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Let ω be a weight function defined on a locally compact group G, 1 p < +∞, S ⊂ G and let us assume that for any s ∈ S, the left translation operator Ts is continuous from the weighted L p -space L p (G, ω) into itself. For a given set Γ ⊂ C, a vector f ∈ L p (G, ω) is said to be (Γ, S)-dense if the set {λTsf : λ ∈ Γ, s ∈ S} is dense in L p (G, ω). In this paper, we characterize the existence of (Γ, S)-dense vectors in L p (G, ω) in terms of the weight and the set Γ.

Introduction

Let G be a locally compact group with a left Haar measure µ, and let ω : G → R + be a weight on G, that is, a positive locally p-integrable function. Consider now the weighted L p -space, 1 p < +∞: For s ∈ G, the left translation operator T s is defined by

L p (G, ω) := f : G → C : f measurable, G |f (t)| p ω(t) p dµ(t) < ∞
(T s f )(t) = f (s -1 t), t ∈ G, f ∈ L p (G, ω).
It is known that T s maps L p (G, ω) into itself and is bounded if and only if M (s) := ess sup t∈G ω(st) ω(t) < +∞, and M (s) is equal to the norm of T s in this case. Let S be a subset of G. We say that ω is an S-admissible weight if, for all s ∈ S, M (s) < +∞. In this case the following notion makes sense: A function f ∈ L p (G, ω) is called S-dense if its S-orbit Orb S (f ) := {T s f : s ∈ S} is dense in L p (G, ω).

Whether S-dense functions exist, depends on S and on the weight. The first criterion of the existence of S-dense functions in this context was obtained by H. Salas in [START_REF] Salas | Hypercyclic weighted shifts[END_REF]: In the case G = Z and S = N, a necessary and sufficient condition is lim inf{ω(n + q) + ω(-n + q) : n ∈ N} = 0 for all q ∈ N, independently of p.

In [START_REF] Abakumov | Density of translates in weighted L p spaces on locally compact groups[END_REF], E. Abakumov and Y. Kuznetsova gave an S-density criterion in the case of a general group G and its subset S. The (necessary and sufficient) condition involves series of local p-norms of ω, similar to that of Theorem A below, and is in general not simplifiable. In the case when the subgroup generated by S is abelian, the condition simplifies to the following: For every compact set F ⊂ G and any given δ > 0, there exists s ∈ S and a compact set K ⊂ F such that µ(F \ K) < δ and ess sup sK∪s -1 K ω < δ. This is a generalization of the result of Salas, as well as that of W. Desch et al. [START_REF] Desch | Hypercyclic and chaotic semigroups of linear operators[END_REF] (G = R, S = R \ R + ) and C-C. Chen [START_REF] Chen | Hypercyclic weighted translations generated by non-torsion elements[END_REF] (a single translation operator T s0 on L p (G, ω)).

An interesting necessary condition for the existence of an S-dense vector is that G needs to be second-countable, that is, to have a countable base of topology [1, Proposition 3], which is equivalent to saying that L p (G, ω) is separable (Recall that S and thus the orbit of f need not be countable).

If S is the sub-semigroup generated by a single point s 0 ∈ G, then S-density is equivalent to the hypercyclicity of T s0 . Recall that an operator T defined on a Banach space X into itself is hypercyclic, if there exists x ∈ X such that the orbit of x, i.e., Orb(x, T ) := {T n x : n ∈ N} is dense in X. The result of Salas [START_REF] Salas | Hypercyclic weighted shifts[END_REF] is thus a criterion of hypercyclicity of the backward shift operator on L p (Z, ω). We refer to [START_REF] Bayart | Dynamics of linear operators[END_REF][START_REF] Grosse-Erdmann | Universal families and hypercyclic operators[END_REF][START_REF] Grosse-Erdmann | Linear Chaos[END_REF] for more information about hypercyclicity and universality.

A bounded linear operator T on a Banach space X is said to be supercyclic if there exists a vector x ∈ X whose projective orbit, i.e., Orb(Cx, T ) := {λT n x : λ ∈ C, n ∈ N} is dense in X. A characterization of supercyclicity of weighted shift operators was also obtained by Salas in [START_REF] Salas | Supercyclicity and weighted shifts[END_REF], while M. Matsui et al. [START_REF] Matsui | Supercyclic and chaotic translation semigroups[END_REF] characterized the supercyclicity of one-parameter translation semigroups. Moreover, if S is the sub-semigroup generated by s 0 ∈ G, then a characterization of supercyclicity of T s0 was also obtained by C-C. Chen [START_REF] Chen | Supercyclic and cesaro hypercyclic weighted transaltions on groups[END_REF].

For Γ ⊂ C, Γ-supercyclicity is a recent intermediate notion between hypercyclicity and supercyclicity introduced in [START_REF] Charpentier | Γ-supercyclicity[END_REF]. An operator T defined on a Banach space X is Γ-supercyclic if there exists x ∈ X such that the orbit of Γx, i.e., Orb(Γx, T ) := {λT n x : λ ∈ Γ, n ∈ N} is dense in X. Instead of a single operator, one can consider a family of translation operators parametrized by a subset S ⊂ G. On this way we come to the following definition, which can be regarded as Γ-supercyclicity of a family of translates: Definition 1.1. We say that f ∈ L p (G, ω) is (Γ, S)-dense in L p (G, ω) if its (Γ, S)orbit, i.e., Orb S (Γf ) := {λT s f : λ ∈ Γ, s ∈ S}, is dense in L p (G, ω).

We have clearly a chain of implications:

S-density ⇒ (Γ, S)-density ⇒ (C, S)-density.

In particular, if Γ is reduced to a non-zero point, then S-density coincides with (Γ, S)-density. Furthermore, if S is the sub-semigroup generated by s 0 ∈ G, then (Γ, S)-density coincides with Γ-supercyclicity of T s0 .

Besides the case of a trivial group G = {e}, the group must be non-compact second-countable in order to have (Γ, S)-dense vectors for some p, ω, S, Γ. This is proved in Section 2. Under the above assumptions on the group, we get the following density criterion extending the results of [START_REF] Abakumov | Density of translates in weighted L p spaces on locally compact groups[END_REF]. Denote, for a measurable function f on G and a subset K of G,

f p,K := K |f (t)| p dµ(t) 1/p . Theorem A. Let G be a second-countable locally compact non-compact group. Let S ⊂ G, 1
p < +∞, Γ ⊂ C be such that Γ \ {0} is non-empty, and let ω be a locally p-integrable S-admissible weight on G. Then the following conditions are equivalent:

(1) There is a (Γ, S)-dense vector in L p (G, ω).

(2) For every increasing sequence of compact subsets (F n ) n 1 of G of positive measure and for every sequence (δ n ) n 1 of positive numbers, there are sequences

(s n ) n 1 ⊂ S, (λ n ) n 1 ⊂ Γ \ {0} and a sequence of compact subsets K n ⊂ F n such that the sets s -1 n F n are pairwise disjoint, µ(F n \ K n ) < δ n and n,k 0;n =k |λ n | p |λ k | p ω p p,sns -1 k K k < +∞,
with s 0 = e being the identity, λ 0 = 1 and K 0 = ∅.

This theorem is stated again, with yet another equivalent condition, and proved in Section 4.

In [START_REF] Shkarin | On the spectrum of frequently hypercyclic operators[END_REF], S. Shkarin proved the equivalence of R + -supercyclicity and supercyclicity. By Theorem A, we obtain the following generalization of this result as a corollary: Corollary 1.2. Let |Γ| denote the set {|λ| : λ ∈ Γ}. L p (G, ω) has a (Γ, S)-dense vector if and only if it has a (|Γ|, S)-dense vector. In particular, L p (G, ω) has an (R + , S)-dense vector if and only if it has a (C, S)-dense vector.

Let T be an operator on a Banach space X. If Γ ⊂ C is such that Γ \ {0} is non-empty, bounded and bounded away from zero, we know that T is Γ-supercyclic if and only if T is hypercyclic [START_REF] Charpentier | Γ-supercyclicity[END_REF]. Here we have the following similar result for a family of translation operators: Corollary 1.3. If Γ \ {0} is bounded and bounded away from zero, then L p (G, ω) has an S-dense vector if and only if it has a (Γ, S)-dense vector.

If Γ is unbounded or zero is its limit point, then L p (G, ω) may have a (Γ, S)-dense vector, but no S-dense vectors, see Example 4.3.

If the subgroup generated by S is abelian, Theorem A simplifies to the following, under the same assumptions on p, G, S, Γ and ω as in Theorem A:

Theorem B. If the subgroup generated by S is abelian, then the following conditions are equivalent:

(1) There is a (Γ, S)-dense vector in L p (G, ω).

(2) For any compact subset F ⊂ G and ε > 0, there are s ∈ S, λ ∈ Γ \ {0} and a compact subset E ⊂ F such that µ(F \ E) < ε and

|λ|ess sup t∈E ω(st) < ε and 1 |λ| ess sup t∈E ω(s -1 t) < ε.
For the proof of Theorem B, with an additional equivalent condition, see Section 6. It is worth mentioning that the condition (2) above does not depend on p, but we need the usual assumption of local p-summability of ω which does depend on p.

In the case where Γ is equal to one of these sets: the complex plane, [0, 1], [1, +∞[, or a set which is bounded and bounded away from zero, we get a complete characterization of (Γ, S)-density only in terms of the weight, see Corollary 6.2.

And finally, in the case when all translations are bounded (and not only by s ∈ S), the criterion is as follows:

Proposition 1.4. Let G be abelian and let ω be a continuous G-admissible weight. Then there is a (Γ, S)-dense vector in L p (G, ω) if and only if there exist two sequences

(s n ) n 1 ⊂ S and (λ n ) n 1 ⊂ Γ \ {0} such that lim n→+∞ max |λ n |ω(s n ) ; 1 |λ n | ω(s -1 n ) = 0.
Proposition 1.4 is a consequence of Proposition 5.4 below when G is abelian. In the case where G is abelian, and Γ is equal to one the particular mentioned above sets, we get a complete characterization of (Γ, S)-density only in terms of the weight, see Corollary 5.5.

Restrictions on the group

It has been shown in [START_REF] Abakumov | Density of translates in weighted L p spaces on locally compact groups[END_REF] that S-dense vectors can exist in L p (G, ω) only if G is non-compact second-countable. For (Γ, S)-density, the restrictions are the same, even if the proofs have to be changed.

In this section and further on we denote by χ K the characteristic function of a set K, and by e the identity of G.

Lemma 2.1. Let X be a non-separable Banach space and let 0 < M < 1. Then there exist an uncountable set {x α } α∈I ⊂ X of norm 1 vectors such that for all α 1 , ..., α n ∈ I and c 1 , ..., c n ∈ C \ {0},

n i=1 c i x αi > M min{|c i | : 1 i n}.
Proof. This is an easy application of Zorn's lemma and Riesz's lemma: note that Proof. This fact is not new, and proved for example in [START_REF] Tam | On measures with separable orbit[END_REF] for p = 1. Since it is not stated for p > 1 up to our knowledge, we include a proof here. It is known [START_REF] Hewitt | Abstract harmonic analysis[END_REF]Theorem 20.4] that the map τ : s → T s f is continuous, from G to L p (G) with the norm topology. Since G is a countable union of compact sets, the same holds for τ (G) = Orb G (f ). This is in addition a metric space, which implies that it is separable.

n i=1 c i x αi |c k |dist(x α k , span{x αi : k = i ∈ {1, . . . ,
Theorem 2.3. If for some p, S, and ω there exists a (C, S)-dense vector in L p (G, ω), then G is second-countable which is equivalent to saying that L p (G, ω) is separable.

Proof. Let us prove first that G is σ-compact, which is a strictly weaker condition. Suppose that f is a (C, S)-dense vector in L p (G, ω) for some p, ω and S. It is known that f can be assumed to vanish outside a σ-compact set [START_REF] Hewitt | Abstract harmonic analysis[END_REF]Theorem 11.40], so that the support of f is contained in an open σ-compact subgroup H of G.

Suppose now that G is not σ-compact, then H = G. Pick g ∈ G \ H. Let U ⊂ H be a compact symmetric neighbourhood of identity. There exist γ ∈ C and s ∈ S such that χ U + χ gU -γT s f p,ω < min( χ U p,ω , χ gU p,ω ). But this is only possible if the support of T s f intersects both H and gH, which is false by the choice of H.

This shows that from now on, we can assume that G is σ-compact. According to [18, Theorem 2], we have G is second-countable if and only if L p (G) is separable, and the same is valid for L p (G, ω) since this space is isometrically isomorphic to L p (G).

Suppose that L p (G, ω) is not separable but f ∈ L p (G, ω) is a (C, S)-dense vector. According to Lemma 2.1, there exists an uncountable set {g α } α∈I ⊂ L p (G, ω) such that g α p,ω = 1 for all α and n i=1 c i g αi p,ω > 9 10 min{|c i | : 1 i n} for all α 1 , ..., α n ∈ I and c 1 , ..., c n ∈ C \ {0}. For all α ∈ I, we can approximate g α so that g αλ α T sα f p,ω < 1 10 , with s α ∈ S and λ α ∈ C \ {0}. We can choose δ > 0 so that the set J = {α ∈ I : δ < |λ α | < 2δ} is uncountable. Now for every α, β ∈ J we have

λ -1 α g α -T sα f p,ω < 1 10|λ α | < 1 10δ
, and

T sα f -T s β f p,ω 1 λ α g α - 1 λ β g β p,ω - 1 5δ 9 10 min{ 1 |λ α | , 1 |λ β | } - 1 5δ > 1 4δ .
We will show next that the set J allows to find a function in L p (G) with a nonseparable orbit, which contradicts Lemma 2.2 and will prove the theorem. For every α ∈ I, we have

T sα f p p,ω = lim N →+∞ {x:ω(x) N } |T sα f (x)| p ω(x) p dµ(x)
so that there exists

N α ∈ N such that {x:ω(x)>Nα} |T sα f (x)| p ω(x) p dx < (16δ) -1 .
There is N ∈ N and an uncountable set J 0 ⊂ J such that N α = N for every α ∈ J 0 . Moreover, there exists C > 0 and an uncountable set J 1 ⊂ J 0 such that T sα C for every α ∈ J 1 .

Next, for every ε > 0 the function

f ε (x) = f (x)χ {ω ε} (x) is in L p (G). Pick ε > 0 such that f ε -f p,ω < (32Cδ) -1 .
We have now for α, β ∈ J 1 :

T sα f ε -T s β f ε p 1 N χ ω N • T sα f ε -T s β f ε p,ω 1 N T sα f -T s β f p,ω -χ ω>N • T sα f -T s β f p,ω -χ ω N • T sα (f ε -f ) -T s β (f ε -f ) p,ω 1 N 1 4δ - 2 16δ -T sα (f ε -f ) p,ω -T s β (f ε -f ) p,ω 1 N 1 8δ -2C f ε -f p,ω > 1 16δN > 0.
This means that the S-orbit of f ε is nonseparable in L p (G). This is the expected contradiction, which proves the theorem.

Proposition 2.4. If G is a nontrivial compact group, then the space L p (G, ω) has no (Γ, S)-dense vectors for any Γ, ω, S, p.

Proof. Suppose that L p (G, ω) has a (Γ, S)-dense vector f . If G is finite, then Orb S (Γf ) is contained in the finite union ∪{CT g f : g ∈ G} of one-dimensional lines, which cannot be dense in L p (G, ω) unless G = {e}. We suppose therefore that G is infinite. Scale the Haar measure so that µ

(G) = 1. Fix ε ∈ (0, 1/12). There is δ > 0 such that µ(E δ ) > 1 -ε where E δ = {t ∈ G : ω(t) > δ}. There exist s 1 ∈ S and γ 1 ∈ Γ such that χ G -γ 1 T s1 f p,ω < εδ. Then δ p ε p > E δ δ p |1 -γ 1 f (s -1 1 t)| p dµ(t), so that s -1 1 E δ |1 -γ 1 f (t)| p dµ(t) < ε p .
Since G is infinite, µ has no atoms. We know that G is second-countable, thus e has a countable base of neighbourhoods (U n ) and one can assume them decreasing; there exists U n with µ(U n ) < ε. By compactness, G is covered by a finite number of translates of U n (all of the same measure < ε); picking a sufficient number of them, one can form a set

E ⊂ G such that 1/2 -ε < µ(E) < 1/2 + ε. Let now s 2 ∈ S, γ 2 ∈ Γ be such that χ G\E -γ 2 T s2 f p,ω < δε. As above, this implies δ p ε p > E δ ∩E δ p |γ 2 | p |f (s -1 2 t)| p dµ(t), so that s -1 2 (E δ ∩E) |γ 2 f (t)| p dµ(t) < ε p , and 
s -1 2 (E δ \E) |1 -γ 2 f (t)| p dµ(t) < ε p . Denote A = s -1 1 E δ , B = s -1 2 (E δ ∩ E), C = s -1 2 (E δ \ E). Now µ(A ∩ B) 1-µ(G\A)-µ(G\B) > 1-ε-1/2-2ε = 1/2-3ε, and similarly µ(A∩C) 1/2-3ε.
At the same time (the norms below are unweighted),

µ(A ∩ B) 1/p = χ A∩B p χ A∩B γ 1 f p + χ A∩B (1 -γ 1 f ) p < |γ 1 | |γ 2 | ε + ε, so if we denote z = γ 1 /γ 2 then ε|z| > (1/2 -3ε) 1/p -ε 1/2 -4ε > 1/
6 by the choice of ε and |z| > 1/(6ε). In particular, |z| > 2. On the other hand,

µ(A ∩ C) 1/p 1 - γ 1 γ 2 = χ A∩C 1 - γ 1 γ 2 p χ A∩C (1 -γ 1 f ) p + χ A∩C γ 1 γ 2 (1 -γ 2 f ) p < ε + |γ 1 | |γ 2 | ε, whence similarly |1 -z|/4 < ε(1 + |z|) and |z| < 1 + 4ε(1 + |z|) which implies |z| < (1+4ε)/(1-4ε
). This is however incompatible with |z| > 2. This contradiction proves the proposition.

Continuity of translations

The condition for the translation operator T s to be continuous was given in the introduction. The question of continuity of the map S → L p (G, ω), s → T s f for fixed f is more delicate.

Let C c (G) denote the space of continuous functions on G with compact support. On this space, no problem occurs. In a standard way (similarly to [START_REF] Hewitt | Abstract harmonic analysis[END_REF]Theorem (20.4)], using uniform continuity of f and local p-summability of ω), one proves the following Proposition 3.1. Let G be a locally compact group, 1 p < +∞, and let ω be a G-admissible weight on G. Then for every f ∈ C c (G) the map

G -→ L p (G, ω) s -→ T s f is continuous.
If ω is a G-admissible weight (all translations are bounded), the map in question is still continuous for any f ∈ L p (G, ω): Theorem 3.2. Let G be a locally compact group, 1 p < +∞, and let ω be a G-admissible weight on G. Then for every f ∈ L p (G, ω) the map Theorem 2.7] that every G-admissible locally summable weight ω is equivalent to a continuous weight ω, in the sense that there exists C > 0 such that 1/C ω(t)/ω(t) C for all t ∈ G. For ω locally p-summable the same is true of course. We can thus assume that ω is continuous.

G -→ L p (G, ω) s -→ T s f is continuous. Proof. It is known [8,
Set M (s) := sup t∈G ω(st) ω(t) for every s ∈ G. According to [7, Proposition 1.16], M (s) is locally bounded on G. Fix f ∈ L p (G, ω). Let s 0 ∈ G and ε > 0. Since G is locally compact, there exists an open neighborhood W of e whose closure is compact. Let δ > 0 such that T s0 + 1 + sup s∈s0W M (s) δ < ε.
Since ω is continuous, the space C c (G) is dense in L p (G, ω), hence, there exists φ ∈ C c (G) such that fφ p,ω < δ. By Proposition 3.1, there exists a symmetric open neighborhood U of e whose closure is compact such that

T s0 φ -T s φ p,ω < δ for every s ∈ s 0 U. Let V = U ∩ W , then V is an open neighborhood of e. Fix s ∈ s 0 V . Thus T s0 φ -T s φ p,ω < δ and T s φ -T s f p,ω < δ sup s∈s0W M (s). Hence T s0 f -T s f p,ω T s0 f -T s0 φ p,ω + T s0 φ -T s φ p,ω + T s φ -T s f p,ω < ( T s0 + 1 + sup s∈s0W M (s))δ < ε.
With a weight as above, it is not difficult to show the following "non-compactness" of translations, necessary in the sequel:

Proposition 3.3. Let G be a locally compact non-trivial group, S ⊂ G, 1 p < +∞, and let Γ ⊂ C be such that Γ \ {0} is non-empty. If ω is a G-admissible weight on G and f ∈ L p (G, ω) is a (Γ, S)-dense vector, then for every compact set K ⊂ G, f is also a (Γ, S \ K)-dense vector in L p (G, ω).
Proof. As pointed out above, we can assume that ω is continuous. Since G is not a finite group, L p (G, ω) is infinite-dimensional. By Theorem 3.2, the set {T s f : s ∈ K} is compact in L p (G, ω), thus the set C{T s f : s ∈ K} is nowhere dense. Hence

L p (G, ω) = int Orb S (Γf ) \ C{T s f : s ∈ K} = int Orb (S\K) (Γf ),
which implies that f is a (Γ, S \ K)-dense vector in L p (G, ω).

However, if translations T s are bounded only for s in a subset S ⊂ G, then the translation map s → T s f may be discontinuous on S. This explains the need of the long Lemma 3.5 below.

In the following example, we construct a continuous weight on R, prove first that it is R + -admissible, and then exhibit a function

f ∈ L p (R, ω) such that T s f → f = T 0 f as s → 0. Example 3.4. Set G = R, S = R + and a n = n! for n 2. Define the weight as ω(t) :=                      1 if t 0 or t ∈ [a n-1 + 1, a n -n], n 3 2 t-(an-n) if t ∈ [a n -n, a n -1] 2 n-1 if t ∈ [a n -1, a n -1/2] 1 + (2 n -2)(a n -t) if t ∈ [a n -1/2, a n ] 1 + (2 n -1)2 n (t -a n ) if t ∈ [a n , a n + 2 -n ] 1 t -a n if t ∈ [a n + 2 -n , a n + 1]
This weight is thus equal to 1 at a n and "far from" any a n ; around a n , it has two peaks: one on the left, with the maximum value 2 n-1 taken on a whole segment [a n -1, a n -1/2], and another on the right, with the maximum 2 n taken in a n +2 -n . It is clear that ω is continuous.

Claim 1. ω is an R + -admissible weight.

Proof. Set

M (s) = sup t∈R ω(s + t) ω(t) .
Suppose that 0 < s < 1/2, and let n be such that 2 -n-1 < s 2 -n . Clearly

M (s) ω(a n + s) ω(a n ) = 1 + (2 2n -2 n )s 2 2n-1 s 1 8s .
Let us show that in fact M (s) 2/s. To estimate M (s), let us consider all possible cases for t ∈ R.

• If t a n+1 -(n + 1), then ω(t) and ω(t + s) are between 1 and 2 n , so that their ratio is bounded by 2 n .

• If t ∈ [a m -m, a m -1 -s] for m > n, then ω(t + s) ω(t) = 2 s 2. • If t ∈ [a m -1 -s, a m -1/2] for m > n, then ω(t + s) ω(t) 2 m-1 2 m-1-s = 2 s 2. • If t ∈ [a m -1/2, a m -s] for m > n, then ω(t + s) ω(t) and ω(t + s) ω(t) 1. • If t ∈ [a m -s, a m + 2 -m -s] for m > n, denote u = a m -t. We have u ∈ [s -2 -m , s],
and

ω(t + s) ω(t) = 1 + (2 m -1)2 m (t + s -a m ) 1 + (2 m -2)(a m -t) = 1 + (2 m -1)2 m (s -u) 1 + (2 m -2)u =: P (u). P is a decreasing function of u on [s -2 -m , s], hence ω(t + s) ω(t) P (s -2 -m ) = 2 m 2 m s -2s + 2 -m+1 2 m (2 m -2)s 1 2s
.

• If t ∈ [a m -s + 2 -m , a m ] for m > n, denote again u = a m -t. We have u ∈ [0, s -2 -m ],
and

ω(t + s) ω(t) = 1 [1 + (2 m -2)(a m -t)](t + s -a m ) = 1 Q(u) ,
where

Q(u) := (1 + (2 m -2)u)(s -u).
It is easy to see that Q is a concave function, and thus its minimum on any segment is attained at one of its ends. On [0, s -2 -m ], we have Q(0) = s and

Q(s -2 -m ) = s + 2 1-2m -2 1-m s (1 -2 1-m )s s 2 ,
as we suppose m > n 1. It follows that

ω(t + s) ω(t) = 1 Q(u) 2 s . • If t ∈ [a m , a m + 2 -m ] with m > n, denote u = t -a m ∈ [0, 2 -m ]. We have ω(t + s) ω(t) = 1 (t + s -a m )(1 + (2 m -1)2 m (t -a m )) = R(u),
where R(u)

:= 1 (s + u)((2 2m -2 m )u + 1) . Then R is decreasing on [0, 2 -m ], hence ω(t + s) ω(t) R(0) = 1 s . • If t ∈ [a m + 2 -m , a m + 1], then ω(t + s) ω(t).
Taking maximum of these estimates, we arrive at M (s) 2 s .

Being finite on [0, 1/2) and submultiplicative (i.e., M (s

+ s ′ ) M (s)M (s ′ )), M is finite on [0, ∞) so that ω is an R + -admissible weight. One can verify that M (s) < ∞ exactly when s ∈ R + : if s -1, then M (s) sup n 2 ω(a n + 2 -n ) ω(a n + 2 -n + |s|) sup n 2 2 n = +∞, and if -1 < s < 0 then M (s) sup n:2 -n 1-|s| ω(a n + 2 -n ) ω(a n + 2 -n + |s|) = sup n:2 -n 1-|s| 2 n (2 -n + |s|) = +∞. Claim 2. There exists f ∈ L p (R, ω) such that f -T s f p,ω → 0, s → 0. Proof. Set f = ∞ k=2 χ [a k -2 -k ,a k ]
. Check first that its p, ω-norm is finite:

f p p,ω = ∞ k=2 a k a k -2 -k 1 + (2 k -2)(a k -t) p dt ∞ k=2 2 -k (1 + (2 k -2)2 -k ) p < ∞. If s = 2 -n , 2 n ∈ N, then T s f = ∞ k=2 χ [a k -2 -k +2 -n ,a k +2 -n ]
; it equals 1 on [a n , a n + 2 -n ] while f vanishes (almost everywhere) on this segment. Thus

f -T s f p p,ω an+2 -n an ω(t) p dt = an+2 -n an 1 + (2 n -1)2 n (t -a n ) p dt 2 p(n-1)+pn 2 -n 0 t p dt = 1 (p + 1)2 p 2 2pn 2 -n(p+1) = 1 (p + 1)2 p 2 n(p-1)
which is constant if p = 1 and tends to infinity as n → ∞ if p > 1.

The following lemma will be used in the proof of Theorem A. Lemma 3.5. Let G be a locally compact non-compact group, S ⊂ G, 1 p < +∞, and ω an S-admissible weight. Let f be a (Γ, S)-dense vector in L p (G, ω). Then for every compact set K ⊂ G of positive measure, any ε > 0, λ ∈ C \ {0} and every compact set L ⊂ G there are γ ∈ Γ, s ∈ S \ L such that

γT s f -λχ K p,ω < ε.
Proof. We can scale the Haar measure if necessary to have µ(K) = 1. There is clearly C > 0 such that for

K C := {t ∈ K : ω(t) > 1/C} we have µ(K C ) > 3 4 .
Increasing L if necessary, we can suppose that e ∈ L = L -1 . We can also take ε > 0 small enough to guarantee 4ε < λχ K p,ω and 2Cε < |λ|. Suppose the contrary, that is, λχ K -γT s f p,ω ε for every γ ∈ Γ, s ∈ S \ L.

Let us prove the following

Claim. There exists M > 0 such that for all γ ∈ Γ and s ∈ S satisfying λχ K -γT s f p,ω < ε, we have s ∈ L and |γ| > ξ with ξ := M -1 (|λ| -2 1/p Cε) > 0.

Proof of the claim. There exists M > 0 such that the set

X M = {t ∈ LK : |f (t)| > M } has measure less than 1 10 µ(K C ). Let γ ∈ Γ and s ∈ S be such that λχ K - γT s f p,ω < ε.
By assumption we have s ∈ L and

ε p > λχ K -γT s f p p,ω KC |λ -γf (s -1 t)| p ω(t) p dµ(t) C -p KC |λ -γf (s -1 t)| p dµ(t) C -p (s -1 KC )\XM |λ -γf (t)| p dµ(t). If |γ|M < |λ|, then ε p C -p (s -1 KC )\XM (|λ| -|γ|M ) p dµ(t) > C -p (|λ| -|γ|M ) p (µ(K C ) -µ(X M )) > 9µ(K C ) 10C p (|λ| -|γ|M ) p > 1 2C p (|λ| -|γ|M ) p , which implies |γ| > M -1 (|λ| -2 1/p Cε) =: ξ > 0 If |γ|M |λ| then also |γ| > ξ, since ξ < |λ| M .
The set LK is compact, so its measure is finite; pick N ∈ N with µ(LK) < N/2. Set r := max{1, χ K p,ω } and λ j = λ + jε/2N r, j = 0, ..., N -1.

For j = 0, ..., N -1 we choose δ j > 0, γ j ∈ Γ, s j ∈ S such that

λ j χ K -γ j T sj f p,ω < δ j .
The choice of δ j is specified later, but it will be less than ε/4. Since

λχ K -γ j T sj f p,ω < δ j + |λ -λ j | χ K p,ω < δ j + ε 2 < ε,
by the claim we have s j ∈ L and |γ j | > ξ. Moreover, we have

KC |λ j -γ j f (s -1 j t)| p dµ(t) < C p KC ω(t) p |λ j -γ j f (s -1 j t)| p dµ(t) C p λ j χ K -γ j T sj f p p,ω < C p δ p j . Set K j := {t ∈ K C : |λ j -γ j f (s -1 j t)| 4 1/p δ j C}. By trivial estimates, C p δ p j > Kj |λ j -γ j f (s -1 j t)| p dµ(t) 4C p δ p j µ(K j ), so that µ(K j ) < 1 4 .
For t ∈ K ′ j := s -1 j (K C \ K j ) we have the estimate

|f (t) - λ j γ j | < 4 1/p C δ j |γ j | < 4 1/p C δ j ξ and µ(K ′ j ) µ(K C ) -µ(K j ) > 1 2
. The aim is to choose δ j so that these sets are pairwise disjoint. For this, it is sufficient to choose δ j so that the disks B j := {z ∈ C : |zλ j /γ j | < 4 1/p Cδ j /ξ} are pairwise disjoint. Suppose by induction that this is done for k < j. Set δ j = min{δ k : k < j}. If B j ∩ (∪ k<j B k ) = ∅, then we are done. If not, divide δ j by 2 and pick γ j ∈ Γ, s j ∈ S accordingly. If we still have B j ∩ (∪ k<j B k ) = ∅, continue in the same way. Either we arrive at an empty intersection on some step -in this case we can pass to the next j -or we continue infinitely and get a sequence γ j,n ∈ Γ, s j,n ∈ S such that λ j χ K -γ j,n T sj,n f p,ω → 0 as n → ∞. According to the Claim, we have s j,n ∈ L and |γ j,n | > ξ, so that

s -1 j,n (G\K) |f (t)| p ω(s j,n t) p dµ(t) = G\K |(T sj,n f )(t)| p ω(t) p dµ(t) λ j γ j,n χ K -(T sj,n f )(t) p p,ω 1 ξ λ j χ K -γ j,n T sj,n f p,ω → 0. Since G \ LK ⊂ s -1 j,n (G \ K), we have G\LK |f (t)| p ω(s j,n t) p dµ(t) → 0 as n → ∞. (1) 
This is an exercise to show that (1) implies f ≡ 0 on G \ LK. [ If not, there is a compact set F ⊂ G \ LK of positive measure and δ > 0 such that |f | δ on F . Recall that s j,n ∈ L for every j, n. Pick δ 1 > 0 such that the set D = {t ∈ LF :

ω(t) δ 1 } has measure µ(D) < 1 10 µ(F ). Now F |f (t)| p ω(s j,n t) p dµ(t) F \s -1 j,n D δ p δ p 1 dµ(t) δ p δ p 1 µ(F ) -µ(D) > 9 10 δ p δ p 1 µ(F )
and cannot tend to 0.] But now it is easy to show that f cannot be (Γ, S)-dense. Indeed, let g ∈ G be such that LKK -1 g ∩ LKK -1 = ∅. For every s ∈ G we have then either s -1 K ∩ LK = ∅ or s -1 gK ∩ LK = ∅. In the first case, T s f vanishes on K, and in the second case, on gK. For all γ ∈ Γ and s ∈ S, we have then This shows that the choice of required δ j is always possible, yielding the pairwise

χ K + χ gK -γT s f p p,ω K |1 -γ(T s f )(t)| p ω p (t) dµ(t) + gK |1 -γ(T s f )(t)| p ω p (t)
disjoint sets K ′ j . It follows that µ(∪K ′ j ) > N 2 > µ(LK), in particular, ∪K ′ j LK.
But by assumption, we have K ′ j ⊂ s -1 j K ⊂ LK for every j. This contradiction proves the lemma. Remark 3.6. This lemma implies that in case of existence of (Γ, S)-dense vectors, not only G cannot be compact, but also S cannot be contained in a compact subset of a non-compact group G.

Proof of Theorem A

From now on, we assume the following. Definition 4.1. We say that (G, S, p, ω, Γ) is an admissible tuple if G is a secondcountable locally compact non-compact group, S ⊂ G, 1 p < +∞, Γ ⊂ C is such that Γ \ {0} is non-empty, and ω is a locally p-integrable S-admissible weight on G.

Theorem A. If (G, S, p, ω, Γ) is admissible, the following conditions are equivalent:

(1) There is a (Γ, S)-dense vector in L p (G, ω).

(2) For every increasing sequence of compact subsets (F n ) n 1 of G of positive measure and for every sequence (δ n ) n 1 of positive numbers, there are sequences

(s n ) n 1 ⊂ S, (λ n ) n 1 ⊂ Γ \ {0} and a sequence of compact subsets K n ⊂ F n such that the sets s -1 n F n are pairwise disjoint, µ(F n \ K n ) < δ n and n,k 0;n =k |λ n | p |λ k | p ω p p,sns -1 k K k < +∞,
with s 0 = e, λ 0 = 1 and K 0 = ∅. (3) For every N 1, there exist N vectors {f 1 , ..., f N } ⊂ L p (G, ω) such that the set {λ(T s f 1 , ..., T s f N ) : λ ∈ Γ, s ∈ S} is dense in the direct sum of N copies of L p (G, ω).

Proof of Theorem A. Firstly, it is clear that (3) ⇒ (1). Let us show that (1) ⇒ (2). Assume that s 0 = e, λ 0 = 1 and K 0 = ∅. We can suppose that the sequence (δ n ) n 1 is decreasing with k 1 δ k < +∞ and δ k < µ(F k ). For each k 1, there exist a compact set

F ′ k ⊂ F k and 0 < c k < 1 4 such that µ(F k \ F ′ k ) < δ k 2 and ess inf t∈F ′ k ω(t) c k , ess sup t∈F ′ k ω(t) c -1 k . (2) 
Let f ∈ L p (G, ω) be a (Γ, S)-dense vector. According to Lemma 3.5, there exist two sequences (

s k ) k 1 ⊂ S and (λ k ) k 1 ⊂ Γ \ {0} such that, for each k 1, we have 2χ F ′ k -λ k T s k f p p,ω < c 2p k δ k , (3) 
and s -1 k F k ∩ s -1 j F j = ∅ for every 1 j < k. By (2) and (3), we get

c 2p k δ k > F ′ k |λ k (T s k f )(t) -2| p ω(t) p dµ(t) c p k F ′ k |λ k (T s k f )(t) -2| p dµ(t), that is λ k T s k f -2χ F ′ k p p,F ′ k < c p k δ k < δ k 4 p < δ k . Set K ′ k := {t ∈ F ′ k : |λ k f (s -1 k t)| > 1}. It follows that δ k 4 > c p k δ k > F ′ k \K ′ k |2 -λ k f (s -1 k t)| p dµ(t) µ(F ′ k \ K ′ k ),
There exists a compact subset

K k ⊂ K ′ k such that µ(K ′ k \ K k ) < δ k 4 .
According to the above estimates, we get µ(

F k \ K k ) < δ k . Moreover, k>0 1 |λ k | p ω p p,s -1 k K k k s -1 k K k ω(t) p |f (t)| p dµ(t) f p p,ω < +∞. (4) 
Fix n 1. Note that, for every k = n and t ∈ s n s

-1 k K k , we have t ∈ G \ K ′ n and |λ k (T sn f )(t)| > 1. Moreover, the sets s n s -1 k K k are pairwise disjoint. Hence k,k =n |λ n | p |λ k | p ω p p,sns -1 k K k k,k =n sns -1 k K k ω(t) p |λ n (T sn f )(t)| p dµ(t) G\K ′ n ω(t) p |λ n (T sn f )(t)| p dµ(t) c -p n F ′ n \K ′ n |λ n (T sn f )(t)| p dµ(t) + G\F ′ n ω(t) p |2χ F ′ n -λ n (T sn f )(t)| p dµ(t) c -p n µ(F ′ n \ K ′ n ) + 2χ F ′ n -λ n T sn f p p,ω < δ n + c 2p n δ n < 2δ n . (5) 
According to (4) and ( 5) and since n 1 δ n < +∞, we obtain that the series in the condition (2) of Theorem A converges.

(2) ⇒ (3). Without loss of generality we can assume that N = 2. Since L p (G, ω) is separable, there exists a countable sequence {(p n , q n ) : n 1} ⊂ K(G) × K(G) dense in L p (G, ω)×L p (G, ω) (where K(G) is the set of essentially bounded functions on G with compact support). Let {(g n , h n ) : n 1} be a sequence composed by the terms (p n , q n ) so that each term appears infinitely many times.

Set

F n := ∪ n k=1 S k where S k := supp g k ∪supp h k and α n := max { g n p ∞ , h n p ∞ }. Let also (δ ′
n ) be a decreasing sequence such that 0 < δ ′ n < α -1 n 2 -n . Since ω p p,Fn < +∞ for every n 1, there exists a positive decreasing sequence (r n ) n 1 such that

ω p p,E < δ ′ n for every E ⊂ F n satisfying µ(E) < r n . Set δ n = min(r n ; δ ′ n ) > 0. By assumption, there exist (s n ) n 1 ⊂ S, (λ n ) n 1 ⊂ Γ \ {0}, and K n ⊂ F n such that the sets s -1 n F n are pairwise disjoint, µ(F n \ K n ) < δ n and k 0 a k < +∞ where a k = n;n =k |λ n | p |λ k | p ω p p,sns -1 k K k
with s 0 = e, λ 0 = 1 and K 0 = ∅. Hence a k -→ k→+∞ 0, thus there exists a subsequence

(a l k ) k 0 of (a k ) k 0 (with l 0 = 0, l k k) such that k 1 α k a l k < +∞.
We can also choose l k so that the pair (g l k , h l k ) is the same as (g k , h k ) for every k 1. We then have

n,k;n =k α k |µ n | p |µ k | p ω p p,tnt -1 k E k < +∞ ( 6 
)
where t n = s ln , µ n = λ ln and E k = K l k . Moreover, the sets t -1 n E n are pairwise disjoint, and for every n 1, µ(S n \ E n ) µ(F ln \ K ln ) < δ ln δ n . So, the series

f 1 := k 0 1 µ k T t -1 k (g k χ E k ) and f 2 =: k 0 1 µ k T t -1 k (h k χ E k ),
are convergent. Indeed, according to (6), we get

f 1 p p,ω k 1 |µ k | p t -1 k E k ω(t) p |g k (t k t)| p dt k α k 1 |µ k | p ω p p,t -1 k E k < +∞.
Similarly, one can check that f 2 p p,ω < ∞. To finish the proof, we have to show that µ n (T tn f 1 , T tn f 2 ) -(g n , h n ) -→ n→+∞ 0. Note that, for any n 1 and i = j such that i, j = n, we have

t n t -1 i E i ∩ t n t -1 j E j = ∅ and E n ∩ t n t -1 i E i = ∅. Now, for n 1, we have µ n T tn f 1 -g n p p,ω = k,k =n |µ n | p |µ k | p T tnt -1 k (g k χ E k ) p p,ω + g n (χ En -1) p p,ω k,k =n |µ n | p |µ k | p g k p ∞ ω p p,tnt -1 k E k + g n p ∞ ω p p,supp(gn)\En k,k =n |µ n | p |µ k | p α k ω p p,tnt -1 k E k + α n δ ′ ln ε n + 2 -n ,
where

ε n := k;k =n |µ n | p |µ k | p α k ω p p,tnt -1 k E k . Similarly, µ n T tn f 2 -h n p p,ω
ε n + 2 -n . By (6), we get ε n → 0. Hence,

µ n T tn f 1 -g n p,ω + µ n T tn f 2 -h n p,ω 2(2 -n + ε n ) 1/p -→ n→+∞ 0. Remark 4.2.
If G is a countable discrete group, then in condition (2) of Theorem A we can suppose that the set K n is equal to F n .

The (Γ, S)-density condition, for Γ unbounded or unbounded away from zero, is strictly weaker than just S-density, as can be seen on the following example.

Example 4.3. Let G = Z, let S = (n k ) n 1 be a strictly increasing sequence of positive integers, let 1 p < +∞ and let Γ ⊂ C be such that Γ \ {0} is non-empty. Suppose that one of the following conditions holds:

(1) Γ is unbounded and

ω(n) = 2 -n if n 0 1 if n 0 .
(2) 0 is a limit point of Γ and

ω(n) = 1 if n 0 2 n if n 0 .
Then ω is a Z-admissible weight such that L p (Z, ω) has a (Γ, S)-dense vector, but has no S-dense vectors.

Proof. We prove the case (1) only, and the case ( 2) is proved similarly. It is clear that ω is Z-admissible. Since inf n∈N max(ω n , ω -n ) = 1 = 0, it follows from [1, Corollary 13] that L p (Z, ω) has no S-dense vector. Let us show that the condition (2) of Theorem A holds. Let (F n ) n 1 be an increasing sequence of finite sets of Z. For every n ∈ N, set D n := max{t : t ∈ F n }, d n := min{t : t ∈ F n }, s 0 = 0, λ 0 = 1 and F 0 = ∅. We denote by card(F ) the cardinality of a set F . By induction, we construct a subsequence (s n ) n 1 ⊂ S and a sequence (

λ n ) n 1 ⊂ Γ \ {0} such that for every k = 0, 1, ..., n -1, (1) 
|λ k | p |λ n | p card(F n ) < 1 2 n (this choice of λ n is possible since Γ is unbounded); (2) D n + s k -d k < s n ; (3) |λ n | p |λ k | p card(F n ) ω(d n + s n -s k ) p < 1 2 n (when choosing s n , both (2) and (3) can be satisfied since ω(n) → 0 as n → +∞). It is clear that condition (2) implies that (F k -s k ) ∩ (F n -s n ) = ∅ for every k < n.
Since ω is decreasing and bounded by 1, F k ⊂ F n for every k < n, we have

n,k 0;n =k |λ n | p |λ k | p ω p p,F k +sn-s k = n 0 k =n |λ n | p |λ k | p t∈F k ω(t + s n -s k ) p n 0 k<n |λ n | p |λ k | p t∈Fn ω(t + s n -s k ) p + k>n |λ n | p |λ k | p card(F k ) n 0 k<n |λ n | p |λ k | p card(F n ) ω(d n + s n -s k ) p + k>n |λ n | p |λ k | p card(F k ) < n 0 0 k<n 1 2 n + k>n 1 2 k (by (1) and (3) 
) = n 0 n 2 n + 1 2 n < +∞.
This proves that L p (Z, ω) has a (Γ, S)-dense vector.

Sufficient conditions

The condition of Theorem A is universal, but sometimes difficult to check. It is therefore convenient to have simpler sufficient conditions, even if they are more restrictive. We make on G, S, p, Γ, ω the same assumptions as in Section 4, see Definition 4.1.

Theorem 5.1. Suppose that (G, S, p, ω, Γ) is an admissible tuple. If for every compact subset K of G and for all ε, δ > 0, there exist s ∈ S , λ ∈ Γ \ {0} and a compact subset E ⊂ K such that µ(K \ E) < δ and |λ| ess sup sE ω < ε and 1 |λ| ess sup

s -1 E ω < ε, then L p (G, ω) has a (Γ, S)-dense vector.
We could of course state the theorem just with one parameter ε, implying δ = ε, and get an equivalent statement. For the proof, we need the following lemma. Lemma 5.2. Fix a compact set L ⊂ G. Under the assumptions of Theorem 5.1, s can in addition be chosen outside of L.

Proof. Let K, L be two compact subsets of G. Assume, towards a contradiction, that for some ε, δ > 0 the assumptions of Theorem 5.1 are only satisfied if s ∈ S ∩L. This implies in particular that µ(K) > 0, otherwise E = ∅ and any s ∈ S \ L will do (by Lemma 3.5, S cannot be contained in L). We can clearly decrease δ as to have 0 < δ < µ(K).

Let E 0 ⊂ K, s 0 ∈ S ∩ L and λ 0 ∈ Γ \ {0} satisfy the assumptions of the theorem with ε, δ > 0. Set

t 0 := s 0 if |λ 0 | 1 s -1 0 if |λ 0 | < 1 . Then ess sup t0E0 ω < ε and µ(E 0 ) > µ(K) -δ = δ 1 > 0. There is next a compact subset K 1 ⊂ E 0 such that µ(E 0 \ K 1 ) < δ 1 9 and ε 1 := ess inf t0K1 ω > 0.
By induction, we can choose for n 0 sequences E n , K n of compact sets,

s n ∈ S ∩ L, λ n ∈ Γ \ {0}, ε n > 0 (with K 0 := K and ε 0 := ε) as follows. For a given n 1, one chooses first E n , λ n , s n such that E n ⊂ K n , µ(K n \ E n ) < δ 1 9 n , |λ n | ess sup snEn ω < ε n , 1 |λ n | ess sup s -1 n En ω < ε n .
Setting

t n := s n if |λ n | 1 s -1 n if |λ n | < 1 ,
we have then ess sup

tnEn ω < ε n . (7) 
Now we choose K n+1 so that

K n+1 ⊂ E n , µ(E n \ K n+1 ) < δ 1 9 n+1 , ε n+1 := ess inf tnKn+1 ω > 0. ( 8 
)
Setting D n = t n E n , as in the proof of [1, Theorem 8], we first note that

µ(D n ) = µ(E n ) > µ(K n ) - δ 1 9 n > µ(E n-1 ) - 2δ 1 9 n , so that by induction µ(D n ) > µ(E 0 ) - n k=1 2δ 1 9 k > 3 4 δ 1 .
Next, the estimates ( 7) and ( 8) imply that µ(t n K n+1 ∩ t k E k ) = 0 for any k > n, so that up to a null set,

D n ∩ D k = t n E n ∩ t k E k ⊂ t n E n \ (t n K n+1 ),
and

µ k>n (D n ∩ D k ) µ t n E n \ (t n K n+1 ) < δ 1 9 n+1 . It follows that µ k<n (D n ∩ D k ) k<n δ 1 9 k+1 < δ 1 8 ,
and as a consequence

µ n N D n N n=1 µ D n \ k<n D k N n=1 µ(D n ) -µ k<n (D n ∩ D k ) > N n=1 [ 3 4 δ 1 - 1 8 δ 1 ] = 5N 8 δ 1 . But now µ(LE 0 ∪ L -1 E 0 ) µ(∪ ∞ k=1 D k ) = +∞, which is impossible since LE 0 ∪ L -1 E 0 is compact. Proof of Theorem 5.1. For K ⊂ G, denote ess sup K ω by ω ∞,K . Let us show that condition (2) of Theorem A holds. Let (F n ) n 1 be
an increasing sequence of compact sets of positive measure and let (δ n ) n 1 be a sequence of positive numbers.

We can assume that δ 1 < 1 2 , δ n < µ(F n ) and δ n+1 < δ n 2 for every n 1. Set F 0 = ∅, s 0 = e and λ 0 = 1. By induction, we choose sequences (s n ) n 1 ⊂ S and (λ n ) n 1 ⊂ Γ \ {0} as follows. If s k , λ k are chosen for k = 0, . . . , n -1, set

E n := ( k<n s k F n ) ∪ ( k<n F k ∪ s -1 k F k ) and C n := max k<n T s k 1. Choose ε n > 0 so that ε p n µ(E n ) max(n, C p n ) < 2 -n . There exist a compact set E ′ n ⊂ E n and s n ∈ S, λ n ∈ Γ such that µ(E n \ E ′ n ) < δ n 2 , |λ n | ω ∞,snE ′ n < ε n min k<n |λ k | and 1 |λ n | ω ∞,s -1 n E ′ n < ε n max k<n |λ k | .
Moreover, by Lemma 5.2 we can choose s n such that s

-1 n F n ∩ s -1 k F k = ∅ for every k < n. Set now K 0 = ∅ and K n = F n ∩ E ′ n ∩ s n (∩ k>n E ′ k ) for every n 1.
For fixed n 1, we have F n ⊂ E n and for every k > n, F n ⊂ s n E k , thus

µ(F n \ K n ) µ(E n \ E ′ n ) + µ(∪ k>n s n E k \ s n E ′ k ) k n µ(E k \ E ′ k ) < k n δ k 2 < k n δ n 2 k-n+1 = δ n .
Since the sets s -1 n F n are pairwise disjoint and s -1 k K k ⊂ E ′ n for every k < n, we have 

n,k 0;n =k |λ n | p |λ k | p ω p p,sns -1 k K k n k<n |λ n | p |λ k | p ω p p,sns -1 k K k + k>n T sn p |λ n | p |λ k | p ω p p,s -1 k K k n n |λ n | p min k<n |λ k | p ω p p,snE ′ n + k>n T sn p |λ n | p |λ k | p ω p p,s -1 k E ′ k < n n |λ n | p min k<n |λ k | p ω p ∞,snE ′ n µ(E ′ n ) + k>n C p k |λ n | p |λ k | p ω p ∞,s -1 k E ′ k µ(E ′ k ) n n ε p n µ(E ′ n ) + k>n C p k ε p k µ(E ′ k ) < n 1 2 n + k>n 1 2 k < +∞.

Then the following conditions are equivalent:

(1) There exists a (Γ, S)-dense vector in L p (G, ω).

(2) For every compact set K ⊂ G, there exist sequences (s n ) n 1 ⊂ S and

(λ n ) n 1 ⊂ Γ \ {0} such that lim n→+∞ |λ n | sup t∈K ω(s n t) = 0 and lim n→+∞ 1 |λ n | sup t∈K ω(s -1 n t) = 0.
(3) There exist sequences

(s n ) n 1 ⊂ S and (λ n ) n 1 ⊂ Γ \ {0} such that lim n→+∞ |λ n | ω(s n ) = 0 and lim n→+∞ 1 |λ n | ω(s -1 n ) = 0.
Proof. Note that M or R being finite implies already that ω can be chosen continuous [START_REF] Feichtinger | Gewichtsfunktionen auf lokalkompakten Gruppen[END_REF]Theorem 2.7], so that we can assume it from the beginning. It is clear that (2) ⇒ (3). By Theorem 5. 

In particular, for every n

1 we have µ(K n ∩ K 1 ) > µ(F ) 2 . Let C > 0 be such that M (s -1 1 ) C and R| K -1 1 ∪K -1 1 s1 C. Then ω(s n ) = inf t∈s -1 1 K1 ω(s n tt -1 ) C inf t∈s -1 1 K1 ω(s n t) C ω p,sns -1 1 K1 µ(K 1 ) -1/p and ω(s -1 n ) = inf t∈K1∩Kn ω(s -1 1 s 1 s -1 n tt -1 ) C 2 inf t∈K1∩Kn ω(s 1 s -1 n t) C 2 ω p,s1s -1 n Kn µ(K 1 ∩ K n ) -1/p < 2C 2 µ(F ) -1/p ω p,s1s -1 n Kn .
Combining the last inequalities with (9), we obtain

max{|λ n |ω(s n ) ; 1 |λ n | ω(s -1 n )} -→ n→+∞ 0.
We can now easily obtain the following corollary, which provides for several types of Γ a complete characterization of (Γ, S)-density only in terms of the weight. Proof. In view of Proposition 5.4, the case (1) is easy to check. Suppose that the condition on ω in (2) holds. For every k 1 there exists s k ∈ S such that

ω(s k )ω(s -1 k ) 1 k 2 and ω(s -1 k ) 1 k 2 . If we set λ k = k ω(s -1 k ) then 0 λ k 1 k 1 and λ k ω(s k ) = k ω(s k )ω(s -1 k ) 1 k , 1 λ k ω(s -1 k ) = 1 k .
Thanks to Proposition 5.4, L p (G, ω) has a ([0, 1], S)-dense vector. The converse follows easily from Proposition 5.4. The proof of (3) is similar. For (4), by Proposition 5.4, the condition on ω is necessary. Assume now that inf s∈S ω(s) ω(s -1 ) = 0.

For every k 1 there exists s k ∈ S such that

ω(s k )ω(s -1 k ) 1 k 2 . Set λ k = ω(s -1 k ) 1/2 ω(s k ) -1/2 , then λ k ω(s k ) = ω(s -1 k ) 1/2 ω(s k ) 1/2 1 k -→ k→∞ 0 and 1 λ k ω(s -1 k ) = ω(s -1 k ) 1/2 ω(s k ) 1/2 1 k -→ k→∞ 0,
so that by Proposition 5.4, L p (G, ω) has a (C, S)-dense vector.

The following example shows that we do need all translations bounded to have the equivalence (4) in Corollary 5.5. The following weight is S-admissible, but not G-admissible.

Example 5.6. Let G = Z, S = Z \ N and let ω be the weight defined on G by

ω n = 2 2 n if n 0 2 -2 -n+1 if n < 0 .
Then, we have 

Commutative subgroups

We keep the same assumptions on G, S, p, Γ, ω as before, see Definition 4.1. If the subgroup generated by S is abelian, Theorem B below shows that the converse implication of Theorem 5.1 is also true. For convenience, we will recall Theorem B with an additional equivalent condition.

Theorem B. Suppose that (G, S, p, ω, Γ) is admissible. If the subgroup generated by S is abelian, then the following conditions are equivalent:

(1) There is a (Γ, S)-dense vector in L p (G, ω).

(2) For any compact subset F ⊂ G and ε > 0, there are s ∈ S, λ ∈ Γ \ {0} and a compact subset E ⊂ F such that µ(F \ E) < ε and |λ| ess sup t∈E ω(st) < ε and 1 |λ| ess sup t∈E ω(s -1 t) < ε.

(3) For any compact subset F ⊂ G and ε > 0, there are s ∈ S, λ ∈ Γ \ {0} and a compact subset E ⊂ F such that µ(F \ E) < ε and |λ| ω p,sE < ε and

1 |λ| ω p,s -1 E < ε. ( 10 
)
Proof of Theorem B. According to Theorem 5.1, (2) ⇒ (1) holds for any set S and S-admissible weight.

Let us show that (1) ⇒ (3). Let F be a compact subset of G and ε > 0. It is clear that we can assume that F has a positive measure. For every n 1, set F n = F and δ n = 2 -n . By Theorem A, there are (s

n ) n 1 ⊂ S, (λ n ) n 1 ⊂ Γ \ {0} and E n ⊂ F compact such that µ(F \ E n ) < δ n and n,k 0;n =k |λ n | p |λ k | p ω p p,sns -1 k E k < +∞ with s 0 = e, λ 0 = 1 and E 0 = ∅. In particular, lim k→+∞ 1 |λ k | p ω p p,s -1 k E k = 0. (11) 
Let us fix k 1 such that δ k < ε 2 and set C := T s k . We have

ω p p,snE k = s k sns -1 k E k ω(t) p dµ(t) C p ω p p,sns -1 k E k Since |λ n | ω p,sns -1 k E k -→ n→+∞ 0, it follows |λ n | ω p,snE k -→ n→+∞ 0. (12) 
By ( 11) and ( 12) there exists n > k such that Let us show now that (3) ⇒ (2). Let F ⊂ G be a compact subset of G and ε > 0. Let η > 0 be such that 4η < ε. There exist s ∈ S, λ ∈ Γ \ {0} and a compact subset K ⊂ F such that µ(F \ K) < η and |λ| ω p,sK < η 1+ Remark 6.1. The condition (2) is independent of p, which means that it applies to any p. We have however to make sure that the usual condition ω ∈ L p loc (G) is satisfied, and this one does depend on p.

For special types of Γ, one can characterize (Γ, S)-density only in terms of the weight, similarly to Corollary 5.5. Corollary 6.2. Suppose that (G, S, p, ω, Γ) is an admissible tuple. If the subgroup generated by S is abelian, then:

(1) There is an S-dense vector in L p (G, ω) if and only if for any compact subset F ⊂ G and ε > 0, there are s ∈ S and a compact subset E ⊂ F such that µ(F \ E) < ε and Thanks to the assertion (2) of Theorem B, L p (G, ω) has a ([0, 1], S)-dense vector. The proof of (3) is similar. For (4), the direct implication follows immediately from (2) of Theorem B. Let us prove that the condition on ω in (4) implies that L p (G, ω) has a (C, S)-dense vector. We will show that the assertion (2) of Theorem B holds.

Let F ⊂ G be a compact set, and as in (2), we can assume that µ(F ) > 0. For every Thanks to the assertion (2) of Theorem B, L p (G, ω) has a (C, S)-dense vector.

  endowed with the normf p,ω := G |f (t)| p ω(t) p dµ(t) 1/p .
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 5354 Let (G, S, p, ω, Γ) be admissible. If for every compact subset K of G there exists λ ∈ Γ \ {0} such that then L p (G, ω) has a (Γ, S)-dense vector.If we know that all translations are bounded, on the left and on the right, then we get the following proposition. It implies Proposition 1.4 when G is abelian. Suppose that (G, S, p, ω, Γ) is an admissible tuple. Let ω be a continuous weight such that for every s ∈ G, we have M (s) := sup t∈G ω(st) ω(t) < +∞ and R(s) := sup t∈G ω(ts) ω(t) < +∞.
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 551234 Suppose that (G, S, p, ω, Γ) is an admissible tuple. If ω is a continuous weight such that for every s ∈ G, M (s) := sup t∈G ω(st) ω(t) < +∞ and R(s) := sup t∈G ω(ts) ω(t) < +∞, then the following conditions hold: If Γ \ {0} is bounded and bounded away from zero, there is a (Γ, S)-dense vector in L p (G, ω) if and only if inf s∈S max{ω(s); ω(s -1 )} = 0. There is a ([0, 1], S)-dense vector in L p (G, ω) if and only if inf s∈S max{ω(s)ω(s -1 ); ω(s -1 )} = 0. There is a ([1, +∞[, S)-dense vector in L p (G, ω) if and only if inf s∈S max{ω(s)ω(s -1 ); ω(s)} = 0. There is a (C, S)-dense vector in L p (G, ω) if and only if inf s∈S ω(s) ω(s -1 ) = 0.

  inf n∈S ω n ω -n = 0 and sup k∈Z ω n+k ω k < +∞ for all n ∈ S, so that the condition (4) of Corollary 5.5 holds. But L p (G, ω) doesn't have a (C, S)-dense vector, since lim inf n→+∞ ω n+1 ω -n+1 = 0 (see [2, Theorem 1.38]).

( 2 )( 3 )( 4 ) 2 .

 2342 There is a ([0, 1], S)-dense vector in L p (G, ω) if and only if for any compact subset F ⊂ G and ε > 0, there are s ∈ S and a compact subset E ⊂ F such that µ(F \ E) < ε andess sup t∈E ω(s -1 t) < ε, ess sup t∈E ω(st) ess sup t∈E ω(s -1 t) < ε.There is a ([1, +∞[, S)-dense vector in L p (G, ω) if and only if for any compact subset F ⊂ G and ε > 0, there are s ∈ S and a compact subset E ⊂ F such that µ(F \ E) < ε andess sup t∈E ω(st) < ε, ess sup t∈E ω(st) ess sup t∈E ω(s -1 t) < ε.There is a (C, S)-dense vector in L p (G, ω) if and only if for any compact subset F ⊂ G and ε > 0, there are s ∈ S and a compact subset E ⊂ F such that µ(F \ E) < ε andess sup t∈E ω(st) ess sup t∈E ω(s -1 t) < ε.Proof. The assertion (1) is a part of [1,Theorem 10]. In (2), if there is a ([0, 1], S)dense vector, then, as 1/|λ| 1, the condition on ω follows from (2) of Theorem B. Let us prove the converse. Suppose that the condition on ω in (2) holds; we will check the condition (2) from Theorem B. Let F ⊂ G be a compact set. If µ(F ) = 0, the inequalities in (2) of Theorem B hold with E = ∅ and any s and λ. We can assume therefore that µ(F ) > 0. For every k 1 there exist s k ∈ S and a compact subsetE k ⊂ F such that µ(F \ E k ) Set c k = ess sup t∈E k ω(s k t), d k = ess sup t∈E k ω(s -1 k t).For k big enough, the measure of E k is positive so that c k > 0 and d k > 0. Set λ k = kd k (If d k = 0, which may happen for a finite number of k, we set λ k = 1). Thus for each k, we have λ k ∈ (0, 1],λ k c k -→

k 1 (

 1 there exist s k ∈ S and a compact subsetE k ⊂ F such that µ(F \ E k ) Set c k = ess sup t∈E k ω(s k t), d k = ess sup t∈E k ω(s -1 k t) and λ k = d or λ k = 1 if c k = 0; as in (2), this may happen only for a finite number of k). Nowλ k c k -→

  n}} for every k = 1, . . . , n.

	Lemma 2.2. Let G be a σ-compact locally compact group. The orbit Orb G (f ) of any function f in L p (G) is separable (in the norm topology).

  1, we have (2) ⇒ (1). Let us show first that (3) ⇒ (2). Fix a compact set K ⊂ G. By [7, Proposition 1.16], we know that M and R are locally bounded. It is easy to see that for s ∈ S and λ ∈ Γ \ {0},

	thus (2) and (3) are equivalent. Let us show now that (1) ⇒ (3). Let F ⊂ G be
	a compact set of nonzero measure. By applying condition (2) of Theorem A with
	F n = F and δ n = sequence of compact sets K n ⊂ F such that µ(F \ K n ) < δ n and µ(F ) , we get sequences (s n ) n 1 ⊂ S, (λ n ) n 1 ⊂ Γ \ {0} and a 4
	lim n→+∞	|λ n | ω p,sns -1 1 K1 = 0 and	lim n→+∞	1 |λ n |	ω p,s1s -1 n Kn = 0.
	max{|λ| sup t∈K	ω(st) ;	1 |λ|	sup t∈K	ω(s -1 t)} sup t∈K	R(t) max{|λ|ω(s) ;	1 |λ|	ω(s -1 )},

  En < ε and |λ n | ω p,snE k < ε.If we set E = E k ∩E n , s = s n and λ = λ n , we have µ(F \E) µ(F \E k )+µ(F \E n ) < δ k + δ n 2δ k < ε,and |λ| ω p,sE < ε and 1 |λ| ω p,s -1 E < ε.

	1 |λ n |	ω p,s -1 n

  p |λ| p µ(K \ E 2 ). Hence µ(K \ E 1 ) < η and µ(K \ E 2 ) < η, so that µ(K \ (E 1 ∩ E 2 )) < 2η. Let now E ⊂ E 1 ∩ E 2 be a compact subset such that µ((E 1 ∩ E 2 ) \ E) < η. Then µ(F \ E) < 4η < ε, and

	then	ω p p,sK	η p |λ| p µ(K \ E 1 ) and	ω p p,s -1 K
		|λ| ess sup t∈E	ω(st) η < ε,	1 |λ|	t∈E ess sup	ω(s -1 t) η < ε.
				1 p ,	1 |λ|	ω p,s -1 K < η 1+ 1 p .

Set E 1 = {t ∈ K : ω(st) η |λ| }, E 2 = {t ∈ K : ω(s -1 t) η|λ|}, η

Acknowledgements. The first named author gratefully acknowledges many helpful suggestions, comments and remarks of his supervisors Evgeny Abakumov and Stéphane Charpentier during the preparation of this paper.

This work was partially supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-03).