost for a departure date t is decom-

posed in three parts: lbσ(t) = RPCσ(t) + lbRσ + lbPσ (t) with:

- RPCσ(t) the delivery costs of the partial sequence σ with departure date t,

- lbRσ a lower bound on the routing cost to serve all jobs in Aσ,

13

- lbPσ (t) a lower bound on the penalty cost to serve all jobs in Aσ, when departing at date t.

lbRσ is computed by solving a minimum spanning tree problem on the complete graph GR containing

|Aσ|+ 2 vertices: one vertex per remaining job to deliver, a vertex for the last job in sequence σ and one for

the depot. The values on the edges are equal to the travel costs. Remark that lbRσ does not depend on the

departure date t.

lbPσ (t) is computed using the complete graph GP composed of |Aσ|+1 vertices: one vertex per remaining

job to deliver and a vertex for the last job in sequence σ. The values on the edges are equal to the travel

times. First, the earliest possible delivery dates are computed based on the minimum spanning tree of graph

GP and on Theorem 1. Afterwards, a minimum cost assignment of the jobs to the dates is determined.

Theorem 1. For any path of size s in a graph G, the length of this path is higher than or equal to the sum

of the s smallest edges of the minimum spanning tree of G.

Proof. We define µ as a path of size s in G and A as the set of nodes of µ so |A| = s+ 1. We denote by T ∗

the minimum spanning tree of G and by T ∗A the minimum spanning tree of the subgraph of G induced by A.

The total length of µ cannot be smaller than the total length of T ∗A, because µ is a particular tree of A: it is

connected and without cycles, as T ∗A. Furthermore, the length of T ∗A cannot be smaller than the total length

of the s smallest edges of T ∗, because a tree in A contains at most s edges, which proofs the theorem.

According to Theorem 1, the ith earliest possible delivery date is higher than or equal to the delivery

date of the last job in sequence σ plus the sum of the i smallest travel times in the minimum spanning tree

of GP (noted Dmin
i (t)).

The lower bound lbPσ (t) is given by the optimal objective value of a linear assignment problem with a

|Aσ| × |Aσ| cost matrix U(t) where

uj,i(t) = max{0, πj(Dmin
i (t)− dj)}

with j ∈ Aσ and i ∈ {1, . . . , |Aσ|}.

Theorem 2. lbPσ (t) is a lower bound on the penalty cost to serve all jobs in Aσ.

The proof of Theorem 2 can be found in Section 8 (Appendix).

The Kuhn-Munkres algorithm [Kuhn, 1955,Munkres, 1957] can be used to solve this assignment problem

in polynomial time. Remark that between the computing of the lower bound lbσ(t) and lbσ(t+ 1), only the

cost matrix U(t) of the assignment problem changes, Dmin
i (t+ 1) = Dmin

i (t) + 1. The minimal routing cost

lbRσ and the minimum spanning tree are unchanged.

An example of the lower bound computation is given in Figures 7 and 8. The example is composed of 3

remaining jobs k, l and m with: dk = 5, πk = 1, dl = 9, πl = 2, dm = 11, πm = 3 and a minimum spanning

14

tree as given in Figure 7. The minimal routing cost lbRσ is equal to 7. Supposing that the delivery date t of

the last job in sequence σ is equal to 8, we can calculate Dmin
1 (8) = 8 + 1 = 9, Dmin

2 (8) = 8 + 1 + 2 = 11 and

Dmin
3 (8) = 8 + 1 + 2 + 2 = 13. Moreover, we can calculate all values for uj,i(8) using the above formula. For

example for job k and i = 2, we can calculate uk,2(8) = max{0, πk(Dmin
2 (8)− dk)} = max{0, 1(11− 5)}. All

possible values are represented in Figure 8. To solve the assignment problem, the Kuhn-Munkres algorithm

(see [Kuhn, 1955] and [Munkres, 1957]) applied on the matrix of Figure 8, assigns task k to the third

departure date, task l to the first date and task m to the second and gives a lower bound on the penalty

cost equal to 8 + 0 + 0 = 8.

σ

•m

•

2

•
1

k •2 l •2 PS

Figure 7: Minimum spanning tree

uj,i(8) i = 1 i = 2 i = 3

j = k 4 6 8

j = l 0 4 8

j = m 0 0 6

Figure 8: Assignment matrix

5 Scheduling resolution methods

When the preprocessing step has been performed, the DC functions are known for each batch. The remaining

problem consists in determining the sequence of the jobs. For a given job sequence, we can easily calculate

the job completion times, the inventory cost and the earliest departure time for each batch. And once we

know these departure times, the corresponding delivery costs can be read in the DC functions.

In this section, we first present a new MILP model and a constraint programming model, both using

the DC functions. Then, we present an optimal timing procedure to find the job completion times and the

vehicle departure dates for a fixed sequence. Finally, a neighbourhood search method is proposed to find the

best possible sequence using this optimal timing procedure for evaluation.

5.1 MILP model including DC functions

DCMILP is a new MILP model that is based on GLOBALMILP of Section 3.2 and the DC functions. Let

us remember that a DCv function is defined by Sv segments where tv,s is the first departure date associated

to segment s, ck,s is the penalty and routing costs for a departure date equal to tv,s and αv,s is the slope

coefficient associated to segment s. T prod is the upper bound on the production time.

The decision variables of the DCMILP model are the following: as in GLOBALMILP : yj,k binary

variables ∀j, k ∈ {0, . . . , n}2, Cj,i positive continuous variables ∀j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, Gv positive

15

continuous variables ∀v ∈ {1, . . . , V }.

zv,s =

1 if the departure date Gv of batch v belongs to the sth segment of the DCv function

0 otherwise

∀v ∈ {1, . . . , V },∀s ∈ {1, . . . , Sv}. uv,s ≥ 0, such that uv,s + tv,s is equal to the departure date of the vehicle

associated to batch v if zv,s = 1 (otherwise, uv,s = 0), ∀v ∈ {1, . . . , V }, ∀s ∈ {1, . . . , Sv}.

The model is the following.

Minimize IC +

V∑
v=1

Sv∑
s=1

(zv,scv,s + uv,sαv,s) (19)

s.t. (2), (6), (7), (8), (9), (10), (11)

Gv =

Sv∑
s=1

(zv,stv,s + uv,s) ∀v ∈ {1, . . . , V } (20)

Sv∑
s=1

zv,s = 1 ∀v ∈ {1, . . . , V } (21)

uv,s ≤ zv,s(tv,s+1 − tv,s − 1) ∀v ∈ {1, . . . , V },∀s ∈ {1, . . . , Sv − 1} (22)

uv,Sv ≤ zv,Sv (T prod − tv,Sv) ∀v ∈ {1, . . . , V } (23)

uv,s ≥ 0 ∀v ∈ {1, . . . , V },∀s ∈ {1, . . . , Sv} (24)

zv,s ∈ [0, 1] ∀v ∈ {1, . . . , V },∀s ∈ {1, . . . , Sv} (25)

The objective function (19) remains the same: minimize the sum of the inventory, the routing and the

penalty costs. Constraints (6) to (11) express the scheduling part of the problem. Constraints (20) define

the departure date of batch v, using the information of the DCv function and Constraints (21) to (23) model

the DCv functions in order to obtain the delivery costs for the different departure dates.

This model contains O(n2 + V Sv) binary variables, O(nm + V Sv) continuous variables, O(nm + V Sv)

constraints without big-M and O(n2m) big-M constraints.

5.2 Constraint Programming model using DC functions

The proposed model uses interval variables, interval sequence variables and global constraints. Interval

variables are commonly used to model scheduling problems as they allow to define the start time, the end

time and the processing time of a job in a single decision variable. An interval variable is associated to several

attributes like “size”, “start” and “end” which represent the size, the start time and the completion time of

a job, respectively. An interval sequence variable on a set of interval variables aims to model a total ordering

inside this set of interval variables. This type of variable can be used in global constraints like “noOverlap”

16

or “sameSequence” allowing to have a chain of non-overlapping intervals and to impose identical sequences,

respectively. We refer the reader to [Laborie et al., 2018] for more details.

The decision variables are the following : The interval Ij,i models the processing duration of a job j on

a machine Mi, ∀j ∈ {1, . . . , n}, ∀i ∈ {1, . . . ,m}. The sequence Ψi models the sequence of all intervals Ij,i
on machine Mi, ∀i ∈ {1, . . . ,m}: Ψi = Sequence(

⋃
j∈{1,...,n} Ij,i).

The constraint programming framework allows us to define directly the piecewize linear DCv function

(called “piecewise” function in CSP), based on the set of dates tv,s and the set of slopes αv,s, ∀v ∈ {1, . . . , V }

and ∀s ∈ {1, . . . , Sv}. The objective function becomes:

minRC + PC + IC = min

V∑
v=1

DCv(Gv) +

n∑
j=1

start(Ij,1)hSTARTj

+
n∑
j=1

m−1∑
i=1

(start(Ij,i+1)− pj,i − start(Ij,i))hWIP
j,i

+

V∑
v=1

∑
j∈Jv

(Gv − pj,m − start(Ij,m))hFINj

And the constraints are as follows:

size(Ij,i) = pj,i ∀j ∈ {1, . . . , J},∀i ∈ {1, . . . , I} (26)

end(Ij,i) ≤ start(Ij,i+1) ∀j ∈ {1, . . . , J},∀i ∈ {1, . . . , I − 1} (27)

0 ≤ start(Ij,1) ∀j ∈ {1, . . . , J} (28)

noOverlap(Ψi) ∀i ∈ {1, . . . , I} (29)

sameSequence(Ψ01,Ψi) ∀i ∈ {1, . . . , I} (30)

end(Ij,m) ≤ Gv ∀v ∈ {1, . . . , V },∀j ∈ Jv (31)

Constraints (26) equals the interval size of each job on each machine to the correct processing time.

Constraints (27) ensure the production order of the jobs on the different machines and Constraints (28)

ensure positive starting times. Constraints (29) guaranty the capacity on the different machines. Constraints

(30) ensure that the processing order is the same on all machines. Finally, constraints (31) limit the vehicle

departure date.

5.3 Optimal timing procedure

Whenever the sequence of the jobs is given, (i.e. the yj,k variables of the previous model are fixed), we still

need to compute the optimal completion times of all jobs on each machine and the departure dates of all

17

vehicles. These values can be obtained by solving the following linear programming model where the positive

continuous variables Cj,i are equal to the completion time of the jth job on machine Mi, ∀j ∈ {1, . . . , n},

∀i ∈ {1, . . . ,m}. Without loss of generality, we assume that the jobs in the sequence are numbered from 1

to n.

Minimize IC +RC + PC

s.t. (2), (3), (4), (21), (22), (23), (24), (25)

C1,1 = p1,1 (32)

Cj+1,i ≥ Cj,i + pj+1,i ∀j ∈ {1, . . . , n− 1},∀i ∈ {1, . . . ,m} (33)

Cj,i+1 ≥ Cj,i + pj,i+1 ∀j ∈ {1, . . . , n},∀i ∈ {1, . . . ,m− 1} (34)

Cj,m ≤
Sv∑
s=1

(zv,stv,s + uv,s) ∀v ∈ {1, . . . , V },∀j ∈ Jv (35)

This model is a simplification of the previous model where Constraints (6) to (11) and Constraints (20)

are replaced by Constraints (32) to (35). Constraints (32), (33) and (34) ensure that the sequencing and the

machine capacity is respected. Constraints (35) impose that the departure date of vehicle v is greater than

or equal to the completion times of the jobs in batch v.

In practice, this model can be solved quickly by a solver due to the low number of variables. For this

reason, this model is used to evaluate the schedules found by the neighbourhood search method described

in the next section.

5.4 Neighbourhood search (NS) method

In this section, we propose a neighbourhood search method NS that consists in applying consecutively two

local search methods. The first one works at a “batch-level”: a greedy heuristic determines the order of

the jobs inside each batch. Afterwards, the second local search method acts at “job-level” and improves the

solution by modifying the job sequences inside the different batches. The batch sequence is not changed

anymore at this stage. Both local searches use the optimal timing procedure of Section 5.3 for evaluating

solutions.

5.4.1 First local search

In the first local search method, a solution is represented by a sequence of batches and the jobs inside each

batch are scheduled using the NEH algorithm of [Nawaz et al., 1983] that is summarised in Algorithm 2.

As an initial solution, the batches are sequenced by non-decreasing order of average due date (“ADD”

order) over all jobs inside the batch. The neighbourhood operator consists in moving a batch v from a

18

Algorithm 2 Overview of the NEH algorithm

1: For each job j, calculate Pj =
∑m
i=1 pj,i, the sum of processing times.

2: Create the list LNEH where the jobs are sorted in non-increasing order of Pj

3: S ←− {∅}

4: For i ∈ {1, . . . , n} do :

5: For j ∈ {1, . . . , |S|} do :

6: Evaluate the insertion cost of the ith element of LNEH at the jth position in S

7: Insert the ith element of LNEH at the best position in S

8: return S

position a to a position b in the sequence. To limit the neighbourhood, each batch is moved from its position

a to a position b ∈ {a− λbatch, . . . , a+ λbatch}.

Whenever a better solution is found by moving a batch from a position a to a position b, it becomes the

current solution and the exploration continues according to one of the two following strategies:

- “1” strategy: The exploration continues with current position a and test position b.

- “P” strategy: The exploration continues with current position a = min{a, b} and test position b =

min{a, b} − λbatch to intensify the exploration around each new current solution.

The exploration stops when a = n and b = n− 1.

5.4.2 Second local search

In the second local search method, a solution is represented by a sequence of jobs. As an initial solution, we

take the solution found by the first local search. The neighbourhood operator consists in moving a job from

a position a to a position b in the sequence. To limit the neighbourhood, each job is moved from its position

a to a test position b ∈ {a− λjob, . . . , a+ λjob}. Whenever a better solution is found by moving a job from

a position a to a position b, it becomes the current solution and the exploration continues according to one

of the exploration strategies previously described.

6 Computational experiments

Before presenting the computational experiments that evaluate the performance of the proposed methods, we

describe in Section 6.1 how the random instances are created. The comparison parameters are explained and

motivated in Section 6.2. In Section 6.3, the efficiency of the preprocessing methods proposed to determine

the DC functions is evaluated and in Section 6.4, the results of the NS method to solve the integrated

problem are presented and discussed.

19

All experiments are conducted on an Intel Core i7-7820HQ - CPU 2.90GHz and 16.0 GB of RAM. The

algorithms run on a single thread on a windows system. IBM Ilog Cplex 12.7 is used as a solver and the

algorithms are developed in Visual C++.

6.1 Instance generation

The difficulty of solving an instance is mainly related to the balance between the production part and the

delivery part of the problem. If one part largely dominates the other in terms of costs, focusing the resolution

of the whole problem to this part may be sufficient (even if already NP-hard). We consider these cases as

“easy” in the sense that the resolution of one of the two parts is more important than the other. In order

to deal with “difficult” instances, we define random instances for which the impact of both parts are in the

same order of magnitude.

Three types of instances are created: 1-batch instances (1I), small instances (SI) and large instances (LI).

1-batch instances are only used to test the methods that determine the DC functions in the preprocessing

phase and therefore do not contain any scheduling data. Small and large instances are used to test the

scheduling resolution methods. There are 16, 12 and 6 sets of instances of type 1I, SI and LI respectively.

Each set contains 20 instances. The number of jobs and the batch composition are different for each set of

instances. 1I is generated for a number of jobs n ∈ {5, ..., 20}, SI is generated for n ∈ {5, ..., 10} and LI is

generated for n ∈ {20, 50, 100}. We consider a 2-machine flow shop problem for set SI and a 5-machine flow

shop problem for set LI. For each job j (and each machine Mi), the tardiness delivery cost πj is generated

following a normal distribution with a mean equal to 5 and a standard deviation equal to 2. The inventory

holding costs of each job j are generated so that they increase by 1 or 2 units from one machine to another:

hSTARTj are uniformly random in the range [1, 2], hWIP
j,1 in range hSTARTj +[1, 2], hWIP

j,i in range hWIP
j,i−1+[1, 2]

∀i ∈ {1, . . . ,m− 1} and hFINj in range hWIP
j,m−1 + [1, 2]. The processing time pi,j is randomly chosen between

1 and 10. The different delivery locations are randomly chosen on a square of size SQ× SQ with SQ = 10

and the distance ttj,k between delivery points j and k is determined using the classical Euclidean distance.

For the sake of clarity, we consider the travel cost tcj,k between delivery points j and k equal to the travel

time ttj,k between those points.

The due dates of jobs are randomly chosen between 0 and an upper bound on the last delivery time,

equal to T prod + T tour. T prod = (n + m − 1) × 10, with 10 the maximum processing time of a task and

T tour = (n/|K|)× SQ
√

2, with n/|K| the average number of jobs per batch and with SQ
√

2 the maximum

distance of an edge inside a SQ × SQ square. For all instances of type SI, the jobs are assigned randomly

to one of the two batches. For all instances of type LI, the number of jobs per batch is randomly chosen in

{3, . . . , 7}, with exception of the last batch for which the number of jobs is calculated such that total number

of jobs is correct. Afterwards, jobs are assigned to batches using one of the two following methods:

20

- Unsorted: all jobs are randomly assigned to a batch.

- Sorted: the jobs are sorted according to the earliest due date rule (EDD) and afterwards the batches

are filled one by one corresponding to that sorted list.

Instances created with the Sorted (or Unsorted) method are called sorted instances (unsorted instances).

6.2 Comparison indicators

Before presenting the computational results of the preprocessing methods to determine the DC functions,

we introduce different indicators denoted MI(X), AI(X) and BI(X). The goal of the indicators is to fairly

compare the results of exact and heuristic methods. Each method returns a set Rappv of routes that describes

the DCv function associated to a batch v. We evaluate the different methods on the interval [Tmin, Tmax]

where Tmin represents the latest departure date for which all the jobs are delivered on time regardless of the

route and Tmax corresponds to the earliest departure date for which all the jobs are delivered late regardless

of the route. Notice that, unlike the interval [0, T prod], this interval is independent of the production data. To

have a better estimation of the interval during the experiments, we set Tmin = minj∈{1,...,n}{dj}−n×SQ
√

2

and Tmax = maxj∈{1,...,n}{dj}.

The indicators aim to evaluate a given method X by comparing the DCX function and the DC∗ function

given by the exact Branch-and-Bound algorithm. More precisely, the indicators have to reflect the gap

between the two functions on interval [Tmin, Tmax] that is divided into three sub-intervals: [Tmin, AX],

[AX , BX] and [BX , T
max] with AX the latest date for which the gap is constant on interval [Tmin, AX] and

BX the first date for which the gap is constant on interval [BX , T
max]. Let also define:

- aX : the date of the first change of slope of the DCX function,

- a∗: the date of the first change of slope of the DC∗ function,

- bX : the date of the last change of slope of the DCX function,

- b∗: the date of the last change of slope of the DC∗ function.

Therefore we have AX = min{aX , a∗} and BX = max{bX , b∗}. An illustration of a DC∗ function and a

DCX function on the interval [Tmin, Tmax] is presented in Figure 9.

The main indicator MI(X) measures the difference of the area below the DCX function obtained by

method X and the area below the optimal DC∗ function obtained by the Branch-and-Bound algorithm,

expressed as a percentage. MI(X) is only defined on interval [AX , BX] and can be seen as a relative

deviation between the two curves: A ratio of 0% indicates that the curves are similar and the higher the

21

−∞ +∞
Tmin TmaxaX

•

a∗

•

AX

bX

•

BX

b∗

•

DC∗(t)

DCX(t)

Figure 9: Comparison indicators

ratio the more distant the curves.

MI(X) =

∫ BX
AX

[DCX(t)−DC∗(t)]dt∫ BX
AX

[DC∗(t)]dt

The other two indicators, AI(X) and BI(X) calculate the ratio between the DCX function and the optimal

DC∗ function at departure date AX and BX respectively. Note that the gaps are constant in the intervals

[−∞, AX] and [BX ,∞].

AI(X) =
DCX(AX)

DC∗(AX)
and BI(X) =

DCX(BX)

DC∗(BX)

6.3 Efficiency of the preprocessing methods to determine the DC functions

First we compare the results obtained by the MILP model and the Branch-and-Bound algorithm on the

set of instances 1I. The DC functions are computed for each departure date belonging to the time interval

[Tmin, Tmax]. Both algorithms are interrupted after 3600 seconds. The 8-start strategy is used in the heuristic

algorithm that gives the initial upper bound for the Branch-and-Bound algorithm.

Figure 10 shows the average computation times of the exact methods according to the number of jobs

per batch. The Branch-and-Bound algorithm finds the optimal solution for all instances up to 17 jobs per

batch within the time limit and the instances with up to 13 jobs per batch are solved within one minute.

The MILP resolution with CPLEX can only solve instances with up to 9 jobs per batch within the time limit

and only 85% of the instances with 10 jobs per batch are optimally solved. These results clearly show that

the Branch-and-Bound algorithm outperforms the MIP solver of CPLEX.

Now, we compare the three versions (1-start, 2-start and 8-start strategy) of the heuristic presented in

Section 4.2.2. Figure 11 presents the average computation times for the three versions according to the

22

Figure 10: Average computation times of exact methods

number of jobs per batch. Figure 12, 13 and 14 show the average MI(X), AI(X) and BI(X) indicators of

each version.

In all cases, the quality of the 8-starts method is better than the 2-starts method that is better than the

1-start method. The multi-start strategy allows to obtain better approximated DC functions to the detriment

of the computation time, which is directly proportional to the number of restarts. The heuristics are clearly

faster than the Branch-and-Bound algorithm for large batch sizes and allow to obtain good approximations

of the DC functions. Indeed, the average value of the AI(X) indicator of the 8-starts method remains below

3% whereas the average values of MI(X) and BI(X) are less than 0.4%. We also observe that the values of

AI(X) are greater than the values of BI(X) whatever the heuristic and the number of jobs per batch. The

main reason is that the values of DC∗(AX) are smaller than the values of DC∗(BX). Indeed, the DC∗(AX)

is only due to the routing costs to deliver all jobs on time, whereas the DC∗(BX) depends on both (higher)

routing costs and penalty costs. Therefore, the ratio between DC∗(AX) and DC∗(BX) is 20 for the small

instances and more than 100 for large instances. So, a small deviation from the optimal solution has a higher

impact on AI(X) than on BI(X).

To conclude, the Branch-and-Bound algorithm is efficient to solve instances with up to 12 jobs per batch.

For instances with a larger number of jobs, the 8-starts heuristic is the most effective, but with a higher

computation time.

6.4 Efficiency of the neighbourhood search method

This section presents the parametrisation and the efficiency of the NS method to solve the integrated schedul-

ing and routing problem. The method has three parameters: λbatch, λjob (the neighbourhood size limit of

23

Figure 11: Computation times Figure 12: MI(X) indicator results

Figure 13: AI(X) indicator results Figure 14: BI(X) indicator results

the first and second local search presented in Section 5.4.1 and 5.4.2 respectively) and the exploration strat-

egy noted “1” or “P”. The first results, given in Section 6.4.1, aim to find the optimal parameters for the

instances of type SI and to compare the solution found by the NS method to the optimal solution. The

next results, presented in Section 6.4.2, aim to find the optimal parameters for the instances of type LI.

Because there are up to 8 jobs per batch, we use the Branch-and-Bound method presented in Section 4.2.3

to compute the DC functions needed for the optimal timing procedure.

6.4.1 Small instances and solution quality

For the small instances, the parameters λbatch and λjob of NS do not have a great impact. In order to

have a method that explores the whole neighbourhood, we set λbatch = 2 and λjob = 10. Both strategies of

the local search (“1” and “P”) are tested. The left part of Table 1 summarises the results. The first two

columns indicate the types of instances, each line corresponds to a set of 20 instances. The “Gap NS (%)”

column gives for each strategy the average Gap between the solutions found by the NS method and the

24

optimal solutions: Gap = Z(NS)−Z∗
Z∗ . The “#OPT NS” column gives for each search strategy the number of

instances where the NS method returns an optimal solution.

Whatever the strategy, the NS method finds optimal solutions for a large number of the smaller instances

and near-optimal solutions for the larger instances of SI (average gap around 1%) in short computation times.

The “P” strategy is the most effective but requires a higher computation time in comparison to strategy “1”.

The efficiency of the NS method on small instances is evaluated by comparing the solutions found by the

NS method to the solutions found by the GR algorithm (Section 3.3) on the one hand, and to the optimal

solutions returned by the models DCMILP (Section 5.1) and DCCP (Section 5.2) on the other hand. The

right part of Table 1 summarises the results. The “Gap GR (%)” column gives the average Gap between

solutions found by the GR algorithm and the optimal solutions: Gap = Z(GR)−Z∗
Z∗ . The “CPU MIP” and

“CPU CP” columns indicate the average running time of the DCMILP and the DCCP method, respectively.

The CP model found an optimal solution within 1 hour. However, the MILP model does not find optimal

solutions on instances with more than 1 jobs. The greedy algorithm GR finds feasible solutions for all

instances almost instantaneously, but the average Gap of each set is more than 13.2% and up to 20.0%.

6.4.2 Large instances

This section presents the results of the GR and the NS method on the large-size instances. The exploration

strategies of the NS method are tested for λbatch ∈ {3, . . . , 5} and λjob ∈ {5, . . . , 10}. All possible combina-

tions are tested on the 6 types of 20 instances. However, for 20-job instances, preliminary experiments have

shown that the λbatch parameter has a minor impact because of the low number of batches. Therefore, only

λbatch = 3 is used for instances with 20 jobs.

Figures 15 to 20 present the results of each combination of parameters of the NS method, with one figure

per type of instance. Each figure represents a Cartesian coordinate system where each point corresponds to

a combination of parameters. The coordinates of a point are given by the average computation time and

the average Gap between the solution found the particular combination of parameters and the best solution

found among the 12 combinations.

The computation times clearly increase with the number of jobs. The computation times are between 2

and 9 seconds for instances with 20 jobs whereas they are between 50 and 500 seconds for instances with

100 jobs.

The Gaps also increase with the number of jobs. For example, the GAP for λbatch = 3, λjob = 5 and

“1” search strategy is 1.5% for instances with 20 jobs and up to 3% (8%) for sorted (unsorted) instances

with 100 jobs. The Gap and the computation time widely depend on the local search strategy used. The

“1” strategy allows to obtain shorter computation times but gives most of the time the worst solution while

the “P” strategy always gives the best results but it requires the highest computation time. For sorted and

25

Figure 15: 20 jobs and unsorted instances Figure 16: 20 jobs and sorted instances

Figure 17: 50 jobs and unsorted instances Figure 18: 50 jobs and sorted instances

Figure 19: 100 jobs and unsorted instances Figure 20: 100 jobs and sorted instances

26

Instances Gap NS (%) #OPT NS CPU time (sec) Gap GR CPU MIP CPU CP

n type 1 P 1 P 1 P (%) (sec) (sec)

5
Unsorted 0.0 0.0 20 20 0.4 0.4 13.4 0.2 0.2

Sorted 0.0 0.0 18 18 0.4 0.4 13.6 0.1 0.2

6
Unsorted 0.2 0.0 15 18 0.5 0.7 13.2 0.3 0.4

Sorted 0.4 0.0 15 19 0.5 0.7 14.5 0.1 0.3

7
Unsorted 0.4 0.3 13 17 0.7 1.0 16.9 1.3 0.9

Sorted 0.2 0.0 17 19 0.8 0.9 12.0 0.6 0.9

8
Unsorted 0.5 0.3 11 17 1.1 1.3 19.0 3.3 0.8

Sorted 0.3 0.1 10 17 1.0 1.3 15.4 4.0 0.8

9
Unsorted 0.8 0.3 8 17 1.3 1.8 14.9 18.5 1.2

Sorted 0.6 0.0 7 18 1.2 1.9 14.8 33.0 1.2

10
Unsorted 0.8 0.3 4 12 1.6 2.6 17.1 241.4 2.1

Sorted 1.1 0.1 5 16 1.6 2.7 14.2 430.6 1.9

11
Unsorted 0.6 0.0 6 15 2.1 3.5 19.6 - 4.7

Sorted 1.9 0.9 2 14 2.0 4.0 16.6 - 5.2

12
Unsorted 0.8 0.2 2 13 2.4 5.1 18.5 - 8.4

Sorted 1.4 0.1 5 16 2.4 4.8 16.2 - 5.7

13
Unsorted 1.3 0.3 0 12 2.9 6.4 16.2 - 14.5

Sorted 1.0 0.2 2 14 2.8 5.7 14.6 - 12.1

14
Unsorted 0.9 0.2 2 11 3.3 6.7 14.1 - 31.2

Sorted 1.2 0.3 0 12 3.2 7.2 13.8 - 34.8

15
Unsorted 1.1 0.2 1 12 4.2 9.8 20.0 - 112.2

Sorted 1.5 0.2 0 8 4.2 10.5 18.6 - 165.9

16
Unsorted 1.2 0.2 0 9 4.8 12.0 13.7 - 348.4

Sorted 1.0 0.3 0 6 4.7 11.9 13.2 - 274.7

Table 1: Results on small instances

unsorted instances of 20 jobs, the local search strategy has a bigger impact on the quality of the solution

than the values of λbatch and λjob. The main reason is the structure of these instances (due date uniform

in each batch and few jobs) which is conducive to attractive local optima and implies that a specific local

search always leads to the same results and the other parameters only influence the computation times. For

all instance sizes and all strategies, the computation time of the NS method on unsorted instances is always

higher than the time required to solve sorted instances. The Gaps for unsorted instances are also higher on

average.

For each local search strategy, we can observe that an increase of λbatch from 3 to 5 allows to obtain a

better gain in terms of ratio between the Gap and the computation time compared to an increase of λjob

from 5 to 10. However, as we expected, the combination of λbatch = 5 and λjob = 10 obtains the lowest

Gaps.

27

Finally we can conclude that regarding the quality of the solution, the best combination of parameters is

the P strategy, λbatch = 5 and λjob = 10, but it requires a very large computation time. We can also observe

that the best compromise between computation time and solution quality among the combinations on all

types of instances is the P strategy, with λbatch = 5 and λjob = 5.

Table 2 shows the Gap between the solution found by the GR method and the best solution found by

the NS method with the parameters of the previous best compromise. We can observe that the NS method

outperforms the GR method with a gap of at least 23% and up to 30%.

Number of jobs 20 50 100

type Unsorted Sorted Unsorted Sorted Unsorted Sorted

GR vs NS with (*;λbatch = 5;λjob = 10) -18.7% -15.2% -17.5% -16.2% -17.0% -14.8%

GR vs NS with (P;λbatch = 5;λjob = 5) -30.0% -23.8% -26.4% -25.8% -29.8% -26.8%

Table 2: Gap between GR and NS methods on LI instances

7 Conclusion

In this paper we present an integrated routing and scheduling problem in a specific supply chain context.

The production part is modelled by a permutation flow shop with inventory costs. We assume that the

number of delivery batches and their compositions are known in advance and that each batch is served by

a dedicated vehicle. The delivery part considers routing costs and tardiness penalty costs. The problem is

to find a schedule for the different jobs on the different machines (starting times), and a delivery route for

each vehicle (departure date and sequence) such that the total cost (inventory, routing and penalty costs) is

minimized.

We propose to solve the problem in two steps. The first step is dedicated to the resolution of the routing

part. For each batch and each departure date, the delivery route that minimizes the routing and penalty cost

is determined. The results are aggregated into a set of piecewise linear cost functions, one for each batch.

To generate these functions, we developed both a Branch-and-Bound and a heuristic method. The second

step is dedicated to the resolution of the scheduling part. Two exact methods and one heuristic method are

proposed. The first exact method is based on a MILP model and the second one is based on a CP model.

The heuristic method is based on a neighbourhood search method and uses an optimal timing procedure to

find the optimal starting times for the jobs and the optimal departure dates for the vehicles, given the job

sequence and the piecewise linear cost functions. The computational experiments show that the CP model

provides significantly better results than the MILP model. Once the size of the instances reaches 1 jobs, the

exact methods need too much computation time and the heuristic method is preferred, as it outperforms the

28

greedy algorithm to find good solution in short computation times.

Several research perspectives can be considered. A first interesting extension is to explore the resolution

of a more general problem where the number of delivery batches and their composition is unknown. The

case where the batch composition is known in advance but the number of vehicles is limited can be another

interesting generalisation. Finally, this study deals with an integrated problem where a producer and a

3PL provider take decisions together. In the future, some other scenarios could be modelled and tested, for

example, the scenario where the producer or the 3PL provider takes upstream decisions alone.

References

[Absi et al., 2015] Absi, N., Archetti, C., Dauzère-Pérès, S., and Feillet, D. (2015). A Two-Phase Iterative

Heuristic Approach for the Production Routing Problem. Transportation Science, 49(4):784–795.

[Absi et al., 2018] Absi, N., Archetti, C., Dauzère-Pérès, S., Feillet, D., and Speranza, M. G. (2018). Com-

paring sequential and integrated approaches for the production routing problem. European Journal of

Operational Research, 269(2):633 – 646.

[Amorim et al., 2013] Amorim, P., Belo-Filho, M. A., Toledo, F. M., Almeder, C., and Almada-Lobo, B.

(2013). Lot sizing versus batching in the production and distribution planning of perishable goods. Inter-

national Journal of Production Economics, 146(1):208–218.

[Bülbül et al., 2004] Bülbül, K., Kaminsky, P., and Yano, C. (2004). Flow shop scheduling with earliness,

tardiness, and intermediate inventory holding costs. Naval Research Logistics (NRL), 51(3):407–445.

[Chang et al., 2014] Chang, Y.-C., Li, V. C., and Chiang, C.-J. (2014). An ant colony optimization heuristic

for an integrated production and distribution scheduling problem. Engineering Optimization, 46(4):503–

520.

[Chen, 2010] Chen, Z.-l. (2010). Integrated Production and Outbound Distribution Scheduling: Review and

Extensions. Operations Research, 58(1):130–148.

[Chevroton et al., 2018] Chevroton, H., Billaut, J., and Rohmer, S. (2018). A framework for production and

outbound distribution: manufacturer dominates. International Journal of Computational Engineering

Science (in revision).

[Cover and Hart, 1967] Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans-

actions on Information Theory, 13(1):21–27.

[Dayarian and Desaulniers, 2019] Dayarian, I. and Desaulniers, G. (2019). A branch-price-and-cut algorithm

for a production-routing problem with short-life-span products. Transportation Science, 53(3):829 – 849.

29

[Garey et al., 1976] Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop and

jobshop scheduling. Mathematics of operations research, 1(2):117–129.

[Karp, 1975] Karp, R. M. (1975). On the computational complexity of combinatorial problems. Networks,

5(1):45–68.

[Kergosien et al., 2017] Kergosien, Y., Gendreau, M., and Billaut, J.-C. (2017). Benders decomposition

based heuristic for a production and outbound distribution scheduling problem with strict delivery con-

straints. European Journal of Operational Research, 262(1):287–298.

[Koç et al., 2017] Koç, U., Toptal, A., and Sabuncuoglu, I. (2017). Coordination of inbound and outbound

transportation schedules with the production schedule. Computers & Industrial Engineering, 103:178–192.

[Kuhn, 1955] Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1-2):83–97.

[Laborie et al., 2018] Laborie, P., Rogerie, J., Shaw, P., and Viĺım, P. (2018). IBM ILOG CP optimizer for

scheduling. Constraints, 23(2):210–250.

[Moons et al., 2017] Moons, S., Ramaekers, K., Caris, A., and Arda, Y. (2017). Integrating production

scheduling and vehicle routing decisions at the operational decision level: A review and discussion. Com-

puters & Industrial Engineering, 104:224–245.

[Munkres, 1957] Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal

of the Society for Industrial and Applied Mathematics, 5(1):32–38.

[Nawaz et al., 1983] Nawaz, M., Enscore, E. E., and Ham, I. (1983). A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11(1):91–95.

[Neves-Moreira et al., 2019] Neves-Moreira, F., Almada-Lobo, B., Cordeau, J.-F., Guimarães, L., and Jans,

R. (2019). Solving a large multi-product production-routing problem with delivery time windows. Omega,

86:154–172.

[Park and Hong, 2009] Park, Y. B. and Hong, S. C. (2009). Integrated production and distribution plan-

ning for single-period inventory products. International Journal of Computer Integrated Manufacturing,

22(5):443–457.

[Rohmer and Billaut, 2015] Rohmer, S. and Billaut, J.-C. (2015). Production and outbound distribution

scheduling: a two-agent approach. In 2015 International Conference on Industrial Engineering and Sys-

tems Management (IESM), pages 135–144. IEEE.

30

[Ruiz and Stützle, 2008] Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence

dependent setup times flowshop problem with makespan and weighted tardiness objectives. European

Journal of Operational Research, 187(3):1143 – 1159.

[Scholz-Reiter et al., 2010] Scholz-Reiter, B., Frazzon, E. M., and Makuschewitz, T. (2010). Integrating

manufacturing and logistic systems along global supply chains. CIRP Journal of Manufacturing Science

and Technology, 2(3):216–223.

[Wang et al., 2019a] Wang, D., Zhu, J., Wei, X., Cheng, T., Yin, Y., and Wang, Y. (2019a). Integrated

production and multiple trips vehicle routing with time windows and uncertain travel times. Computers

& Operations Research, 103:1–12.

[Wang et al., 2019b] Wang, S., Wu, R., Chu, F., and Yu, J. (2019b). Variable neighborhood search-based

methods for integrated hybrid flow shop scheduling with distribution. Soft Computing, 24.

[Yağmur and Kesen, 2020] Yağmur, E. and Kesen, S. E. (2020). A memetic algorithm for joint production

and distribution scheduling with due dates. Computers & Industrial Engineering, 142.

31

8 Appendix

Proof of Theorem 2

We remember the notations:

- Aσ: the set of index of remaining jobs to deliver after the sequence σ,

- jσ: the last job of the sequence σ,

- πj and dj are respectively the unitary penalty cost and the due date of job j,

- Dmin
k (t): the kth earliest possible delivery date after delivering all jobs of sequence σ and from a

departure date t.

We denote by τOPT (t) the delivery sequence for all jobs j ∈ Aσ delivered after jσ, from a departure

date t, that minimizes the total penalty cost (and τOPTk (t) represents the job index in Aσ of the kth element

of this sequence). Let zOPTAσ
(t) be the optimal penalty cost that can be obtained from the jobs of Aσ, for

departure date t. We have:

zOPTAσ (t) =

|Aσ|∑
k=1

max
(

0, πj(D
OPT
k (t)− dj)

)
with j = τOPTk (t)

and with DOPT
k (t) the delivery date of the kth job in sequence τOPT (t).

lbPσ (t) is equal to the optimal solution value of a min-cost assignment problem AP with a |Aσ| × |Aσ|

cost matrix U(t) = (uj,k(t))j,k where uj,k(t) = max(0, πj(D
min
k (t)− dj)), ∀j ∈ Aσ,∀k ∈ {1, . . . , |Aσ|}.

We want to prove that lbPσ (t) is a lower bound of zOPTAσ
(t):

Theorem 2.

lbPσ (t) ≤ zOPTAσ (t),∀σ, ∀t ∈ {0, . . . , T}

Proof. Let us define a second min-cost assignment problem APOPT (t) with a |Aσ|×|Aσ| cost matrix UOPT (t)

where uOPTj,k (t) = max(0, πj(D
OPT
k (t)− dj)), ∀j ∈ Aσ,∀k ∈ {1, . . . , |Aσ|}.

A solution X of APOPT (t) represents an assignment of the remaining jobs to the delivery dates DOPT
k (t).

We denote by fOPTt (X) the objective function value of a solution X to the assignment problem APOPT (t).

The solution XOPT given by the assignment of the optimal solution τOPT is a feasible solution of the

problem APOPT (t) and:

zOPTAσ (t) =fOPTt (XOPT) =
∑

(j,k)∈XOPT
uOPTj,k (t) (36)

32

Because Dmin
k (t) ≤ DOPT

k (t) we have uj,k(t) ≤ uOPTj,k (t), ∀k ∈ {1, . . . , |Aσ|} and ∀j ∈ τOPT (t).

Since any feasible solution X of AP is a feasible solution of APOPT , thus :∑
(i,k)∈X

ui,k(t) ≤
∑

(i,k)∈X

uOPTi,k (t)

ft(X) ≤ fOPTt (X) where ft(X) is the objective function value of AP (37)

lbPσ (t) ≤ ft(X) since lbPσ (t) is the optimal solution value of AP

lbPσ (t) ≤ fOPTt (X) according to (37)

lbPσ (t) ≤ fOPTt (XOPT) = zOPTAσ (t) according to (36)

Theorem 2 is proved.

33

