
HAL Id: hal-03141528
https://hal.science/hal-03141528v1

Submitted on 15 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Unsupervised Kidney Graft Segmentation Based on
Deep Learning and Multi-Sequence MRI

Leo Milecki, Sylvain Bodard, Jean-Michel Correas, Marc-Olivier Timsit,
Maria Vakalopoulou

To cite this version:
Leo Milecki, Sylvain Bodard, Jean-Michel Correas, Marc-Olivier Timsit, Maria Vakalopoulou. 3D
Unsupervised Kidney Graft Segmentation Based on Deep Learning and Multi-Sequence MRI. IEEE
ISBI 2021 - International Symposium on Biomedical Imaging, Apr 2021, Nice / Virtual, France. �hal-
03141528�

https://hal.science/hal-03141528v1
https://hal.archives-ouvertes.fr


3D UNSUPERVISED KIDNEY GRAFT SEGMENTATION BASED ON DEEP LEARNING
AND MULTI-SEQUENCE MRI

Leo Milecki1, Sylvain Bodard2, Jean-Michel Correas2, Marc-Olivier Timsit3, Maria Vakalopoulou1

1 Mathématiques et Informatique pour la Complexité et les Systèmes, CentraleSupélec,
Université Paris-Saclay, Inria Saclay, France.

2 Department of Adult Radiology, Paris University and Necker University Hospital, France.
3Department of Urology, Paris University and Hôpital Européen Georges-Pompidou, France.

ABSTRACT
Image segmentation is one of the most popular problems
in medical image analysis. Recently, with the success
of deep neural networks, these powerful methods pro-
vide state of the art performance on various segmenta-
tion tasks. However, one of the main challenges relies
on the high number of annotations that they need to
be trained, which is crucial in medical applications. In
this paper, we propose an unsupervised method based on
deep learning for the segmentation of kidney grafts. Our
method is composed of two different stages, the detection
of the area of interest and the segmentation model that
is able, through an iterative process, to provide accurate
kidney draft segmentation without the need for annota-
tions. The proposed framework works in the 3D space to
explore all the available information and extract mean-
ingful representations from Dynamic Contrast-Enhanced
and T2 MRI sequences. Our method reports a dice
of 89.8 ± 3.1%, Hausdorff distance at percentile 95% of
5.8±0.41mm and percentage of kidney volume difference
of 5.9± 5.7% on a test dataset of 29 patients subject to
a kidney transplant.

Index Terms— Unsupervised segmentation, kidney
graft, multi-sequence MRI, Deep Learning, CNN

1. INTRODUCTION

Segmentation of organs or other structures such as ves-
sels or cells in biomedical imaging is often an important
first step or even a prerequisite to analyzing medical vol-
umes. They are essential to describe and monitor shapes,
volume characteristics [1] or further used in more com-
plex pipelines, as in radiomics analysis [2] and precision
medicine. In recent years, automatic segmentation in
biomedical images has been subject to extensive search,
with deep learning based techniques holding the state of
the art performances in various applications and modal-
ities, including Magnetic Resonance Imaging (MRI) [3].
However, one of the main limitations of common deep

Fig. 1. Overview of the proposed method for the au-
tomatic segmentation of kidney graft using multimodal
MR Imaging.

learning supervised approaches is the need for expensive
and time-consuming annotations.

Nowadays, unsupervised approaches investigate meth-
ods that are able to generate models without the need
for annotations. In particular, concerning unsupervised
kidney segmentation, image-based methods have been
proposed to obtain a segmentation through an image
processing pipeline using tools such as thresholding [4]
or morphological operators [5, 6]. Some other methods
propose clustering frameworks based on K-means [7]
or on wavelet-based clustering [8]. Deformable models
were also designed in level-set methods [9] or exploiting
active contours [10]. Advanced deformable boundaries
methods are also explored in [11] with however the use
of training samples for parts of their formulations.

This paper proposes an unsupervised method for the
segmentation of kidney graft from Dynamic Contrast-
Enhanced (DCE) and T2 sequences obtained 12 months
after the transplantation. Our method consists of a two-
step procedure that is summarised in Figure 1. First, we
propose an unsupervised method to detect the kidney
region using thresholding techniques and morphological
operators. The second step corresponds to the pixel-
wise segmentation of the kidney graft. Our method is



based on [12] extending the formulation to 3D to explore
all the available information from the MRI modalities.
Moreover, it proposes a multimodal formulation where
multiple MRI sequences are integrated towards a robust
kidney graft segmentation tool.

2. METHODS

2.1. Selection of the region of interest

The first step of the proposed method is the automatic
detection of possible areas of interest. This step is essen-
tial to reduce the search space and boost the performance
of the unsupervised segmentation technique eliminating
the number of false positives. The detection of the re-
gion of interest is based on a relatively simple pipeline
taking full advantage of the contrast-enhanced MRI. In
particular, a thresholding operation is first applied into
the entire DCE volume highlighting the highest intensi-
ties of the volume corresponding to regions that depict
the graft kidney and blood vessels. In the pixels’ vol-
ume histogram, the threshold is obtained as the abscissa
of maximum intensities. After the volume thresholding,
morphological operations are applied to remove artifacts
and fill holes in the detected regions. The morpholog-
ical step consists of a binary closing followed by a bi-
nary opening. For both operations, a sphere of radius
5 and 4 have been chosen as a structural element, re-
spectively. Principal component analysis has been used
in the thresholded volume. A boundary box indicating
the highest volume component was selected as the region
of interest and further processed. The same area is also
indicated in the T2 sequence. Areas of interest ranged
for Nx ×Ny ×Nz ∈ [125, 173]× [118, 199]× [49, 75].

2.2. Unsupervised Segmentation Model

The proposed unsupervised segmentation model then
processes the boundary boxes of various sizes containing
the region of interest. Our method is based on differen-
tiable feature clustering [12]. A simple straight-forward
3D convolutional neural network (CNN) is used to ex-
tract features and optimize two loss functions without
any need for ground truth annotations. The first loss is
designed to refine and extract relevant features, and the
second to favor smoothness on the obtained labels.

Let us denote X ∈ R2×Nx×Ny×Nz the regions of in-
terest extracted from the T2 and DCE sequences. Our
unsupervised method is based on a 3D feature extractor
CNN denoted as h(., θ), where θ ∈ Θ defines its trainable
parameters. The p-dimentional feature vector obtained
by the CNN is denoted as Y = h(X, θ) ∈ Rp×Nx×Ny×Nz .
From this feature vector we can propose a mapping strat-
egy defined by a function g to obtain class labels for each
of the voxels of the volume C = g(Y ) ∈ ZNx×Ny×Nz .

Two different loss functions are defined for the optimiza-
tion of the method,

Lsim(Y,C) =

Nx×Ny×Nz∑
i=1

p∑
j=1

−δ(j − ci) ln(yj,i) (1)

where Y = {yj,i}j∈[1,p],i∈[1,Nx×Ny×Nz ] and C =
{cj,i}j∈[1,p],i∈[1,Nx×Ny×Nz ] and δ is the kronecker func-
tion. This loss correspond to the cross entropy between
the network output and class labels used as intermediate
targets that are obtained by an argmax operation.

Lcont(Y ) =

Nx−1∑
k=1

Ny−1∑
l=1

Nz−1∑
m=1

∥yk+1,l,m − yk,l,m∥1+

∥yk,l+1,m − yk,l,m∥1 + ∥yk,l,m+1 − yk,l,m∥1

(2)

where yk,l,m corresponds to the p-dimensional feature
vector of the voxel at (k, l,m). This loss aims to enforce
spatial smoothness on the obtained segmentation masks.

Finally, the overall optimization is achieved by,

L = Lsim(Y,C) + λLcont(Y ) (3)
where λ is a weight that balances the contribution of

each component to the final optimization.
The network parameters are optimized iteratively un-

til the absolute difference of loss between two successive
iterations is lower than a predefined value ϵ. Using this
criterion, the number of classes obtained can be superior
to 2 as the non-kidney elements can rarely be assigned
in one class. Using the final predicted clustering, the
kidney class can easily be obtained by selecting the first
connected component class.

3. IMPLEMENTATION DETAILS

In this study, we first applied bias field correction to all
the MRI images as a preprocessing step. The number of
iterations was set to 2 and the number of fitting levels to
8, enabling to enhance peaks in volumes’ histograms and,
more particularly, contrast-enhanced regions. Moreover,
even if the two sequences (DCE and T2) correspond
to the same follow-up exam, they were acquired a few
minutes apart, introducing misalignments. To address
this issue and project properly one sequence to the
other, we used an unsupervised deformable registration
method [13]. The DCE modality has been used as target,
and the T2 has been warped to it, using a variety of sim-
ilarity metrics, including normalized cross-correlation,
mean square error, and mutual information.

Our 3D CNN architecture consists of N convolutional
blocks with p channels. Each block consists of a 3D con-
volution layer with a kernel size of 3×3×3 and stride 1,



followed by a ReLU activation and a 3D batch normal-
ization layer. The two different sequences were concate-
nated channel-wise and were given into the network. The
choice to include as stacked channels the two sequences
– early fusion – has been made and tested over middle
(classification level fusion) or late fusion (decision level
fusion) strategies [14].

Concerning the other parameters of our network, we
set λ = 5 and ϵ = 0.005. Our CNN model was trained
using classic stochastic gradient descent with a momen-
tum set to 0.9 and learning rate to 0.01. The overall
optimization of a single volume needed approximately 1
minute on a GeForce GTX 1080 TI GPU (11.2 Go).

4. DATASET

The dataset used in this study corresponds to a total of
32 patients subject to a kidney transplant. All the MRIs
were obtained 12 months after the transplantation. Our
dataset consists of 2 different MRI sequences, namely T2
and DCE. DCE volumes being 512× 512× [64− 88] in-
cluded spacing ranging from 0.78× 0.78× 1.9 to 0.94×
0.94×2.5 and T2 volumes being 512×512×[25−36] from
0.70×0.70×5.0 to 0.98×0.98×6.0. For the optimization
of the network’s hyperparameters, 3 patients were used,
while all the rest (29 patients) were used for evaluation of
the proposed method. The 3 patients were selected as a
sample of low, medium, and high segmentation difficulty
volumes from preliminary studies. Pixel-wise kidney an-
notation was performed by a medical expert (a board-
certified radiologist), by tracing the kidney boundaries
using the DCE MRI in sagittal view. The annotation
was available in every 2 or 3 slices, resulting in 945 an-
notated slices. We obtained the 3D annotation by inter-
polating the obtained manual annotations per subject to
assess the method’s performance.

5. EXPERIMENTAL RESULTS

We evaluated the graft kidney’s segmentation accuracy
using five metrics commonly used to assess biomedical
segmentation tasks. First, the mean dice coefficient
(DSC) metric is used to indicate the similarity between
the manual annotation and prediction. Secondly, we
used the mean of Hausdorff distance at percentile 95%
(HD95) to measure how far two surfaces are from each
other. Finally, the mean percentage of kidney volume
difference (PKVD), precision, and recall between our
predictions and the annotations were used to evaluate
different methods’ performance.

Starting with the evaluation of the proposed method,
an ablation study benchmarking the influence of the pa-
rameter λ and the 3D CNN architecture has been per-
formed for both 1 sequence (DCE) and 2 sequences (DCE

Fig. 2. Evaluation of the different components of the
proposed method using different evaluation metrics on
the validation set. The first column indicates the influ-
ence of λ and the second column the influence of the used
architecture for different number of channels and layers.

& T2) models (Figure 2). Starting with the influence of
λ, we used grid search and benchmark values in {0.01,
0.1, 1, 5, 10, 25, 50, 100}. The superiority of the 2
sequence model seems to be indicated with the best per-
formances to be found in [1,25]. Moreover, for the 1
sequence model, the variations are less monotone, and
the selection of an optimum value more difficult.

Moreover, we analyzed the impact of the network’s
architecture in depth (number of convolutional blocks)
and width (number of channels in each block) to extract
relevant features. We evaluated these parameters (N
convolutional blocks, p number of channel per block) in
the set of {(2,30), (2,50), (3,30), (3,50), (4,30), (4,50),
(5,20)}. The specific parameters seem to not really in-
fluence each model’s performance, with again the 2 se-
quences one reporting more stable performance for all
the experiments. Overall, the (2,50) configuration seems
to report more stable performance, with less variance, on
the validation set. This indicates that a relatively simple
architecture is enough to address our problem.

To highlight our method’s soundness, we compare it
with other commonly used unsupervised methods in the
literature and its 2D implementation [12]. In particu-
lar, our results were evaluated against the kidney graft
segmentations obtained by Otsu thresholding [15] and
watershed 3D [6] methods that are commonly used for
unsupervised segmentation in a variety of studies. The
obtained results are summarised in Table ,1 presenting



Method
Metric DSC (%) HD95 (mm) PKVD (%) Precision (%) Recall (%)

Statistic Mean Std Mean Std Mean Std Mean Std Mean Std
Otsu Thresholding 71.04 10.97 6.55 0.65 84.71 57.34 57.07 13.03 97.53 0.91
Watershed 84.06 23.30 5.75 0.42 16.35 23.99 89.25 23.91 80.05 23.18
Proposed 2D (DCE only) 69.09 20.34 7.22 1.67 51.30 65.00 74.57 25.77 69.79 20.48
Proposed (DCE only) 86.48 4.01 5.92 0.42 11.08 10.13 83.93 8.32 89.97 3.67
Proposed 2D (DCE & T2) 75.75 10.80 6.39 1.11 32.81 41.56 81.65 14.24 81.65 14.66
Proposed (DCE & T2) 89.81 3.17 5.82 0.41 5.88 5.74 91.00 5.18 88.20 5.82

Table 1. Quantitative evaluation of the proposed method and other methods reporting: dice coefficient (DSC),
Hausdorff distance at percentile 95% (HD95), percentage of kidney volume difference (PKVD), precision and recall.

Fig. 3. One testing subject depicting one slice in axial
view and the segmentation results as overlay for each
of the evaluated methods (in blue) and the annotation
from the expert (in green): (A) DCE, (B) Warped T2,
(C) Otsu thresholding, (D) watershed based method, (E)
Proposed (DCE), (F) Proposed (DCE & T2).

the mean and standard deviation (std) of each score on
the whole test set. Even if additional postprocessing
methods are presented in the literature [16, 6] in our
study, we did not perform any additional postprocessing
in any of the exploit methods. The lowest performance
in terms of all the metrics is reported by the Otsu thresh-
olding, which reaches a mean precision of 57.07± 3.03%,
highlighting the high number of false positives. Water-
shed seems to perform better, reporting a mean DSC of
84.06% with, however, a high standard deviation. The
proposed method performs better in all the cases. Using
only the DCE MRI as input, we obtain better (in terms
of mean values) and more stable (in terms of std) perfor-
mance than the previous two methods. The performance
of the proposed method is further increased with the in-
tegration of the T2 sequence. The 2 sequence model
reports 3% higher DSC than the model that uses only
one sequence. The method’s superiority is also indicated
by the higher numbers of mean precision that increases
from 83.93±8.32% for the DCE to 91.00±5.18% for the
DCE & T2 models.Even if the two models report similar

mean HD95, the DCE & T2 model’s impact is further
indicated by the significantly lower mean PKVD met-
ric. Finally, our experiments indicated that the 2D [12]
implementation is not performing well, highlighting the
need for 3D formulations for this problem.

In Figure 3, we present some qualitative analysis of
the obtained segmentation masks. One can observe that
the accurate detection of the kidney between structures –
essentially between the kidney and its irrigating vessels –
is very challenging for unsupervised methods. However,
the proposed formulation is able to separate the kidney
graft from the different structures and provide an accu-
rate segmentation.

6. CONCLUSION

In this paper, we proposed a 3D deep learning-based un-
supervised kidney segmentation framework using multi-
modal MRI. Our framework consists of two losses, one
that optimizes the cross-entropy between the predicted
labels and the labels of clusters, while the second one
is enforcing spatial continuity, producing smooth seg-
mentation maps. Our 3D formulation works better than
other commonly used unsupervised methods in the lit-
erature, including its 2D implementation [12]. Our ex-
periments indicated that integrating more than one MRI
sequence could significantly help remove detected struc-
tures close to the kidney graft, such as vessels irrigating
the contrast agent. Our proposed method limitations
include the number of hyperparameters that need to be
defined, which are the same in all the deep learning based
frameworks, and a lack of kidney prior information. Our
quantitative results indicate that our tool could help clin-
ical practice provide fast and robust monitoring of the
kidney graft. In the future, we would like to investi-
gate the impact of additional loss functions that could
integrate more shape specific information. Moreover, we
plan to investigate our segmentation framework’s adap-
tation to the analysis of follow-up exams for patients
subject to transplantation towards potential rejection.
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