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In this paper we consider a two-level supply chain problem composed of a manufacturer and a third part logistic provider (3PL provider) at an operational level. The manufacturer workshop is a flow-shop and inventory costs are considered. The 3PL provider provides vehicles to the manufacturer and routing costs are considered. Both face tardiness penalty costs, paid for late delivery by the manufacturer to the customer and by the 3PL provider to the manufacturer.

A scenario is proposed where the manufacturer dominates the negotiation with the 3PL provider.

He imposes the composition of batches for vehicles, the vehicle departure dates and estimates a delivery time. If the 3PL provider respects the estimated delivery times, there is no penalty, otherwise, some tardiness penalty costs apply. Mixed Integer Linear Programming Model and metaheuristic algorithms are proposed for this specific scenario. Some random data sets are generated and the quality and the efficiency of the different methods are compared.

Introduction and literature review

In todays business environment, defined by fierce competition and increasing customer expectations, companies must find solutions for providing competitive services in terms of cost and quality. Production and distribution represent the main activity of a lot of companies and good scheduling of these activities may represent a great monetary savings potential. In this environment, these services are usually performed by different agents, which work together but serve their own interests. The traditional approach is to consider the production and the distribution problems separately, in order to optimize the gain of each agent, without taking into consideration possible negotiations between them. The goal of this paper is to treat these two problems of production and distribution planning in an integrated framework and investigate one collaboration scenario between the two agents.

While there is a large amount of literature on each of the individual production and distribution problems since decades, the interest of the community for problems integrating both aspects is more recent. This interest is motivated by the possibility of making substantial savings in industries by considering the twolevel problem directly rather than both problems separately.

A classification of such an integrated problem is proposed in [Chen, 2010]. The author provides a classification for integrated models based on different criteria such as for example the structure of the integration. They differentiate between three different kinds of integration: production and outbound transportation, inbound transportation and production, inbound transportation, production and outbound transportation.

In the survey [START_REF] Moons | Integrating production scheduling and vehicle routing decisions at the operational decision level: A review and discussion[END_REF], the authors present, define and classify different kinds of production scheduling-vehicule routing problems (PS-VRP). This class of problems is presented first as IPODS (Integrated production and outbound distribution scheduling) problems by [Chen, 2010]. However, [START_REF] Moons | Integrating production scheduling and vehicle routing decisions at the operational decision level: A review and discussion[END_REF] focus only on problems where a VRP is solved for the delivery. For example, are excluded problems with single customer, direct shipment or using another transportation mode (as airplane). The main classification criteria of this paper is related to the scheduling environment. Problems are separated according to their machine environment (single machine, parallel machines, job/flow shop). Problems are presented according to other characteristics related to the production, the inventory and the distribution.

We refer in the following to papers in the literature presenting important similarities with our problem or resolution techniques.

In [START_REF] Geismar | The integrated production and transportation scheduling problem for a product with a short lifespan[END_REF], the authors integrate production and distribution problems in order to respect the lifespan of products from the end of the production to the delivery to the clients. One capacitated vehicle is used for the delivery. The authors use the split heuristic developed by Prins [Prins, 2004] to solve optimally the VRP associated to a fixed sequence of jobs in the production. This heuristic is included in a genetic algorithm. [Ullrich, 2013] integrates production and outbound distribution scheduling in order to minimize the total tardiness. The first problem is a parallel machines scheduling problem. The second problem is a delivery problem of jobs with a fleet of capacitated vehicles. Delivery time windows, service times and destinations are considered. A Genetic Algorithm is proposed to solve the integrated problem. Inventory holding costs are not considered in this paper.

In [START_REF] Condotta | Tabu search and lower bounds for a combined production-transportation problem[END_REF], the authors use a Tabu algorithm to serve multiple products to the client with respect of release dates and due dates. The objective is to find the optimal sequencing and the optimal batching of jobs.

In [START_REF] Viergutz | Integrated production and distribution scheduling with lifespan constraints[END_REF] the authors consider a single production facility modeled by a single machine. After completion, jobs have to be delivered before a given deadline (perishability) and in a time window to customers by a single vehicle. Because of the limited resources, not all the customers may be supplied and the problem is to find a selection of customers in order to maximize the total satisfied demand.

The authors propose a branch-and-bound algorithm. Inventory costs are not considered.

In [START_REF] Cakici | Scheduling parallel machines with single vehicle delivery[END_REF], the authors model the manufacturer production site as a parallel machine environment. A single capacitated vehicle is used for the delivery of jobs. The authors introduce weights associated to the jobs in order to take inventory holding costs into account. The objective function is to minimize the total weighted delivery time. The authors propose an MILP model and heuristic resolution approaches.

In [Fu, 2014] the author proposes different scheduling problems with different routing hypotheses. The problems are based on the coordination and domination scenarios between agents and the author develops different models and resolution methods according to the collaboration scenario. No inventory cost is considered.

In [START_REF] Rohmer | A two-agent model for production and outbound distribution scheduling[END_REF], the authors describe a production problem with outbound distribution, including inventory costs. This paper proposes models for a scenario with dominance of the 3PL provider (which imposes the number of vehicles and departure dates to the manufacturer) and proposes research directions by suggesting different coordination scenarios for the two agents.

A problem including inbound and outbound transportation from both sides of the production stage is treated in [START_REF] Koç | Coordination of inbound and outbound transportation schedules with the production schedule[END_REF]. Inventory costs are considered and the objective is to schedule the jobs on the machines and the vehicles so that the sum of transportation and inventory holding costs are minimized. The authors propose an MILP model, a lower bound and heuristic algorithms for solving large size instances.

In [START_REF] Kergosien | Benders decomposition based heuristic for a production and outbound distribution scheduling problem with strict delivery constraints[END_REF] the authors propose a problem inspired from chemotherapy production and delivery environment. Drugs are produced on parallel machine and delivered on multiple distant sites by an unique agent. The model include soft due date for the delivery to customers and hard lifespan for products. The Bender decomposition is adapted. The resolution method and use the delivery problem as master problem and a relaxed version of the production problem as slave. Cuts, upper and lower bound are implemented for improve the both model. This method show important improvement compared with a classic model resolution with CPLEX under a 30 minutes run and up to 40 jobs instances.

The research presented in this paper builds on this work. We propose a new scenario with a strong dominance of the manufacturer, who imposes the composition of batches for each vehicle, set departure dates, and evaluates delivery times. To evaluate the delivery dates, the MILP model of the manufacturer incorporates a routing phase. Even if the sequencing of jobs in each batch follows a given rule (EDD order), this makes the problem more difficult to solve.

Section 2 gives a formal definition of the problem and introduces the notations. A Mixed Integer Linear Programming (MILP) model is presented for the problem. In Section 3, different resolution methods (GRASP, Tabu Search and Genetic Algorithm) are described and decomposed on different level. In section 4, we present the results of the resolution methods on randomly generated instances. Section 5 concludes the paper and gives some directions for future research.

A multi agent model

This research aims to propose an integrated model for a supply chain problem, where a manufacturer and a 3PL-provider are involved. For the manufacturer, we consider several costs (inventory costs, transportation costs, penalty costs, ...) that are related to the production phase and the transportation phase, in order to obtain a more realistic model. Despite inventory costs play a major role in production planning, they are often neglected in production scheduling models. Two kinds of inventory costs are considered: work in progress (WIP) inventory and finished products inventory (FIN).

More precisely, this multi-agent problem consists of two sub-problems: a permutation flow-shop scheduling problem for the production problem of the manufacturer and a vehicle routing problem for the 3PL provider. According to the five-field notation α|β|π|δ|γ proposed in [Chen, 2010], the notation of the problem that we consider is

F m||V (∞, ∞), routing|n|γ
where F m indicates an m-machine flow shop; V (∞, ∞) means that a sufficient number of vehicles are available and the capacity of each vehicle is unbounded; routing means that orders going to different customers can be transported in the same shipment, and a vehicle routing problem has to be solved; n indicates that each job belongs to one customer. Finally, γ is the objective function, detailed later in this section.

Production problem

The production problem considered in this paper is an m-machine permutation flow shop with work in progress (WIP) and finished product inventory considerations. We suppose that we have a set {J 1 , ..., J n } of n jobs to schedule. A manufacturer is looking to design a production schedule for all jobs on the machines. Each job J j has a given processing time p i,j on machine M i . After the completion of a job on a machine, a work-in-process inventory is generated, before the processing of the job on the next machine. The holding cost for this inventory depends on the job and is denoted by h W IP j for job J j . We do not assume that the work-in-process holding cost depends on the machines, for a sake of clarity. After the completion of the job on the last machine, the finished product inventory is kept until the departure of the job for delivery. The holding cost for the finished product inventory depends on the product and is denoted by h F IN j for job J j .

Job J j has to be delivered to customer j for a given due date denoted by d j . A delay in the delivery of the product generally results in a loss for the manufacturer, that can be financial, hence the manufacturer incurs a penalty cost π M j per time unit of late delivery of J j , that is paid to the customer. We denote by C i,j the completion time of job J j on machine M i , 1 ≤ i ≤ m. In our model, the manufacturer decides the composition of vehicles (i.e. the batches) and their departure dates. Furthermore, the manufacturer estimates a delivery date for each job, assuming that the jobs are delivered in EDD order.

Therefore, he has an estimation of the amount of the penalty costs due to the customers, which is called a Pseudo Penalty Cost. The objective of the manufacturer is to minimize his total cost, which is composed by the inventory cost IC, a vehicle cost V C (related to the number of vehicles used) and the pseudo penalty costs P P C M . At this step, the manufacturer does not know the real delivery dates.

We denote by IC the total inventory cost. Its expression is the following:

IC = n j=1 (C m,j -C 1,j )q j h W IP j + n j=1 (f j -C m,j )q j h F IN j (1)
where f j denotes the departure time of J j and q j is the quantity of items of job J j .

We denote by P C M the penalty cost for tardiness. The expression of P C M is:

P C M = n j=1 π M j T M j (2)
Remember that T M j depends on the delivery dates that will be given by the 3PL provider (denoted D 3P L j for J j ) and that are not known at the moment. For this reason, the manufacturer considers a Pseudo Penalty Cost P P C M involving an estimation of the tardiness P T M j of J j , based on an estimation of the delivery time denoted D M j of J j , defined by:

P T M j = max(0, D M j -d j )
, where D M j is determined assuming that the jobs in a batch are delivered in EDD order. We have:

P P C M = n j=1 π M j P T M j (3)
We denote by V C the vehicle cost. This cost is defined by:

V C = c V V (4)
where c V is the cost of one vehicle and V is the number of vehicles required by the manufacturer.

The pseudo total cost for the manufacturer is given by:

P T C M = IC + P P C M + V C (5)

Distribution problem

The distribution is done by a third-party-logistics (3PL) provider. For each batch of jobs to deliver, he wants to find an optimal route for the delivery of products from the manufacturer site to the multiple customer locations. Two hypotheses are considered:

1. Vehicles stay at the manufacturing site and their departure times are imposed by the manufacturer.

2. A vehicle takes all the jobs that are available (completed).

Assuming this condition, we can have at most n potential departure times, with the departure time of vehicle k denoted by F k , k ∈ {1, ..., n}, given by the manufacturer.

We denote by t i,j the travel time between site i and site j (i, j ∈ {0, ..., n + 1}), where site 0 corresponds to the manufacturer site, site n + 1 corresponds to the depot of the 3PL provider and site j corresponds to the site of the customer waiting for job J j (j ∈ {1, ..., n}).

For each trip, the 3PL provider bears the costs for the routing, denoted by RC k for the route of vehicle k, which depends on the total travel time and a penalty cost per time unit to the manufacturer if the final delivery date (D 3P L j

) is greater than D M j . The total routing cost is equal to:

RC = V k=1 RC k (6)
The routing cost is the sum of the costs for all the routes, leaving from the manufacturer location and returning to the depot of the 3PL provider. The penalty cost is denoted by P C 3P L . We assume that this function is related to the total tardiness, i.e. we denote by T 3P L j the tardiness of delivery of J j from the point of view of the 3PL provider (related to the due date D M j estimated by the manufacturer):

T 3P L j = max(0, D 3P L j -D M j ). P C 3P L is defined by: P C 3P L = n j=1 π 3P L j T 3P L j (7)
The total cost for the 3PL provider is given by:

T C 3P L = RC + P C 3P L -V C (8)

Integrated Problem

The two problems outlined above are interconnected and dependent on each other. We assume that:

the number of vehicles V , the dates of departure of the vehicles

(F k , 1 ≤ k ≤ V ),
the first estimation of the completion delivery date D M j , are determined by the manufacturer during the construction of his schedule, minimizing P T C M . The vehicles of the 3PL provider take the jobs and distribute them to the customers at minimum cost. The 3PL provider minimizes T C 3P L costs. Then, the 3PL provider gives the delivery dates to the manufacturer with the implications on tardiness, so that the real penalty cost P C M for the manufacturer can be computed.

The real cost for the manufacturer and for the 3PL provider are:

T C M = IC + P C M + V C -P C 3P L (9) T C 3P L = RC + P C 3P L -V C (10)
The whole process is described more formally in Alg. 1.

Algorithm 1 General framework

The manufacturer optimizes his production schedule: MIN P T C M // From the schedule we deduce the jobs completion times, the number of vehicles used, the batch compositions, their departure times and an estimation D M j of the delivery completion times for k in 1 to V do The 3PL provider delivers the jobs optimally to minimize his costs RC k + P C 3P L k . // From the routing of vehicle k we deduce the delivery dates of jobs D 3P L j end for Compute the total cost of the 3PL provider:

T C 3P L = V k=1 RC k + P C 3P L k -V C
Compute the total cost of the manufacturer:

T C M = IC + P C M -P C 3P L +VC

Mixed Integer Linear Programming models

We propose in this section an MILP model for solving the manufacturer problem and an MILP model for the 3PL provider.

The data of the problem are the following. n number of jobs m number of machines p i,j processing time of job J j on machine M i , 1 ≤ j ≤ n, 1 ≤ i ≤ m q j quantity of items of job J j , 1 ≤ j ≤ n d j delivery due date of job J j , 1 ≤ j ≤ n t s1,s2 travel time between site s 1 and site s 2 , s 1 , s 2 ∈ {0, 1, ..., n + 1}

M an arbitrary high value The costs that have to be taken into account are the following.

h W IP j holding cost for WIP inventory of job J j , 1 ≤ j ≤ n h F IN j holding cost for finished product inventory of job J j , 1 ≤ j ≤ n π M j penalty cost of the manufacturer for late delivery of job J j , 1 ≤ j ≤ n c V
cost per vehicle The variables to determine are the following:

y j1,j2 = 1 if job J j1 is scheduled before job J j2 , 0 otherwise, 1 ≤ j1, j2 ≤ n Z k = 1 if vehicle k is used, 0 otherwise, 1 ≤ k ≤ n z j,k = 1 if job J j departs on vehicle k, 0 otherwise, 1 ≤ j ≤ n, 1 ≤ k ≤ n x j1,j2,k = 1 if job J j1 and job J j2 are transported in vehicle k and J j1 is delivered before J j2 , 0 otherwise, 1 ≤ j1, j2 ≤ n, 1 ≤ k ≤ n D M j estimation of the delivery due date of job J j , 1 ≤ j ≤ n C i,j Completion time of job J j on machine M i , 1 ≤ j ≤ n, 1 ≤ i ≤ m F k departure time of vehicle k, 1 ≤ k ≤ n
P T M j ≥ 0 estimation of the tardiness of job J j for the manufacturer, 1 ≤ j ≤ n IC total inventory costs P P C M pseudo penalty cost of the manufacturer The following variables will be known after the 3PL provider gives the delivery dates to the manufacturer.

D 3P L j delivery completion time of job J j T M j tardiness of job J j V C
final vehicle cost

Manufacturer

The scheduling problem of the manufacturer is solved by the following Mixed Integer Linear Programming model.

Minimize P T C M = IC + P P C M + V C (11)
The relative order between two jobs J j1 and J j2 (∀j1, j2 ∈ {1, ..., n}, j1 ≤ j2) is given by the following constraints:

y j1,j2 + y j2,j1 = 1 (12)
The resource constraints allow to define the completion time of a job on any machine M i (∀i ∈ {1, ..., m}, ∀j1, j2 ∈ {1, ..., n}, j1 = j2):

C i,j2 ≥ C i,j1 + p i,j2 -M y j1,j2 (13) 
The routing constraints are given on any machine M i (i ∈ {2, ..., m}) and for any job J j (j ∈ {1, ..., n}):

C i,j ≥ C i-1,j + p i,j (14) 
Each job J j is transported in a vehicle (∀j ∈ {1, ..., n}), therefore:

n k=1 z j,k = 1 (15)
Each vehicle k (∀k ∈ {1, ..., n}) leaves after the completion time of all jobs transported by this vehicle (∀j ∈ {1, ..., n}):

F k ≥ C m,j -M (1 -z j,k ) (16) 
A job cannot leave before its vehicle leaves (∀j ∈ {1, ..., n}, ∀k ∈ {1, ..., n}):

f j ≥ F k -M (1 -z j,k ) (17) 
A vehicle k (∀k ∈ {1, ..., n}) is used once it transports a job:

M Z k ≥ n j=1 z j,k (18) 
In the same batch k (∀k ∈ {1, ..., n}), job J j1 (∀j1 ∈ {1, ..., n}) has a predecessor with a smaller due-date, or has the manufacturer site as predecessor:

i∈{0}∪{j/dj ≤dj1} x i,j1,k = z j1,k (19) 
In the same batch k (∀k ∈ {1, ..., n}), job J j1 (∀j1 ∈ {1, ..., n}) has a successor with a greater due-date, or has the depot site as successor:

i∈{n+1}∪{j/dj ≥dj1}) x j1,i,k = z j1,k (20) 
The manufacturer site has a successor during the route of vehicle k (∀k ∈ {1, ..., n}) only if vehicle k is used:

n j=1 x 0,j,k ≤ Z k (21)
The estimation of the delivery date is given by the following constraints (∀j1, j2 ∈ {1, ..., n} and ∀k ∈ {1, ..., n}):

D M j2 ≥ D M j1 + t j1,j2 -M (1 -x j1,j2,k ) (22) 
The following constraints give a lower bound of the delivery date of job J j (∀j ∈ {1, ..., n}) transported in vehicle k (∀k ∈ {1, ..., n}):

D M j ≥ F k + t 0,j -M (1 -z j,k ) (23) 
The estimation of the tardiness for job J j (∀j ∈ {1, ..., n}) is given by the following constraint:

P T M j ≥ D M j -d j (24) 
The costs are given in the following expressions:

P P C M = n j=1 π M j P T M j ( 25 
)
IC W IP = n j=1 (C m,j -C 1,j )q j h W IP j ( 26 
)
IC F IN = n j=1 ( V k=1 f j -C m,j )q j h F IN j ( 27 
)
IC = IC W IP + IC F IN (28) V C = c V n k=1 Z k (29)
The objective function is:

Minimize IC + P P C M + V C (30) 
This model contains O(n 3 ) binary variables, O(nm) continuous variables, O(n 3 ) big-M constraints and O(n 2 m) constraints.

3PL provider

We assume that the optimization of the routing of the vehicles are independent and that they can be optimized separately. Therefore, for each trip, the set of delivery dates D M j is given by the manufacturer and we assume that vehicle k has to leave the manufacturer site at time F k , which is also given. Furthermore, we assume that a batch contains s jobs to deliver.

The data required by the 3PL provider are the following: s number of sites to visit (sites 1, .., s are the customer sites, site 0 is the manufacturer site and site s + 1 is the 3PL provider site) D M j estimated delivery date for site j, 1 ≤ j ≤ s F k departure time from the manufacturer site of vehicle k, 1 ≤ k ≤ n t j1,j2 travel time between site j1 and site j2, 0 ≤ j1, j2 ≤ s + 1 M an arbitrary high value (can be set to 2 × j1 j2 t j1,j2 ) The costs to be taken into account are the following. c j1,j2 cost of travel time between site j1 and site j2, 0 ≤ j1, j2 ≤ s + 1 π 3P L j penalty cost of 3PL provider for an excessive tardiness of job J j , 1 ≤ j ≤ s The variables that have to be determined are the following.

x j1,j2

= 1 if site j1 is visited just before site j2,

0 otherwise, 0 ≤ j1, j2 ≤ s + 1 D 3P L j date at which site j is visited, i.e. delivery date of J j , 1 ≤ j ≤ s T 3P L j ≥ 0 tardiness of delivery of J j , 1 ≤ j ≤ s RC routing cost P C 3P L
total penalty cost of 3PL provider The routing of the 3PL provider is determined by solving the following Mixed Integer Linear Programming model.

Minimize T C 3P

L = RC + P C 3P L -V C (31) 
Any site s 1 (∀s 1 ∈ {0, ..., s}) (excluding 3PL depot), has one successor site in {1, ..., s + 1}. s+1 s2=1

x s1,s2 = 1 (32)

Any site s 1 (∀s 1 ∈ {1, ..., s + 1}) (excluding manufacturer site), has one predecessor site in {0, ..., s}.

s s2=0

x s1,s2 = 1 (33)

A lower bound of the delivery date of job J j (∀j ∈ {1, ..., s}) is the following (remember that F k is a data here):

D M j ≥ F k + t 0,j (34) 
The arrival date of each job at the customer site is given by the following constraints (∀j1 ∈ {1, ..., s}, ∀j2 ∈ {1, ..., s}):

D 3P L j2 ≥ D 3P L j1 + t j1,j2 -M (1 -x j1,j2 ) (35) 
The tardiness expression and the costs are given in the following expressions (remember that D M j is a data here):

T 3P L j ≥ D 3P L j -D M j , ∀j ∈ 1, .., s (36) 
P C 3P L = s j=1 π 3P L j T 3P L j (37) RC = s j1=0 s+1 j2=1 c j1,j2 x j1,j2 (38) 
This model contains O(s 2 ) binary variables, O(s) continuous variables, O(s 2 ) big-M constraints and O(s)

constraints.

Heuristic resolution methods

Heuristics methods are developed to propose a good solution to the manufacturer problem. This kind of method has been chosen because of the problem complexity, which makes the exact resolution very difficult in a reasonable computation time.

In this section, we propose only to solve the manufacturer part problem. Indeed, each sub-problem of the 3PL provider is a VRP with soft due dates and few items which can be solved easily by the classical methods of the literature (the MILP proposed in Section 2.4.2 is sufficient).

Three metaheuristic algorithms are proposed: a GRASP algorithm, a Tabu Search, and a Genetic Algorithm. These methods present some common features, which are first presented here: a fitness function, a two-phase heuristics (scheduling first, batching second) for build initial good solution and local search protocols.

Then we will present the complete algorithms.

In the following, we consider we work on a two-machine production chain.

Coding of a solution

A solution to the problem is defined by the starting times of the jobs on the machines and a composition of batches to deliver. From this, it is possible to determine the inventory costs, the departure time of the batches for delivery, and knowing their composition -and applying the EDD rule for delivery -the estimation of the delivery dates. So, all the elements are known to evaluate a solution.

A coding of a solution is a sequence of batches. The order in which the jobs belong to the batches is also the processing sequence on the machines. The order in which the jobs are delivered in each batch is given by EDD order. This coding will be used for the GRASP and the Tabu Search algorithms.

Example: Let consider the following coding for a problem with n = 8 jobs.

σ = {{J 4 , J 2 , J 3 }, {J 1 , J 6 }, {J 8 , J 5 , J 7 }}
This coding corresponds to a production sequence equal to (J 4 , J 2 , J 3 , J 1 , J 6 , J 8 , J 5 , J 7 ), to the composition of three batches, the first one being composed by the jobs J 4 , J 2 and J 3 .

Fitness function

The fitness function is the evaluation method of a coded solution.

Let consider a coding σ. We denote by ν the number of batches in σ. This corresponds to the number of vehicles which are used. Notice that the cost V C is a constant in this case V C = c V ν and therefore it does not appear in the objective function. We assume w.l.o.g. that the jobs in σ are numbered from J 1 to J n , which makes the routing constraints (the order in which jobs visit the machines) easier to present.

We know which is the last job of each batch. We denote by E k the index of the last job in batch k,

1 ≤ k ≤ ν.
We also know the assignment of jobs to batches and we denote by B j the batch assigned to job

J j , 1 ≤ j ≤ n.
With a simple preprocessing, it is also possible to determine the time needed to deliver a job from the departure date of its vehicle. We denote by T T j the travel time to deliver J j .

Then, determining the optimal schedule of the jobs (starting times of jobs) can be done by solving the following Linear Programming model called LP F it . The data and variables have been previously defined.

LP F it (39)

MIN IC + P P C M (40)

s.t. C 1,1 ≥ p 1,1 (41) 
C i,j ≥ C i,j-1 + p i,j ∀j ∈ {1, ..., n}, ∀i ∈ {1, ..., m}

C i,j ≥ C i-1,j + p i,j ∀j ∈ {1, ..., n}, ∀i ∈ {1, ..., m}

F k = C m,E k ∀k ∈ {1, ..., ν} (43) 
f j = F Bj ∀j ∈ {1, ..., n} (44) 
D M j = f j + T T j ∀j ∈ {1, ..., n} (45) 
(24), ( 25), ( 26), ( 27), (28) (47)

This LP model allows to evaluate a coding of solution optimally.

In the case of m = 2 machines and under some hypotheses, it is possible to propose a more efficient method.

We assume that the penalty costs to the customers are much more important than the inventory costs.

Therefore, we will not delay the departure of a vehicle in order to possibly save an inventory cost. The consequence is that we respect the completion time of the jobs on the last machine (i.e. the vehicles departure time) in a left-shifted schedule.

The critical path of the batch is the set of operations which give the duration of the batch. In order to minimize the inventory costs, we consider three types of jobs in each batch, depending on their relative position to the critical path.

type 1: the jobs composing the critical path: we cannot move such a job without modifying the departure date of the vehicle. So we cannot modify the inventory cost of these jobs (black font in 1).

type 2: the jobs on the first machine which do not belong to the critical path: we right-shift these jobs, in order to minimize their Work In Process inventory cost (gray font in 1).

type 3: the jobs on the second machine which do not belong to the critical path: a right-shift movement on such a job increases the WIP inventory cost but decreases the Final inventory cost. We schedule these jobs with an ad-hoc algorithm (white font in 1). for the job J j of type 3. If h δ j > 0, a right-shift of J j decreases its inventory cost. We assume w.l.o.g. that the jobs of type 3 are numbered from J 1 for the first one to J o for the last one. Algorithm 2 allows to define the position of the jobs of type 3 on machine M 2 .

Example: In Fig. 1,we have h 

δ 1 = 3, h δ 2 = -2 and h δ 3 = -2. Job 1 is right shifted because h δ 1 > 0.
Then, jobs 1 and 2 are right shifted because h δ 1 + h δ 2 = 1 > 0. Finally, because h δ 1 + h δ 2 + h δ 3 = -1 < 0, we do not shift again these jobs to the right. Applying Alg. 2 leads to the solution illustrated in Fig. 2.

The IC is evaluated from this last configuration.

Algorithm 2 Min inventory cost algorithm

1: B ← ∅, Bh δ ← 0 2: for j ∈ (1, . . . , o) do 3: B ← B ∪ {J j } 4: Bh δ ← Bh δ + h δ j 5:
if Bh δ > 0 then 

Initial solution

The methods start from an initial solution. To generate an initial solution, we determine first the sequencing of jobs and then we choose the composition of vehicles (or batching). Of course, because this method uses random parameters, it is not guaranted that the methods start with the same initial solution.

Sequencing of jobs

To build the sequence, we choose the first job randomly among a restricted list based on the job's due dates.

A restricted list is composed by the jobs with a due date belonging to an interval. The size of this interval is related to a parameter λ. The details of the algorithm are given in Alg. 3.

Notice that we can generate a solution starting by the end of the schedule (changing line 6 in Alg. 3 to

List = {J j /d max -λ × (d max -d min ) ≤ d j ≤ d max }
and line 8 to σ ← J j + σ). to be checked

Batching of the sequence

We develop three methods for dispatching the jobs into batches: the two first ones are based on the cost of adding a job to an existing batch. The third one is inspired by the Split algorithm of Prins [Prins, 2004].

First batching method: From the schedule, we build batches by evaluating the additional cost of a 

d max = max Jj ∈J d j 6: List = {J j /d min ≤ d j ≤ d min + λ × (d max -d min )} 7:
Select randomly J j in List this parameter is true, the new job is assigned to the current batch, otherwise the decision is taken randomly, depending on the ratio between Cost 1 and Cost 2 (see Alg. 4).

Split algorithm:

The Split algorithm [Prins, 2004] is presented for the DV RP (Distance-constraint

Vehicle Routing Problem) in order in determine an optimal set of trips for customers, respecting an already known sequencing order. The principle is to represent the problem by an oriented graph representing all the possible trips, with the costs on edges. The shortest path in this graph gives the optimal set of travels and therefore, the batching.

In our case, the input of the algorithm is a sequence of jobs. We define a graph G = (V, A) where V contains n + 1 vertices indexed from 0 to n, A contains one arc for each pair (i, j), with i < j, representing the batch containing the (i + 1) th to the j th job of the sequence. The cost of this edge represents the cost associated to this batch: (1) the inventory cost plus (2) the estimation of tardiness penalties plus (3) the cost of one vehicle. This evaluation can be obtained by using LP F it with only one batch, release dates on the machines (C i,1 ≥ R i , ∀i ∈ {1, ..., m}), and jobs of type 3. In the case of m = 2 machines, IC is given by Alg. 2 for the jobs of type 3, P P C M is easily computed and V C is equal to c V .

After building this graph, we use Bellman's algorithm to find the shortest path. This evaluation is reasonably fast because G has no cycle. The worst case complexity is O(n 2 ).

Example: Let consider a two-job instance with p 11 = p 12 = p 22 = 1,

p 21 = 2, h W IP 1 = h W IP 2 = 1, h F IN 1 = h F IN

2

= 2 and c V = 5. The job sequence is (J 1 , J 2 ), the associate graph contains 3 vertices and 

J j = σ[k] 7:
Cost 1 = cost of assignment of J j to batch B 8:

Cost 2 = cost of assignment of J j to a new batch 9:

if determinist then 10:

in current batch = Cost 1 ≤ Cost 2 11: else 12:
in current batch = Cost1 Cost2 ≤ rand(0, 1)

13:
end if 14:

if in current batch then 

B 1 = {J 1 }, B 2 = {J 2 } and B 3 = {J 1 , J 2 }.
The jobs are left shifted to have the departure date of the batch (see Fig. 3).

The departure time of the batch B 1 finishing by job J 1 is 2 and the departure time of batches B 2 and B 3 finishing by job J 2 is 4. If we denote by c X the cost associated to batch B X , we have c X = IC X + P P C M X + c V . IC for batches B 1 and B 2 are equals to 0:

IC 1 = IC 2 = 0. IC for batch B 3 is equal to IC 3 = h W IP 1 × 1 + h F IN 1 × 1 = 3.
We assume that the data for computing P P C M leads to the following results (not detailed here for a sake of simplicity): P P C M 1 = 0, P P C M 2 = 1 and P P C M 3 = 4. Using Bellman on the graph of Fig. 5, we obtain the shortest path equal to {(0, 1), (1, 2)} with an associate cost of 11. It means that J 1 and J 2 are in two separate batches. If c V increases from 5 to 7, the shortest path changes to {(0, 2)} with an associated cost of 14.

Local Search

We use local search in order to improve quickly the current solution.

Operator

We present in this section the neighborhood operators.

Swap: Exchange two jobs in the sequence. To avoid symmetry, let i and j be the positions of two jobs, these jobs can be swapped if and only if i < j. For example : Swap of 2 and 5: {{1, 2, 3, 4}{5, 6, 7}} → {{1, 5, 3, 4}{2, 6, 7}} EBSR/EFSR -Extract and Backward / Forward Shift Reinsertion: This operator extracts a job J i from position k and reinsert it in the sequence at a position h < k (backward), or at a position h > k (forward). We denote by J j the job which was at position h. Job J i is inserted in the batch of J j . EFSR of J 2 at position 5: {{1, 2, 3, 4}{5, 6, 7}} → {{1, 3, 4}{5, 2, 6, 7}} EBSR of J 5 at position 2: {{1, 2, 3, 4}{5, 6, 7}} → {{1, 5, 2, 3, 4}{6, 7}} This operator could lead to an empty batch if the job which is extracted was the only job of its batch.

These two operators are combined in EBFSR operator by testing for a job J i a reinsertion at a position h smaller than k, and then greater than k.

Merging: This operator merges two batches:

Merging of B 1 and B 2 : {{1, 2, 3}{4, 5}{6, 7}} → {{1, 2, 3, 4, 5}{6, 7}} Division: This operator splits a batch in two batches just after a target job.

Division of B 1 after job J 3 : {{1, 2, 3, 4, 5}{6, 7}} → {{1, 2, 3}{4, 5}{6, 7}} This operator is the only one which can increase the number of batches.

Neighborhood exploration

To avoid an explosion of computation time associated to our local search, the operators are limited by a parameter ∆ (depending of the instance size) which reduces the distance of the jobs (in terms of positions) considered by the operators Swap and EBFSR.

Random start for exploration The natural way for exploring the neighborhood associated to an operator is to fix the position of the target job to a minimal value and to process to the neighborhood exploration by increasing the index up to its maximum value.

In case of using a First Improvement for local search, the first part of a solution will be improved first.

The problem is that the operator will continue searching improvements in this first part at each step of the local search on this solution, wasting time in evaluation because this part would be difficult to improve.

A random start has been implemented for each operator, in order to explore from this point rather than from the beginning. This is illustrated in Fig. 6.

The different operators are always used in the following order: Swap -EBFSR -Merging -Division.

First or Less Worst Improvement -FLWI

Based on these operators we develop the following descent algorithm. We explore the neighborhood and repeat the process with the first solution which improves the current solution. If such a solution does not exist, the method repeat the process with the best neighbor (which do not improve the current solution) as described in Alg.5. In this algorithm, we denote the current solution by S, the neighbor by S and the best neighbor by S * . random start is a function defining the starting point in the neighborhood operator.

apply mouv creates the neighbor of S. 

Methods description

With these different components, we build three different algorithms for solving this problem: a GRASP algorithm, a Tabu Search algorithm and a Genetic Algorithm.

GRASP

First, we propose a GRASP (Greedy Randomized Adaptive Search Procedure). The idea of this algorithm is to generate quickly an important number of solutions with good quality and to return the best one.

Solutions are generated by using the previous sequencing and batching procedures (Alg. 

Tabu Search algorithm

In order to improve this method, we extend the local search mechanism of FLWI with a tabu list. Proposed by [Glover, 1989], the principle is to keep in a list the different operators and moves which allowed to improve the current solution. All moves in this list are considered as tabu and cannot be reversed even in order to U pdate tabu List(mouv(S 1 , S 2 ))

13: Reset T abu List() Offspring: --3 4 5 --Parent 2 : X 6 X 1 2 X 7

S 1 = S 2 14: if f (S 1 ) < f (S)
Offspring: 6 1 X X X 2 7

Offspring: 6 1 3 4 5 2 7 

Computational results

We present in this section the computational resuls which have been performed on a machine with an Intel Core i7-7820HQ and 16,00 Go RAM.

Data generation

The results presented in this section have been obtained with instances generated according to the following specifications.

We consider a 2-machine flow shop problem.

We set a parameter SSQ = 100. For each job J j and each machine M i , the processing time p i,j is randomly chosen between 1 and SSQ. The different sites are placed randomly on a square of size 3SSQ × 3SSQ and the distance t j1,j2 between sites j1 and j2 is the classical euclidian distance.

Costs are fixed in order to obtain an optimal solution where the number of vehicles is not equal to 1 and not equal to n. For each job J j the quantity q j is equal to 100, the work-in-process inventory cost h W IP j is equal to 1, the finished product inventory cost h F IN j is equal to 2, the manufacturer penalty cost π M is equal to 2 and the 3PL penalty cost π 3P L is equal to 9. The cost of vehicle c V is 200000.

Sets of 10 instances are generated for each value of n ∈ {6, 7, 8, 9, 10, 20, 30, 40, 50, 60 , 20, 30, 40, 50, 60, 100} are used for testing the heuristic algorithms.

Results of the MILP

The solver used is CPLEX 12.7.1. The maximum computation time is limited to 30 minutes. We can notice that the computation time of CPLEX quickly increases with n. No instance with 9 jobs is solved before the time limit.

Notice also that the MILP for the 3PL provider is very efficient and can solve all the instances in less than one second (each batch contains very few jobs).

Metaheuristic algorithms

Proposed heuristics are based only on the first part of the model, where the manufacturer chooses the schedule of his jobs and the batch composition. As a reminder, the objective function of this model is the sum of the inventory cost (IC) plus the vehicle cost (V C) plus the pseudo penalty cost (P P C M ).

Iterated initial algorithm

We test the algorithm which returns an initial solution with parameter λ ∈ {0.0, 0.3, 0. The performances of the GA are similar whatever the parameters definition. For small size instances (up to 30 jobs), the best parameters are δ pop = 50 and α = 0.2, but for larger instances, the best parameters are δ pop = 20 and α = 0.2. We consider that the later configuration is the best.

Comparison of the metaheuristic algorithms

We compare now the best configuration of the metaheuristic algorithms. Each algorithm is considered with the best set of parameters found in the previous experimentation and summarized bellow: We can notice that the best method is generally the Genetic Algorithm. However, we can see that the Genetic Algorithm is the best method for instances with up to 40 jobs, but the Tabu Search method is a very performing method for instances with more than 50 jobs.

same way, we will examine the case where the two agents cooperate in order to see if a global profit can be realized.

Figure 1 :

 1 Figure 1: Three different kinds of jobs

Figure 2 :

 2 Figure 2: Result of the min inventory cost procedure

Algorithm 3 sequencing heuristic algorithm 1 :

 1 Parameters λ, 2: σ = ∅, J = {J j , j ∈ {1, ..., n}} 3: while J = ∅ do 4: d min = min Jj ∈J d j 5:

  11: return (σ) new job in the current batch (denoted Cost 1 ) and the additional cost of creating a new batch especially (denoted Cost 2 ). If creating a new batch (and hiring a new vehicle) is cheaper than adding the job to the current batch, this option is chosen. Otherwise, we refer to the parameter determinist of the algorithm. If

Algorithm 4 batching heuristic algorithm 1 :

 1 Parametesr: σ (from GRASP heuristic), determinist 2: Initialization: B = ∅ // set of batches 3: B = {σ[1]} // current batch 4: k = 2 5: while k ≤ n do 6:

BBFigure 3 :

 3 Figure 3: Jobs are left-shifted

Figure 5 :

 5 Figure 5: Batching cost graph

Figure 6 :

 6 Figure 6: Exploration for operator Swap, ∆ = 2, n = 5

  3 with parameter λ ∈ {0, 1}, Spl param ∈ {determinist, non-determinist, split}) and the solution is improved by FLWI local search until a local minimum is found (see Alg. 6). Algorithm 6 GRASP heuristic 1: Parameters λ, Spl param, CP U max 2: f (S * ) = ∞ 3: while CP U ≤ CP U max do

Algorithm 7

 7 Tabu heuristic 1: Parameters λ, Spl param, Tabu s, nb max w impr, CP U max 2: //Initial solution creation 3: δ = sequencing heuristic(λ) 4: S = batching heuristic(δ, Spl param) 5: f (S * ) = ∞ 6: while CP U ≤ CP U max do while nb ite < nb max w impr do 11: S 2 = Step F LW I-Tabu(S 1 ) 12:

  5} and the three batching protocols denoted by {False, True, Split} and corresponding respectively to the Non determinist case, to the Determinist case and to the Split algorithm. In order to evaluate these different n

  GRASP: λ = 0.0, True Tabu Search: nb max w impr = 6, SWAP, γ = 0.2 Genetic Algorithm: δ pop = 50, α = 0.2 4.4.1 Global comparison

  then

	15:	S = S 1 , nb ite = 0
	16:	else
	17:	nb ite + +
	18:	end if
	19:	end while
	20:	// Update best solution
	21:	
	22:	S * = S
	23:	end if
	24:	

if f (S) < f (S * ) then

Table 1 :

 1 LOX crossover examplePopulation replacement An offspring is added to the current population only if its gene is not already present in the population. We consider that two genes are identical if they have the same objective function value. So all the objective function values in the population are different. If an offspring is added, it takes the place of one element present in half of the population with the worst objective function value. In order to process this operation easily, the population is always sorted.

This loop is applied in the population until the time constraint is reached. The first element of the population is returned.

  , 100}. Instances with n ∈ {6, 7, 8, 9} are used for testing the MILP model and instances with n ∈ {10

Table 2 :

 2 Table 4.2 gives the results of the MILP. MILP efficiency

		Percentage of	Average time
	n instances solved	CPLEX (s)
	6	100%	<1
	7	100%	14
	8	100%	169
	9	0%	-

Table 8 :

 8 Table8indicates the number of times the method returns the best solution (#b) and the average relative deviation to this solution (∆). Number of best solutions and average deviation for each method

		GRASP	Tabu	Genetic
	n	#b	∆	#b	∆	#b	∆
	10	8	0.03%	9	0.1% 10	0
	20	4	0.07%	2	0.4%	9	0.1%
	30	0	1.1%	0	0.6% 10 0.0%
	40	0	1.1%	4	0.9%	6	0.1%
	50	1	1.0%	5	0.7%	4	0.2%
	60	2	1.3%	6	0.6%	2	0.8%
	100	3	0.6%	3	0.4%	4	0.5%
	Total/Aver. 18	0.9%	25 0.5% 45 0.2%

improve the solution. This mechanism has been developped to escape from local minima and to continue the search. The procedure called Step F LW I-Tabu line 11 in Alg. 7 is similar to Alg. 5, except that line 7 is changed for testing if neighbor S belongs or not to the Tabu list. The neighbor is considered if it does not belong to this list.

The method has three parameters. The first is the number of iterations allowed without improvement of the current best solution, called nb max w impr. When this parameter is reached, the algorithm uses a diversification process to explore another part of the landscape: we apply a certain number of random moves on the best solution found during the last descent. The second parameter indicates which neighborhood operator is used among SWAP and EBFSR. Finally, the third parameter is a coefficient γ and the number of moves is equal to the number of jobs multiplied by γ.

Genetic algorithm

A Genetic Algorithm manages a population of solutions using rules inspired by the natural evolution law as reproduction, competition and selection, in order to adapt and improve over the generations. In our case, this algorithm depends on parameters δ pop (size of the population) and α (mutation probability).

Genotype

In the population, each solution is unique and represented by its own gene. This gene is the sequence of jobs on the manufacturer's machines. To obtain the value of the objective function, we first apply the procedure Split and then the fitness function. The value is stored with the solution.

Initial population

The initial population is built with the sequencing and batching procedures presented below. We use parameter λ = 0.3 and Split to generate the whole population. A small part of the population (α%) is improved with FLWI local search procedure.

Selection A new solution (an offspring) is the combination of two individuals. Each parent is chosen by using a binary tournament: two solutions are picked up randomly among the population and the one with the best fitness value is conserved.

Crossover The crossover is the procedure defining an offspring from two parents. We use the LOX operator for Linear Order crossover. The principle is to keep the central part of the first parent (delimited by two random indices) and to move the other elements backward and forward, according to the second parent sequence, in order to keep a part of supposed good solutions and the relative order of the other jobs.

An example presented Table 1 illustrates the crossover.

Mutation Each offspring is subject to a mutation with probability α. In this case, the local search is applied until a local optima is found. Table 3: Evaluation of the iterated initial algorithm

We observe that the sequencing technique is better with parameter λ = 0.0 and for the Split algorithm as a batching technique.

GRASP algorithm

The time limit in seconds has been fixed to n/2. We use the same sets of parameters as presented before.

Tab. 4 presents the number of best solutions found for each parameter value.

False True Split False True Split False True Split The results show that the Non Deterministic leads to weak performances, whatever the value of λ. The best configurations are obtained for λ ∈ {0.0, 0.5} and for a Deterministic batching procedure (parameter equal to True). Notice also that for λ = 0.3 and the use of the Split algorithm, the results are also correct.

We consider that the best configuration is obtained with λ = 0.0 and parameter True.

Tab. 5 shows the average deviation to the best known solution returned by the iterated initial algorithm. In Tab. 6, we present the results of the Tabu Search algorithm with the following parameters. The initial solution is generated with the parameters λ = 0.3 and Split. The size of the tabu list is set at 7. Depending on the parameter nb max w impr, we may accept 6, 10 or 12 iterations without improvement during a local search, before using the diversification procedure. The diversification is done with the SWAP or EBFSR operator and the number of random moves is proportional to the instance size and defined by the λ parameter.

The table gives the number of times the algorithm with the given configuration finds the best solution.

We can notice that no parameter really leads to a very better performance. It seems that the three first columns are better than the others and the three last are weaker, but the difference is not really relevant.

Nevertheless, we consider that the configuration nb max w impr = 6, SWAP and γ = 0.2 leads to the best results.

Genetic Algorithm

In Tab. 7, we give the results of the Genetic Algorithm with the different population sizes δ pop ∈ {20, 30, 50}

and the probability of mutation α ∈ {0. 

Total 16 19 14 13 12 12 14 13 13 14 14 10 11 12 13 11 11 10 These tables confirm that GRASP is the worst performing method. The Genetic Algorithm is clearly the best method.

Conclusion and future research directions

In this paper, we consider a two-level supply-chain problem where a manufacturer and a 3PL provider cooperate to satisfy the customers demands. The manufacturer faces inventory costs, vehicle costs and penalty costs, paid to the customer for late delivery. The 3PL provider faces routing cost and penalty cost, paid to the manufacturer for extra-late delivery. In this paper, we consider a scenario where the manufacturer dominates the 3PL provider, by imposing the number of vehicles used, the batch composition and the departure times of vehicles.

A Mixed Integer Linear Programming model is proposed for the manufacturer problem and the 3PL provider problem. This MILP can only solve very small instances. Metaheuristics are proposed to solve the manufacturer problem: a GRASP algorithm, a Tabu Search and a Genetic Algorithm. Computational results are provided. The results show that the Genetic Algorithm outperforms the other methods.

In a future research, we will investigate other cooperation scenario. For instances, a scenario where the 3PL provider dominates, for instance imposing the departure dates for a fixed number of vehicles. In the