
HAL Id: hal-03141558
https://hal.science/hal-03141558v1

Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer programming formulations and efficient local
search for relaxed correlation clustering

Eduardo Queiroga, Anand Subramanian, Rosa Figueiredo, Yuri Y. Frota

To cite this version:
Eduardo Queiroga, Anand Subramanian, Rosa Figueiredo, Yuri Y. Frota. Integer programming for-
mulations and efficient local search for relaxed correlation clustering. Journal of Global Optimization,
In press, �10.1007/s10898-020-00989-7�. �hal-03141558�

https://hal.science/hal-03141558v1
https://hal.archives-ouvertes.fr

Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Integer programming formulations and efficient local
search for relaxed correlation clustering

Eduardo Queiroga · Anand Subramanian ·
Rosa Figueiredo · Yuri Frota

Received: date / Accepted: date

Abstract Relaxed correlation clustering (RCC) is a vertex partitioning problem
that aims at minimizing the so-called relaxed imbalance in signed graphs. RCC is
considered to be an NP-hard unsupervised learning problem with applications in
biology, economy, image recognition and social network analysis. In order to solve
it, we propose two linear integer programming formulations and a local search-
based metaheuristic. The latter relies on auxiliary data structures to efficiently
perform move evaluations during the search process. Extensive computational ex-
periments on existing and newly proposed benchmark instances demonstrate the
superior performance of the proposed approaches when compared to those avail-
able in the literature. While the exact approaches obtained optimal solutions for
open problems, the proposed heuristic algorithm was capable of finding high qual-
ity solutions within a reasonable CPU time. In addition, we also report improving
results for the symmetrical version of the problem. Moreover, we show the benefits
of implementing the efficient move evaluation procedure that enables the proposed
metaheuristic to be scalable, even for large-size instances.

Keywords Relaxed correlation clustering · unsupervised learning · integer
programming · iterated local search

E. Queiroga and Y. Frota
Instituto de Computação, Universidade Federal Fluminense, Rua Passo da Pátria, São Domin-
gos, 24210-240, Niterói-RJ, Brazil.
E-mail: eduardoqueiroga@id.uff.br, eduardovqueiroga@gmail.com, yuri@ic.uff.br
Phone: +55 (21) 2629-5637

A. Subramanian
Departamento de Sistemas de Computação, Centro de Informática, Universidade Federal da
Paráıba, Rua dos Escoteiros, Mangabeira, 58055-000, João Pessoa-PB, Brazil.
E-mail: anand@ci.ufpb.br

R. Figueiredo
Laboratoire Informatique d’Avignon, Avignon Université, 339 Chemin des Meinajaries, 84911,
Avignon cedex 9, France.
E-mail: rosa.figueiredo@univ-avignon.fr

2 Queiroga et al.

1 Introduction

In graph theory, signed graphs are those where each arc (or edge) has a positive or
negative sign [50, 51]. This type of graph has been extensively used for modeling
problems in various fields including biology [16], economy [29, 47], chemistry [38],
ecology [15], image segmentation [31], linguistics [46], but mainly in social network
analysis [19, 23, 2, 22, 3, 10]. One of these problems is correlation clustering (CC)
[5], which is a well-known unsupervised learning problem that aims at finding a
vertex partitioning in a signed graph so as to minimize the disagreements, given
by negative arcs (or edges) within a cluster and positive arcs (or edges) between
clusters. Before formally defining the CC problem on a directed signed graph, we
shall introduce some notation.

• Let G = (V,A, s) be a signed digraph, where V = {1, 2, . . . , n} is the vertex
set, A ⊆ V × V is the arc set, and s : A→ {+,−} is a function that assigns a
sign to each arc.
• An arc a ∈ A is called negative if s(a) = − and positive if s(a) = +.
• For each arc a ∈ A, let wa be an associated non-negative weight. We will also

use wij and wji to denote the weight of the arcs (i, j) and (j, i), respectively.
• The set of positive and negative arcs are denoted, respectively, as A+ and A−;

thus A = A− ∪A+.
• A partition of V into l disjoint subsets P = {S1, S2, . . . , Sl} is called a l-

partition of V .
• For 1 ≤ p, q ≤ l, let A[Sp : Sq] = {(i, j) ∈ A | i ∈ Sp, j ∈ Sq}.
• Ω+(Sp, Sq) =

∑
a∈A+∩A[Sp:Sq]

wa and Ω−(Sp, Sq) =
∑

a∈A−∩A[Sp:Sq]
wa.

The imbalance I(P) of a l-partition P is defined as

I(P) =
∑

1≤p≤l

Ω−(Sp, Sp) +
∑

1≤p≤l,
1≤q≤l,
p 6=q

Ω+(Sp, Sq) (1)

The CC problem consists of determining a partition P which minimizes I(P).
One of the applications of CC is related to the analysis of structural balance
on social networks. In such networks, the arcs represent social relations between
actors (i.e. the vertices of the network), whereas the sign represents feelings such
as like/dislike and agreement/disagreement. According to the structural balance
theory of Heider [30, 14], a network is balanced if there is a bipartition of the vertex
set so that every positive arc joins actors in a same group and every negative arc
joins actors in different groups. Later, Davis [17] generalized the structural balance
to support a partition with more than two groups, which is fully compatible with
the criterion optimized by the CC. Indeed, an algorithm for CC is a useful tool for
evaluating how balanced a social network is. Note that a signed graph is balanced
if there is a partition P such that I(P) = 0.

Although traditional structural balance works in several scenarios, Doreian
and Mrvar [20] pointed out that this concept could not be appropriate for some
networks. They argued that Equation (1) penalizes patterns in the partitions as-
sociated with relevant social psychological processes. For example, the network in
Figure 1a represents a scenario with three groups, where one of them is a group of
mutually hostile mediators (vertices 8, 9, and 10). Figure 1b illustrates why CC is

Integer program. form. and efficient local search for relaxed correlation clustering 3

-

-

-

-

-

-
-

+

+

+

+

+ +

+

+

+

+

+

+

+
+

(a) Ideal partition

-

-

-

-

-

-
-

+

+

+

+

+ +

+

+

+

+

+

+

+
+

(b) CC partition

Fig. 1: Structural balance in a network with mutually hostile mediators.

not suitable in this case: it is not capable of detecting the group of mediators or
any type of subgroup internal hostility. This was illustrated in practice by Levorato
et al. [36], where positive/negative mediation was detected in networks describing
the United Nations General Assembly Voting Data. The equivalent was also veri-
fied for the case of differential popularity (a process in which some actors receive
more positive links than others in a group) detected in benchmark instances from
the literature [21], and for internal hostility detected in networks describing voting
activity of members of the European Parliament [3].

Still in [20], Doreian and Mrvar introduced the concept of generalized structural
balance giving rise to a new definition for the imbalance of a vertex partition which
corrects the partition patterns penalized in Equation (1). The relaxed imbalance
of a l-partition partition P , denoted here RI(P), is defined as

RI(P) =
∑

1≤p≤l

min{Ω+(Sp, Sp), Ω−(Sp, Sp)}+
∑

1≤p≤l,
1≤q≤l,
p6=q

min{Ω+(Sp, Sq), Ω−(Sp, Sq)}. (2)

The main subject of this work is the relaxed correlation clustering (RCC) prob-
lem [20, 26], which is a CC variant. In the RCC, given an integer parameter
1 ≤ k ≤ n, one aims at finding a partition P ∈ ∪kl=1Pl that minimizes the relaxed
imbalance given by Equation (2), such that Pl is the set of all l-partitions of V . The
optimal value of the RCC problem determines how balanced a network is w.r.t. the
relaxed structural balance introduced by Doreian and Mrvar[20]. For example, the
partition in Figure 1a is an optimal solution for RCC because RI(P) = 0. Both
CC and RCC problems were proven NP-hard by Bansal et al. [5] and Figueiredo
and Moura [26], respectively.

Doreian and Mrvar [20] tackled the RCC by applying a relocation algorithm
to analyze four real data sets related to relaxed structural balance, with up to 20
vertices. The authors adapted a heuristic method proposed in Doreian and Mr-
var [19] for the CC problem with a fixed number of clusters, which optimizes a
generic and parameterized function called criterion function. Later, Brusco et al.
[9] proposed a branch-and-bound algorithm for solving RCC to optimality. This al-
gorithm was capable of solving instances with up to 29 vertices (hereafter referred

4 Queiroga et al.

to as small-sized instances) and k varying from 2 to 7. Moreover, an additional set
of instances with up to 40 vertices was considered for experiments with k = {3, 5}.
Figueiredo and Moura [26] developed an integer linear programming (ILP) formu-
lation that was capable of solving some small-sized instances when k = {2, 3} and
for high values of k, concluding that the proposed ILP formulation and the exist-
ing branch-and-bound algorithm are somewhat complementary approaches. The
authors also proposed a symmetrical version of RCC (SRCC). Although different
heuristic procedures were proposed in the literature for CC (see [19, 49, 48, 6, 36],
among others), to the best of our knowledge, only one heuristic procedure has
been applied to the RCC. Levorato et al. [36] adapted their iterated local search
(ILS) algorithm, originally developed for CC, to solve SRCC. Thus, there are no
heuristic or metaheuristic procedures specifically proposed for RCC problem.

The two main contributions can be summarized as follows:

• We present two novel integer programming formulations for the RCC problem
and we investigate their empirical performance in comparison to an existing
formulation. The results show that the new formulations appear to produce
better results in practice.
• We propose a local search-based metaheuristic that relies on a series of auxiliary

data structures to efficiently recalculate the relaxed imbalance after applying
an operation that modifies a partition, as well as on a novel perturbation mech-
anism. The results obtained suggest that the developed algorithm is superior to
an existing approach, producing, on average, high quality solutions in a limited
amount of CPU time, not only for RCC instances but also for SRCC instances.
Finally, we also demonstrate the practical benefits of implementing the move
evaluation in an efficient way.

The remainder of the paper is organized as follows. Section 2 presents a small
instance for the RCC problem. Section 3 defines the symmetric version of the
problem. Section 4 introduces two novel mathematical formulations for the RCC.
Section 5 explains the proposed efficient local search-based metaheuristic includ-
ing the efficient move evaluation schemes. Section 6 presents the results of the
computational experiments. Finally, the conclusions are discussed in Section 7.

2 A small RCC example

A small RCC example involving 6 vertices is depicted in Figure 2. In Figure 2(a),
the signed graph to be partitioned is illustrated. In Figure 2(b), a feasible solution
P = {S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6}} is presented. This solution has relaxed
imbalance RI(P) = 4 obtained by adding the following terms.

• min{Ω+(S1, S1), Ω−(S1, S1)} = min{∅, w12} = min{0, 1} = 0
• min{Ω+(S2, S2), Ω−(S2, S2)} = min{w34, ∅} = min{1, 0} = 0
• min{Ω+(S3, S3), Ω−(S3, S3)} = min{w65, w56} = min{1, 1} = 1
• min{Ω+(S1, S2), Ω−(S1, S2)} = min{w14, w23} = min{1, 1} = 1
• min{Ω+(S2, S1), Ω−(S2, S1)} = min{∅, ∅} = min{0, 0} = 0
• min{Ω+(S1, S3), Ω−(S1, S3)} = min{∅, ∅} = min{0, 0} = 0
• min{Ω+(S3, S1), Ω−(S3, S1)} = min{w52 + w62, w61} = min{2, 1} = 1
• min{Ω+(S2, S3), Ω−(S2, S3)} = min{∅, ∅} = min{0, 0} = 0

Integer program. form. and efficient local search for relaxed correlation clustering 5

-

-

+

-

+

+

+

-

-

+
+

(a)

-

-

+

-

+

+

+

-

-

+
+

(b)

-

-

+

-

+

+

+

-

-

+
+

(c)

Fig. 2: (a) A small RCC instance with unitary weights and k = 3. (b) A feasible
solution P = {{1, 2}, {3, 4}, {5, 6}} with relaxed imbalance RI(P) = 4. (c) An
optimal solution P ∗ = {{1, 4}, {2, 5}, {3, 6}} with relaxed imbalance RI(P) = 1.

• min{Ω+(S3, S2), Ω−(S3, S2)} = min{w53, w54} = min{1, 1} = 1

Figure 2(c) depicts an optimal solution P ∗ = {S1 = {1, 4}, S2 = {2, 5}, S3 =
{3, 6}} for the problem with RI(P ∗) = min{Ω+(S3, S1), Ω−(S3, S1)} =
min{w34, w61} = min{1, 1} = 1.

3 Symmetric RCC

In this work, we also consider the symmetric version of RCC (SRCC) introduced
in Figueiredo and Moura [26]. The relaxed imbalance, as given by Equation (2),
penalizes non-predominant relations (w.r.t. the signs) inside each cluster q and
non-predominant relations from a cluster p to a cluster q. The difference in the
symmetric relaxed imbalance defined in Figueiredo and Moura [26] is that it pe-
nalizes non-predominant relations among pairs of clusters, i.e., it considers simul-
taneously all positive (all negative) relations from Sp to Sq and from Sq to Sp.
Thus, the SRCC can be defined on an undirected graph in which parallel edges
with opposite signs are allowed.

Let G′ = (V,E, s′) be an undirected signed graph with a positive weight w′ij
associated to each edge {i, j} ∈ E. Let us denote E+ and E−, respectively, the sets
of positive and negative edges in E; thus E = E+∪E−. In this work, we transform
the SRCC instance defined on G′ = (V,E, s′) into a RCC instance defined on a
directed signed graph Gd = (V,A, s) in which: A = {(i, j), (j, i) : {i, j} ∈ E};
for each (i, j) ∈ A, s((i, j)) = s((j, i)) = s′({i, j}) and the associated weight

wij = wji =
w′ij
2 . In other words, for each edge {i, j} ∈ E, one creates two arcs

(i, j), (j, i) ∈ A with the same signal and half of the weight.

6 Queiroga et al.

Let E[Sp : Sq] be the set of edges connecting the vertices in Sp and
those in Sq. We denote Ω′+(Sp, Sq) =

∑
e∈E+∩E[Sp:Sq]

w′e and Ω′−(Sp, Sq) =∑
e∈E−∩E[Sp:Sq]

w′e. The symmetric relaxed imbalance SRI(P) of a l-partition P

is defined as

SRI(P) =
∑

1≤p≤l

min{Ω′+(Sp, Sp), Ω′−(Sp, Sp)}+
∑

1≤p<q≤l

min{Ω′+(Sp, Sq), Ω′−(Sp, Sq)}

(3)

The following result relates Equations (2) and (3).

Proposition 1. Consider an undirected signed graph G′ and the directed signed
graph Gd described above. Given any partitioning P , then SRI(P) = RI(P).

Proof. First, we will show the equivalence of the first terms in (2) and (3), i.e.
the intracluster imbalance. Then we will do the same for the second terms, i.e. for
the intercluster imbalance. Let Sp be any cluster in P . We have Ω′+(Sp, Sp) =
Ω+(Sp, Sp) since, for each e = {i, j} ∈ E+ ∩ E[Sp : Sp], (i, j), (j, i) ∈ A+ ∩A[Sp :
Sp] with w′ij = wij + wji. The same can be argued for Ω′−(Sp, Sp) and these
two facts imply the equivalence of the first terms in (2) and (3). Now, let Sp

and Sq be two clusters in P . By the definition of the directed graph Gd, we
have e = {i, j} ∈ E+ ∩ E[Sp : Sq] iff (i, j) ∈ A+ ∩ A[Sp : Sq] and (j, i) ∈
A+ ∩ A[Sq : Sp]. Since, for each e = {i, j} ∈ E, w′ij = wij + wji, we have that
Ω+(Sp, Sq) = Ω+(Sq, Sp) = Ω′+(Sp, Sq)/2. The same holds for Ω−(Sp, Sq) and,
since the second term in (3) is written only for p < q, the equivalence of the second
terms in (2) and (3) follows.

As a consequence of Proposition 1, solving the RCC over graph Gd is equivalent
to solving SRCC over G′.

4 Mathematical formulations

Integer linear programming (ILP) problem formulations have been used to solve
CC and other related problems defined on signed graphs [13, 12, 4, 28, 27]. For
RCC, an ILP formulation was presented in [26]. When modeling vertex-clustering
problems, if there is a need for keeping track the clusters used, two types of formu-
lations can be adopted: cluster-indexed formulation [24, 7, 11] or representatives
formulation [1, 4, 13, 28]. Indeed, the ILP formulation of Figueiredo and Moura
[26] is a representatives one. Next, we introduce two new formulations for RCC,
one of each type.

4.1 Formulation F1: a cluster-indexed formulation

Let K = {1, . . . , k} be the set of possible cluster indexes. For each vertex i ∈ V
and p ∈ K we define,

xpi =

{
1, if vertex i belongs to cluster Sp,
0, otherwise.

Integer program. form. and efficient local search for relaxed correlation clustering 7

A set of binary variables is used to describe the set of arcs that will be
penalized once, according to Equation (2), the predominant relations are defined.
For each arc (i, j) ∈ A, we define,

tij =

{
1, if arc (i, j) is penalized,
0, otherwise.

A set of binary variables is used to select if the imbalance from cluster Sp

to cluster Sq, with p, q ∈ K, is given by negative arcs (predominant relations
are positive) or positive arcs (predominant relations are negative). Notice that
intracluster imbalance is defined whenever p = q. For each pair of cluster indexes
p, q ∈ K, we define,

spq =

{
1, if positive arcs from cluster Sp to cluster Sq are penalized,
0, if negative arcs from cluster Sp to cluster Sq are penalized.

The formulation can be written as

minimize
∑

(i,j)∈A

wijtij (4)

s.t:
∑
p∈K

xpi = 1, ∀i ∈ V, (5)

tij ≥ xpi + xqj − 2 + spq, ∀(i, j) ∈ A+,∀p, q ∈ K, (6)

tij ≥ xpi + xqj − 2 + (1− spq), ∀(i, j) ∈ A−,∀p, q ∈ K, (7)

xpi ∈ {0, 1}, ∀i ∈ V, ∀p ∈ K, (8)

tij ∈ {0, 1}, ∀(i, j) ∈ A, (9)

spq ∈ {0, 1}, ∀p, q ∈ K. (10)

Objective function (4) minimizes the total relaxed imbalance. Constraints (5)
ensure that each vertex is assigned exactly to one cluster. Constraints (6) and (7)
define, respectively, if a positive or negative arc will be penalized due to assignment
variables xpi , x

q
j and the penalizing variables spq. Note that, when p = q, variable

tpq defines an intracluster penalty. Finaly, constraints (8)–(10) define the domain
of all variables.

Formulations that make use of cluster-indexed variables such as F1 are consid-
ered to be symmetric, as there are a substantial number of ways to represent the
same partitioning with a different permutation of indices. In view of this, we add
the following set of symmetry breaking inequalities introduced in Bulhões et al.
[11] for the p-cluster editing problem:

8 Queiroga et al.

p∑
l=1

xli ≥

∑
j∈V
j<i

p−1∑
l=1

xlj

− (i− 2), ∀i ∈ V, ∀p ∈ K. (11)

The inequality above forbids the cluster containing i to use a label superior to
p whenever each vertex j < i is assigned to a cluster of index strictly smaller than
p. The formulation in the next section adopts a similar strategy in order to break
symmetry in the solution space.

4.2 Formulation F2: a representatives formulation

A representatives formulation for the RCC is presented as follows. The idea
behind this kind of formulation [13] is the unique representation of a cluster by
its vertex with the lowest label. Hence, for each pair of vertices i, j ∈ V satisfying
i ≤ j, we define,

xij =

{
1, if the vertex j is represented by vertex i,
0, otherwise.

Note that when i = j, variable xii indicates if i is a representative vertex.
Variables sij , with i, j ∈ V , used in F2 are equivalent to variables spq, with

p, q ∈ K, used in F1. However now, vertices i and j are used to identify two clusters
(i 6= j) or one cluster (i = j). Variables tij , with (i, j) ∈ A, are exactly the same
as defined in F1. Hence, formulation F2 can be expressed as follows.

minimize
∑

(i,j)∈A

wijtij

s.t:
∑

i∈V : i≤j

xij = 1, ∀j ∈ V, (12)

xij ≤ xii, ∀i, j ∈ V, i < j, (13)

∑
i∈V

xii ≤ k, (14)

tij ≥ xui + xvj − 2 + suv, ∀(i, j) ∈ A+,∀u, v ∈ V, (15)

u ≤ i, v ≤ j,

tij ≥ xui + xvj − 2 + (1− suv), ∀(i, j) ∈ A−,∀u, v ∈ V, (16)

u ≤ i, v ≤ j,

xij ∈ {0, 1}, ∀i, j ∈ V, i ≤ j, (17)

tij ∈ {0, 1}, ∀(i, j) ∈ A, (18)

sij ∈ {0, 1}, ∀i, j ∈ V. (19)

Integer program. form. and efficient local search for relaxed correlation clustering 9

Constraints (12) impose that each vertex must be represented by exactly one
vertex: either by itself or by another one with a smaller index. Constraints (13)
enforce vertex i to be a representative one whenever a vertex j is represented by
i. Constraint (14) imposes k as an upper bound on the number of representative
vertices, i.e., on the number of clusters in the partition. Constraints (15) and (16)
are, respectively, equivalent to constraints (6) and (7) of formulation F1. Finally,
constraints (17)–(19) are the binary constraints.

The number of variables and constraints of formulations F1 and F2 are illus-
trated in Table 1. Note that since the number of vertices of a graph is usually
much greater than the number of clusters, formulation F1 is more compact than
F2. On the other hand, formulation F2 succeeds in eliminating cluster indices from
the representation which breaks symmetry from formulation [13].

Table 1: Number of variables and constraints of formulations F1 and F2

#Variables #Constraints
F1 O(nk + |A|+ k2) O(n+ k2|A+|+ k2|A−|)
F2 O(2n2 + |A|) O(n+ n2 + n2|A+|+ n2|A−|)

5 Proposed local search-based metaheuristic

In this section, we propose a metaheuristic algorithm for the RCC based on the
iterated local search (ILS) method [37]. The key concept of ILS is to combine
local search strategies and perturbation mechanisms to escape from local optima.
The metaheuristic introduced in Levorato et al. [36] for CC and adapted for the
solution of SRCC instances is also an ILS method. Different from Levorato et al.
[36], in this work, we propose the use of several complex neighborhoods and the
use of advanced data structures which make the search process more efficient.

Algorithm 1 presents a general framework of a multi-start ILS, hereafter re-
ferred to as ILSRCC, which has the following input parameters:

a) IR is the number of restarts of the metaheuristic;
b) IILS is the maximum number of ILS iterations without improvements;
c) IP is the maximum number of moves performed by a perturbation mechanism.

For each restart, an initial solution is randomly generated (line 5) and such solution
is possibly improved by alternately applying local search (line 9) and perturba-
tion (line 13) strategies until the maximum number of iterations (IILS) without
improvement is achieved. Finally, the best solution found among all restarts is
returned (line 18).

The local search procedure is based on variable neighborhood descent (VND)
[40], which is a technique that systematically explores a sequence of neighborhood
structures (see Section 5.2), searching for better solutions. A neighborhood struc-
ture (or simply neighborhood) defines a set of neighbor solutions from a current
solution by applying a so-called move. When VND finds an improving move us-
ing a particular neighborhood, the solution is updated and the procedure restarts

10 Queiroga et al.

Algorithm 1: ILSRCC

1 Procedure ILSRCC(IR, IILS , IP)
2 RI∗ =∞
3 P ∗ = ∅
4 for iter = 1 . . . IR do
5 P = ConstructiveProcedure()
6 P ′ = P
7 iterILS = 0
8 while iterILS < IILS do
9 P = LocalSearch(P)

10 if RI(P) < RI(P ′) then
11 P ′ = P
12 iterILS = 0

13 P =Perturb(P ′, IP)
14 iterILS = iterILS + 1

15 if RI(P ′) < RI∗ then
16 P ∗ = P ′

17 RI∗ = RI(P ′)

18 return P ∗

from the improved solution. The procedure terminates when all neighborhoods
fail to improve the current solution. The best improvement strategy was adopted,
i.e., a neighborhood is fully enumerated and the best improving move (if there
is any) is applied. In addition, the neighborhood ordering is defined in a random
fashion, which results in a strategy known as Randomized VND (RVND). The
combination of ILS and RVND led to state-of-the-art methods for several impor-
tant combinatorial optimization problems, such as: split-delivery vehicle routing
problem [44], minimum latency problem [43] and minimizing weighted tardiness
in single machine scheduling with sequence-dependent setup times [45].

The perturbation procedure randomly chooses one of the implemented mech-
anisms (see Section 5.3) in order to modify the local optimal solution P ′. The
selected mechanism then applies IP random consecutive moves over P ′ in order
to generate a solution to continue the search.

In what follows, we provide a detailed description of the auxiliary data struc-
tures used for performing efficient move evaluation, as well as on the neighborhood
structures and perturbations mechanisms.

5.1 Auxiliary data structures

Assuming that an adjacency matrix is used to access the signed digraph G, and a
feasible solution is represented by a set of subsets of indices (e.g. P = {S1, S2, S3},
such that S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6} for a graph with 6 vertices; see
Figure 2), the value of its associated objective function can be straightforwardly
computed in O(l2n2) operations, where l = |P |. Note that this is due to the
complexity of determining the intercluster imbalance. Consequently, performing
the move evaluation of a neighbor solution from scratch every time during the
local search may turn out to be computationally expensive, especially for large size

Integer program. form. and efficient local search for relaxed correlation clustering 11

instances. However, this can be done in a more efficient manner by precomputing
and storing information in auxiliary data structures (ADSs).

We thus propose to implement two classes of ADSs: SumIntra[Sp], which is
a set of ADSs that stores the sum of the weights for different subsets of A[Sp]
(a.k.a. intracluster arcs of Sp); and SumInter[Sp][Sq], which is a set of ADSs that
stores the sum of the weights for different subsets of A[Sp : Sq] (a.k.a. known as
intercluster arcs from Sp to Sq). The ADSs are divided according to the sign and
arc direction as described in Table 2.

Table 2: Description of the proposed ADSs

ADS Description

SumIntra+[Sp] =
∑

a∈A+∩A[Sp] wa Sum of positive weights within Sp

SumIntra−[Sp] =
∑

a∈A−∩A[Sp] wa Sum of negative weights within Sp

SumIntra+[Sp][i][←] =
∑

ji∈A+,j∈Sp\i wji Sum of positive weights from Sp \ i to i ∈ Sp

SumIntra+[Sp][i][→] =
∑

ij∈A+,j∈Sp\i wij Sum of positive weights from i ∈ Sp to Sp \ i
SumIntra−[Sp][i][←] =

∑
ji∈A−,j∈Sp\i wji Sum of negative weights from Sp \ i to i ∈ Sp

SumIntra−[Sp][i][→] =
∑

ij∈A−,j∈Sp\i wij Sum of negative weights from i ∈ Sp to Sp \ i
SumInter+[Sp][Sq] =

∑
a∈A+∩A[Sp:Sq] wa Sum of positive weights from Sp to Sq

SumInter−[Sp][Sq] =
∑

a∈A−∩A[Sp:Sq] wa Sum of negative weights from Sp to Sq

SumInter+[Sp][i][Sq][→] =
∑

ij∈A+,j∈Sq
wij Sum of positive weights from i ∈ Sp to Sq

SumInter+[Sp][i][Sq][←] =
∑

ji∈A+,j∈Sq
wji Sum of positive weights from Sq to i ∈ Sp

SumInter−[Sp][i][Sq][→] =
∑

ij∈A−,j∈Sq
wij Sum of negative weights from i ∈ Sp to Sq

SumInter−[Sp][i][Sq][←] =
∑

ji∈A−,j∈Sq
wji Sum of negative weights from Sq to i ∈ Sp

Given a feasible solution, the SumIntra and SumInter ADSs can be initially
built in O(l2n2) operations as described in Algorithm 2.

5.2 Neighborhood structures

ILSRCC uses three neighborhood structures in the local search, namely: Insertion,
Swap and Split. In the following, each of them is described in detail.

5.2.1 Insertion

The Insertion neighborhood moves a vertex from a cluster to another one, thus
yielding O(l2n) possible neighbor solutions to be evaluated.

Algorithm 3 describes how an Insertion move is evaluated using the ADSs. This
algorithm receives as input the solution P along with its associated cost (relaxed
imbalance) RIP , and the information regarding the move, i.e. Sp, i ∈ Sp and Sq.
At first, auxiliary variables sum+

Sp
, sum−Sp

, sum+
Sp,Sq

and sum−Sp,Sq
temporarily

store, in O(1) steps, the sum of the weights associated to the move (lines 2–13).
Next, the value of the objective function of the neighbor solution under evaluation,
denoted in the algorithm as cost, is partially obtained (lines 14–17) by recomputing
the penalty decisions using function UpdateCost (see lines 31–36). In the loop from
lines 18 to 30, a similar procedure is performed for the intercluster cases involving
the other clusters and the clusters Sp and Sq. Finally, cost is returned and the
move yields an improvement if cost < RIP .

12 Queiroga et al.

Algorithm 2: Computing the auxiliary data structures

1 Algorithm ComputeADSs(P)
2 All ADSs are initialized with 0.0
3

. Computing the SumIntra ADSs
4 for ∀p ∈ {1, 2, . . . , l} do
5 for ∀i, j ∈ Sp, i < j do
6 if (i, j) ∈ A+ then
7 SumIntra+[Sp] = SumIntra+[Sp] + wij

8 SumIntra+[Sp][i][→] = SumIntra+[Sp][i][→] + wij

9 SumIntra+[Sp][j][←] = SumIntra+[Sp][j][←] + wij

10 else if (i, j) ∈ A− then
11 SumIntra−[Sp] = SumIntra−[Sp] + wij

12 SumIntra−[Sp][i][→] = SumIntra−[Sp][i][→] + wij

13 SumIntra−[Sp][j][←] = SumIntra−[Sp][j][←] + wij

14 if (j, i) ∈ A+ then
15 SumIntra+[Sp] = SumIntra+[Sp] + wji

16 SumIntra+[Sp][j][→] = SumIntra+[Sp][j][→] + wji

17 SumIntra+[Sp][i][←] = SumIntra+[Sp][i][←] + wji

18 else if (j, i) ∈ A− then
19 SumIntra−[Sp] = SumIntra−[Sp] + wji

20 SumIntra−[Sp][j][→] = SumIntra−[Sp][j][→] + wji

21 SumIntra−[Sp][i][←] = SumIntra−[Sp][i][←] + wji

22

. Computing the SumInter ADSs
23 for ∀p, q ∈ {1, 2, . . . , l}, p 6= q do
24 for ∀i ∈ Sp,∀j ∈ Sq do
25 if (i, j) ∈ A+ then
26 SumInter+[Sp][Sq] = SumInter+[Sp][Sq] + wij

27 SumInter+[Sp][i][Sq][→] = SumInter+[Sp][i][Sq][→] + wij

28 SumInter+[Sq][j][Sp][←] = SumInter+[Sq][j][Sp][←] + wij

29 else if (i, j) ∈ A− then
30 SumInter−[Sp][Sq] = SumInter−[Sp][Sq] + wij

31 SumInter−[Sp][i][Sq][→] = SumInter−[Sp][i][Sq][→] + wij

32 SumInter−[Sq][j][Sp][←] = SumInter−[Sq][j][Sp][←] + wij

33 if (j, i) ∈ A+ then
34 SumInter+[Sq][Sp] = SumInter+[Sq][Sp] + wji

35 SumInter+[Sq][j][Sp][→] = SumInter+[Sq][j][Sp][→] + wji

36 SumInter+[Sp][i][Sq][←] = SumInter+[Sp][i][Sq][←] + wji

37 else if (j, i) ∈ A− then
38 SumInter−[Sq][Sp] = SumInter−[Sq][Sp] + wji

39 SumInter−[Sq][j][Sp][→] = SumInter−[Sq][j][Sp][→] + wji

40 SumInter−[Sp][i][Sq][←] = SumInter−[Sp][i][Sq][←] + wji

Integer program. form. and efficient local search for relaxed correlation clustering 13

Because Algorithm 3 performs O(l) steps (due to the loop), finding the best
improving move requires O(l3n) operations. Moreover, when P is modified, the
ADSs must be updated. However, instead of recomputing the ADSs from scratch
in O(l2n2) operations, one only needs to update the ADSs affected by the vertex
that was involved in the move and this can be performed in O(n) steps, as detailed
in the electronic supplementary material of this work.

Figure 3 illustrates an example of an Insertion move. Note that the separation
of the weights for the adjacent arcs of vertex i in SumIntra clearly facilitates the
evaluation of the intercluster sums from S1 to S2 and from S2 to S1. Otherwise, it
would be necessary to perform O(n) operations to compute the weights separately.

(a) Clusters before Insertion (b) Clusters after Insertion

Fig. 3: Example of an Insertion move. The incoming arcs of i are in dashed lines
to illustrate the separation of the weights in SumIntra and SumInter. For the sake
of simplicity, the signs were omitted and all arcs have unitary weight.

5.2.2 Swap

The Swap neighborhood exchanges two vertices between two different clusters,
which leads to O(l2n2) neighbor solutions if one intends to enumerate all possibil-
ities. The pseudocodes presented in the electronic supplementary material describe
how a Swap move can be evaluated in O(l) steps using a similar rationale employed
in the Insertion neighborhood. Finding the best improving Swap move thus require
O(l3n2) operations and the ADSs can be updated in O(n) steps as also described
in the supplementary material.

Figure 4 depicts an example of a swap move, highlighting the arcs connecting
exchanged vertices, as they must be treated separately with respect to some ADSs.

5.2.3 Split

The Split neighborhood splits a cluster into two, resulting in a total of O(ln) neigh-
bor solutions to be examined. Formally, given a cluster S = {v1, v2, . . . , v|S|} ∈ P
and an index c < |S|, the clusters S′ = {v1, v2, . . . , vc} and S′′ = {vc+1, . . . , v|S|}
are produced to replace S in P . Clearly, a Split move can only be applied when
l < k. The Pseudocodes presented in the electronic supplementary material de-
scribes how a Split move can use previous evaluations to speedup the next ones.
The overall complexity of determining the best improvement is O(ln2), as also

14 Queiroga et al.

Algorithm 3: Using the ADSs to evaluate an insertion move

1 Algorithm CompCostInsert(P,RIP , Sp, i, Sq)
. update the sum of the intracluster weights of Sp

2 sum+
Sp

= SumIntra+[Sp] − SumIntra+[Sp][i][←] − SumIntra+[Sp][i][→]

3 sum−Sp
= SumIntra−[Sp] − SumIntra−[Sp][i][←]− SumIntra−[Sp][i][→]

. update the sum of the intracluster weights of Sq

4 sum+
Sq

= SumIntra+[Sq] + SumInter+[Sp][i][Sq][←] + SumInter+[Sp][i][Sq][→]

5 sum−Sq
= SumIntra−[Sq] + SumInter−[Sp][i][Sq][←] + SumInter−[Sp][i][Sq][→]

. update the sum of the intercluster weights from Sp to Sq

6 sum+
Sp,Sq

= SumInter+[Sp][Sq] − SumInter+[Sp][i][Sq][→]

7 sum−Sp,Sq
= SumInter−[Sp][Sq] − SumInter−[Sp][i][Sq][→]

8 sum+
Sp,Sq

= sum+
Sp,Sq

+ SumIntra+[Sp][i][←]

9 sum−Sp,Sq
= sum−Sp,Sq

+ SumIntra−[Sp][i][←]

. update the sum of the intercluster weights from Sq to Sp

10 sum+
Sq,Sp

= SumInter+[Sq][Sp] − SumInter+[Sp][i][Sq][←]

11 sum−Sq,Sp
= SumInter−[Sq][Sp] − SumInter−[Sp][i][Sq][←]

12 sum+
Sq,Sp

= sum+
Sq,Sp

+ SumIntra+[Sp][i][→]

13 sum−Sq,Sp
= sum−Sq,Sp

+ SumIntra−[Sp][i][→]

. Recompute the penalty decisions and updates RIP ′

14 cost = UpdateCost(RIP , Sp, Sp, sum
+
Sp
, sum−Sp

)

15 cost = UpdateCost(cost, Sq, Sq, sum
+
Sq
, sum−Sq

)

16 cost = UpdateCost(cost, Sp, Sq, sum
+
Sp,Sq

, sum−Sp,Sq
)

17 cost = UpdateCost(cost, Sq, Sp, sum
+
Sq,Sp

, sum−Sq,Sp
)

. update the sum of the intercluster weights involving others clusters
18 for Sr ∈ P \ {Sp, Sq} do

19 sum+
Sr,Sp

= SumInter+[Sr][Sp] − SumInter+[Sp][i][Sr][←]

20 sum−Sr,Sp
= SumInter−[Sr][Sp] − SumInter−[Sp][i][Sr][←]

21 sum+
Sr,Sq

= SumInter+[Sr][Sq] + SumInter+[Sp][i][Sr][←]

22 sum−Sr,Sq
= SumInter−[Sr][Sq] + SumInter−[Sp][i][Sr][←]

23 sum+
Sp,Sr

= SumInter+[Sp][Sr] − SumInter+[Sp][i][Sr][→]

24 sum−Sp,Sr
= SumInter−[Sp][Sr] − SumInter−[Sp][i][Sr][→]

25 sum+
Sq,Sr

= SumInter+[Sq][Sr] + SumInter+[Sp][i][Sr][→]

26 sum−Sq,Sr
= SumInter−[Sq][Sr] + SumInter−[Sp][i][Sr][→]

27 cost = UpdateCost(cost, Sr, Sp, sum
+
Sr,Sp

, sum−Sr,Sp
)

28 cost = UpdateCost(cost, Sr, Sq, sum
+
Sr,Sq

, sum−Sr,Sq
)

29 cost = UpdateCost(cost, Sp, Sr, sum
+
Sp,Sr

, sum−Sp,Sr
)

30 cost = UpdateCost(cost, Sq, Sr, sum
+
Sq,Sr

, sum−Sq,Sr
)

31 return cost

32 Procedure UpdateCost(cost, Sp, Sq, sum
+, sum−)

33 if Sp = Sq then
34 return cost− (min{SumIntra+[Sp], SumIntra

−[Sp]} −min{sum+, sum−})
35 else
36 return cost− (min{SumInter+[Sp][Sq], SumInter

−[Sp][Sq]} −min{sum+, sum−})

described in the supplementary material. Because of the considerable changes pro-
duced by the split move, all ADSs must be updated from scratch using Algorithm
2. It is worth mentioning that implementing a specific procedure to update the
ADSs did not pay off the gains in CPU time. Moreover, note that a split move

Integer program. form. and efficient local search for relaxed correlation clustering 15

(a) Clusters before Swap (b) Clusters after Swap

Fig. 4: Example of a Swap move. Arcs (i, j) and (j, i) are in dashed lines to
illustrate their importance w.r.t. the ADSs. For the sake of simplicity, the signs
were omitted and all arcs have unitary weight.

never worsens a solution, since the imbalance decreases monotonically as k in-
creases [20]. Figure 5 shows an example of a split move considering a cluster with
5 vertices that is split into two with 2 and 3 vertices, respectively.

++

(a) Cluster before Split

+

-

+

-

(b) Cluster after Split

Fig. 5: Example of a Split move. For the sake of simplicity, all arcs have unitary
weight.

5.2.4 Complexity summary

A summary on the complexity of the neighborhoods is provided in Table 3. For
each neighborhood, we present its size, as well as the complexity of performing
the move evaluation and the overall one using both the efficient best improvement
(EBI) and the naive best improvement (NBI) strategies. In EBI, the search for the
best improvement move is carried out as described in Section 5.2, whereas in NBI
the objective function must be computed from scratch (with no support of ADSs)
after each move. We also report the complexity of updating the ADSs in the case
of EBI.

Table 3: Complexity summary of the neighborhoods considering both EBI and
NBI strategies

Neighborhood Size
EBI NBI

Move eval. Overall Update Move eval. Overall
Insertion O(l2n) O(l) O(l3n) O(n) O(l2n2) O(l4n3)
Swap O(l2n2) O(l) O(l3n2) O(n) O(l2n2) O(l4n4)
Split O(ln) O(n) O(ln2) O(ln2) O(l2n2) O(l3n3)

16 Queiroga et al.

5.3 Perturbation mechanisms

ILSRCC employs three diversification mechanisms to perturb local optimal solu-
tions, namely: Insertion, Merge and Sign inversion. The first one simply performs
random insertion moves. In the second, given two clusters S1 and S2 chosen at
random, one merges them to form a new cluster S3, that is, S3 = S1 ∪ S2. The
latter perturbation is a novel procedure that considers some RCC specific features,
as described in the following.

The proposed Sign inversion mechanism enforces the penalized sign in one
of the decisions to be changed. More precisely, it modifies the solution in such
a way that one of the intracluster or intercluster imbalances becomes defined by
the opposite sign. The procedure randomly selects which case (i.e., intracluster
or intercluster) is going to be considered. Basically, this is achieved by removing
vertices that contribute with the non-penalized sign until the inversion happens. In
what follows, we will explain the procedure used to invert an intracluster decision.

Let + be the non-penalized sign for the intracluster imbalance of Sp (this also
applies for sign −). Formally, the contribution of a vertex i ∈ Sp is given by
Equation (20).

∆+(i) = Ω+({i}, Sp) +Ω+(Sp, {i})−Ω−({i}, Sp)−Ω−(Sp, {i}) (20)

At first, the vertices for which all incident arcs (indegree and outdegree arcs) are
positive are removed in non-increasing order of ∆+. The value of ∆+ must be
updated after each removal. If this does not suffice, the remaining vertices with
∆+ > 0 are removed using the same sorting criterion. Removals are performed
while (i) Ω+(Sp, Sp) ≥ Ω−(Sp, Sp), (ii) there are vertices with ∆+ > 0 and (iii)
|Sp| > 2. The removed vertices are randomly added to the other clusters. After
applying the perturbation, if Ω+(Sp, Sp) ≥ Ω−(Sp, Sp) (i.e. the sign was not
inverted), then the removals are undone and the solution returns to the initial
state. Figure 6 illustrates an example involving the application of the sign inversion
mechanism.

The intercluster sign invertion, e.g., from Sp to Sq, may be easily derived by
considering only the arcs A[Sp : Sq] that determine the vertices to be removed
from Sp and by changing the condition (iii) to |Sp| > 1. Note that no vertices are
removed from Sq but it may receive vertices from Sp.

At �rst, the vertices with

all incident arcs belonging to

the non-penalized signal

are removed

Only vertices 5 and 6 satisfy

the condition. As ,

vertex 6 should be removed.

Note that the signal cannot

be inverted yet.

Now one should remove

vertex 5.

The �rst phase did not succeed

to invert the signal. One or more

vertices should be removed.

Because ,

any of them can be removed.

In this case, vertex 4 will be

removed.

The signal can

now be inverted

+

+

+

+

+

++

+

- -
-

+

+

++

+

- -
-

+
++

+

- -
-

+

-
-

Fig. 6: An example of sign inversion for an intracluster imbalance. For the sake of
simplicity, all arcs have unitary weight.

Integer program. form. and efficient local search for relaxed correlation clustering 17

This perturbation allows for exploring some particular regions of the search
space that is difficult to be achieved by only using the other mechanisms, including
the randomized construction procedure, mainly when sign distribution on arcs is
unbalanced and small changes are not likely to invert the sign.

Each time the function Perturb is called, a perturbation mechanism is ran-
domly chosen. The selected perturbation then applies from two up to maxPert
moves. The number of moves is also chosen at random. If l = 2, Merge is not
an eligible perturbation. Therefore, when Sign inversion is chosen and no change
could be performed, one of the other two remaining mechanisms (or Insertion if
l = 2) is randomly selected.

5.4 Differences between ILSRCC and ILS [36]

Table 4 presents the main differences between ILSRCC and the ILS by Levorato
et al. [36] which was developed for the SRCC.

Table 4: Differences between ILSRCC and ILS [36]

ILSRCC ILS [36]
Initial solution Random Greedy randomized procedure

Local search
Insertion, Swap and Split Insertion
Best improvement strategy First improvement strategy

Perturbation Insertion, Merge and Sign Inversion Insertion

It is worth mentioning that we tried to incorporate the constructive procedure
implemented in Levorato et al. [36] into our algorithm, but the experiments re-
ported in Section 6.3.1 indicated that its inclusion did not seem to significantly
affect the overall performance of ILSRCC both in terms of solution quality and
CPU time.

6 Computational results

All algorithms have been implemented in C++ and executed using a single thread
on a PC Intel Core i7-2600 with 3.40 GHz and 16 GB of RAM running Ubuntu
16.04 LTS (64 bits). For results based on ILP formulations, CPLEX 12.7 is used
as a MIP solver (single thread) with all other parameters set to their default
values.

6.1 Benchmark instances

Regarding the benchmark instances used in our testing, we first present the small-
size instances from the literature. Next, we introduce the newly proposed RCC
instances and, finally, we describe the existing SRCC instances.

18 Queiroga et al.

6.1.1 Small-size instances from the literature

The small-size instances considered here were proposed in different works and
together they compose a set of nine signed digraphs described as follows.

• House instances — In 1952, Lemann and Solomon [32] carried out a sociometric
study with students living in three different dormitories (denoted as House A,
House B and House C) and obtained four relationship networks per dormitory
considering the following information: date, friend, roommate and weekend.
Doreian [18] later summed the arc weights of the signed networks associated
with each dormitory so as to generate another three networks: House A Sum,
House B Sum and House C Sum. We have considered these last three in our
experiments.
• Monastery instances — In 1868, Sampson [42] studied, in different periods of

time, groups of young or novice postulants of a monastery, cataloging data for
four types of relationships: affect, esteem, influence, and sanction. From this
data, networks were generated for each period of time and type of relationship.
Among them, we considered those associated with the relationship affect for
different periods of time, namely MonkT2, MonkT3, and MonkT4. In addition,
we considered the network Mont4 Sum, generated in Doreian [18] by summing
up the arc weights of the four types of relationships in period T4.
• McKinney instance — This signed digraph was built by Brusco et al. [9] from

the data collected by McKinney [39] in a study about the relationship between
children in a classroom. In such study, children were submitted to a test in
which they had to choose between the “willing to serve with other children”
(labeled as +1), “not being willing to serve” (labeled as -1) and ”indifferent”
(labeled as 0), defining the class relationship digraph.
• NewComb instance — In 1961, Newcomb [41] conducted a well-known socio-

metric study with University students. A signed digraph was generated in
Doreian and Mrvar [20] by slightly modifying the data from this study.

The main characteristics of the aforementioned instances are described in Table
5, where d and d− indicate the digraph density (given by d = |A|/(|V |2−|V |)) and
the percentage of negative arcs (given by d− = |A−|/|A|), respectively. For the
sake of convenience, we have specified an alias (in parentheses) for each instance.

Table 5: Small-size instance attributes

Name |V | d d− Author(s)

House A Sum (HAS) 21 0.50 0.56 Lemann and Solomon [32], Doreian [18]

House B Sum (HBS) 17 0.59 0.52 Lemann and Solomon [32], Doreian [18]

House C Sum (HCS) 20 0.52 0.53 Lemann and Solomon [32], Doreian [18]

MonkT2 (MT2) 18 0.34 0.47 Sampson [42]

MonkT3 (MT3) 18 0.34 0.46 Sampson [42]

MonkT4 (MT4) 18 0.34 0.46 Sampson [42]

MonkT4 Sum (MT4S) 18 0.50 0.49 Sampson [42], Doreian [18]

McKinney (MK) 18 0.34 0.10 McKinney [39], Brusco et al. [9]

NewComb (NC) 17 0.44 0.43 Newcomb [41], Doreian and Mrvar [20]

Integer program. form. and efficient local search for relaxed correlation clustering 19

6.1.2 Random instances

In order to test the ILS implementations on larger instances, we have gener-
ated 48 new signed digraphs with different values of |V |, d and d−. Let V|V | =
{100, 200, 400, 600}, Vd = {0.1, 0.2, 0.5, 0.8} and Vd− = {0.1, 0.3, 0.5} be the set of
values associated with |V |, d and d−, respectively. For each setting obtained by the
Cartesian product V|V | × Vd × Vd− (represented by a 3-tuple), we have randomly

built a signed digraph. Note that larger values of d− are not used because they are
equivalent with respect to the desired sign distribution (e.g., if d− = 0.7, then the
percentage of positive arcs will be 0.3). A RCC instance consists of a digraph and
a value for the parameter k (maximum number of clusters). For each generated
digraph, we consider one instance for each value of k in {3, 5, 7, 9}. Therefore, this
benchmark is composed of 192 instances.

The newly generated digraphs are available at http://www.ic.uff.br/~yuri/
files/rcc_random.zip.

6.1.3 Symmetric RCC instances

We also considered three sets of symmetric RCC benchmark instances, namely:

• UNGA instances — Generated by Levorato et al. [35] and composed of 63
undirected graphs that were built from the voting data of the United Nations
General Assembly (UNGA) annual meetings between 1946 and 2008. These
networks are weighted versions of UNGA signed digraphs created by Figueiredo
and Frota [25].
• Slashdot instances — Created by Levorato [33] from subgraphs of the social

network Slashdot Zoo containing 200 to 10000 vertices. Such subgraphs were
transformed into undirected graphs. Levorato [33] performed experiments with
a parallel heuristic for the SRCC. Since we are specifically interested in compar-
ing the performance of sequential implementations, it was thought advisable
to consider the instances with up to 2000 vertices.
• BR Congress instances — Set of undirected graphs generated by Levorato

and Frota [34] from voting sessions of the lower house of Brazilian National
Congress. They created two graphs per year between 2011 and 2016, resulting
in a total of 12 instances.

The reader is referred to Figueiredo and Frota [25], Levorato et al. [35], Levo-
rato [33], Levorato and Frota [34] for a more detailed description.

6.2 Results for the ILP formulations

Tables 6, 7 and 8 present the results obtained by the formulation proposed in
Figueiredo and Moura [26], as well as those determined by F1 and F2. Column
z represents the relaxed imbalance, given by RI(P ∗), where P ∗ is the solution
(optimal or not) found by the corresponding formulation, gap informs percentage
gaps calculated between best integer solutions found and final lower bounds (LB)
as described in Equation (21), t indicates the CPU time in seconds (”-” means the
instance was not solved in the time limit set), and nodes is the number of nodes
that were solved during the search. Regarding the ILP formulation proposed by

20 Queiroga et al.

Figueiredo and Moura [26], we report the original results which were found using
XPRESS 21.01.00 (Intel Core 2 Duo 2.10 GHz and 3 GB of RAM) and also those
determined by CPLEX 12.7 in order to perform a fair comparison. A time limit
of 3600 seconds was imposed for each run.

gap = 100× (BestInteger − LB)/BestInteger (21)

We followed the same procedure adopted in Figueiredo and Moura [26] in our
testing. For each digraph, we start the experiments with k = 2. If the instance
is solved to optimality, we then increase the value of k by one unit and attempt
to solve the problem again (forward phase). If an optimal solution with relaxed
imbalance 0 is found, we then interrupt the experiments for that particular digraph
since this solution is also optimal for instances with larger values of k. When an
instance is not solved to optimality, a similar procedure is carried out to solve
instances from k = n− 1, where the value of k is decreased by one unit after each
successful optimization (backward phase). In the backward phase, we use the value
of the optimal solution found in the previous run (i.e., for k+ 1) as a lower bound
for the instance with k. The backward phase is finished when an instance is not
solved to optimality or when the current instance was solved during the forward
phase.

Table 6: Results obtained for instances House A Sum, House B Sum and House C
Sum.

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

HAS

2 96 0 59 1579 96 57.3 – 14874 96 0 1 688 96 0 22 1362

3 57 78.9 – 31737 50 0 19 10921 50 0 2911 103801

4 31 0 92 31468 31 0 3115 118591

5 27 0 824 116453 27 78.2 – 94578

6 21 0 1931 185902

7 18 29.7 – 270282

10 6 33.3 – 99450 6 33.3 – 50536

11 4 0 1415 34689 4 0 501 8484

12 1 0 190 5535 1 0 73 1544

13 12 83.3 – 20945 0 0 109 2396 0 0 70 1240

14 2a 0 1555 16703 0 0 61 1380 0 0 37 730

15 0 0 3585 30208 0 0 60 831 0 0 7 100

16 0 0 1162 7358 0 0 18 320 0 0 9 210

17 0 0 601 2319 6 100.0 – 2499 0 0 91 1300 0 0 19 592

18 0 0 599 2634 0 0 921 1455 0 0 19 234 0 0 10 248

19 0 0 23 1 0 0 618 1180 0 0 1 1 0 0 10 260

20 0 0 < 1 1 0 0 408 1139 0 0 82 671 0 0 10 260

Integer program. form. and efficient local search for relaxed correlation clustering 21

Table 6 – Continued from previous page

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

HBS

2 84 0 22 1115 84 69.6 – 28015 84 0 < 1 747 84 0 10 1381

3 75 47.5 – 9064 69 0 56 61150 69 0 867 99990

4 56 0 461 203765 56 39.3 – 286043

5 43 0 2161 514692

6 33 0 2595 383348

7 29 44.1 – 409051

9 15 26.7 – 138796 15 26.7 – 102548

10 11 0 2536 97956 11 0 2186 55691

11 8 0 592 17562 8 0 642 20574

12 5 60.0 – 80375 5 0 297 8618 5 0 185 6802

13 2 0 715 13538 2 0 67 2056 2 0 11 883

14 1 0 279 3761 1 0 14 631 1 0 9 690

15 0 0 85 584 0 0 28 1026 0 0 2 1

16 0 0 < 1 1 0 0 18 942 0 0 2 1

HCS

2 64 0 26 615 64 0 1348 7266 64 0 1 363 64 0 8 555

3 60 83.0 – 42981 96 100.0 – 1323 53 0 27 19422 53 0 417 25068

4 43 0 341 137992 44 49.1 – 112782

5 35 0 2348 396810

6 31 44.2 – 344290

12 8 37.5 – 73495 8 37.5 – 81225

13 5 0 2340 37753 5 0 1961 40391

14 3 0 1301 18368 3 0 476 9800

15 3 66.7 – 35179 2 0 369 4734 2 0 84 1900

16 1 0 2097 12517 5 100.0 – 2556 1 0 103 2270 1 0 16 669

17 0 0 118 383 0 0 304 500 0 0 34 557 0 0 2 1

18 0 0 96 153 0 0 255 500 0 0 23 433 0 0 2 1

19 0 0 < 1 1 0 0 261 500 0 0 59 1024 0 0 2 1

aPossible typo

Table 7: Results obtained for instances MonkT2, MonkT3, MonkT4, and MonkT4
Sum.

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

MT2

2 43 0 13 733 43 0 37 1343 43 0 < 1 818 43 0 2 534

3 25 0 2238 70771 27 92.6 – 11388 25 0 5 7049 25 0 42 6271

4 20 85.0 – 121561 13 0 9 6998 13 0 212 26725

5 8 0 15 7077 8 0 116 11601

6 4 0 11 3765 4 0 76 8493

7 14 92.9 – 12097 2 0 4 1177 2 0 6 718

8 1 0 509 2497 1 0 2 236 1 0 4 488

9 0 0 666 3835 0 0 1 252 0 0 4 720

10 0 0 128 1484

11 2 100.0 – 176063 0 0 169 1781

12 0 0 2369 102937 0 0 80 1578

13 0 0 222 8881 0 0 19 278

14 0 0 48 593 0 0 54 1438

15 0 0 15 69 0 0 62 1543

16 0 0 7 1 0 0 61 1597

17 0 0 < 1 1 0 0 40 1082

22 Queiroga et al.

Table 7 – Continued from previous page

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

MT3

2 32 0 6 243 32 0 30 1404 32 0 < 1 126 32 0 2 109

3 21 0 193 4765 28 92.9 – 8924 21 0 1 876 21 0 7 1964

4 13 0 2269 54227 13 0 2 1835 13 0 13 2690

5 8 0 3325 85056 8 0 7 3460 8 0 10 2013

6 7 71.4 – 100613 6 0 4 1840 6 0 34 3979

7 5 60.0 – 140597 4 50.0 – 21250 4 0 4 1551 4 0 9 1749

8 2 0 2837 6725 2 0 675 6642 2 0 2 517 2 0 5 739

9 1 0 438 11577 1 0 56 1610 1 0 1 171 1 0 3 290

10 0 0 1182 44984 0 0 50 1090 0 0 < 1 1 0 0 2 402

11 0 0 251 8439 0 0 32 989

12 0 0 519 21543 0 0 7 150

13 0 0 103 5335 0 0 7 143

14 0 0 49 1120 0 0 8 174

15 0 0 30 455 0 0 8 197

16 0 0 18 119 0 0 8 197

17 0 0 < 1 1 0 0 8 197

MT4

2 25 0 5 149 25 0 11 206 25 0 < 1 194 25 0 1 99

3 21 0 119 3381 21 75.2 – 12524 21 0 1 923 21 0 6 1459

4 10 0 563 13945 10 0 1 706 10 0 9 1864

5 6 0 1463 42782 6 0 3 1283 6 0 64 6038

6 4 0 2391 68659 5 80.0 – 7519 4 0 2 719 4 0 47 4389

7 1 0 683 19452 1 0 141 1370 1 0 1 308 1 0 3 476

8 0 0 414 12469 0 0 31 691 0 0 1 61 0 0 2 331

9 0 0 66 537

10 0 0 35 756

11 0 0 4 1

12 0 0 11 1

13 0 0 11 1

14 0 0 9 1

15 0 0 8 1

16 0 0 9 1

17 0 0 8 1

MT4S

2 86 0 14 347 86 0 66 518 86 0 < 1 217 86 0 2 229

3 54 0 1539 25379 85 98.8 – 2941 54 0 1 988 54 0 80 5595

4 43 72.2 – 7483 36 0 8 3340 36 0 298 21034

5 25 0 23 6128 25 0 300 17832

6 16 0 42 7039 16 0 225 11659

7 12 0 41 5561 12 0 131 5068

8 9 66.7 – 9104 8 0 18 2281 8 0 58 2232

9 6 100.0 – 61861 3 0 3407 5188 3 0 7 590 3 0 8 525

10 2 0 2582 51491 2 0 3498 5701 2 0 3 172 2 0 6 372

11 0 0 1740 25094 0 0 79 470 0 0 1 1 0 0 8 602

12 0 0 925 11838 0 0 126 935

13 0 0 58 240 0 0 108 935

14 0 0 300 3389 0 0 18 1

15 0 0 7 1 0 0 19 1

16 0 0 1 1 0 0 19 1

17 0 0 < 1 1 0 0 18 1

Integer program. form. and efficient local search for relaxed correlation clustering 23

Table 8: Results obtained for instances McKinney and NewComb.

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

MK

2 8 0 118 6531 8 100.0 – 7559 8 0 < 1 28 8 0 112 2802

3 6 100.0 – 43762 2 0 < 1 197 2 0 227 7766

4 0 0 < 1 1 0 0 50 1567

13 2 100.0 – 1432

14 0 0 57 1

15 0 0 59 1

16 2 100.0 – 33562 0 0 53 1

17 0 0 81 169 0 0 53 1

18 0 0 2 1 0 0 52 1

19 0 0 19 1 0 0 53 1

20 0 0 1 1 0 0 55 1

21 0 0 16 1 0 0 58 1

22 0 0 2 1 0 0 55 1

23 0 0 5 1 0 0 60 1

24 0 0 6 1 0 0 58 1

25 0 0 1 1 0 0 53 1

26 0 0 95 49 0 0 57 1

27 0 0 2 1 0 0 59 1

28 0 0 < 1 1 0 0 54 1

NC

2 10 0 4 167 10 0 34 468 10 0 < 1 66 10 0 1 101

3 7 0 475 9869 8 100.0 – 4988 7 0 1 1193 7 0 43 6188

4 5 34.6 – 90604 5 0 7 5570 5 0 83 10538

5 6 83.3 – 9349 3 0 11 4690 3 0 80 8054

6 1 0 1299 6295 1 0 1 331 1 0 35 3561

7 0 0 2646 7542 0 0 3 1093 0 0 12 1177

8 1 100.0 – 146619 0 0 846 2861

9 0 0 172 9807 0 0 594 2624

10 0 0 123 5969 0 0 500 2276

11 0 0 27 405 0 0 46 1005

12 0 0 37 162 0 0 142 1815

13 0 0 8 1 0 0 294 2075

14 0 0 < 1 1 0 0 116 1172

15 0 0 < 1 1 0 0 85 1505

16 0 0 < 1 1 0 0 64 1505

The results obtained show that F1 outperforms the other formulations with re-
spect to the number of optimal solutions achieved. When a formulation obtained
an optimal solution with relaxed imbalance 0 for a given value of k, then we as-
sume that all optima were found for executions with larger values of k (e.g., F1
and F2 solved instances from MT2 to optimality). While this formulation found 38,
64, 27, 15 optimal solutions for each group (House, Monastery, McKinney, New-
Comb), respectively, F2 found 29, 64, 27, 15, respectively, and the formulation by
Figueiredo and Moura [26] obtained 18, 48, 13, 10 using XPRESS, and 7, 44, 15, 12
using CPLEX, respectively. Overall, a total of 40 new optimal solutions (counting
only once the optimal solutions with relaxed imbalance 0 for each digraph) were
found and all instances of 6 of the 9 groups were solved to optimality.

In addition, it can be observed that F1 is generally faster, but it is outrun by
F2 on instances HAS, HBS and HCS for larger values of k. Note that for the latter
two, F2 solves some instances at the root node. The formulation by Figueiredo

24 Queiroga et al.

and Moura [26] is clearly slower, even taking into account the hardware difference
for the results found using XPRESS. In general, more nodes are solved when
running such formulation, but in some cases, F2 is the one to solve more nodes.

The results also demonstrate that RCC has the expected behavior for k-
partition problems, where problems with k close to 2 and n − 1 are easier than
those problems with k close to n/2. This can be explained by the number of pos-
sible partitions, which is given by the Stirling number of the second type [8] as
described in Equation (22).

S(n, k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn (22)

Finally, we report in Table 9 a comparison between the optimal solutions for
RCC and CC. In addition to comparing I(P) with RI(P) and the correction
δ = I(P) − RI(P) obtained with RCC (recall that RCC was proposed in order
to correct wrong penalties in CC), we also decompose the total imbalance into
minimum, average, and maximum penalties for intracluster and intercluster cases.
With the exception of one instance (MT4 with k = 3), a positive correction is
obtained by RCC. It is worth mentioning that most of the imbalance (and hence
the correction) occurs in intercluster cases.

Table 9: Comparison of optimal solutions for RCC and CC in small instances.

Name k

I(P) RI(P)

δ
total

intra inter
total

intra inter

min avg max min avg max min avg max min avg max

HAS 4 64 0 4.8 16 0 7.5 19 31 0 2.3 5 0 1.8 5 33

HBS 4 81 0 3.5 14 1 11.2 23 56 0 5.8 11 0 2.8 10 25

HCS 3 59 0 5.3 10 4 14.3 27 53 3 5.7 8 3 6.0 10 6

MT2 3 35 0 0.7 1 3 11.0 16 25 0 0.3 1 1 4.0 7 10

MT3 3 22 0 0.3 1 4 7.0 11 21 0 1.0 3 0 3.0 7 1

MT4 3 21 0 1.7 5 3 5.3 9 21 0 1.7 5 0 2.7 6 0

MT4S 3 62 1 3.0 7 12 17.7 25 54 1 3.0 7 2 7.5 15 8

MK 2 12 0 3.0 6 6 6.0 6 8 0 2.0 4 2 2.0 2 4

NC 4 20 0 1.3 5 0 2.5 7 5 0 0.5 1 0 0.3 1 15

6.3 ILS implementations

We used the same values adopted in Subramanian and Farias [45] for the main
parameters of ILSRCC, that is, IR = 20 and IILS = min{100, 4 × n}. The only
difference is that we imposed a minimum value of 100 for the latter as in Silva
et al. [43]. Moreover, we set maxPert = 6 after conducting some experiments
(see Section 6.3.1). The algorithms were executed 10 times on each instance in
all experiments. Hereafter, the percentage gap of a solution P ′ is computed as
gap = 100× (f(P ′)− f(Pbest))/f(P ′), such that f is the objective function (i.e.,
f(P) = RI(P) for RCC and f(P) = SRI(P) for SRCC) and Pbest is the best
solution among all solutions found by the ILSRCC and the ILS of Levorato et al.
[36].

Integer program. form. and efficient local search for relaxed correlation clustering 25

6.3.1 Impact of the different components of the algorithm

We evaluate the ILSRCC concerning the impact of: (i) using the greedy constructive
algorithm by Levorato et al. [36]; (ii) the parameter maxPert; (iii) the neighbor-
hood structures; (iv) perturbation mechanisms. To this end, we conducted exper-
iments involving all 100-vertex random instances.

At first, we assess the impact of replacing the completely random construction
(line 5 in Algorithm 1) with the greedy construction of Levorato et al. [36]. Table
10 shows the average gaps and CPU times obtained by the two versions of ILSRCC

(using two different constructive procedures) for different values of k. It can be seen
that none of the two versions are significantly superior than the other w.r.t. both
criteria. The only exception occurs when k = 9, where using the completely random
construction produces a superior average gap and CPU time. In general, using the
greedy construction in ILSRCC leads to an improvement of only 0.01% in terms of
average gap, and an increase of around 3% on the average CPU time. Therefore,
it is reasonable to conclude that the effort to implement a more sophisticated
constructive procedure may not be worthwhile for the RCC when the algorithm
contains an effective local search.

Table 10: Comparison of two constructive heuristics in ILSRCC for different values
of k.

Construction k Avg. gap (%) Avg. time (s)

Greedy [36]

3 0.14 7.09
5 0.92 13.76
7 1.77 19.78
9 2.84 24.20

Mean 1.42 16.21

Random

3 0.17 6.83
5 1.03 13.36
7 1.96 19.20
9 2.56 23.31

Mean 1.43 15.68

The impact of varying the parameter maxPert is illustrated in Figure 7, where
values between 4 and 8 are considered to compare different versions of ILSRCC.
The results show that the values 5 and 7 are dominated by the remaining ones;
the value 4 produces the faster execution but with a poor average gap, whereas
the value 8 achieves the best average gap but the worst CPU time. Therefore, we
decided to use maxPert = 6 because it yields a good balance between solution
quality and CPU time.

We assess the impact of the neighborhood operations by considering 7 different
configurations. In this case, we consider IR = 20 and IILS = 1 (i.e. only one
iteration of the RVND procedure is executed) and we measure the percentage
improvement over the initial solution. The average results are shown in Figure 8.
We can observe that the configurations that yields the most promising results
are those 5 and 7. The difference between both settings is that the latter includes
the neighborhood Swap, which led to a slight improvement despite the additional
CPU time.

26 Queiroga et al.

13 14 15 16 17 18 19

1.4

1.5

1.6 1

2

3 4

5

avg. time (s)

av
g
.

g
a
p

(%
)

1 : maxPert = 4

2 : maxPert = 5

3 : maxPert = 6

4 : maxPert = 7

5 : maxPert = 8

Fig. 7: Impact of the parameter maxPert. Each point represents a configuration
and points with no fill represent those dominated by one or more settings.

0 2 4 6 8 10 12

0

5

10

15

20

1 2

3

4

5

6

7

avg. time (ms)

av
g
.

im
p

ro
v
em

en
t

(%
)

1 : N1

2 : N2

3 : N3

4 : N1 +N2

5 : N1 +N3

6 : N2 +N3

7 : N1 +N2 +N3

Fig. 8: Impact of the neighborhood operations. Each point represents a configu-
ration and points with no fill represent those dominated by one or more settings.
N1, N2 and N3 denote neighborhoods Insert, Swap and Split, respectively.

In order to measure the impact of the perturbation mechanisms, we run
ILSRCC using the default values of the parameters and store the percentage im-
provement over the best solution found in the previous testing for each instance.
To choose an interesting configuration, we perform experiments considering two
scenarios: with and without the neighborhood swap. The average results obtained
are depicted in Figure 9. The best results are obtained by settings 6 and 7 for both
scenarios. The scenario that considered Swap achieves better improvements at the
expense of CPU time. Although not reported in Figure 9, the settings tested in
the second scenario (i.e., the one including Swap) systematically found more best
solutions than their corresponding counterpart in the first scenario. We, therefore,
decided to select configuration 7 of the second scenario because it appears to offer
an interesting compromise between solution quality and CPU time.

Integer program. form. and efficient local search for relaxed correlation clustering 27

5 10 15 20

0

2

4

6

8

10

2

3

4
5 67

avg. time (s)

av
g
.

im
p
ro

v
em

en
t

(%
)

(a)

5 10 15 20

0

2

4

6

8

10

1

2

3

4 5 67

avg. time (s)

av
g
.

im
p
ro

v
em

en
t

(%
)

1 : P1

2 : P2

3 : P3

4 : P1 + P2

5 : P1 + P3

6 : P2 + P3

7 : P1 + P2 + P3

(b)

Fig. 9: Impact of the perturbation operations. Each point represents a configura-
tion and points with no fill represent those dominated by one or more settings.
P1, P2 and P3 denote perturbations Insert, Split and Sign Inversion, respectively.
Part (a) does not include the neighborhood Swap whereas part (b) does.

6.3.2 Comparison with the literature

The implementation by Levorato et al. [36] was originally devised for the symmet-
ric version of the problem. Therefore, we had to slightly modify the source code,
which was provided by the authors, to cope with the asymmetric case. We will
refer to this method as ILSadapt.

Concerning the small-size instances considered in Section 6.1.1, it was observed
that ILSRCC and ILSadapt are capable of consistently finding the optimal solutions
in a fraction of a second.

Table 11 shows the aggregate results obtained by the ILS implementations on
the set of random instances. For each digraph, we report the minimum, average
and maximum values of the average percentage gaps (there is an average gap for
each value of k ∈ {3, 5, 7, 9}), as well as the average CPU time in seconds. Detailed
results are reported in Appendix A. Moreover, for an appropriate comparison, we
have imposed the average CPU time obtained by ILSRCC, for each instance, as a
stopping criterion for ILSadapt.

Table 11: Aggregate results for each digraph. Each row reports statistics on the
average gaps obtained for the group of four instances (one for each value of k ∈
{3, 5, 7, 9}).

|V | d d−
ILSRCC ILSadapt tavgmin avg max min avg max

100 0.1 0.1 0.82 5.02 11.00 3.23 17.65 34.73 8.99
100 0.1 0.3 0.02 1.57 2.49 1.18 8.17 16.24 12.60
100 0.1 0.5 0.02 2.27 4.59 0.76 6.29 10.99 13.25
100 0.2 0.1 0.69 1.35 1.66 1.62 4.92 7.46 10.57
100 0.2 0.3 0.00 0.71 1.36 0.10 2.78 4.56 15.64
100 0.2 0.5 0.11 1.14 2.67 0.62 3.08 5.73 15.19
100 0.5 0.1 0.12 0.35 0.69 0.35 1.33 2.53 12.23
100 0.5 0.3 0.00 0.21 0.53 0.00 0.93 1.98 21.70
100 0.5 0.5 0.15 0.43 0.74 0.27 1.27 2.17 20.98
100 0.8 0.1 0.00 0.11 0.28 0.22 0.95 1.88 8.91

28 Queiroga et al.

Table 11 – Continued from previous page

|V | d d−
ILSRCC ILSadapt tavgmin avg max min avg max

100 0.8 0.3 0.05 0.22 0.37 0.03 0.53 1.08 23.18
100 0.8 0.5 0.00 0.21 0.34 0.29 1.10 1.81 24.85
200 0.1 0.1 0.52 0.87 1.13 1.23 6.24 13.75 66.34
200 0.1 0.3 0.03 0.81 1.29 0.94 2.75 3.65 97.29
200 0.1 0.5 0.39 0.60 0.88 1.03 3.13 5.10 91.26
200 0.2 0.1 0.15 0.73 1.40 0.37 2.34 4.23 73.44
200 0.2 0.3 0.16 0.28 0.41 0.18 1.35 2.12 116.49
200 0.2 0.5 0.19 0.44 0.67 0.73 1.47 2.01 102.96
200 0.5 0.1 0.04 0.20 0.32 0.22 0.78 1.11 66.67
200 0.5 0.3 0.05 0.13 0.21 0.07 0.52 0.81 155.52
200 0.5 0.5 0.05 0.21 0.33 0.34 0.75 1.05 142.09
200 0.8 0.1 0.01 0.11 0.19 0.12 0.52 0.84 44.26
200 0.8 0.3 0.01 0.15 0.35 0.14 0.50 0.83 161.70
200 0.8 0.5 0.04 0.19 0.28 0.52 0.85 1.47 165.27
400 0.1 0.1 0.34 0.56 0.73 0.34 1.01 1.49 508.86
400 0.1 0.3 0.16 0.31 0.57 0.09 0.84 1.45 870.00
400 0.1 0.5 0.09 0.42 0.71 0.32 1.26 2.56 699.45
400 0.2 0.1 0.07 0.17 0.20 0.12 0.38 0.65 394.25
400 0.2 0.3 0.04 0.17 0.26 0.08 0.81 1.83 988.04
400 0.2 0.5 0.11 0.23 0.32 0.26 0.59 0.76 778.40
400 0.5 0.1 0.05 0.10 0.17 0.14 0.26 0.41 312.75
400 0.5 0.3 0.03 0.06 0.07 0.06 0.14 0.24 978.23
400 0.5 0.5 0.08 0.12 0.18 0.21 0.47 0.92 1093.10
400 0.8 0.1 0.02 0.05 0.08 0.07 0.13 0.20 183.53
400 0.8 0.3 0.02 0.05 0.07 0.12 0.15 0.19 881.24
400 0.8 0.5 0.06 0.11 0.16 0.13 0.30 0.40 1304.41
600 0.1 0.1 0.27 0.40 0.52 0.20 0.65 1.03 1338.98
600 0.1 0.3 0.14 0.21 0.35 0.18 0.69 1.27 3173.07
600 0.1 0.5 0.15 0.29 0.50 0.94 1.43 1.94 2470.35
600 0.2 0.1 0.12 0.15 0.20 0.26 0.32 0.39 1034.79
600 0.2 0.3 0.06 0.11 0.14 0.10 0.42 0.76 3313.68
600 0.2 0.5 0.14 0.22 0.27 0.38 0.56 0.73 2824.27
600 0.5 0.1 0.03 0.07 0.10 0.06 0.16 0.25 782.57
600 0.5 0.3 0.02 0.05 0.08 0.05 0.12 0.17 2822.82
600 0.5 0.5 0.04 0.06 0.11 0.21 0.30 0.36 3866.90
600 0.8 0.1 0.02 0.04 0.06 0.03 0.06 0.10 474.08
600 0.8 0.3 0.02 0.05 0.06 0.04 0.08 0.11 2170.92
600 0.8 0.5 0.05 0.09 0.13 0.18 0.30 0.40 4681.35

The results obtained show that, on average, ILSRCC clearly outperforms
ILSadapt. When evaluating the performance of each individual instance, the
ILSRCC found the best solution (one with a gap of 0%) for 179 instances (93.2%
of the cases), where among them 166 (86.5% of the cases) are strictly better than
the best ones achieved by ILSadapt. Furthermore, we can also see that the average
runtime increases with the value of d−.

Figure 10 illustrates how the average gap between the average solution and the
best known solution varies according to different values of d, d− and k. We can
observe that the instances appear to become easier when the value of d increases,
as depicted in Figure 10a. Furthermore, from Figure 10b, it is visible that the
instances with a smaller value of d− appear to be harder. Finally, larger values of
k seem to increase the difficulty of the instances, as clearly shown in Figure 10c.

In Appendix A, we also report many improved upper bounds w.r.t those ob-
tained in the experiment reported in Table 11. These improved solutions were

Integer program. form. and efficient local search for relaxed correlation clustering 29

0.1 0.2 0.5 0.8
0

1

2

3

4

5

1.11

0.47
0.17 0.11

4.18

1.59

0.58 0.46

d

av
g
.

g
a
p

(%
)

ILSRCC

ILSadapt

(a)

0.1 0.3 0.5
0

0.5

1

1.5

2

2.5

0.64

0.32
0.44

2.36

1.3
1.45

d−

av
g
.

g
a
p

(%
)

ILSRCC

ILSadapt

(b)

3 5 7 9
0

0.5

1

1.5

2

2.5

3

0.12

0.39
0.55

0.81

0.4

1.44

2.2

2.77

k

av
g
.

g
a
p

(%
)

ILSRCC

ILSadapt

(c)

Fig. 10: Average gap performance according to characteristics of the instance.

found while experimenting with different settings of the algorithm, and also dur-
ing the preliminary experiments described in Section 6.3.1.

6.3.3 Impact of the ADSs on the runtime performance

This section examines the average runtime performance of ILSRCC when incorpo-
rating the ADSs for efficiently computing the relaxed imbalance value of a neighbor
solution during the local search.

Figure 11 depicts the CPU time of the versions of the algorithm using EBI and
NBI, respectively, in the log scale. In Figure 11a, we illustrate the comparison for
the small-size Monastery instances. Despite the considerable runtime difference,
it can be seen that using NBI, i.e., the one that does not make use of ADSs
to perform move evaluation, is still doable in practice, as the average CPU time
spent by the method is fairly acceptable. However, for the 100-vertex instances,
the difference is astonishing, and visibly illustrates the benefits of incorporating

30 Queiroga et al.

the ADSs proposed in this work. Note that the disparity is likely to become even
more prominent for larger instances.

3 4 5 6 7 8 9

0.1

1

10

100

k

a
v
g
.

ti
m

e
(s

)

ILSRCC–EBI

ILSRCC–NBI

(a) Monastery instances (18 vertices)

3 4 5 6 7 8 9

10

100

1,000

10,000

k

a
v
g
.

ti
m

e
(s

)

ILSRCC–EBI

ILSRCC–NBI

(b) Random instances with 100 vertices

Fig. 11: Impact of the ADSs on the average CPU time (semi-log plot).

6.3.4 Results for the symmetric RCC instances

Table 12 shows the summary of the results obtained for each set of benchmark in-
stances. In this case, because the original algorithm from the literature is used, we
refer to it as “ILS Levorato et al. [36]”. Detailed results are provided in Appendix
B. We report the number of strictly best solutions found by each version (#best),
the number of cases in which the best solution found by each algorithm were equal
(ties), the average percentage gap (gapavg) and the minimum, average and max-
imum CPU time, considering the average values of 10 runs for each instance and
a time limit of 7200 seconds. The results illustrate that ILSRCC dominates ILS
Levorato et al. [36] in terms of strictly best known solutions found, especially in
Slashdot and Brazilian Congress benchmarks. To our knowledge, all best solutions
found in this experiment are the best known.

Table 12: Summary of results for SRCC benchmarks

Benchmark total
ILSRCC ILS Levorato et al. [36]

ties
time

#best gapavg #best gapavg min avg max
UNGA 63 1 0.02 0 1.72 62 0.5 4.6 13.0

Slashdot 7 7 9.72 0 40.08 0 16.9 2293.3 7200.0
BR Congress 14 8 0.59 0 1.16 6 61.3 232.7 534.1

7 Concluding remarks

This paper proposes exact and metaheuristic approaches for the relaxed corre-
lation clustering (RCC) problem. In particular, we developed two integer linear

Integer program. form. and efficient local search for relaxed correlation clustering 31

programming formulations that obtained a superior performance when compared
to the existing one, as well as an enhanced iterated local search (ILS) algorithm
that substantially outperformed the previous ILS implementation from the litera-
ture. One key factor of our ILS is the efficient move evaluation scheme, which was
crucial for improving the scalability of the method. Moreover, we also put forward
a novel perturbation mechanism for the problem that helped the algorithm to find
high quality solutions. The performance of ILS was also assessed in benchmark in-
stances of the symmetrical version of RCC (SRCC) and the results achieved were
always at least as good as the best known.

Future work includes the development of efficient parallel algorithms for tack-
ling very large instances that may arise in real-life social networks. In addition, as
the current integer linear programming formulations are still limited to small-size
instances, there is still room for developing enhanced exact algorithms, perhaps in
the spirit of Brusco et al. [9], as an attempt to solve larger instances.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior – Brasil (CAPES) – Finance Code 001 and by the Conselho Na-
cional de Desenvolvimento Cientf́ıfico e Tecnológico (CNPq), grants 305223/2015-1
and 303799/2018-8. We would also like to thank Mário Levorato for providing the
SRCC source code and Pedro Liguori for the helpful insights on the mathematical
models.

Data availability

The datasets analysed during the current study are available from the correspond-
ing author on reasonable request.

References

1. Ales Z, Knippel A, Pauchet A (2016) Polyhedral combinatorics of the k-
partitioning problem with representative variables. Discret Appl Math 211:1–
14

2. Altafini C (2012) Dynamics of opinion forming in structurally balanced social
networks. PLOS ONE 7(6):1–9

3. Arinik N, Figueiredo R, Labatut V (2017) Signed Graph Analysis for the Inter-
pretation of Voting Behavior. In: International Conference on Knowledge Tech-
nologies and Data-driven Business (i-KNOW), Graz, Austria, International
Workshop on Social Network Analysis and Digital Humanities (SnanDig)

4. Bahiense L, Frota Y, Maculan N, Noronha TF, Ribeiro CC (2009) A branch-
and-cut algorithm for equitable coloring based on a formulation by represen-
tatives. Electron Notes in Discret Math 35:347–352

5. Bansal N, Blum A, Chawla S (2004) Correlation clustering. Mach Learn
56(1):89–113

32 Queiroga et al.

6. Beier T, Hamprecht FA, Kappes JH (2015) Fusion moves for correlation clus-
tering. In: CVPR. Proceedings, pp 3507–3516, 1

7. Bonami P, Nguyen VH, Klein M, Minoux M (2012) On the solution of a graph
partitioning problem under capacity constraints. In: Mahjoub AR, Markakis
V, Milis I, Paschos VT (eds) Combinatorial Optimization, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 285–296

8. Broder AZ (1984) The r-stirling numbers. Discrete Mathematics 49(3):241 –
259

9. Brusco M, Doreian P, Mrvar A, Steinley D (2011) Two algorithms for relaxed
structural balance partitioning: Linking theory, models, and data to under-
stand social network phenomena. Sociol Methods & Res 40(1):57–87

10. Brusco MJ, Doreian P (2019) Partitioning signed networks using relocation
heuristics, tabu search, and variable neighborhood search. Soc Netw 56:70 –
80

11. Bulhões T, de Sousa Filho GF, Subramanian A, Lućıdio dos Anjos FC (2017)
Branch-and-cut approaches for p-cluster editing. Discret Appl Math 219:51–64

12. Campêlo M, Campos VA, Correa RC (2008) On the asymmetric representa-
tives formulation for the vertex coloring problem. Discret Appl Math 156:1097–
1111

13. Campêlo MB, Corrêa RC, Frota Y (2004) Cliques, holes and the vertex coloring
polytope. Inf Process Lett 89(4):159–164

14. Cartwright D, Harary F (1956) Structural balance: a generalization of heider’s
theory. Psychological review 63(5):277

15. Dambacher JM, Li HW, Rossignol PA (2002) Relevance of community struc-
ture in assessing indeterminacy of ecological predictions. Ecol 83(5):1372–1385

16. DasGupta B, AEnciso G, Sontag E, Zhang Y (2007) Algorithmic and com-
plexity results for decompositions of biological networks into monotone sub-
systems. BioSyst 90:161–178

17. Davis JA (1967) Clustering and structural balance in graphs. Human relations
20(2):181–187

18. Doreian P (2008) A multiple indicator approach to blockmodeling signed net-
works. Soc Netw 30(3):247 – 258

19. Doreian P, Mrvar A (1996) A partitioning approach to structural balance. Soc
Netw 18(2):149 – 168

20. Doreian P, Mrvar A (2009) Partitioning signed social networks. Soc Netw
31(1):1 – 11

21. Doreian P, Mrvar A (2014) Testing two theories for generating signed networks
using real data

22. Doreian P, Mrvar A (2015) Structural balance and signed international rela-
tions. J of Soc Struct 16:2

23. Facchetti G, Iacono G, Altafini C (2011) Computing global structural bal-
ance in large-scale signed social networks. Proc of the National Acad of Sci
108(52):20953–20958

24. Fan N, Pardalos PM (2010) Linear and quadratic programming approaches
for the general graph partitioning problem. J of Glob Optim 48(1):57–71

25. Figueiredo R, Frota Y (2014) The maximum balanced subgraph of a signed
graph: Applications and solution approaches. Eur J of Oper Res 236(2):473 –
487

Integer program. form. and efficient local search for relaxed correlation clustering 33

26. Figueiredo R, Moura G (2013) Mixed integer programming formulations for
clustering problems related to structural balance. Soc Netw 35(4):639 – 651

27. Figueiredo R, Frota Y, Labb M (2018) A branch-and-cut algorithm for the
maximum k-balanced subgraph of a signed graph. Discret Appl Math

28. Frota Y, Maculan N, Noronha TF, Ribeiro CC (2010) A branch-and-cut algo-
rithm for partition coloring. Netw 55:194–204

29. Harary F, Lim M, Wunsch DC (2003) Signed graphs for portfolio analysis in
risk management. IMA J of Manag Math 13:1–10

30. Heider F (1946) Attitudes and cognitive organization. The Journal of Psychol-
ogy 21(1):107–112, pMID: 21010780

31. Kim S, Nowozin S, Kohli P, Yoo CD (2011) Higher-order correlation clustering
for image segmentation. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira
F, Weinberger KQ (eds) Advances in Neural Information Processing Systems
24, Curran Associates, Inc., pp 1530–1538

32. Lemann TB, Solomon RL (1952) Group characteristics as revealed in socio-
metric patterns and personality ratings. Sociom 15(1/2):7–90

33. Levorato M (2015) Efficient solutions to the correlation clustering prob-
lem. Master’s thesis, Universidade Federal Fluminense, Niterói, Rio
de Janeiro, Brazil, available at http://www.ic.uff.br/PosGraduacao/

frontend-tesesdissertacoes/download.php?id=700.pdf&tipo=trabalho

34. Levorato M, Frota Y (2017) Brazilian congress structural balance analysis. J
of Interdiscip Methodol and Issues in Sci

35. Levorato M, Drummond L, Frota Y, Figueiredo R (2015) An ils algorithm to
evaluate structural balance in signed social networks. In: Proceedings of the
30th Annual ACM Symposium on Applied Computing, ACM, New York, NY,
USA, SAC ’15, pp 1117–1122

36. Levorato M, Figueiredo R, Frota Y, Drummond L (2017) Evaluating balanc-
ing on social networks through the efficient solution of correlation clustering
problems. EURO J on Comput Optim 5(4):467–498

37. Lourenço HR, Martin OC, Stützle T (2010) Iterated local search: Framework
and applications. In: Gendreau M, Potvin JY (eds) Handbook of Metaheuris-
tics, Springer US, Boston, MA, pp 363–397

38. Maurya MR, Rengaswamy R, Venkatasubramanian V (2004) Application of
signed digraphs-based analysis for fault diagnosis of chemical process flow-
sheets. Eng Appl of Artif Intell 17(5):501 – 518

39. McKinney JC (1948) An educational application of a two-dimensional socio-
metric test. Sociom 11(4):356–367

40. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput &
Oper Res 24(11):1097–1100

41. Newcomb TM (1961) The acquaintance process. Holt, Rinehart & Winston,
New York

42. Sampson SF (1968) A novitiate in a period of change: An experimental and
case study of social relationships. PhD thesis, Department of Sociology, Cornell
University, NY

43. Silva MM, Subramanian A, Vidal T, Ochi LS (2012) A simple and effective
metaheuristic for the minimum latency problem. Eur J of Oper Res 221(3):513
– 520

44. Silva MM, Subramanian A, Ochi LS (2015) An iterated local search heuristic
for the split delivery vehicle routing problem. Comput & Oper Res 53:234 –

34 Queiroga et al.

249
45. Subramanian A, Farias K (2017) Efficient local search limitation strategy for

single machine total weighted tardiness scheduling with sequence-dependent
setup times. Comput & Oper Res 79:190 – 206

46. Van Gael J, Zhu X (2007) Correlation clustering for crosslingual link detection.
In: Proceedings of the 20th International Joint Conference on Artifical Intelli-
gence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’07,
pp 1744–1749

47. Vasanthi B, Arumugam S, Nagar AK, Mitra S (2015) Applications of signed
graphs to portfolio turnover analysis. Procedia - Soc and Behav Sci 211:1203 –
1209, 2nd Global Conference on Business and Social Sciences (GCBSS-2015)
on Multidisciplinary Perspectives on Management and Society, 17- 18 Septem-
ber, 2015, Bali, Indonesia

48. Wang N, Li J (2013) Restoring: A greedy heuristic approach based on neigh-
borhood for correlation clustering. In: Motoda H, Wu Z, Cao L, Zaiane O, Yao
M, Wang W (eds) Advanced Data Mining and Applications, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 348–359

49. Yang B, Cheung W, Liu J (2007) Community mining from signed social net-
works. IEEE Trans on Knowl and Data Eng 19:1333–1348

50. Zaslavsky T (1982) Signed graphs. Discret Appl Math 4:47–74
51. Zaslavsky T (1998) A mathematical bibliography of signed and gain graphs

and allied areas. Electron J of Comb DS8

Integer program. form. and efficient local search for relaxed correlation clustering 35

A Detailed results for the random RCC instances

Table 13: Relaxed imbalance obtained by ILSRCC and ILSadapt.

|V | d d− k
ILSRCC ILSadapt tavgmin avg max min avg max

100 0.1 0.1 3 131 132.10 134 133 135.40 139 2.82
100 0.1 0.1 5 94 98.20 101 103 108.50 112 6.71
100 0.1 0.1 7 68 70.90 74 78 84.40 89 11.80
100 0.1 0.1 9 45 50.70 54 66 69.00 73 14.65
100 0.1 0.3 3 408 408.10 409 409 412.90 416 5.73
100 0.1 0.3 5 323 327.50 333 335 342.60 348 11.05
100 0.1 0.3 7 270 276.70 284 280 294.00 305 15.84
100 0.1 0.3 9 233 239.00 247 252 257.60 263 17.78
100 0.1 0.5 3 533 533.10 534 533 537.10 546 6.93
100 0.1 0.5 5 427 430.70 435 435 446.60 457 11.98
100 0.1 0.5 7 352 365.30 371 380 387.10 397 15.10
100 0.1 0.5 9 298 312.50 324 325 334.90 341 18.99
100 0.2 0.1 3 327 329.30 333 327 332.40 336 2.83
100 0.2 0.1 5 284 288.80 291 293 297.00 302 7.22
100 0.2 0.1 7 253 256.70 261 263 269.90 275 13.10
100 0.2 0.1 9 227 230.70 233 234 245.40 252 19.12
100 0.2 0.3 3 1032 1032.00 1032 1032 1033.00 1035 5.88
100 0.2 0.3 5 913 914.90 917 927 937.10 948 14.35
100 0.2 0.3 7 833 843.70 854 847 866.80 876 19.09
100 0.2 0.3 9 775 785.70 799 797 812.10 821 23.22
100 0.2 0.5 3 1341 1342.50 1344 1346 1349.40 1358 7.87
100 0.2 0.5 5 1162 1171.40 1177 1182 1194.90 1204 13.43
100 0.2 0.5 7 1057 1067.60 1075 1070 1092.30 1105 17.56
100 0.2 0.5 9 955 981.30 998 994 1013.10 1023 21.90
100 0.5 0.1 3 940 941.10 943 940 943.30 947 3.81
100 0.5 0.1 5 899 901.00 903 902 906.50 910 8.74
100 0.5 0.1 7 864 867.30 873 871 878.20 883 14.85
100 0.5 0.1 9 833 838.80 843 844 854.70 871 21.54
100 0.5 0.3 3 2741 2741.00 2741 2741 2741.10 2742 7.57
100 0.5 0.3 5 2629 2631.20 2634 2632 2636.70 2642 19.69
100 0.5 0.3 7 2532 2537.90 2556 2555 2568.80 2581 28.54
100 0.5 0.3 9 2459 2472.10 2487 2497 2508.60 2524 31.01
100 0.5 0.5 3 3939 3944.90 3958 3939 3949.80 3966 12.35
100 0.5 0.5 5 3659 3677.70 3693 3697 3713.10 3729 19.50
100 0.5 0.5 7 3507 3518.90 3529 3537 3548.70 3559 25.56
100 0.5 0.5 9 3343 3367.90 3382 3399 3417.10 3435 26.51
100 0.8 0.1 3 1537 1538.00 1541 1537 1540.40 1546 2.82
100 0.8 0.1 5 1502 1502.00 1502 1503 1509.50 1515 6.08
100 0.8 0.1 7 1470 1471.30 1474 1473 1484.00 1493 10.41
100 0.8 0.1 9 1439 1443.10 1445 1448 1456.40 1465 16.35
100 0.8 0.3 3 4599 4601.50 4606 4599 4600.60 4604 7.17
100 0.8 0.3 5 4462 4468.90 4476 4468 4478.60 4488 18.14
100 0.8 0.3 7 4364 4377.30 4385 4369 4391.50 4403 30.49
100 0.8 0.3 9 4270 4286.10 4308 4303 4316.60 4332 36.91
100 0.8 0.5 3 6676 6676.00 6676 6676 6695.60 6741 16.14
100 0.8 0.5 5 6319 6330.80 6347 6343 6376.80 6401 23.40
100 0.8 0.5 7 6095 6115.60 6141 6136 6166.90 6195 28.12
100 0.8 0.5 9 5921 5939.60 5959 5973 5989.00 6008 31.76
200 0.1 0.1 3 691 694.60 700 695 699.60 703 16.03
200 0.1 0.1 5 602 606.70 611 615 624.30 634 42.44
200 0.1 0.1 7 539 545.20 550 565 576.10 582 85.12
200 0.1 0.1 9 499 504.30 511 524 535.90 544 121.75
200 0.1 0.3 3 1993 1993.50 1995 2002 2011.90 2024 32.91
200 0.1 0.3 5 1782 1799.30 1812 1823 1834.90 1848 90.46
200 0.1 0.3 7 1659 1680.70 1695 1712 1719.70 1730 123.25
200 0.1 0.3 9 1574 1589.70 1607 1619 1633.60 1645 142.54
200 0.1 0.5 3 2716 2726.60 2744 2732 2744.20 2754 56.06
200 0.1 0.5 5 2403 2414.90 2435 2435 2465.90 2484 81.47
200 0.1 0.5 7 2226 2240.50 2260 2274 2299.50 2327 108.14
200 0.1 0.5 9 2104 2122.70 2135 2151 2173.70 2189 119.36
200 0.2 0.1 3 1515 1517.30 1526 1516 1520.70 1524 15.82
200 0.2 0.1 5 1422 1433.80 1445 1437 1452.50 1461 43.79

36 Queiroga et al.

Table 13 – Continued from previous page

|V | d d− k
ILSRCC ILSadapt tavgmin avg max min avg max

200 0.2 0.1 7 1357 1364.40 1371 1384 1394.30 1410 88.66
200 0.2 0.1 9 1293 1311.50 1326 1328 1350.10 1357 145.51
200 0.2 0.3 3 4376 4383.10 4387 4377 4384.10 4392 32.41
200 0.2 0.3 5 4136 4144.30 4154 4161 4176.80 4194 102.09
200 0.2 0.3 7 3957 3971.30 3988 4027 4042.70 4054 163.24
200 0.2 0.3 9 3856 3871.90 3885 3916 3938.90 3960 168.21
200 0.2 0.5 3 6142 6153.80 6178 6172 6187.30 6206 66.70
200 0.2 0.5 5 5689 5715.00 5729 5740 5772.30 5818 92.31
200 0.2 0.5 7 5436 5460.90 5501 5449 5528.80 5558 114.75
200 0.2 0.5 9 5229 5264.30 5283 5298 5336.40 5362 138.09
200 0.5 0.1 3 3950 3951.50 3957 3952 3958.90 3963 20.22
200 0.5 0.1 5 3876 3887.10 3899 3893 3903.90 3912 43.74
200 0.5 0.1 7 3814 3826.40 3835 3835 3855.60 3869 77.27
200 0.5 0.1 9 3769 3774.70 3782 3802 3811.20 3824 125.47
200 0.5 0.3 3 11624 11629.30 11639 11624 11632.30 11643 43.78
200 0.5 0.3 5 11368 11384.70 11398 11398 11416.20 11436 112.73
200 0.5 0.3 7 11169 11193.00 11217 11227 11254.90 11273 213.97
200 0.5 0.3 9 11052 11066.70 11089 11122 11142.10 11175 251.60
200 0.5 0.5 3 17090 17098.40 17124 17121 17147.80 17192 104.95
200 0.5 0.5 5 16367 16401.30 16462 16434 16496.40 16540 136.04
200 0.5 0.5 7 15969 16006.10 16038 16054 16099.80 16137 157.54
200 0.5 0.5 9 15621 15673.30 15710 15734 15787.00 15821 169.82
200 0.8 0.1 3 6348 6348.80 6350 6348 6355.50 6366 14.59
200 0.8 0.1 5 6284 6291.10 6295 6297 6310.60 6322 29.45
200 0.8 0.1 7 6226 6237.90 6247 6243 6263.90 6279 52.70
200 0.8 0.1 9 6181 6189.70 6202 6199 6214.10 6234 80.28
200 0.8 0.3 3 18810 18811.80 18816 18817 18823.60 18831 41.21
200 0.8 0.3 5 18546 18556.70 18569 18573 18588.90 18612 116.73
200 0.8 0.3 7 18339 18374.70 18400 18381 18415.50 18450 197.81
200 0.8 0.3 9 18148 18211.30 18241 18261 18291.50 18319 291.05
200 0.8 0.5 3 28291 28301.70 28311 28305 28364.70 28410 129.39
200 0.8 0.5 5 27342 27400.10 27458 27497 27544.10 27589 157.90
200 0.8 0.5 7 26793 26867.10 26911 26921 27000.30 27078 180.17
200 0.8 0.5 9 26416 26474.00 26534 26521 26591.40 26676 193.61
400 0.1 0.1 3 2989 2996.30 3006 2986 2996.10 3003 104.42
400 0.1 0.1 5 2812 2826.60 2839 2813 2833.70 2853 284.54
400 0.1 0.1 7 2669 2688.60 2711 2687 2708.50 2756 625.85
400 0.1 0.1 9 2569 2586.10 2605 2578 2608.00 2633 1020.60
400 0.1 0.3 3 8843 8851.50 8862 8837 8845.30 8854 233.79
400 0.1 0.3 5 8360 8374.40 8383 8389 8413.10 8475 811.53
400 0.1 0.3 7 8022 8047.40 8074 8040 8119.80 8206 1280.75
400 0.1 0.3 9 7835 7880.20 7934 7893 7950.30 7990 1153.92
400 0.1 0.5 3 12523 12532.80 12544 12522 12562.00 12610 508.94
400 0.1 0.5 5 11611 11648.60 11679 11622 11734.00 11783 660.74
400 0.1 0.5 7 11099 11178.80 11209 11179 11243.30 11309 815.20
400 0.1 0.5 9 10807 10868.90 10928 10869 10929.00 10985 812.93
400 0.2 0.1 3 6296 6300.10 6306 6296 6303.30 6315 91.57
400 0.2 0.1 5 6147 6159.20 6170 6157 6167.90 6186 247.20
400 0.2 0.1 7 6028 6039.90 6071 6035 6054.00 6085 462.77
400 0.2 0.1 9 5912 5923.90 5934 5927 5950.60 5975 775.45
400 0.2 0.3 3 18278 18284.70 18298 18277 18291.60 18305 235.19
400 0.2 0.3 5 17735 17758.10 17779 17764 17802.00 17849 786.29
400 0.2 0.3 7 17385 17431.00 17467 17509 17555.30 17597 1370.41
400 0.2 0.3 9 17163 17207.10 17236 17244 17321.80 17373 1560.29
400 0.2 0.5 3 26898 26921.80 26941 26892 26960.90 27041 567.47
400 0.2 0.5 5 25577 25655.80 25711 25707 25774.00 25805 749.25
400 0.2 0.5 7 24947 24994.40 25055 25016 25108.90 25199 846.28
400 0.2 0.5 9 24472 24550.60 24590 24530 24639.40 24727 950.62
400 0.5 0.1 3 15853 15860.50 15867 15865 15875.60 15885 100.59
400 0.5 0.1 5 15758 15767.10 15777 15775 15786.70 15811 208.04
400 0.5 0.1 7 15642 15668.50 15684 15665 15689.90 15717 361.93
400 0.5 0.1 9 15561 15580.80 15610 15602 15625.00 15641 580.47
400 0.5 0.3 3 47486 47500.60 47521 47488 47516.40 47536 228.52
400 0.5 0.3 5 47004 47020.20 47038 46996 47035.40 47074 666.00
400 0.5 0.3 7 46604 46636.50 46677 46632 46682.40 46759 1295.69
400 0.5 0.3 9 46319 46352.50 46381 46353 46429.70 46474 1722.73
400 0.5 0.5 3 71795 71852.80 71898 71858 71969.60 72029 955.35

Integer program. form. and efficient local search for relaxed correlation clustering 37

Table 13 – Continued from previous page

|V | d d− k
ILSRCC ILSadapt tavgmin avg max min avg max

400 0.5 0.5 5 69825 69888.40 69958 69973 70148.90 70274 1105.49
400 0.5 0.5 7 68747 68873.20 68939 68945 69082.80 69205 1116.31
400 0.5 0.5 9 68093 68167.30 68262 68103 68239.80 68522 1195.26
400 0.8 0.1 3 25285 25289.20 25293 25295 25302.50 25310 68.99
400 0.8 0.1 5 25192 25203.60 25210 25205 25220.40 25242 134.38
400 0.8 0.1 7 25086 25106.80 25124 25095 25135.10 25170 209.22
400 0.8 0.1 9 25027 25038.30 25051 25054 25064.40 25081 321.54
400 0.8 0.3 3 76029 76044.80 76075 76039 76084.70 76157 214.40
400 0.8 0.3 5 75601 75627.60 75674 75605 75673.40 75748 547.72
400 0.8 0.3 7 75228 75280.40 75332 75237 75315.60 75396 1099.86
400 0.8 0.3 9 74910 74954.10 74982 74960 75032.90 75096 1662.96
400 0.8 0.5 3 117476 117543.50 117626 117527 117631.00 117773 1109.08
400 0.8 0.5 5 114831 114990.90 115126 115077 115261.10 115489 1294.47
400 0.8 0.5 7 113596 113681.80 113790 113660 113938.50 114126 1407.46
400 0.8 0.5 9 112546 112725.80 112904 112836 112996.20 113288 1406.61
600 0.1 0.1 3 6842 6854.10 6861 6833 6847.00 6858 317.03
600 0.1 0.1 5 6621 6632.10 6643 6614 6642.60 6678 736.46
600 0.1 0.1 7 6405 6438.80 6474 6438 6464.60 6501 1656.70
600 0.1 0.1 9 6251 6283.30 6298 6291 6316.40 6359 2645.73
600 0.1 0.3 3 20349 20382.00 20398 20356 20385.00 20412 783.90
600 0.1 0.3 5 19655 19682.20 19706 19712 19755.70 19788 2518.19
600 0.1 0.3 7 19168 19201.50 19228 19238 19324.00 19372 4519.86
600 0.1 0.3 9 18775 18840.30 18875 18913 19016.70 19078 4870.33
600 0.1 0.5 3 29305 29349.80 29379 29379 29451.00 29516 2034.70
600 0.1 0.5 5 27696 27765.20 27866 27923 27959.40 28017 2364.64
600 0.1 0.5 7 26880 26956.00 27029 27007 27129.90 27196 2621.14
600 0.1 0.5 9 26244 26374.90 26442 26352 26501.40 26600 2860.93
600 0.2 0.1 3 14166 14171.30 14180 14154 14172.20 14178 262.04
600 0.2 0.1 5 13976 13996.50 14030 13969 14007.40 14053 626.76
600 0.2 0.1 7 13812 13830.10 13862 13830 13866.80 13894 1196.27
600 0.2 0.1 9 13662 13683.90 13707 13674 13711.30 13758 2054.11
600 0.2 0.3 3 42106 42129.40 42160 42115 42149.60 42189 751.15
600 0.2 0.3 5 41340 41395.50 41442 41425 41464.50 41531 2294.29
600 0.2 0.3 7 40801 40856.90 40912 40951 41016.00 41092 4377.53
600 0.2 0.3 9 40406 40450.90 40490 40584 40716.60 40825 5831.76
600 0.2 0.5 3 62367 62455.70 62532 62487 62603.90 62704 2301.21
600 0.2 0.5 5 60041 60203.50 60337 60316 60483.90 60597 2740.62
600 0.2 0.5 7 58939 59089.90 59212 59165 59296.90 59363 3095.99
600 0.2 0.5 9 58124 58245.80 58399 58270 58433.80 58576 3159.25
600 0.5 0.1 3 35888 35897.40 35910 35893 35911.10 35920 265.25
600 0.5 0.1 5 35748 35764.60 35779 35784 35799.60 35814 574.68
600 0.5 0.1 7 35614 35649.50 35677 35659 35678.20 35701 874.83
600 0.5 0.1 9 35493 35527.30 35551 35543 35580.60 35608 1415.54
600 0.5 0.3 3 106944 106962.10 106982 106940 106989.50 107042 664.15
600 0.5 0.3 5 106282 106328.70 106368 106297 106375.70 106493 1943.99
600 0.5 0.3 7 105701 105777.80 105879 105767 105879.30 106002 3598.85
600 0.5 0.3 9 105256 105341.80 105417 105298 105424.20 105562 5084.31
600 0.5 0.5 3 165124 165197.50 165260 165337 165464.60 165612 3580.68
600 0.5 0.5 5 161478 161564.70 161669 161907 162056.50 162160 3874.33
600 0.5 0.5 7 159537 159707.10 159876 159824 160116.70 160347 3929.42
600 0.5 0.5 9 158301 158384.50 158506 158513 158763.00 159063 4083.18
600 0.8 0.1 3 57334 57346.90 57357 57333 57352.90 57369 166.32
600 0.8 0.1 5 57208 57225.60 57248 57231 57242.50 57251 352.95
600 0.8 0.1 7 57044 57075.50 57106 57044 57099.50 57179 524.58
600 0.8 0.1 9 56968 56990.30 57006 56971 57003.20 57061 852.47
600 0.8 0.3 3 172024 172049.90 172084 172064 172094.00 172142 575.18
600 0.8 0.3 5 171515 171559.10 171605 171459 171590.80 171695 1375.56
600 0.8 0.3 7 170996 171088.70 171165 171044 171165.60 171259 2608.47
600 0.8 0.3 9 170559 170648.70 170738 170651 170742.30 170905 4124.47
600 0.8 0.5 3 269158 269304.00 269465 269353 269646.40 269850 4247.83
600 0.8 0.5 5 264210 264560.20 264822 265003 265276.20 265560 4722.79
600 0.8 0.5 7 261978 262158.00 262388 262582 262903.30 263149 4998.81
600 0.8 0.5 9 260310 260584.20 260937 260654 260983.80 261283 4755.96

38 Queiroga et al.

Table 14: Best solution of all experiments.

|V | d d− k RI(P)
100 0.1 0.1 7 64
100 0.1 0.1 9 44
100 0.1 0.3 5 319
100 0.1 0.3 7 265
100 0.1 0.3 9 220
100 0.1 0.5 5 421
100 0.1 0.5 7 350
100 0.1 0.5 9 297
100 0.2 0.1 7 250
100 0.2 0.1 9 223
100 0.2 0.3 7 832
100 0.2 0.3 9 772
100 0.2 0.5 7 1047
100 0.5 0.1 7 863
100 0.5 0.3 7 2526
100 0.5 0.3 9 2455
100 0.5 0.5 7 3486
100 0.5 0.5 9 3326
100 0.8 0.1 7 1468
100 0.8 0.3 7 4356
100 0.8 0.5 7 6089
100 0.8 0.5 9 5882
200 0.1 0.1 3 689
200 0.1 0.1 9 492
200 0.1 0.3 7 1656
200 0.1 0.5 5 2397
200 0.1 0.5 9 2092
200 0.2 0.1 7 1354
200 0.2 0.3 5 4133
200 0.2 0.5 5 5686
200 0.2 0.5 9 5212
200 0.5 0.3 9 11012
200 0.5 0.5 7 15944
200 0.8 0.5 5 27326
400 0.1 0.1 7 2666
400 0.1 0.1 9 2566
400 0.1 0.3 5 8356
400 0.1 0.3 7 8003
400 0.1 0.5 3 12506
400 0.1 0.5 5 11597
400 0.2 0.1 7 6014
400 0.2 0.1 9 5900
400 0.2 0.3 3 18265
400 0.2 0.3 5 17715
400 0.2 0.3 9 17127
400 0.2 0.5 3 26860
400 0.2 0.5 5 25572
400 0.2 0.5 7 24909
400 0.2 0.5 9 24460
400 0.5 0.1 5 15756
400 0.5 0.3 3 47475
400 0.5 0.3 9 46291
400 0.5 0.5 5 69762
400 0.5 0.5 9 68037
400 0.8 0.1 5 25186
400 0.8 0.3 7 75216
400 0.8 0.3 9 74907

Integer program. form. and efficient local search for relaxed correlation clustering 39

Table 14 – Continued from previous page
|V | d d− k RI(P)
600 0.1 0.1 5 6612
600 0.1 0.3 5 19649
600 0.1 0.3 7 19145
600 0.1 0.5 3 29275
600 0.2 0.1 7 13810
600 0.2 0.1 9 13652
600 0.2 0.3 3 42100
600 0.2 0.3 5 41333
600 0.2 0.3 7 40755
600 0.2 0.3 9 40391
600 0.2 0.5 3 62337
600 0.2 0.5 9 58122
600 0.5 0.1 3 35886
600 0.5 0.3 3 106938
600 0.5 0.3 5 106272
600 0.5 0.3 9 105211
600 0.5 0.5 3 165046
600 0.5 0.5 5 161377
600 0.5 0.5 9 158300
600 0.8 0.1 9 56940
600 0.8 0.3 7 170971

40 Queiroga et al.

B Detailed results for the SRCC instances

Table 15: Symmetric relaxed imbalance obtained by ILSRCC and ILS Levorato
et al. [36].

Instance |V | d d− k
ILSRCC ILS Levorato et al. [36]

tavgmin avg max min avg max
UNGA-1946 54 0.484 0.27 2 9.338 9.338 9.338 9.338 9.338 9.338 0.5
UNGA-1947 57 0.490 0.42 3 18.698 18.697 18.698 18.698 18.697 18.698 0.7
UNGA-1948 59 0.494 0.34 4 4.399 4.399 4.399 4.399 4.399 4.399 1.2
UNGA-1949 59 0.496 0.28 2 37.748 37.748 37.748 37.748 37.748 37.748 0.6
UNGA-1950 60 0.496 0.25 2 25.028 25.028 25.028 25.028 25.028 25.028 0.6
UNGA-1951 60 0.490 0.37 2 58.960 58.960 58.960 58.960 58.960 58.960 0.8
UNGA-1952 60 0.495 0.26 2 46.099 46.099 46.099 46.099 46.099 46.099 0.6
UNGA-1953 60 0.488 0.34 2 31.288 31.288 31.288 31.288 31.288 31.288 0.8
UNGA-1954 60 0.492 0.30 2 32.823 32.823 32.823 32.823 32.823 32.823 0.8
UNGA-1955 65 0.464 0.11 4 5.377 5.377 5.377 5.377 5.377 5.377 1.5
UNGA-1956 81 0.480 0.30 4 17.181 17.181 17.181 17.181 17.181 17.181 2.3
UNGA-1957 82 0.495 0.32 3 37.512 37.512 37.512 37.512 37.512 37.512 2.0
UNGA-1958 82 0.489 0.25 2 122.536 122.536 122.536 122.536 122.536 122.536 1.2
UNGA-1959 82 0.497 0.35 2 102.881 102.881 102.881 102.881 102.881 102.881 2.2
UNGA-1960 100 0.488 0.39 3 45.464 45.464 45.464 45.464 45.464 45.464 3.4
UNGA-1961 106 0.467 0.35 3 37.395 37.395 37.395 37.395 37.395 37.395 3.9
UNGA-1962 110 0.468 0.33 2 154.412 154.412 154.412 154.412 154.412 154.412 4.4
UNGA-1963 113 0.490 0.18 4 20.639 20.639 20.639 20.639 20.639 20.639 3.7
UNGA-19641 115 0.500 0.28 3 0.000 0.000 0.000 0.000 31.200 39.000 1.0
UNGA-1965 117 0.495 0.21 4 29.482 29.482 29.482 29.482 29.482 29.482 6.3
UNGA-1966 122 0.484 0.23 2 213.680 213.680 213.680 213.680 213.680 213.680 2.3
UNGA-1967 124 0.490 0.29 4 42.298 42.298 42.298 42.298 42.298 42.298 7.4
UNGA-1968 126 0.490 0.25 3 86.239 86.239 86.239 86.239 86.239 86.239 6.1
UNGA-1969 126 0.495 0.21 3 66.277 66.277 66.277 66.277 66.277 66.277 4.9
UNGA-1970 127 0.497 0.21 3 69.316 69.316 69.316 69.316 69.316 69.316 4.9
UNGA-1971 133 0.493 0.09 4 19.306 19.306 19.306 19.306 19.306 19.306 4.8
UNGA-1972 132 0.499 0.04 2 16.294 16.294 16.294 16.294 16.294 16.294 1.4
UNGA-1973 135 0.499 0.09 3 14.142 14.142 14.142 14.142 14.142 14.142 2.5
UNGA-1974 138 0.499 0.10 3 18.608 18.608 18.608 18.608 18.608 18.608 3.1
UNGA-1975 143 0.472 0.21 4 53.707 53.707 53.707 53.707 53.707 53.707 6.6
UNGA-1976 144 0.460 0.16 4 34.606 34.606 34.606 34.606 34.606 34.606 5.6
UNGA-1977 146 0.465 0.09 6 15.548 15.548 15.548 15.548 15.548 15.548 12.7
UNGA-1978 148 0.483 0.14 3 74.755 74.755 74.755 75.445 76.629 77.812 3.1
UNGA-1979 150 0.470 0.16 5 21.520 21.520 21.520 21.520 21.520 21.520 9.6
UNGA-1980 151 0.474 0.18 6 29.303 29.303 29.303 29.303 30.054 31.807 11.7
UNGA-1981 155 0.477 0.18 5 29.121 29.121 29.121 29.121 29.121 29.121 11.3
UNGA-1982 156 0.432 0.15 4 31.378 31.378 31.378 31.378 31.378 31.378 9.8
UNGA-1983 157 0.474 0.22 4 29.523 29.523 29.523 29.523 36.168 62.750 7.4
UNGA-1984 158 0.439 0.20 4 14.033 14.033 14.033 14.033 17.197 45.679 6.9
UNGA-1985 158 0.431 0.12 2 53.630 53.630 53.630 53.630 53.630 53.630 2.9
UNGA-1986 158 0.499 0.08 2 44.673 44.673 44.673 44.673 44.673 44.673 2.4
UNGA-1987 158 0.499 0.05 3 9.119 9.119 9.119 9.119 9.119 9.119 2.8
UNGA-1988 158 0.499 0.08 2 33.905 33.905 33.905 33.905 33.905 33.905 2.5
UNGA-1989 158 0.500 0.05 2 17.302 17.302 17.302 17.302 17.302 17.302 2.3
UNGA-1990 158 0.498 0.10 3 15.024 15.024 15.024 15.024 15.024 15.024 3.5
UNGA-1991 178 0.467 0.10 3 15.480 15.480 15.480 15.480 15.569 15.692 3.6
UNGA-1992 180 0.493 0.08 4 12.201 12.201 12.201 12.201 12.770 17.889 8.0
UNGA-1993 184 0.496 0.09 3 24.689 24.972 25.003 24.689 24.689 24.689 4.4
UNGA-1994 185 0.497 0.13 3 23.573 23.573 23.573 23.573 23.573 23.573 5.5
UNGA-1995 185 0.489 0.11 3 27.624 27.624 27.624 27.624 28.248 28.663 5.1
UNGA-1996 185 0.499 0.07 3 9.541 9.541 9.541 9.541 9.541 9.541 5.6
UNGA-1997 176 0.471 0.16 5 27.018 27.018 27.018 27.018 27.018 27.018 13.0
UNGA-1998 177 0.492 0.14 4 39.300 39.300 39.300 39.300 39.300 39.300 11.2
UNGA-1999 182 0.487 0.10 4 14.375 14.375 14.375 14.375 14.386 14.412 9.0
UNGA-2000 189 0.495 0.13 4 25.099 25.100 25.099 25.099 25.100 25.099 8.6
UNGA-2001 191 0.495 0.16 2 33.531 33.531 33.531 33.531 33.531 33.531 6.8
UNGA-2002 192 0.495 0.10 3 12.687 12.687 12.687 12.687 12.687 12.687 4.1

1 In the 19th session, voting occurred on only one resolution which explains the signed
digraph with very low relaxed imbalance.

Integer program. form. and efficient local search for relaxed correlation clustering 41

Table 15 – Continued from previous page

Instance |V | d d− k
ILSRCC ILS Levorato et al. [36]

tavgmin avg max min avg max
UNGA-2003 191 0.489 0.06 2 7.466 7.466 7.466 7.466 7.466 7.466 4.2
UNGA-2004 191 0.498 0.05 2 20.638 20.638 20.638 20.638 20.638 20.638 3.6
UNGA-2005 192 0.482 0.06 3 25.516 25.516 25.516 25.516 25.516 25.516 6.0
UNGA-2006 192 0.498 0.05 2 28.954 28.955 28.954 28.954 28.955 28.954 3.6
UNGA-2007 192 0.498 0.06 2 45.570 45.570 45.570 45.570 45.570 45.570 3.7
UNGA-2008 192 0.495 0.06 2 36.889 36.889 36.889 36.889 36.889 36.889 3.8
Slashdot1 200 0.022 0.07 5 11.0 11.700 12.0 16.0 17.30 19.0 16.9
Slashdot2 300 0.012 0.08 8 4.0 4.600 5.0 8.0 11.10 12.0 61.1
Slashdot3 400 0.008 0.07 4 15.0 16.100 18.0 20.0 22.20 24.0 67.7
Slashdot4 600 0.005 0.08 9 8.0 10.700 13.0 16.0 19.20 21.0 438.5
Slashdot5 800 0.005 0.11 20 14.0 16.300 20.0 32.0 35.60 41.0 2161.5
Slashdot6 1000 0.006 0.14 11 182.0 187.200 194.0 206.0 211.10 218.0 6107.6
Slashdot7 2000 0.005 0.15 43 626.0 650.700 686.0 712.0 751.90 777.0 7200.0

BR-2010-v1 545 0.490 0.01 4 309.692 309.692 309.692 316.091 375.860 596.137 135.3
BR-2010-v2 545 0.490 0.02 4 332.493 332.493 332.493 338.836 343.849 345.102 160.9
BR-2011-v1 553 0.488 0.20 4 562.540 562.541 562.541 562.540 584.250 589.677 534.2
BR-2011-v2 553 0.486 0.21 4 566.950 566.950 566.950 566.950 594.462 601.993 517.5
BR-2012-v1 555 0.489 0.04 4 658.613 658.613 658.613 672.986 755.450 1072.030 202.8
BR-2012-v2 555 0.488 0.04 4 681.168 681.168 681.168 697.567 703.277 704.705 202.2
BR-2013-v1 540 0.489 0.04 4 483.511 503.611 514.011 483.511 757.230 1266.900 117.1
BR-2013-v2 540 0.489 0.04 4 504.918 522.200 539.912 631.341 692.390 732.912 115.6
BR-2014-v1 556 0.496 0.01 4 130.020 131.001 131.968 131.973 136.706 168.493 61.3
BR-2014-v2 556 0.495 0.01 4 137.165 137.629 138.326 140.349 148.078 182.796 65.4
BR-2015-v1 552 0.486 0.12 4 536.724 536.724 536.724 536.724 676.785 1147.860 271.7
BR-2015-v2 552 0.484 0.18 4 585.038 585.038 585.038 585.038 707.996 830.955 294.7
BR-2016-v1 544 0.484 0.10 4 1241.520 1241.520 1241.520 1241.520 1411.645 1610.620 291.9
BR-2016-v2 544 0.482 0.11 4 1285.950 1285.950 1285.950 1377.020 1511.614 1677.130 287.7

