
HAL Id: hal-03141561
https://hal.science/hal-03141561

Submitted on 21 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A production and distribution framework: Manufacturer
dominates

Hugo Chevroton, Jean-Charles Billaut, Sonja U K Rohmer

To cite this version:
Hugo Chevroton, Jean-Charles Billaut, Sonja U K Rohmer. A production and distribution frame-
work: Manufacturer dominates. Computers & Industrial Engineering, 2021, 155, pp.107162.
�10.1016/j.cie.2021.107162�. �hal-03141561�

https://hal.science/hal-03141561
https://hal.archives-ouvertes.fr

A framework for production and outbound distribution:

manufacturer dominates

Hugo Chevroton

Université de Tours

LIFAT, EA 6300, ERL CNRS ROOT 6305

Tours, France

hugo.chevroton@etu.univ-tours.fr

Jean-Charles Billaut

Université de Tours

LIFAT, EA 6300, ERL CNRS ROOT 6305

Tours, France

jean-charles.billaut@univ-tours.fr

Sonja U.K. Rohmer

Operations Research and Logistics

Wageningen University

Wageningen, Netherlands

sukrohmer@outlook.com

June 5, 2018

Abstract

In this paper we consider a two-level supply chain problem composed of a manufacturer and a third

part logistic provider (3PL provider) at an operational level. The manufacturer workshop is a flow-shop

and inventory costs are considered. The 3PL provider provides vehicles to the manufacturer and routing

costs are considered. Both face tardiness penalty costs, paid for late delivery by the manufacturer to the

customer and by the 3PL provider to the manufacturer.

A scenario is proposed where the manufacturer dominates the negotiation with the 3PL provider.

He imposes the composition of batches for vehicles, the vehicle departure dates and estimates a delivery

time. If the 3PL provider respects the estimated delivery times, there is no penalty, otherwise, some

tardiness penalty costs apply. Mixed Integer Linear Programming Model and metaheuristic algorithms

are proposed for this specific scenario. Some random data sets are generated and the quality and the

efficiency of the different methods are compared.

Keys Words : supply chain, multi-agent, manufacturer, 3PL provider, scheduling, vehicle routing,

cooperation

1

1 Introduction and literature review

In todays business environment, defined by fierce competition and increasing customer expectations, com-

panies must find solutions for providing competitive services in terms of cost and quality. Production and

distribution represent the main activity of a lot of companies and good scheduling of these activities may

represent a great monetary savings potential. In this environment, these services are usually performed by

different agents, which work together but serve their own interests. The traditional approach is to con-

sider the production and the distribution problems separately, in order to optimize the gain of each agent,

without taking into consideration possible negotiations between them. The goal of this paper is to treat

these two problems of production and distribution planning in an integrated framework and investigate one

collaboration scenario between the two agents.

While there is a large amount of literature on each of the individual production and distribution problems

since decades, the interest of the community for problems integrating both aspects is more recent. This

interest is motivated by the possibility of making substantial savings in industries by considering the two-

level problem directly rather than both problems separately.

A classification of such an integrated problem is proposed in [Chen, 2010]. The author provides a classi-

fication for integrated models based on different criteria such as for example the structure of the integration.

They differentiate between three different kinds of integration: production and outbound transportation,

inbound transportation and production, inbound transportation, production and outbound transportation.

In the survey [Moons et al., 2017], the authors present, define and classify different kinds of production

scheduling-vehicule routing problems (PS-VRP). This class of problems is presented first as IPODS (Inte-

grated production and outbound distribution scheduling) problems by [Chen, 2010]. However, [Moons et al.,

2017] focus only on problems where a VRP is solved for the delivery. For example, are excluded problems

with single customer, direct shipment or using another transportation mode (as airplane). The main clas-

sification criteria of this paper is related to the scheduling environment. Problems are separated according

to their machine environment (single machine, parallel machines, job/flow shop). Problems are presented

according to other characteristics related to the production, the inventory and the distribution.

We refer in the following to papers in the literature presenting important similarities with our problem

or resolution techniques.

In [Geismar et al., 2008], the authors integrate production and distribution problems in order to respect

the lifespan of products from the end of the production to the delivery to the clients. One capacitated

vehicle is used for the delivery. The authors use the split heuristic developed by Prins [Prins, 2004] to solve

optimally the VRP associated to a fixed sequence of jobs in the production. This heuristic is included in a

genetic algorithm.

[Ullrich, 2013] integrates production and outbound distribution scheduling in order to minimize the total

2

tardiness. The first problem is a parallel machines scheduling problem. The second problem is a delivery

problem of jobs with a fleet of capacitated vehicles. Delivery time windows, service times and destinations

are considered. A Genetic Algorithm is proposed to solve the integrated problem. Inventory holding costs

are not considered in this paper.

In [Condotta et al., 2013], the authors use a Tabu algorithm to serve multiple products to the client

with respect of release dates and due dates. The objective is to find the optimal sequencing and the optimal

batching of jobs.

In [Viergutz and Knust, 2014] the authors consider a single production facility modeled by a single

machine. After completion, jobs have to be delivered before a given deadline (perishability) and in a time

window to customers by a single vehicle. Because of the limited resources, not all the customers may be

supplied and the problem is to find a selection of customers in order to maximize the total satisfied demand.

The authors propose a branch-and-bound algorithm. Inventory costs are not considered.

In [Cakici et al., 2014], the authors model the manufacturer production site as a parallel machine environ-

ment. A single capacitated vehicle is used for the delivery of jobs. The authors introduce weights associated

to the jobs in order to take inventory holding costs into account. The objective function is to minimize the

total weighted delivery time. The authors propose an MILP model and heuristic resolution approaches.

In [Fu, 2014] the author proposes different scheduling problems with different routing hypotheses. The

problems are based on the coordination and domination scenarios between agents and the author devel-

ops different models and resolution methods according to the collaboration scenario. No inventory cost is

considered.

In [Rohmer et al., 2015], the authors describe a production problem with outbound distribution, including

inventory costs. This paper proposes models for a scenario with dominance of the 3PL provider (which

imposes the number of vehicles and departure dates to the manufacturer) and proposes research directions

by suggesting different coordination scenarios for the two agents.

A problem including inbound and outbound transportation from both sides of the production stage is

treated in [Koç and Sabuncuoglu, 2017]. Inventory costs are considered and the objective is to schedule the

jobs on the machines and the vehicles so that the sum of transportation and inventory holding costs are

minimized. The authors propose an MILP model, a lower bound and heuristic algorithms for solving large

size instances.

In [Kergosien et al., 2017] the authors propose a problem inspired from chemotherapy production and

delivery environment. Drugs are produced on parallel machine and delivered on multiple distant sites by

an unique agent. The model include soft due date for the delivery to customers and hard lifespan for

products. The Bender decomposition is adapted. The resolution method and use the delivery problem as

master problem and a relaxed version of the production problem as slave. Cuts, upper and lower bound

3

are implemented for improve the both model. This method show important improvement compared with a

classic model resolution with CPLEX under a 30 minutes run and up to 40 jobs instances.

The research presented in this paper builds on this work. We propose a new scenario with a strong

dominance of the manufacturer, who imposes the composition of batches for each vehicle, set departure

dates, and evaluates delivery times. To evaluate the delivery dates, the MILP model of the manufacturer

incorporates a routing phase. Even if the sequencing of jobs in each batch follows a given rule (EDD order),

this makes the problem more difficult to solve.

Section 2 gives a formal definition of the problem and introduces the notations. A Mixed Integer Lin-

ear Programming (MILP) model is presented for the problem. In Section 3, different resolution methods

(GRASP, Tabu Search and Genetic Algorithm) are described and decomposed on different level. In section

4, we present the results of the resolution methods on randomly generated instances. Section 5 concludes

the paper and gives some directions for future research.

2 A multi agent model

This research aims to propose an integrated model for a supply chain problem, where a manufacturer and a

3PL-provider are involved. For the manufacturer, we consider several costs (inventory costs, transportation

costs, penalty costs, ...) that are related to the production phase and the transportation phase, in order

to obtain a more realistic model. Despite inventory costs play a major role in production planning, they

are often neglected in production scheduling models. Two kinds of inventory costs are considered: work in

progress (WIP) inventory and finished products inventory (FIN).

More precisely, this multi-agent problem consists of two sub-problems: a permutation flow-shop schedul-

ing problem for the production problem of the manufacturer and a vehicle routing problem for the 3PL

provider. According to the five-field notation α|β|π|δ|γ proposed in [Chen, 2010], the notation of the prob-

lem that we consider is

Fm||V (∞,∞), routing|n|γ

where Fm indicates an m-machine flow shop; V (∞,∞) means that a sufficient number of vehicles are avail-

able and the capacity of each vehicle is unbounded; routing means that orders going to different customers

can be transported in the same shipment, and a vehicle routing problem has to be solved; n indicates that

each job belongs to one customer. Finally, γ is the objective function, detailed later in this section.

2.1 Production problem

The production problem considered in this paper is an m-machine permutation flow shop with work in

progress (WIP) and finished product inventory considerations. We suppose that we have a set {J1, ..., Jn} of

4

n jobs to schedule. A manufacturer is looking to design a production schedule for all jobs on the machines.

Each job Jj has a given processing time pi,j on machine Mi. After the completion of a job on a machine, a

work-in-process inventory is generated, before the processing of the job on the next machine. The holding

cost for this inventory depends on the job and is denoted by hWIP
j for job Jj . We do not assume that the

work-in-process holding cost depends on the machines, for a sake of clarity. After the completion of the job

on the last machine, the finished product inventory is kept until the departure of the job for delivery. The

holding cost for the finished product inventory depends on the product and is denoted by hFINj for job Jj .

Job Jj has to be delivered to customer j for a given due date denoted by dj . A delay in the delivery of the

product generally results in a loss for the manufacturer, that can be financial, hence the manufacturer incurs

a penalty cost πMj per time unit of late delivery of Jj , that is paid to the customer.

We denote by Ci,j the completion time of job Jj on machine Mi, 1 ≤ i ≤ m. In our model, the

manufacturer decides the composition of vehicles (i.e. the batches) and their departure dates. Furthermore,

the manufacturer estimates a delivery date for each job, assuming that the jobs are delivered in EDD order.

Therefore, he has an estimation of the amount of the penalty costs due to the customers, which is called a

Pseudo Penalty Cost. The objective of the manufacturer is to minimize his total cost, which is composed by

the inventory cost IC, a vehicle cost V C (related to the number of vehicles used) and the pseudo penalty

costs PPCM . At this step, the manufacturer does not know the real delivery dates.

We denote by IC the total inventory cost. Its expression is the following:

IC =

n∑
j=1

(Cm,j − C1,j)qjh
WIP
j +

n∑
j=1

(fj − Cm,j)qjhFINj (1)

where fj denotes the departure time of Jj and qj is the quantity of items of job Jj .

We denote by PCM the penalty cost for tardiness. The expression of PCM is:

PCM =

n∑
j=1

πMj T
M
j (2)

Remember that TMj depends on the delivery dates that will be given by the 3PL provider (denoted D3PL
j

for Jj) and that are not known at the moment. For this reason, the manufacturer considers a Pseudo Penalty

Cost PPCM involving an estimation of the tardiness PTMj of Jj , based on an estimation of the delivery

time denoted DM
j of Jj , defined by: PTMj = max(0, DM

j − dj), where DM
j is determined assuming that the

jobs in a batch are delivered in EDD order. We have:

PPCM =

n∑
j=1

πMj PT
M
j (3)

We denote by V C the vehicle cost. This cost is defined by:

V C = cV V (4)

5

where cV is the cost of one vehicle and V is the number of vehicles required by the manufacturer.

The pseudo total cost for the manufacturer is given by:

PTCM = IC + PPCM + V C (5)

2.2 Distribution problem

The distribution is done by a third-party-logistics (3PL) provider. For each batch of jobs to deliver, he wants

to find an optimal route for the delivery of products from the manufacturer site to the multiple customer

locations. Two hypotheses are considered:

1. Vehicles stay at the manufacturing site and their departure times are imposed by the manufacturer.

2. A vehicle takes all the jobs that are available (completed).

Assuming this condition, we can have at most n potential departure times, with the departure time of

vehicle k denoted by Fk, k ∈ {1, ..., n}, given by the manufacturer.

We denote by ti,j the travel time between site i and site j (i, j ∈ {0, ..., n+ 1}), where site 0 corresponds

to the manufacturer site, site n+ 1 corresponds to the depot of the 3PL provider and site j corresponds to

the site of the customer waiting for job Jj (j ∈ {1, ..., n}).

For each trip, the 3PL provider bears the costs for the routing, denoted by RCk for the route of vehicle

k, which depends on the total travel time and a penalty cost per time unit to the manufacturer if the final

delivery date (D3PL
j) is greater than DM

j . The total routing cost is equal to:

RC =

V∑
k=1

RCk (6)

The routing cost is the sum of the costs for all the routes, leaving from the manufacturer location

and returning to the depot of the 3PL provider. The penalty cost is denoted by PC3PL. We assume

that this function is related to the total tardiness, i.e. we denote by T 3PL
j the tardiness of delivery of Jj

from the point of view of the 3PL provider (related to the due date DM
j estimated by the manufacturer):

T 3PL
j = max(0, D3PL

j −DM
j). PC3PL is defined by:

PC3PL =

n∑
j=1

π3PL
j T 3PL

j (7)

The total cost for the 3PL provider is given by:

TC3PL = RC + PC3PL − V C (8)

6

2.3 Integrated Problem

The two problems outlined above are interconnected and dependent on each other. We assume that:

� the number of vehicles V ,

� the dates of departure of the vehicles (Fk, 1 ≤ k ≤ V),

� the first estimation of the completion delivery date DM
j ,

are determined by the manufacturer during the construction of his schedule, minimizing PTCM . The vehicles

of the 3PL provider take the jobs and distribute them to the customers at minimum cost. The 3PL provider

minimizes TC3PL costs. Then, the 3PL provider gives the delivery dates to the manufacturer with the

implications on tardiness, so that the real penalty cost PCM for the manufacturer can be computed.

The real cost for the manufacturer and for the 3PL provider are:

TCM = IC + PCM + V C − PC3PL (9)

TC3PL = RC + PC3PL − V C (10)

The whole process is described more formally in Alg. 1.

Algorithm 1 General framework

The manufacturer optimizes his production schedule: MIN PTCM

// From the schedule we deduce the jobs completion times, the number of vehicles used, the batch compo-

sitions, their departure times and an estimation DM
j of the delivery completion times

for k in 1 to V do

The 3PL provider delivers the jobs optimally to minimize his costs RCk + PC3PL
k .

// From the routing of vehicle k we deduce the delivery dates of jobs D3PL
j

end for

Compute the total cost of the 3PL provider: TC3PL =
∑V
k=1RCk + PC3PL

k − V C

Compute the total cost of the manufacturer: TCM = IC + PCM − PC3PL+VC

2.4 Mixed Integer Linear Programming models

We propose in this section an MILP model for solving the manufacturer problem and an MILP model for

the 3PL provider.

The data of the problem are the following.

7

n number of jobs

m number of machines

pi,j processing time of job Jj on machine Mi, 1 ≤ j ≤ n, 1 ≤ i ≤ m

qj quantity of items of job Jj , 1 ≤ j ≤ n

dj delivery due date of job Jj , 1 ≤ j ≤ n

ts1,s2 travel time between site s1 and site s2, s1, s2 ∈ {0, 1, ..., n+ 1}

M an arbitrary high value

The costs that have to be taken into account are the following.

hWIP
j holding cost for WIP inventory of job Jj , 1 ≤ j ≤ n

hFINj holding cost for finished product inventory of job Jj , 1 ≤ j ≤ n

πMj penalty cost of the manufacturer for late delivery of job Jj , 1 ≤ j ≤ n

cV cost per vehicle

The variables to determine are the following:

yj1,j2 = 1 if job Jj1 is scheduled before job Jj2, 0 otherwise, 1 ≤ j1, j2 ≤ n

Zk = 1 if vehicle k is used, 0 otherwise, 1 ≤ k ≤ n

zj,k = 1 if job Jj departs on vehicle k, 0 otherwise, 1 ≤ j ≤ n, 1 ≤ k ≤ n

xj1,j2,k = 1 if job Jj1 and job Jj2 are transported in vehicle k and Jj1 is delivered before Jj2,

0 otherwise, 1 ≤ j1, j2 ≤ n, 1 ≤ k ≤ n

DM
j estimation of the delivery due date of job Jj , 1 ≤ j ≤ n

Ci,j Completion time of job Jj on machine Mi, 1 ≤ j ≤ n, 1 ≤ i ≤ m

Fk departure time of vehicle k, 1 ≤ k ≤ n

PTMj ≥ 0 estimation of the tardiness of job Jj for the manufacturer, 1 ≤ j ≤ n

IC total inventory costs

PPCM pseudo penalty cost of the manufacturer

The following variables will be known after the 3PL provider gives the delivery dates to the manufacturer.

D3PL
j delivery completion time of job Jj

TMj tardiness of job Jj

V C final vehicle cost

2.4.1 Manufacturer

The scheduling problem of the manufacturer is solved by the following Mixed Integer Linear Programming

model.

Minimize PTCM = IC + PPCM + V C (11)

The relative order between two jobs Jj1 and Jj2 (∀j1, j2 ∈ {1, ..., n}, j1 ≤ j2) is given by the following

8

constraints:

yj1,j2 + yj2,j1 = 1 (12)

The resource constraints allow to define the completion time of a job on any machine Mi (∀i ∈ {1, ...,m},

∀j1, j2 ∈ {1, ..., n}, j1 6= j2):

Ci,j2 ≥ Ci,j1 + pi,j2 −Myj1,j2 (13)

The routing constraints are given on any machine Mi (i ∈ {2, ...,m}) and for any job Jj (j ∈ {1, ..., n}):

Ci,j ≥ Ci−1,j + pi,j (14)

Each job Jj is transported in a vehicle (∀j ∈ {1, ..., n}), therefore:

n∑
k=1

zj,k = 1 (15)

Each vehicle k (∀k ∈ {1, ..., n}) leaves after the completion time of all jobs transported by this vehicle

(∀j ∈ {1, ..., n}):

Fk ≥ Cm,j −M(1− zj,k) (16)

A job cannot leave before its vehicle leaves (∀j ∈ {1, ..., n}, ∀k ∈ {1, ..., n}):

fj ≥ Fk −M(1− zj,k) (17)

A vehicle k (∀k ∈ {1, ..., n}) is used once it transports a job:

MZk ≥
n∑
j=1

zj,k (18)

In the same batch k (∀k ∈ {1, ..., n}), job Jj1 (∀j1 ∈ {1, ..., n}) has a predecessor with a smaller due-date,

or has the manufacturer site as predecessor: ∑
i∈{0}∪{j/dj≤dj1}

xi,j1,k = zj1,k (19)

In the same batch k (∀k ∈ {1, ..., n}), job Jj1 (∀j1 ∈ {1, ..., n}) has a successor with a greater due-date,

or has the depot site as successor: ∑
i∈{n+1}∪{j/dj≥dj1})

xj1,i,k = zj1,k (20)

The manufacturer site has a successor during the route of vehicle k (∀k ∈ {1, ..., n}) only if vehicle k is

used:
n∑
j=1

x0,j,k ≤ Zk (21)

9

The estimation of the delivery date is given by the following constraints (∀j1, j2 ∈ {1, ..., n} and ∀k ∈

{1, ..., n}):

DM
j2 ≥ DM

j1 + tj1,j2 −M(1− xj1,j2,k) (22)

The following constraints give a lower bound of the delivery date of job Jj (∀j ∈ {1, ..., n}) transported

in vehicle k (∀k ∈ {1, ..., n}):

DM
j ≥ Fk + t0,j −M(1− zj,k) (23)

The estimation of the tardiness for job Jj (∀j ∈ {1, ..., n}) is given by the following constraint:

PTMj ≥ DM
j − dj (24)

The costs are given in the following expressions:

PPCM =
n∑
j=1

πMj PT
M
j (25)

ICWIP =

n∑
j=1

(Cm,j − C1,j)qjh
WIP
j (26)

ICFIN =

n∑
j=1

(

V∑
k=1

fj − Cm,j)qjhFINj (27)

IC = ICWIP + ICFIN (28)

V C = cV
n∑
k=1

Zk (29)

The objective function is:

Minimize IC + PPCM + V C (30)

This model contains O(n3) binary variables, O(nm) continuous variables, O(n3) big-M constraints and

O(n2m) constraints.

2.4.2 3PL provider

We assume that the optimization of the routing of the vehicles are independent and that they can be

optimized separately. Therefore, for each trip, the set of delivery dates DM
j is given by the manufacturer

and we assume that vehicle k has to leave the manufacturer site at time Fk, which is also given. Furthermore,

we assume that a batch contains s jobs to deliver.

The data required by the 3PL provider are the following:

10

s number of sites to visit (sites 1, .., s are the customer sites, site 0 is the manufacturer site

and site s+ 1 is the 3PL provider site)

DM
j estimated delivery date for site j, 1 ≤ j ≤ s

Fk departure time from the manufacturer site of vehicle k, 1 ≤ k ≤ n

tj1,j2 travel time between site j1 and site j2, 0 ≤ j1, j2 ≤ s+ 1

M an arbitrary high value (can be set to 2×
∑
j1

∑
j2 tj1,j2)

The costs to be taken into account are the following.

cj1,j2 cost of travel time between site j1 and site j2, 0 ≤ j1, j2 ≤ s+ 1

π3PL
j penalty cost of 3PL provider for an excessive tardiness of job Jj , 1 ≤ j ≤ s

The variables that have to be determined are the following.

xj1,j2 = 1 if site j1 is visited just before site j2,

0 otherwise, 0 ≤ j1, j2 ≤ s+ 1

D3PL
j date at which site j is visited, i.e. delivery

date of Jj , 1 ≤ j ≤ s

T 3PL
j ≥ 0 tardiness of delivery of Jj , 1 ≤ j ≤ s

RC routing cost

PC3PL total penalty cost of 3PL provider

The routing of the 3PL provider is determined by solving the following Mixed Integer Linear Programming

model.

Minimize TC3PL = RC + PC3PL − V C (31)

Any site s1 (∀s1 ∈ {0, ..., s}) (excluding 3PL depot), has one successor site in {1, ..., s+ 1}.

s+1∑
s2=1

xs1,s2 = 1 (32)

Any site s1 (∀s1 ∈ {1, ..., s+ 1}) (excluding manufacturer site), has one predecessor site in {0, ..., s}.

s∑
s2=0

xs1,s2 = 1 (33)

A lower bound of the delivery date of job Jj (∀j ∈ {1, ..., s}) is the following (remember that Fk is a data

here):

DM
j ≥ Fk + t0,j (34)

The arrival date of each job at the customer site is given by the following constraints (∀j1 ∈ {1, ..., s},

∀j2 ∈ {1, ..., s}):

D3PL
j2 ≥ D3PL

j1 + tj1,j2 −M(1− xj1,j2) (35)

11

The tardiness expression and the costs are given in the following expressions (remember that DM
j is a

data here):

T 3PL
j ≥ D3PL

j −DM
j , ∀j ∈ 1, .., s (36)

PC3PL =

s∑
j=1

π3PL
j T 3PL

j (37)

RC =

s∑
j1=0

s+1∑
j2=1

cj1,j2xj1,j2 (38)

This model contains O(s2) binary variables, O(s) continuous variables, O(s2) big-M constraints and O(s)

constraints.

3 Heuristic resolution methods

Heuristics methods are developed to propose a good solution to the manufacturer problem. This kind of

method has been chosen because of the problem complexity, which makes the exact resolution very difficult

in a reasonable computation time.

In this section, we propose only to solve the manufacturer part problem. Indeed, each sub-problem of

the 3PL provider is a VRP with soft due dates and few items which can be solved easily by the classical

methods of the literature (the MILP proposed in Section 2.4.2 is sufficient).

Three metaheuristic algorithms are proposed: a GRASP algorithm, a Tabu Search, and a Genetic Al-

gorithm. These methods present some common features, which are first presented here: a fitness function,

a two-phase heuristics (scheduling first, batching second) for build initial good solution and local search

protocols.

Then we will present the complete algorithms.

In the following, we consider we work on a two-machine production chain.

3.1 Coding of a solution

A solution to the problem is defined by the starting times of the jobs on the machines and a composition

of batches to deliver. From this, it is possible to determine the inventory costs, the departure time of the

batches for delivery, and knowing their composition – and applying the EDD rule for delivery – the estimation

of the delivery dates. So, all the elements are known to evaluate a solution.

A coding of a solution is a sequence of batches. The order in which the jobs belong to the batches is also

the processing sequence on the machines. The order in which the jobs are delivered in each batch is given

by EDD order. This coding will be used for the GRASP and the Tabu Search algorithms.

12

Example: Let consider the following coding for a problem with n = 8 jobs.

σ = {{J4, J2, J3}, {J1, J6}, {J8, J5, J7}}

This coding corresponds to a production sequence equal to (J4, J2, J3, J1, J6, J8, J5, J7), to the composition

of three batches, the first one being composed by the jobs J4, J2 and J3.

3.2 Fitness function

The fitness function is the evaluation method of a coded solution.

Let consider a coding σ. We denote by ν the number of batches in σ. This corresponds to the number

of vehicles which are used. Notice that the cost V C is a constant in this case V C = cV ν and therefore it

does not appear in the objective function. We assume w.l.o.g. that the jobs in σ are numbered from J1 to

Jn, which makes the routing constraints (the order in which jobs visit the machines) easier to present.

We know which is the last job of each batch. We denote by Ek the index of the last job in batch k,

1 ≤ k ≤ ν. We also know the assignment of jobs to batches and we denote by Bj the batch assigned to job

Jj , 1 ≤ j ≤ n.

With a simple preprocessing, it is also possible to determine the time needed to deliver a job from the

departure date of its vehicle. We denote by TTj the travel time to deliver Jj .

Then, determining the optimal schedule of the jobs (starting times of jobs) can be done by solving the

following Linear Programming model called LPFit. The data and variables have been previously defined.

LPFit (39)

MIN IC + PPCM (40)

s.t. C1,1 ≥ p1,1 (41)

Ci,j ≥ Ci,j−1 + pi,j ∀j ∈ {1, ..., n},∀i ∈ {1, ...,m} (42)

Ci,j ≥ Ci−1,j + pi,j ∀j ∈ {1, ..., n},∀i ∈ {1, ...,m} (43)

Fk = Cm,Ek
∀k ∈ {1, ..., ν} (44)

fj = FBj
∀j ∈ {1, ..., n} (45)

DM
j = fj + TTj ∀j ∈ {1, ..., n} (46)

(24), (25), (26), (27), (28) (47)

This LP model allows to evaluate a coding of solution optimally.

In the case of m = 2 machines and under some hypotheses, it is possible to propose a more efficient

method.

We assume that the penalty costs to the customers are much more important than the inventory costs.

Therefore, we will not delay the departure of a vehicle in order to possibly save an inventory cost. The

13

consequence is that we respect the completion time of the jobs on the last machine (i.e. the vehicles

departure time) in a left-shifted schedule.

The critical path of the batch is the set of operations which give the duration of the batch. In order

to minimize the inventory costs, we consider three types of jobs in each batch, depending on their relative

position to the critical path.

� type 1: the jobs composing the critical path: we cannot move such a job without modifying the

departure date of the vehicle. So we cannot modify the inventory cost of these jobs (black font in 1).

� type 2: the jobs on the first machine which do not belong to the critical path: we right-shift these jobs,

in order to minimize their Work In Process inventory cost (gray font in 1).

� type 3: the jobs on the second machine which do not belong to the critical path: a right-shift movement

on such a job increases the WIP inventory cost but decreases the Final inventory cost. We schedule

these jobs with an ad-hoc algorithm (white font in 1).

Figure 1: Three different kinds of jobs

We denote by hδj the difference of hWIP
j − hFINj for the job Jj of type 3. If hδj > 0, a right-shift of Jj

decreases its inventory cost. We assume w.l.o.g. that the jobs of type 3 are numbered from J1 for the first

one to Jo for the last one. Algorithm 2 allows to define the position of the jobs of type 3 on machine M2.

Example: In Fig. 1, we have hδ1 = 3, hδ2 = −2 and hδ3 = −2. Job 1 is right shifted because hδ1 > 0. Then,

jobs 1 and 2 are right shifted because hδ1 + hδ2 = 1 > 0. Finally, because hδ1 + hδ2 + hδ3 = −1 < 0, we do not

shift again these jobs to the right. Applying Alg. 2 leads to the solution illustrated in Fig. 2.

The IC is evaluated from this last configuration.

14

Algorithm 2 Min inventory cost algorithm

1: B ← ∅, Bhδ ← 0

2: for j ∈ (1, . . . , o) do

3: B ← B ∪ {Jj}

4: Bhδ ← Bhδ + hδj

5: if Bhδ > 0 then

6: All the jobs in B are right-shifted

7: else

8: B ← ∅, Bhδ ← 0

9: end if

10: end for

Figure 2: Result of the min inventory cost procedure

3.3 Initial solution

The methods start from an initial solution. To generate an initial solution, we determine first the sequencing

of jobs and then we choose the composition of vehicles (or batching). Of course, because this method uses

random parameters, it is not guaranted that the methods start with the same initial solution.

3.3.1 Sequencing of jobs

To build the sequence, we choose the first job randomly among a restricted list based on the job’s due dates.

A restricted list is composed by the jobs with a due date belonging to an interval. The size of this interval

is related to a parameter λ. The details of the algorithm are given in Alg. 3.

Notice that we can generate a solution starting by the end of the schedule (changing line 6 in Alg. 3 to

List = {Jj/dmax − λ× (dmax − dmin) ≤ dj ≤ dmax} and line 8 to σ ← Jj + σ). to be checked

3.3.2 Batching of the sequence

We develop three methods for dispatching the jobs into batches: the two first ones are based on the cost of

adding a job to an existing batch. The third one is inspired by the Split algorithm of Prins [Prins, 2004].

First batching method: From the schedule, we build batches by evaluating the additional cost of a

15

Algorithm 3 sequencing heuristic algorithm

1: Parameters λ,

2: σ = ∅, J = {Jj , j ∈ {1, ..., n}}

3: while J 6= ∅ do

4: dmin = minJj∈J dj

5: dmax = maxJj∈J dj

6: List = {Jj/dmin ≤ dj ≤ dmin + λ× (dmax − dmin)}

7: Select randomly Jj in List

8: σ ← σ + Jj

9: J ← J \ {Jj}

10: end while

11: return (σ)

new job in the current batch (denoted Cost1) and the additional cost of creating a new batch especially

(denoted Cost2). If creating a new batch (and hiring a new vehicle) is cheaper than adding the job to the

current batch, this option is chosen. Otherwise, we refer to the parameter determinist of the algorithm. If

this parameter is true, the new job is assigned to the current batch, otherwise the decision is taken randomly,

depending on the ratio between Cost1 and Cost2 (see Alg. 4).

Split algorithm: The Split algorithm [Prins, 2004] is presented for the DV RP (Distance-constraint

Vehicle Routing Problem) in order in determine an optimal set of trips for customers, respecting an already

known sequencing order. The principle is to represent the problem by an oriented graph representing all the

possible trips, with the costs on edges. The shortest path in this graph gives the optimal set of travels and

therefore, the batching.

In our case, the input of the algorithm is a sequence of jobs. We define a graph G = (V,A) where V

contains n+ 1 vertices indexed from 0 to n, A contains one arc for each pair (i, j), with i < j, representing

the batch containing the (i + 1)th to the jth job of the sequence. The cost of this edge represents the cost

associated to this batch: (1) the inventory cost plus (2) the estimation of tardiness penalties plus (3) the

cost of one vehicle. This evaluation can be obtained by using LPFit with only one batch, release dates on

the machines (Ci,1 ≥ Ri, ∀i ∈ {1, ...,m}), and jobs of type 3. In the case of m = 2 machines, IC is given by

Alg. 2 for the jobs of type 3, PPCM is easily computed and V C is equal to cV .

After building this graph, we use Bellman’s algorithm to find the shortest path. This evaluation is

reasonably fast because G has no cycle. The worst case complexity is O(n2).

Example: Let consider a two-job instance with p11 = p12 = p22 = 1, p21 = 2, hWIP
1 = hWIP

2 = 1,

hFIN1 = hFIN2 = 2 and cV = 5. The job sequence is (J1, J2), the associate graph contains 3 vertices and

16

Algorithm 4 batching heuristic algorithm

1: Parametesr: σ (from GRASP heuristic), determinist

2: Initialization: B = ∅ // set of batches

3: B = {σ[1]} // current batch

4: k = 2

5: while k ≤ n do

6: Jj = σ[k]

7: Cost1 = cost of assignment of Jj to batch B

8: Cost2 = cost of assignment of Jj to a new batch

9: if determinist then

10: in current batch = Cost1 ≤ Cost2
11: else

12: in current batch = Cost1
Cost2

≤ rand(0, 1)

13: end if

14: if in current batch then

15: B = B ∪ {Jj} // Jj is put in current batch B

16: else

17: B = B ∪ {B} // batch B is added to B

18: B = {Jj} // a new batch is created

19: end if

20: k = k + 1

21: end while

22: B = B ∪ {B}

23: return B

17

Figure 3: Jobs are left-shifted Figure 4: Minimizing inventory

cX = ICX + PPCMX + cV

Figure 5: Batching cost graph

3 edges for the 3 batches B1 = {J1}, B2 = {J2} and B3 = {J1, J2}. The jobs are left shifted to have the

departure date of the batch (see Fig. 3).

The departure time of the batch B1 finishing by job J1 is 2 and the departure time of batches B2
and B3 finishing by job J2 is 4. If we denote by cX the cost associated to batch BX , we have cX =

ICX +PPCMX + cV . IC for batches B1 and B2 are equals to 0: IC1 = IC2 = 0. IC for batch B3 is equal to

IC3 = hWIP
1 × 1 + hFIN1 × 1 = 3.

We assume that the data for computing PPCM leads to the following results (not detailed here for a

sake of simplicity): PPCM1 = 0, PPCM2 = 1 and PPCM3 = 4.

Using Bellman on the graph of Fig. 5, we obtain the shortest path equal to {(0, 1), (1, 2)} with an

associate cost of 11. It means that J1 and J2 are in two separate batches. If cV increases from 5 to 7, the

shortest path changes to {(0, 2)} with an associated cost of 14.

3.4 Local Search

We use local search in order to improve quickly the current solution.

3.4.1 Operator

We present in this section the neighborhood operators.

Swap: Exchange two jobs in the sequence. To avoid symmetry, let i and j be the positions of two jobs,

these jobs can be swapped if and only if i < j. For example :

Swap of 2 and 5: {{1, 2, 3, 4}{5, 6, 7}} → {{1, 5, 3, 4}{2, 6, 7}}

EBSR/EFSR - Extract and Backward / Forward Shift Reinsertion: This operator extracts a

job Ji from position k and reinsert it in the sequence at a position h < k (backward), or at a position h > k

(forward). We denote by Jj the job which was at position h. Job Ji is inserted in the batch of Jj .

EFSR of J2 at position 5: {{1, 2, 3, 4}{5, 6, 7}} → {{1, 3, 4}{5, 2, 6, 7}}

EBSR of J5 at position 2: {{1, 2, 3, 4}{5, 6, 7}} → {{1, 5, 2, 3, 4}{6, 7}}

18

This operator could lead to an empty batch if the job which is extracted was the only job of its batch.

These two operators are combined in EBFSR operator by testing for a job Ji a reinsertion at a position h

smaller than k, and then greater than k.

Merging: This operator merges two batches:

Merging of B1 and B2: {{1, 2, 3}{4, 5}{6, 7}} → {{1, 2, 3, 4, 5}{6, 7}}

Division: This operator splits a batch in two batches just after a target job.

Division of B1 after job J3: {{1, 2, 3, 4, 5}{6, 7}} → {{1, 2, 3}{4, 5}{6, 7}}

This operator is the only one which can increase the number of batches.

3.4.2 Neighborhood exploration

To avoid an explosion of computation time associated to our local search, the operators are limited by a

parameter ∆ (depending of the instance size) which reduces the distance of the jobs (in terms of positions)

considered by the operators Swap and EBFSR.

Random start for exploration The natural way for exploring the neighborhood associated to an operator

is to fix the position of the target job to a minimal value and to process to the neighborhood exploration by

increasing the index up to its maximum value.

In case of using a First Improvement for local search, the first part of a solution will be improved first.

The problem is that the operator will continue searching improvements in this first part at each step of the

local search on this solution, wasting time in evaluation because this part would be difficult to improve.

A random start has been implemented for each operator, in order to explore from this point rather than

from the beginning. This is illustrated in Fig. 6.

The different operators are always used in the following order: Swap - EBFSR - Merging - Division.

3.4.3 First or Less Worst Improvement - FLWI

Based on these operators we develop the following descent algorithm. We explore the neighborhood and

repeat the process with the first solution which improves the current solution. If such a solution does not

exist, the method repeat the process with the best neighbor (which do not improve the current solution)

as described in Alg.5. In this algorithm, we denote the current solution by S, the neighbor by S′ and the

best neighbor by S∗. random start is a function defining the starting point in the neighborhood operator.

apply mouv creates the neighbor of S.

19

Begin :

1 2

1 3

2 3

2 4

3 4

3 5

4 5

End:

Natural exploration

2 4

3 4

3 5

4 5

End:

Begin :

1 2

1 3

2 3

Random start exploration

Figure 6: Exploration for operator Swap, ∆ = 2, n = 5

Algorithm 5 Step FLWI

1: Input: S

2: Tab Ope = [Swap,EBFSR,Merging,Division]

3: f(S′) =∞

4: for each Operator ope in Tab Ope do

5: ope.random start()

6: while ope.have next mouv() do

7: S′ = ope.apply mouv(S)

8: if f(S′) < f(S) then

9: return S′

10: end if

11: if f(S′) < f(S∗) then

12: S∗ = S

13: end if

14: end while

15: end for

16: return S∗

20

3.5 Methods description

With these different components, we build three different algorithms for solving this problem: a GRASP

algorithm, a Tabu Search algorithm and a Genetic Algorithm.

3.5.1 GRASP

First, we propose a GRASP (Greedy Randomized Adaptive Search Procedure). The idea of this algorithm

is to generate quickly an important number of solutions with good quality and to return the best one.

Solutions are generated by using the previous sequencing and batching procedures (Alg. 3 with parameter

λ ∈ {0, 1}, Spl param ∈ {determinist, non-determinist, split}) and the solution is improved by FLWI

local search until a local minimum is found (see Alg. 6).

Algorithm 6 GRASP heuristic

1: Parameters λ, Spl param, CPUmax

2: f(S∗) =∞

3: while CPU ≤ CPUmax do

4: //Initial solution creation

5: δ = sequencing heuristic(λ) (Alg. 3)

6: S = batching heuristic(δ,Spl param) (Alg. 4 or Split)

7: //First Improvement

8: S′ = Step FLWI(S)

9: while f(S′) ≤ f(S) do

10: S = S′, S′ = Step FLWI(S)

11: end while

12: //Update best solution

13: if f(S) ≤ f(S∗) then

14: S∗ = S

15: end if

16: end while

17: return S∗

3.5.2 Tabu Search algorithm

In order to improve this method, we extend the local search mechanism of FLWI with a tabu list. Proposed

by [Glover, 1989], the principle is to keep in a list the different operators and moves which allowed to improve

the current solution. All moves in this list are considered as tabu and cannot be reversed even in order to

21

improve the solution. This mechanism has been developped to escape from local minima and to continue

the search. The procedure called Step FLWI-Tabu line 11 in Alg. 7 is similar to Alg. 5, except that line 7

is changed for testing if neighbor S′ belongs or not to the Tabu list. The neighbor is considered if it does

not belong to this list.

The method has three parameters. The first is the number of iterations allowed without improvement

of the current best solution, called nb max w impr. When this parameter is reached, the algorithm uses a

diversification process to explore another part of the landscape: we apply a certain number of random moves

on the best solution found during the last descent. The second parameter indicates which neighborhood

operator is used among SWAP and EBFSR. Finally, the third parameter is a coefficient γ and the number

of moves is equal to the number of jobs multiplied by γ.

3.5.3 Genetic algorithm

A Genetic Algorithm manages a population of solutions using rules inspired by the natural evolution law as

reproduction, competition and selection, in order to adapt and improve over the generations. In our case,

this algorithm depends on parameters δpop (size of the population) and α (mutation probability).

Genotype In the population, each solution is unique and represented by its own gene. This gene is the

sequence of jobs on the manufacturer’s machines. To obtain the value of the objective function, we first

apply the procedure Split and then the fitness function. The value is stored with the solution.

Initial population The initial population is built with the sequencing and batching procedures presented

below. We use parameter λ = 0.3 and Split to generate the whole population. A small part of the population

(α%) is improved with FLWI local search procedure.

Selection A new solution (an offspring) is the combination of two individuals. Each parent is chosen by

using a binary tournament: two solutions are picked up randomly among the population and the one with

the best fitness value is conserved.

Crossover The crossover is the procedure defining an offspring from two parents. We use the LOX operator

for Linear Order crossover. The principle is to keep the central part of the first parent (delimited by two

random indices) and to move the other elements backward and forward, according to the second parent

sequence, in order to keep a part of supposed good solutions and the relative order of the other jobs.

An example presented Table 1 illustrates the crossover.

Mutation Each offspring is subject to a mutation with probability α. In this case, the local search is

applied until a local optima is found.

22

Algorithm 7 Tabu heuristic

1: Parameters λ, Spl param, Tabu s, nb max w impr, CPUmax

2: //Initial solution creation

3: δ = sequencing heuristic(λ)

4: S = batching heuristic(δ,Spl param)

5: f(S∗) =∞

6: while CPU ≤ CPUmax do

7: //Improvement

8: nb ite = 0

9: S1 = S

10: while nb ite < nb max w impr do

11: S2 = Step FLWI-Tabu(S1)

12: Update tabu List(mouv(S1, S2))

13: S1 = S2

14: if f(S1) < f(S) then

15: S = S1, nb ite = 0

16: else

17: nb ite+ +

18: end if

19: end while

20: // Update best solution

21: if f(S) < f(S∗) then

22: S∗ = S

23: end if

24: Reset Tabu List()

25: S = Diversification(S)

26: end while

27: return S∗

23

Parent 1 : 1 2 3 4 5 6 7

Parent 2 : 5 6 4 1 2 3 7

Random indices: c1 = 2, c2 = 5

Parent 1 : 1 2 |3 4 5| 6 7

Parent 2 : 5 6 4 1 2 3 7

Offspring: - - 3 4 5 - -

Parent 2 : X 6 X 1 2 X 7

Offspring: 6 1 X X X 2 7

Offspring: 6 1 3 4 5 2 7

Table 1: LOX crossover example

Population replacement An offspring is added to the current population only if its gene is not already

present in the population. We consider that two genes are identical if they have the same objective function

value. So all the objective function values in the population are different. If an offspring is added, it takes

the place of one element present in half of the population with the worst objective function value. In order

to process this operation easily, the population is always sorted.

This loop is applied in the population until the time constraint is reached. The first element of the

population is returned.

4 Computational results

We present in this section the computational resuls which have been performed on a machine with an Intel

Core i7-7820HQ and 16,00 Go RAM.

4.1 Data generation

The results presented in this section have been obtained with instances generated according to the following

specifications.

We consider a 2-machine flow shop problem.

We set a parameter SSQ = 100. For each job Jj and each machine Mi, the processing time pi,j is

randomly chosen between 1 and SSQ. The different sites are placed randomly on a square of size 3SSQ×

24

3SSQ and the distance tj1,j2 between sites j1 and j2 is the classical euclidian distance.

Costs are fixed in order to obtain an optimal solution where the number of vehicles is not equal to 1 and

not equal to n. For each job Jj the quantity qj is equal to 100, the work-in-process inventory cost hWIP
j

is equal to 1, the finished product inventory cost hFINj is equal to 2, the manufacturer penalty cost πM is

equal to 2 and the 3PL penalty cost π3PL is equal to 9. The cost of vehicle cV is 200000.

Sets of 10 instances are generated for each value of n ∈ {6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 100}. Instances

with n ∈ {6, 7, 8, 9} are used for testing the MILP model and instances with n ∈ {10, 20, 30, 40, 50, 60, 100}

are used for testing the heuristic algorithms.

4.2 Results of the MILP

The solver used is CPLEX 12.7.1. The maximum computation time is limited to 30 minutes. Table 4.2 gives

the results of the MILP.

Percentage of Average time

n instances solved CPLEX (s)

6 100% <1

7 100% 14

8 100% 169

9 0% –

Table 2: MILP efficiency

We can notice that the computation time of CPLEX quickly increases with n. No instance with 9 jobs

is solved before the time limit.

Notice also that the MILP for the 3PL provider is very efficient and can solve all the instances in less

than one second (each batch contains very few jobs).

4.3 Metaheuristic algorithms

Proposed heuristics are based only on the first part of the model, where the manufacturer chooses the

schedule of his jobs and the batch composition. As a reminder, the objective function of this model is the

sum of the inventory cost (IC) plus the vehicle cost (V C) plus the pseudo penalty cost (PPCM).

4.3.1 Iterated initial algorithm

We test the algorithm which returns an initial solution with parameter λ ∈ {0.0, 0.3, 0.5} and the three

batching protocols denoted by {False, True, Split} and corresponding respectively to the Non deter-

minist case, to the Determinist case and to the Split algorithm. In order to evaluate these different

25

parameters, some preliminary experiments have been conducted. The nine configurations have been tested

by running the algorithm without local search improvement and with 2000 runs per instance. The result

given in Tab. 3 represent the number of times a configuration is better than the others.

λ = 0.0 λ = 0.3 λ = 0.5

n False True Split False True Split False True Split

10 0 0 0 0 0 4 0 1 5

20 0 0 0 1 0 6 0 0 3

30 0 0 0 0 0 5 0 0 5

40 0 0 0 0 0 4 0 0 6

50 0 0 0 0 0 4 0 0 6

60 0 0 0 0 0 5 0 0 5

100 0 0 0 0 0 6 0 0 4

Total 0 0 0 1 0 34 0 1 37

Table 3: Evaluation of the iterated initial algorithm

We observe that the sequencing technique is better with parameter λ 6= 0.0 and for the Split algorithm

as a batching technique.

4.3.2 GRASP algorithm

The time limit in seconds has been fixed to n/2. We use the same sets of parameters as presented before.

Tab. 4 presents the number of best solutions found for each parameter value.

n λ = 0.0 λ = 0.3 λ = 0.5

False True Split False True Split False True Split

10 8 8 3 8 9 9 9 10 9

20 0 4 1 1 2 1 2 7 2

30 1 3 2 0 2 1 0 0 1

40 0 2 1 1 4 0 0 2 0

50 0 3 0 0 1 5 0 0 1

60 0 2 1 0 0 2 0 3 0

100 0 4 2 0 0 2 0 2 0

Total 9 26 10 10 18 20 11 24 13

Table 4: Results of the GRASP algorithm

The results show that the Non Deterministic leads to weak performances, whatever the value of λ. The

26

best configurations are obtained for λ ∈ {0.0, 0.5} and for a Deterministic batching procedure (parameter

equal to True). Notice also that for λ = 0.3 and the use of the Split algorithm, the results are also correct.

We consider that the best configuration is obtained with λ = 0.0 and parameter True.

Tab. 5 shows the average deviation to the best known solution returned by the iterated initial algorithm.

This improvement, around 10%, is due to the application of the Local Search.

n λ = 0.0 λ = 0.3 λ = 0.5

False True Split False True Split False True Split

10 2.6 % 2.5 % -2.3 % 2.6 % 2.7 % 2.7 % 2.7 % 2.8 % 2.7 %

20 7.6 % 8.4 % 6.3 % 7.6 % 8.5 % 7.8 % 7.4 % 8.7 % 7.9 %

30 10.0 % 10.5 % 9.9 % 9.0 % 10.7 % 10.8 % 9.0 % 10.4 % 10.5 %

40 9.7 % 10.8 % 9.4 % 8.7 % 10.9 % 9.6 % 8.9 % 10.7 % 9.7 %

50 9.0 % 11.2 % 9.0 % 7.5 % 10.7 % 11.5 % 9.1 % 10.9 % 11.5 %

60 9.7 % 11.8 % 10.8 % 7.8 % 11.5 % 11.6 % 8.9 % 11.9 % 11.7 %

100 7.9 % 12.0 % 11.9 % 7.0 % 11.3 % 11.9 % 7.8 % 11.6 % 11.7 %

Table 5: GRASP: average deviation to the iterated initial algorithm

4.3.3 Tabu Search algorithm

In Tab. 6, we present the results of the Tabu Search algorithm with the following parameters. The initial

solution is generated with the parameters λ = 0.3 and Split. The size of the tabu list is set at 7. Depending

on the parameter nb max w impr, we may accept 6, 10 or 12 iterations without improvement during a local

search, before using the diversification procedure. The diversification is done with the SWAP or EBFSR

operator and the number of random moves is proportional to the instance size and defined by the λ parameter.

The table gives the number of times the algorithm with the given configuration finds the best solution.

We can notice that no parameter really leads to a very better performance. It seems that the three first

columns are better than the others and the three last are weaker, but the difference is not really relevant.

Nevertheless, we consider that the configuration nb max w impr = 6, SWAP and γ = 0.2 leads to the

best results.

4.3.4 Genetic Algorithm

In Tab. 7, we give the results of the Genetic Algorithm with the different population sizes δpop ∈ {20, 30, 50}

and the probability of mutation α ∈ {0.1, 0.2, 0.3}. The table gives the number of times the algorithm with

the given configuration finds the best solution.

27

n nb max w impr = 6 nb max w impr = 10 nb max w impr = 12

SWAP EBFSR SWAP EBFSR SWAP EBFSR

γ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

10 8 9 9 8 8 8 8 8 8 9 8 7 8 8 8 8 8 8

20 3 5 3 2 1 1 3 3 3 2 2 2 2 2 3 1 1 0

30 2 0 1 0 1 0 1 0 0 1 0 0 0 2 1 0 1 1

40 0 1 0 3 0 2 0 1 1 0 0 0 0 0 0 0 1 1

50 0 0 0 0 1 1 2 1 1 1 2 1 0 0 0 0 0 0

60 2 3 0 0 1 0 0 0 0 1 2 0 1 0 0 0 0 0

100 1 1 1 0 3 0 0 0 1 0 0 0 0 0 1 2 0 0

Total 16 19 14 13 12 12 14 13 13 14 14 10 11 12 13 11 11 10

Table 6: Results of the Tabu Search algorithm

n δpop = 20 δpop = 30 δpop = 50

α=0.1 α=0.2 α=0.3 α=0.1 α=0.2 α=0.3 α=0.1 α=0.2 α=0.3

10 8 7 9 9 9 10 8 10 10

20 2 4 5 4 6 6 7 8 7

30 2 0 2 1 4 1 2 4 0

40 4 1 1 0 0 1 1 1 1

50 3 3 2 0 0 0 1 1 0

60 2 4 1 2 1 0 0 0 0

100 2 0 1 1 1 0 0 3 2

Total 23 19 21 21 21 18 21 25 20

Table 7: Genetic algorithm : Number of best solution for each method

28

The performances of the GA are similar whatever the parameters definition. For small size instances (up

to 30 jobs), the best parameters are δpop = 50 and α = 0.2, but for larger instances, the best parameters are

δpop = 20 and α = 0.2. We consider that the later configuration is the best.

4.4 Comparison of the metaheuristic algorithms

We compare now the best configuration of the metaheuristic algorithms. Each algorithm is considered with

the best set of parameters found in the previous experimentation and summarized bellow:

GRASP: λ = 0.0, True

Tabu Search: nb max w impr = 6, SWAP, γ = 0.2

Genetic Algorithm: δpop = 50, α = 0.2

4.4.1 Global comparison

Table 8 indicates the number of times the method returns the best solution (#b) and the average relative

deviation to this solution (∆).

GRASP Tabu Genetic

n #b ∆ #b ∆ #b ∆

10 8 0.03% 9 0.1% 10 0

20 4 0.07% 2 0.4% 9 0.1%

30 0 1.1% 0 0.6% 10 0.0%

40 0 1.1% 4 0.9% 6 0.1%

50 1 1.0% 5 0.7% 4 0.2%

60 2 1.3% 6 0.6% 2 0.8%

100 3 0.6% 3 0.4% 4 0.5%

Total/Aver. 18 0.9% 25 0.5% 45 0.2%

Table 8: Number of best solutions and average deviation for each method

We can notice that the best method is generally the Genetic Algorithm. However, we can see that the

Genetic Algorithm is the best method for instances with up to 40 jobs, but the Tabu Search method is a

very performing method for instances with more than 50 jobs.

29

4.4.2 Two by two comparison

Now we compare the methods two by two. For each couple and each set of instance, we indicate the number

of times the method is better (#b) and the average deviation ∆ defined by:

∆ =
M −O
M

with M the value obtained by the method and O the value obtained by the other method.

GRASP TS

n #b ∆ #b ∆

10 8 −0.2% 10 0.2%

20 6 −0.3% 6 0.3%

30 3 −0.4% 7 0.4%

40 3 −0.2% 7 0.2%

50 2 −0.3% 8 0.3%

60 3 −0.8% 7 0.7%

100 4 −0.1% 6 0.1%

T. 29 -0,4% 51 0,3%

Table 9: GRASP and TS

GRASP GA

n #b ∆ #b ∆

10 8 −0.3% 10 0.3%

20 4 −0.6% 9 0.6%

30 0 −1.1% 10 1.1%

40 0 −1.0% 10 1.0%

50 3 −0.8% 7 0.8%

60 4 −0.5% 6 0.5%

100 5 −0.1% 5 0.1%

T. 24 −0, 6% 57 0,6%

Table 10: GRASP and Genetic

TS GA

n #b ∆ #b ∆

10 9 −0, 1% 10 0,1%

20 3 −0, 3% 9 0,3%

30 0 −0, 6% 10 0,6%

40 4 −0, 8% 6 0,8%

50 5 −0, 5% 5 0,4%

60 8 0, 2% 2 −0, 3%

100 3 0, 0% 7 0,0%

T. 32 −0, 3% 49 0,3%

Table 11: Tabu and Genetic

These tables confirm that GRASP is the worst performing method. The Genetic Algorithm is clearly the

best method.

5 Conclusion and future research directions

In this paper, we consider a two-level supply-chain problem where a manufacturer and a 3PL provider

cooperate to satisfy the customers demands. The manufacturer faces inventory costs, vehicle costs and

penalty costs, paid to the customer for late delivery. The 3PL provider faces routing cost and penalty

cost, paid to the manufacturer for extra-late delivery. In this paper, we consider a scenario where the

manufacturer dominates the 3PL provider, by imposing the number of vehicles used, the batch composition

and the departure times of vehicles.

A Mixed Integer Linear Programming model is proposed for the manufacturer problem and the 3PL

provider problem. This MILP can only solve very small instances. Metaheuristics are proposed to solve

the manufacturer problem: a GRASP algorithm, a Tabu Search and a Genetic Algorithm. Computational

results are provided. The results show that the Genetic Algorithm outperforms the other methods.

In a future research, we will investigate other cooperation scenario. For instances, a scenario where the

3PL provider dominates, for instance imposing the departure dates for a fixed number of vehicles. In the

30

same way, we will examine the case where the two agents cooperate in order to see if a global profit can be

realized.

References

[Cakici et al., 2014] Cakici, E., Mason, S. J., Geismar, H. N., and Fowler, J. W. (2014). Scheduling parallel

machines with single vehicle delivery. Journal of Heuristics, 20(5):511–537.

[Chen, 2010] Chen, Z.-l. (2010). Integrated Production and Outbound Distribution Scheduling: Review and

Extensions. Operations Research, 58(1):130–148.

[Condotta et al., 2013] Condotta, A., Knust, S., Meier, D., and Shakhlevich, N. V. (2013). Tabu search and

lower bounds for a combined production-transportation problem. Computers and Operations Research,

40(3):886–900.

[Fu, 2014] Fu, L. (2014). Coordination of production and distribution scheduling. PhD thesis, Université

Paris-Dauphine, Paris.

[Geismar et al., 2008] Geismar, J. H., Laporte, G., Lei, L., and Sriskandarajah, C. (2008). The integrated

production and transportation scheduling problem for a product with a short lifespan. INFORMS Journal

on Computing, 20(1):21–33.

[Glover, 1989] Glover, F. (1989). Tabu Search - Part I. ORSA Journal on Computing, 1(3):4–32.

[Kergosien et al., 2017] Kergosien, Y., Gendreau, M., and Billaut, J.-C. (2017). Benders decomposition

based heuristic for a production and outbound distribution scheduling problem with strict delivery con-

straints. European Journal of Operational Research, 262(1):287–298.

[Koç and Sabuncuoglu, 2017] Koç, U. and Sabuncuoglu, I. (2017). Coordination of inbound and outbound

transportation schedules with the production schedule. Computers & Industrial Engineering, 103:178–192.

[Moons et al., 2017] Moons, S., Ramaekers, K., Caris, A., and Arda, Y. (2017). Integrating production

scheduling and vehicle routing decisions at the operational decision level: A review and discussion. Com-

puters & Industrial Engineering, 104:224–245.

[Prins, 2004] Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem.

Computers and Operations Research, 31(12):1985–2002.

[Rohmer et al., 2015] Rohmer, S., Brain, A., Morin, P.-A., and Billaut, J.-C. (2015). A two-agent model for

production and outbound distribution scheduling. In 27th European Conference on Operational Research

(EURO 2015), Glagow.

31

[Ullrich, 2013] Ullrich, C. A. (2013). Integrated machine scheduling and vehicle routing with time windows.

European Journal of Operational Research, 227(1):152–165.

[Viergutz and Knust, 2014] Viergutz, C. and Knust, S. (2014). Integrated production and distribution

scheduling with lifespan constraints. Annals of Operations Research, 213(1):293–318.

32

