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INTRODUCTION

1.1. Stabilization of hybrid PDE-ODE systems. The stabilization of hybrid PDE-ODE systems has attracted the attention of the control community since several decades. We can mention applications such as the control of a rotating body-beam without natural damping [START_REF] Coron | Andréa-Novel, Stabilization of a rotating body-beam without damping[END_REF] as well as the case of a rotating and translating body-beam [START_REF] Mattioni | Stabilisation of a rotating beam clamped on a moving inertia with strong dissipation feedback[END_REF], a slide-flute [START_REF] Andréa-Novel | An acoustic model for automatic control of a slide flute[END_REF], a switched power converter with a transmission line [START_REF] Daafouz | Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line[END_REF], turbulent fluid motion and traffic flow [START_REF] Trinh | Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations[END_REF], and the overhead crane taking into account the flexibility of the cable, as discussed below.

1.2. Crane model. In [START_REF] Andréa-Novel | Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane[END_REF], the authors derived and investigated a model for the dynamics of a motorized platform of mass M moving along a horizontal bench. A flexible (and nonstretching) cable of length 1 1 1 was attached to the platform and was holding a load mass m. Assuming that the transversal and angular displacements were small and that the acceleration of the load mass could be neglected, they obtained the following system:

y tt -(d(s)y s ) s = 0, (1.1) 
y s (0,t) = 0, (1.2) The initial conditions are y(s, 0) = y 0 (s), y t (s, 0) = y 1 (s), X p (0) = X 0 p , Ẋp (0) = X 1 p . In the above system, s denotes the curvilinear abscissa (i.e. the arclength) along the cable, y = y(s,t) is the horizontal displacement at time t of the point on the cable of curvilinear abscissa s, X p is the abscissa of the platform, ρ the mass per unit length of the cable, and V the force applied to the platform. As usual, y tt = ∂ 2 y/∂t 2 , y ss = ∂ 2 y/∂ s 2 , etc., and Ẍp = d 2 X p /dt 2 .

y(1,t) = X p (t), (1.3) 
Ẍp (t) = λ (dy s )(1,t) + V (t) M , (1.4) 
In [START_REF] Andréa-Novel | Finite-time stabilization of an overhead crane with a flexible cable[END_REF], the authors supposed that m ρ, so that gm/ρ gs for s ∈ (0, 1) and it could be assumed that the function d = d(s) was constant. In the present paper, we go back to the original problem without this assumption, so that the tension d(s) is given by its affine expression (1.5). After the following intermediate feedback law:

V (t) = MU(t) -(m + ρ)gθ (t), with θ (t) := y s (1,t), (1.7) 
where the angular deviation θ (t) of the cable with respect to the vertical axis, at the curvilinear abscissa s = 1 (i.e. at the connection point to the platform), is supposed to be measured (see Fig. 1), we obtain the following system: y tt -(d(s)y s ) s = 0, (s,t) ∈ (0, 1) × (0, +∞), (1.8) y s (0,t) = 0, t ∈ (0, +∞), (1.9) y(1,t) = X p (t), t ∈ (0, +∞), (1.10) Ẍp (t) = U(t), t ∈ (0, +∞).

(

with initial conditions y(s, 0) = y 0 (s), y t (s, 0) = y 1 (s), X p (0) = X 0 p , Ẋp (0) = X 1 p .

1.3. Previously obtained control results for the crane. An asymptotic (but not exponential) stabilization of (1.1)-(1.4) was established in [START_REF] Andréa-Novel | Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane[END_REF], while an exponential stabilization was subsequently derived in [START_REF] Andréa-Novel | Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach[END_REF] by using the cascaded structure of the system and a backstepping approach. A similar result was obtained for system (1.8)-(1.11) with a constant tension (but with Dirichlet boundary conditions) in [START_REF] Morgül | On the stabilization of a cable with a tip mass[END_REF].

The dynamics of the load mass was taken into account in [START_REF]Stabilisation uniforme d'un système hybride[END_REF].

The backstepping approach is a powerful tool for the design of stabilizing controllers in the context of finite dimensional systems (see for example [START_REF] Sepulchre | Constructive Nonlinear Control[END_REF]), but the cascaded structure of flexible mechanical systems coupling ODE and PDE is also a useful property in regard to stabilization, as for the overhead crane with flexible cable. One can also refer to [START_REF] Coron | Andréa-Novel, Stabilization of a rotating body-beam without damping[END_REF], where the authors proposed a class of nonlinear asymptotically stabilizing boundary feedback laws for a rotating body-beam without natural damping. Let us also mention that in [START_REF] Andréa-Novel | Stabilization of an overhead crane with a variable length flexible cable[END_REF] the authors considered the case of a variable length flexible cable.

In [START_REF] Andréa-Novel | Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach[END_REF], if we restrict ourselves to system (1. In [START_REF] Andréa-Novel | Finite-time stabilization of an overhead crane with a flexible cable[END_REF], the same system with constant tension was stabilized in finite time by the nonlinear feedback law

U(t) = -y st (1,t) -y t (1,t) + y s (1,t) ν 2 -y(1,t) + 1 0 y t (ξ ,t) dξ ν 1 , (1.12) 
where 0 < ν 2 < 1, ν 1 > ν 2 2-ν 2 and x ν 1 := sign(x)|x| ν 1 . (Actually, the finite-time stability was fully justified in [START_REF] Andréa-Novel | Finite-time stabilization of an overhead crane with a flexible cable[END_REF] when 0 < ν 2 < 1 and ν 1 = 1, although numerical simulations suggested that it was valid for 0 < ν 2 < 1 and

ν 1 > ν 2 2-ν 2 •)
1.4. Finite-time stabilization of 2 × 2 hyperbolic systems. Solutions of certain hyperbolic systems with transparent boundary conditions can reach the equilibrium state in finite time. Such a property, called finite-time stability in [START_REF] Alabau-Boussouira | Finite-time stabilization of a network of strings[END_REF][START_REF] Perrollaz | Finite-time stabilization of 2 × 2 hyperbolic systems on tree-shaped networks[END_REF] or super-stability in [START_REF] Shang | Super-stability and the spectrum of one-dimensional wave equations on general feedback controlled networks[END_REF], was first noticed in [START_REF] Majda | Disappearing solutions for the dissipative wave equations[END_REF] for the usual wave equation. The extension of such a property to the wave equation on a network was investigated in [START_REF] Alabau-Boussouira | Finite-time stabilization of a network of strings[END_REF][START_REF] Shang | Super-stability and the spectrum of one-dimensional wave equations on general feedback controlled networks[END_REF]. It turns out that the finite-time stability also holds for one-dimensional first order quasilinear hyperbolic systems of diagonal form without source terms [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF][START_REF] Perrollaz | Finite-time stabilization of 2 × 2 hyperbolic systems on tree-shaped networks[END_REF]. If source terms are incorporated in such systems, the finite-time stability is in general lost when using transparent boundary conditions, but a rapid stabilization still occurs [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms[END_REF]. In the linear case, however, the use of a boundary feedback law based on a backstepping transformation allows to recover the finite-time stability for hyperbolic systems with source terms [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF].

1.5. Finite-stability of an abstract evolution system. Let Φ = Φ(x,t), x ∈ H, t ∈ R + , be the flow associated with an evolution system in a Hilbert space H. We assume that Φ satisfies the semigroup property: Φ(Φ(x, s),t) = Φ(x,t + s) for all x ∈ H and all t, s ∈ R + , and that x = 0 is an equilibrium point; that is, Φ(0,t) = 0 for all t ∈ R + . We say that the flow Φ(x,t) (x,t)∈H×R + is globally finite-time stable if there exists a nondecreasing function T : (0, +∞) → (0, +∞) such that Φ(x,t) = 0 for all x ∈ H \ {0} and all t ≥ T ( x H ), and if the equilibrium point x = 0 is Lyapunov stable; that is, for each ε > 0, there exists some δ > 0 such that

x H < δ ⇒ Φ(x,t) H < ε ∀t ≥ 0.
The finite-time stability of the second-order ODE ẍ =ẋ ν 2x ν 1 , or equivalently of the first-order system

ẋ1 = x 2 , (1.13) ẋ2 = -x 2 ν 2 -x 1 ν 1 , (1.14) 
was established for 0 < ν 2 < 1 and ν 1 > ν 2 2-ν 2 by Haimo (see [START_REF] Haimo | Finite time controllers[END_REF]), and for 0 < ν 2 < 1 and ν 1 = ν 2 2-ν 2 by Bhat and Bernstein (see [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF][START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]).

1.6. Aim and structure of the present paper. The aim of the paper is to design a boundary feedback law U(t) leading to the finite-time stability of the system with affine tension. For that purpose, we first use several changes of variables to transform the original system (1.8)-(1.11) into a 2×2 hyperbolic system with coupling terms. Next, following [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF], we define a target system for which the application of transparent boundary conditions gives a finite-time stability, and we define a backstepping transformation leading to this target system. Finally, we show that the finite-time stabilization of a certain quantity φ defined in terms of X p (t) and z = z(x,t) (see below (4.2)) yields the finite-time stabilization of both the platform and the cable.

The paper is scheduled as follows. In Section 2, the original system is transformed into a 2×2 hyperbolic system with coupling terms. In Section 3, the 2×2 hyperbolic system is transformed into the target system by using some Volterra integral transformation borrowed from [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF]. Methods for numerically solving the kernel equations are described. Section 4 is dedicated to the proof of our main result concerning the finite-time stabilization of the hybrid PDE-ODE system. Our theoretical result is illustrated by a simulation of the finite-time stabilization of the overhead crane in Section 5. Finally, we give some words of conclusion in Section 6.

DERIVATION OF THE 2 × 2 HYPERBOLIC SYSTEM

The second order hyperbolic equation (1.8) with boundary conditions (1.9)-(1.10) and initial conditions is rewritten as a 2 × 2 quasilinear hyperbolic system by performing two transformations.

2.1. First transformation. Following [START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF], we set z(x,t) := y(s,t), where

x(s) := 1 J s 0 d -1 (σ ) dσ = 1 gJ ln 1 + ρ m s ≥ 0 (2.1)
and

J := 1 0 d -1 (σ ) dσ = 1 g ln 1 + ρ m > 0,
so that x(0) = 0 and x(1) = 1. With this transformation, the PDE (1.8) can be rewritten as

z tt (x,t) -λ 2 (x)z xx (x,t) = 0, (2.2) 
where

λ (x) := 1 J d(x) , d(x) := d(s(x)) = gm ρ e gJx .
The PDE (2.2) has to be supplemented with the boundary conditions

     z x (0,t) = 0, z(1,t) = X p (t), Ẍp (t) = U(t), (2.3) 
and the initial conditions z(x, 0) = z 0 (x) = y 0 (s), z t (x, 0) = z 1 (x) = y 1 (s).

(2.4) 2.2. Second transformation. Equation (2.2) is subsequently rewritten as a system of two first-order PDEs. Noticing that

(∂ t -λ ∂ x )(∂ t + λ ∂ x )z = -λ λ z x = (∂ t + λ ∂ x )(∂ t -λ ∂ x )z
, we infer that the Riemann invariants S := z t + λ z x and D := z tλ z x satisfy the system

S t (x,t) -λ (x)S x (x,t) = - λ (x) 2 (S(x,t) -D(x,t)), (2.5) 
D t (x,t) + λ (x)D x (x,t) = - λ (x) 2 (S(x,t) -D(x,t)). (2.6) 
Setting

w w w(x,t) = u(x,t) v(x,t) := e -1 2 ln(λ (x)) D(x,t) e -1 2 ln(λ (x)) S(x,t) = 1 λ (x) D(x,t) S(x,t) , (2.7) 
we obtain the system

w w w t = -λ (x) 0 0 λ (x) w w w x + 0 -λ (x) 2 λ (x) 2 0 w w w (2.8) 
with boundary conditions u(0,t) = v(0,t), (2.9) v(1,t) = W (t),

(2.10) W (t) denoting a feedback law that can be expressed in terms of the original control U(t) = Ẍp (t) and the angle θ (t) = y s (1,t) as

W (t) = √ J 4 d(1) Ẋp (t) + d(1)θ (t) .
System (2.8)-(2.10) is in the form required to apply the backstepping transformation from [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF].

BACKSTEPPING TRANSFORMATION AND KERNEL CALCULATION

3.1. Finite-time stabilization of the PDE. In [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF], the following 2 × 2 linear hyperbolic PDE system is considered:

w w w t (x,t) = -ε 1 (x) 0 0 ε 2 (x) Σ Σ Σ(x) w w w x (x,t) + 0 c 1 (x) c 2 (x) 0 C C C(x) w w w(x,t) (3.1) u(0,t) = qv(0,t) v(1,t) = W (t), (3.2) 
where w w w(x,t) = u v (x,t), x ∈ [0, 1], t ≥ 0, c 1 (x) and c 2 (x) are functions in C 0 ([0, 1]), ε 1 (x) and ε 2 (x) are strictly positive functions in C 1 ([0, 1]), and q ∈ R * . (For a discussion of the case q = 0, see [ 

ε 1 (x) = ε 2 (x) = λ (x) ∀x ∈ [0, 1], c 2 (x) = λ (x) 2 = -c 1 (x) ∀x ∈ [0, 1], q = 1.
A backstepping transform is defined between the original state variables w w w(x,t) = u v (x,t) and the target state variables γ γ γ(x,t) = α β (x,t) that satisfy the target system

γ γ γ t (x,t) = Σ Σ Σ(x)γ γ γ x (x,t), (3.3) 
α(0,t) = qβ (0,t), β (1,t) = 0. (3.4)
Note that the target system (3.3)-(3.4) is finite-time stable, since after some time we have transparent boundary conditions for both α and β .

γ γ γ(x,t) = w w w(x,t) -

x 0 K K K(x, ξ )w w w(ξ ,t) dξ (3.5)
with the direct kernels K K K(x, ξ ) decomposed as

K K K(x, ξ ) = K uu K uv K vu K vv (x, ξ ).
The inverse transformation is given by w w w(x,t) = γ γ γ(x,t)

+ x 0 L L L(x, ξ )γ γ γ(ξ ,t) dξ (3.6)
with the inverse kernels

L L L(x, ξ ) = L αα L αβ L β α L β β (x, ξ ).
By a direct calculation, it is proven in [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF] that the direct kernels K K K are the solution of the following Goursat system of two 2 × 2 first-order hyperbolic PDEs

           ε 1 (x)K uu x + ε 1 (ξ )K uu ξ = -ε 1 (ξ )K uu -c 2 (ξ )K uv , ε 1 (x)K uv x -ε 2 (ξ )K uv ξ = ε 2 (ξ )K uv -c 1 (ξ )K uu , ε 2 (x)K vu x -ε 1 (ξ )K vu ξ = ε 1 (ξ )K vu + c 2 (ξ )K vv , ε 2 (x)K vv x + ε 2 (ξ )K vv ξ = -ε 2 (ξ )K vv + c 1 (ξ )K vu (3.7)
on the triangular domain T = {(x, ξ ) | 0 ≤ ξ ≤ x ≤ 1} (see Fig. 2) with the boundary conditions

                         K uu (x, 0) = ε 2 (0) qε 1 (0) K uv (x, 0), K uv (x, x) = c 1 (x) ε 1 (x) + ε 2 (x) , K vu (x, x) = - c 2 (x) ε 1 (x) + ε 2 (x) , K vv (x, 0) = qε 1 (0) ε 2 (0) K vu (x, 0) for x ∈ [0, 1].
It is also shown in [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF] that the indirect kernels L L L satisfy a similar Goursat system of 4 × 4 first-order hyperbolic PDEs defined on T.
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Domain T with uniform discretization grid

Note that it is also possible to compute the inverse kernels L L L from the direct kernels K K K [START_REF] Anfinsen | Adaptative Control of Hyperbolic PDEs[END_REF]:

L L L(x, ξ ) = K K K(x, ξ ) + x ξ K K K(x, σ )L L L(σ , ξ ) dσ . (3.8)
If the coefficients ε i (x) and c i (x) in the Goursat systems are constant (independent of x or ξ ), explicit solutions for the kernels have been obtained in [START_REF] Vazquez | Marcum Q-functions and explicit kernels for stabilization of 2 × 2 linear hyperbolic systems with constant coefficients[END_REF]. In the general case, numerical methods have been designed in [START_REF] Anfinsen | Adaptative Control of Hyperbolic PDEs[END_REF]. These methods approximate the left-hand side of the equations of the Goursat system (for instance (3.7)) by a directional derivative and interpolate between values at points of a triangular half of an equidistant square grid as shown in Figure 2. 

W (t) = 1 0 K vu (1, ξ )u(ξ ,t) dξ + 1 0 K vv (1, ξ )v(ξ ,t) dξ .
(3.9)

3.2. Finite-time stabilization of the hybrid PDE-ODE system. In the case of the hybrid (PDE-ODE) crane model (1.8)-(1.11), one does not control the dynamics of the system cable-platform through the boundary condition v(1,t) = W (t), but rather through the acceleration Ẍp (t) = U(t) of the platform.

In that case, the transparent boundary condition β (1,t) = 0 in (3.4) is not necessarily satisfied.

Our goal is to design a feedback law U(t) in such a way that both β (1,t) and a new variable φ (t) vanish after a finite time depending on the initial data. Next, both the target variable γ γ γ(x,t) and X p (t) will be stabilized in a finite time, after which the entire system will be at the equilibrium position. This is the subject of the next section.

FINITE-TIME STABILITY OF THE COMPLETE SYSTEM

A finite-time stabilizer U(t) for the crane and the cable with affine tension is constructed as follows.

Our goal is to have the condition β (1,t) = 0 satisfied for t large enough. We write

2 Ẋp λ (1) = 2 z t (1,t) λ (1) = 1 1 w w w(1,t) = 1 1 γ γ γ(1,t) + 1 0 1 1 L L L(1, ξ )γ γ γ(ξ ,t) dξ = α(1,t) + β (1,t) + 1 0 [ L αα (1, ξ ) + L β α (1, ξ ) α(ξ ,t) + L αβ (1, ξ ) + L β β (1, ξ ) β (ξ ,t)] dξ (4.1) Let φ (t) := 2 λ (1) X p (t) + 1 0 [a(x)α(x,t) + b(x)β (x,t)] dx (4.2)
where a(x) and b(x) are two functions to be defined. Then we have

φ (t) = 2 λ (1)
Ẋp (t) + 1 0 [aα t + bβ t ] dx = 2 λ (1)
Ẋp (t) + 1 0 [-aλ α x + bλ β x ] dx = 2 λ (1)
Ẋp (t) + [-a(x)λ (x)α(x,t) + b(x)λ (x)β (x,t)] 1 x=0 + 1 0 [(aλ ) x α -(bλ ) x β ] dx (4.3)
where we used an integration by parts in the last line. Replacing in (4.3) Ẋp (t) by its expression in (4.1) results in

φ (t) = α(1,t) + β (1,t) + [-aλ α + bλ β ] 1 x=0 + 1 0 (L αα (1, x) + L β α (1, x) + (aλ ) x )α + (L αβ (1, x) + L β β (1, x) -(bλ ) x )β dx. (4.4)
We define the functions a and b as

a(x) := 1 λ (x) a 0 - x 0 L αα (1, ξ ) + L β α (1, ξ ) dξ , (4.5) b(x) := 1 λ (x) b 0 + x 0 L αβ (1, ξ ) + L β β (1, ξ ) dξ (4.6)
with a 0 , b 0 some constants still to choose. Then

L αα (1, x) + L β α (1, x) + (aλ ) x = 0 = L αβ (1, x) + L β β (1, x) -(bλ ) x ,
and hence (4.4) becomes

φ = [1 -(aλ )(1)]α(1,t) + [1 + (bλ )(1)]β (1,t) + (a 0 -b 0 )α(0,t) (4.7) 
for α(0,t) = β (0,t), (q = 1). Now we let

a 0 = b 0 := 1 + 1 0 L αα (1, ξ ) + L β α (1, ξ ) dξ , so that 1 -(aλ )(1) = 0 = a 0 -b 0 .
We obtain

φ (t) = [1 + (bλ )(1)]β (1,t) = 1 + b 0 + 1 0 [L αβ (1, x) + L β β (1, x)] dx β (1,t) = µβ (1,t) (4.8) 
with

µ := 2 + 1 0 L αα (1, x) + L β α (1, x) +L αβ (1, x) + L β β (1, x) dx. (4.9)
Later on, we shall define β (1,t) from φ (t) using (4.8). It is thus important to prove that µ = 0. This is done in the following proposition.

Proposition 4.1. The kernels L satisfy

L αα (x, ξ ) = L β β (x, ξ ) ≥ 0 ∀(x, ξ ) ∈ T, L αβ (x, ξ ) = L β α (x, ξ ) ≥ 0 ∀(x, ξ ) ∈ T,
and hence µ ≥ 2. Proof. Recall that ε 1 (x) = ε 2 (x) = λ (x) and that c 1 (x) = -c 2 (x) = -λ (x) 2 . Let C 1 > 0 and C 2 > 0 be defined by λ (x) = 1 J gm ρ e gJx =: C 1 e -C 2 x .
Then the Goursat system satisfied by the kernels L reads (see [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF])

λ (x)L αα x + λ (ξ )L αα ξ = -λ (ξ )L αα - λ (x) 2 L β α , (x, ξ ) ∈ T, (4.10) λ (x)L αβ x -λ (ξ )L αβ ξ = λ (ξ )L αβ - λ (x) 2 L β β , (x, ξ ) ∈ T, (4.11) λ (x)L β α x -λ (ξ )L β α ξ = λ (ξ )L β α - λ (x) 2 L αα , (x, ξ ) ∈ T, (4.12 
)

λ (x)L β β x + λ (ξ )L β β ξ = -λ (ξ )L β β - λ (x) 2 L αβ , (x, ξ ) ∈ T, (4.13) 
with the boundary conditions

L αα (x, 0) = L αβ (x, 0), 0 ≤ x ≤ 1, (4.14) 
L αβ (x, x) = - λ (x) 4λ (x) = C 2 4 , 0 ≤ x ≤ 1, (4.15) 
L β α (x, x) = C 2 4 , 0 ≤ x ≤ 1, (4.16 
)

L β β (x, 0) = L β α (x, 0), 0 ≤ x ≤ 1. (4.17)
The existence and uniqueness of the solution 4 was already established in [START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF]Theorem A.1]. However, the claims in Proposition 4.1 are still to be justified. We introduce the following 2 × 2 system:

(L αα , L αβ , L β α , L β β ) ∈ [C 0 (T)]
λ (x) f x + λ (ξ ) f ξ = -λ (ξ ) f + µ(x)g, (x, ξ ) ∈ T, (4.18) 
λ (x)g x -λ (ξ )g ξ = λ (ξ ) f + µ(x) f , (x, ξ ) ∈ T, (4.19) 
with the boundary conditions

f (x, 0) = g(x, 0), 0 ≤ x ≤ 1, (4.20) g(x, x) = C, 0 ≤ x ≤ 1, (4.21) 
where 

C := C 2 /4 > 0 and µ(x) = -λ (x)/2 > 0 for x ∈ [0, 1]. If we prove the existence of a solution ( f , g) of (4.18)-(4.21) in [C 0 (T)] 2 , then setting L αα = L β β := f , L αβ = L β α := g,
Let C > 0, λ ∈ C 1 ([0, 1]) and µ ∈ C 0 ([0, 1]) with λ (x) > 0 and µ(x) > 0 for all x ∈ [0, 1].
Then there exists a unique solution

( f , g) ∈ [C 0 (T, R + )] 2 of (4.18)-(4.21), where R + = [0, +∞).
Proof of Lemma 4.2. We first express ( f , g) as a fixed-point of a map from [C 0 (T, R + )] 2 into itself. Next, reducing the domain for (x, ξ ) to a "trapezoid", we prove that the above map is a contraction. The full domain T is covered by iterating the above construction.

The characteristic system for (4.18) reads dx ds = λ (x),

dξ ds = λ (ξ ), dz ds = -λ (ξ )z + µ(x)g
with the boundary conditions x(0) = x 0 , ξ (0) = 0, and z(0) = g(x 0 , 0). Let Λ(x) := x 0 ds λ (s) . Then one readily obtains

x(s) = Λ -1 (Λ(x 0 ) + s), ξ (s) = Λ -1 (s)
and

f (x(s), ξ (s)) = z(s) = e -s 0 λ (ξ (σ )) dσ g(x 0 , 0) + s 0 e σ 0 λ (ξ (τ)) dτ µ(x(σ )) g(x(σ ), ξ (σ )) dσ . Since s = Λ(ξ ), x 0 = Λ -1 (Λ(x) -Λ(ξ )), we have that x(σ ) = Λ -1 (Λ(x) -Λ(ξ ) + σ ), ξ (σ ) = Λ -1 (σ ) and f (x, ξ ) = e -Λ(ξ ) 0 λ (Λ -1 (σ )) dσ g(Λ -1 (Λ(x) -Λ(ξ )), 0) + Λ(ξ ) 0 e σ 0 λ (Λ -1 (τ)) dτ µ(Λ -1 (Λ(x) -Λ(ξ ) + σ ))g(Λ -1 (Λ(x) -Λ(ξ ) + σ ), Λ -1 (σ )) dσ (4.22)
Similarly, the characteristic system for (4.19) reads dx ds = λ (x),

dξ ds = -λ (ξ ), dz ds = λ (ξ )z + µ(x) f
with the boundary conditions x(0) = x 0 , ξ (0) = x 0 , and z(0) = C. We readily obtain

x(s) = Λ -1 (Λ(x 0 ) + s), ξ (s) = Λ -1 (Λ(x 0 ) -s) so that s = Λ(x) -Λ(ξ ) 2 , x 0 = Λ -1 Λ(x) + Λ(ξ ) 2 ,
and

g(x(s), ξ (s)) = z(s) = e s 0 λ (ξ (σ )) dσ C + s 0 e -σ 0 λ (ξ (τ)) dτ µ(x(σ )) f (x(σ ), ξ (σ )) dσ . It follows that g(x, ξ ) = e Λ(x)-Λ(ξ ) 2 0 λ Λ -1 Λ(x)+Λ(ξ ) 2 -σ dσ C + Λ(x)-Λ(ξ ) 2 0 e -σ 0 λ Λ -1 Λ(x)+Λ(ξ ) 2 -τ dτ µ Λ -1 Λ(x) + Λ(ξ ) 2 + σ × f Λ -1 Λ(x) + Λ(ξ ) 2 + σ , Λ -1 Λ(x) + Λ(ξ ) 2 -σ dσ . (4.23)
Replacing in (4.23) f by its expression in (4.22), we arrive to g = Γ(g), where

Γ(g)(x, ξ ) := e Λ(x)-Λ(ξ ) 2 0 λ Λ -1 Λ(x)+Λ(ξ ) 2 -σ dσ C + Λ(x)-Λ(ξ ) 2 0 e -σ 0 λ Λ -1 Λ(x)+Λ(ξ ) 2 -τ dτ µ Λ -1 Λ(x) + Λ(ξ ) 2 + σ ×e - Λ(x)+Λ(ξ ) 2 -σ 0 λ (Λ -1 (σ )) dσ g(Λ -1 (2σ ), 0) + Λ(x)+Λ(ξ ) 2 -σ 0 e κ 0 λ (Λ -1 (τ)) dτ µ(Λ -1 (2σ + κ)) × g(Λ -1 (2σ + κ), Λ -1 (κ)) dκ dσ . (4.24) For 0 ≤ ε 1 ≤ ε 2 ≤ 1, let T ε 1 ,ε 2 := {(x, ξ ) ∈ T; Λ(ε 1 ) ≤ Λ(x) -Λ(ξ ) ≤ Λ(ε 2 )}, E ε 1 ,ε 2 := C 0 (T ε 1 ,ε 2 , R + ).
Let ε ∈ (0, 1). Noticing that the restriction of Γ(g) to T 0,ε depends only on the restriction of g to T 0,ε , we can define a map g ∈ E 0,ε → Γ(g) ∈ E 0,ε and find a constant

K = K µ L ∞ (0,1) , λ L ∞ (0,1) , Λ L ∞ (0,1) > 0 such that Γ(g 1 ) -Γ(g 2 ) L ∞ (T 0,ε ) ≤ K sup (x,ξ )∈T 0,ε Λ(x) -Λ(ξ ) 2 g 1 -g 2 L ∞ (T 0,ε ) ≤ KΛ(ε) 2 g 1 -g 2 L ∞ (T 0,ε ) .
For ε > 0 small enough, we have that KΛ(ε)/2 < 1, so that the map g ∈ E 0,ε → Γ(g) ∈ E 0,ε is a contraction, and hence it has a unique fixed point by the contraction mapping theorem. Using (4.22), this yields a unique solution ( f , g) ∈ E 2 0,ε . Proceeding in the same way (using the values of g on the characteristic curve Λ(x) -Λ(ξ ) = Λ(ε) computed in the previous step), we can extend g and f on the trapezoids T ε,2ε , T 2ε,3ε , etc. Finally, the functions g and f are defined on the whole domain T and they take nonnegative values. The proofs of Lemma 4.2 and of Proposition 4.1 are complete. The control input Ẍp (t) = U(t) is designed in such a way that φ (t) obeys the following dynamics with finite-time stability (see [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF][START_REF] Haimo | Finite time controllers[END_REF])

φ (t) + φ (t) ν 2 + φ (t) ν 1 = 0, (4.25) 
where 0 < ν 2 < 1, ν 1 ≥ ν 2 2-ν 2 and x ν 1 := sign(x)|x| ν 1 . After substitution of the expression (4.2) in (4.25), one obtains the feedback law

U(t) := - λ (1) 2 1 0 (a(x)α tt (x,t) + b(x)β tt (x,t)) dx + 2 λ (1)
Ẋp (t) + 1 0 (a(x)α t (x,t) + b(x)β t (x,t)) dx ν 2 + 2 λ (1) 
X p (t) + 1 0 (a(x)α(x,t) + b(x)β (x,t)) dx ν 1 . (4.26)
We claim that with this feedback law, the crane and the cable with affine tension are stabilized in finite time. We first establish the finite-stability of the system in the new variables (γ γ γ, φ ), and next we go back to the original variables (z, X p ). Let H := [L 2 (0, 1)] 2 × R 2 be endowed with the norm

(α, β , φ 0 , φ 1 ) 2 H := 1 0 [α(x) 2 + β (x) 2 ] dx + |φ 0 | 2 + |φ 1 | 2 . Theorem 4.3. Let ν 2 , ν 1 ∈ R with 0 < ν 2 < 1 and ν 1 ≥ ν 2 2-ν 2 .
Then the system (3.3), (4.25), with the boundary conditions

α(0,t) = β (0,t), β (1,t) = µ -1 φ (t), (4.27) 
is well-posed and globally finite-time stable in the Hilbert space H. More precisely, there exists a nondecreasing function T 1 : (0, +∞) → (0, +∞) such that for all (α 0 , β 0 , φ 0 , φ 1 ) ∈ H, the solution of (3.3), (4.25), (4.27) and (α(., 0), β (., 0), φ (0), φ (0)) = (α 0 , β 0 , φ 0 , φ 1 ) satisfies

α(x,t) = β (x,t) = 0, ∀x ∈ [0, 1], ∀t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ), (4.28) 
φ (t) = 0, ∀t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ). (4.29) 
Proof. We use the cascaded structure of the PDE-ODE system. The Cauchy problem

φ (t) + φ (t) ν 2 + φ (t) ν 1 = 0, t ∈ [0, T ], (4.30) 
(φ (0), φ (0)) = (φ 0 , φ 1 ) (4.31) admits solutions φ ∈ C 2 ([0, T ]) for some (possibly small) T > 0 by Peano's theorem. The solution is actually unique forward, defined on [0, T ] for all T > 0, and a global finite-time stability occurs for system (4.25) (see [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF][START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF][START_REF] Haimo | Finite time controllers[END_REF]). Let T 0 : (0, +∞) → (0, +∞) be a nondecreasing function such that

φ (t) = 0 if t ≥ T 0 (||(φ 0 , φ 1 )||).
where

||(φ 0 , φ 1 )|| = (|φ 0 | 2 + |φ 1 | 2 ) 1 2 .
Next we consider the system

β t = λ (x)β x , x ∈ (0, 1), t > 0, (4.32) β (1,t) = µ -1 φ (t), t > 0, (4.33) β (x, 0) = β 0 (x),
x ∈ (0, 1). (4.34)

Following [10, Definition 2.1 p. 25], for given T > 0, β 0 ∈ L 2 (0, 1) and φ ∈ H 1 (0, T ), we say that a solution of the Cauchy problem (4.32)-(4.34) is a function β ∈ C 0 ([0, T ], L 2 (0, 1)) such that, for every τ ∈ [0, T ] and every η ∈ C 1 ([0, 1] × [0, τ]) such that η(0,t) = 0 for all t ∈ [0, T ], we have

- τ 0 1 0 (η t -(λ η) x )β dxdt - λ (1) µ τ 0 η(1,t) φ (t) dt + 1 0 [η(x, τ)β (x, τ) -η(x, 0)β 0 (x)] dx = 0.
Then, following closely [10, Theorem 2.4 p. 27], it can be proved that there exists a unique solution β ∈ C 0 ([0, T ], L 2 (0, 1)) of the Cauchy problem (4.32)-(4.34). Furthermore, using the writing λ (x) = C 1 e -C 2 x , we readily obtain with the method of characteristics that β is given by

β (x,t) =    β 0 1 C 2 ln(e C 2 x +C 1 C 2 t) if t < e C 2 -e C 2 x C 1 C 2 , µ -1 φ t + e C 2 x -e C 2 C 1 C 2 if t ≥ e C 2 -e C 2 x C 1 C 2 • (4.35)
In particular, since φ (t) = 0 for t ≥ T 0 ( (φ 0 , φ 1 ) ), we infer that β (x,t) = 0 for x ∈ [0, 1] and t ≥ T 0 ( (φ 0 , φ 1 ) ) + e C 2 -e C 2 x C 1 C 2 . Note also that β has a trace β (0, •) ∈ L 2 (0, T ) for all T > 0, which is given by

β (0,t) =    β 0 1 C 2 ln(1 +C 1 C 2 t) if t < e C 2 -1 C 1 C 2 , µ -1 φ t + 1-e C 2 C 1 C 2 if t ≥ e C 2 -1 C 1 C 2 •
Similarly, it can be proved that for any α 0 ∈ L 2 (0, 1), there exists for all T > 0 a unique solution α ∈ C 0 ([0, T ], L 2 (0, 1)) of the Cauchy problem

α t = -λ (x)α x , x ∈ (0, 1), t > 0, (4.36) 
α(0,t) = β (0,t), t > 0, (4.37) α(x, 0) = α 0 (x),

x ∈ (0, 1). (4.38) Furthermore, it is given by

α(x,t) =    α 0 1 C 2 ln(e C 2 x -C 1 C 2 t) if t < e C 2 x -1 C 1 C 2 , β 0,t -e C 2 x -1 C 1 C 2 if t ≥ e C 2 x -1 C 1 C 2 • (4.39) Since α(0,t) = β (0,t) = 0 for t ≥ T 0 ( (φ 0 , φ 1 ) ) + e C 2 -1 C 1 C 2 , we infer that α(x,t) = 0 for x ∈ [0, 1] and t ≥ T 0 ( (φ 0 , φ 1 ) ) + e C 2 +e C 2 x -2 C 1 C 2 . Thus φ (t) = 0, for t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ) := T 0 ( (φ 0 , φ 1 ) ) + 2e C 2 -2 C 1 C 2 , α(x,t) = β (x,t) = 0, for t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ) and x ∈ [0, 1].
Using the stability of the origin in R 2 for (4.25) and the formulas (4.35), (4.39), we infer the stability of the origin in H for system (3.3), (4.25) and (4.27), which is thus finite-time stable.

Introduce the space

H := {(z 0 , z 1 , Ω 0 , Ω 1 ) ∈ H 2 (0, 1) × H 1 (0, 1) × R × R; z 0 x (0) = 0, z 0 (1) = Ω 0 , µβ 0 (1) = 2 λ (1) Ω 1 -a(1)λ (1)α 0 (1) + b(1)λ (1)β 0 (1) + 1 0 [(aλ ) x α 0 -(bλ ) x β 0 ] dx, with α 0 β 0 (x) := u 0 v 0 (x) - x 0 K(x, ξ ) u 0 v 0 (ξ ) dξ ∀x ∈ [0, 1] and u 0 v 0 (x) := 1 λ (x) z 1 (x) -λ (x)z 0 x (x) z 1 (x) + λ (x)z 0 x (x) ∀x ∈ [0, 1]} endowed with the norm (z 0 , z 1 , Ω 0 , Ω 1 ) 2 H := z 0 2 H 2 (0,1) + z 1 2 H 1 (0,1) + |Ω 0 | 2 + |Ω 1 | 2 .
We are in a position to state the main result in this paper.

Theorem 4.4. Let ν 2 , ν 1 ∈ R with 0 < ν 2 < 1 and ν 1 ≥ ν 2 2-ν 2 . Then the system (2.2)-(2.
3) with the feedback law (4.26) is well-posed and globally finite-time stable in the Hilbert space H. More precisely, there exists a nondecreasing function T : (0, +∞) → (0, +∞) such that for all (z 0 , z 1 , Ω 0 , Ω 1 ) ∈ H, the solution of (2.2)-(2.3), (4.26) and (z(., 0), z t (., 0), X p (0),

Ẋp (0)) = (z 0 , z 1 , Ω 0 , Ω 1 ) satisfies z(x,t) = 0, ∀x ∈ [0, 1], ∀t ≥ T ( (z 0 , z 1 , Ω 0 , Ω 1 ) H ), (4.40) X p (t) = 0, ∀t ≥ T ( (z 0 , z 1 , Ω 0 , Ω 1 ) H ). (4.41) 
Proof. Let u 0 , v 0 , α 0 , β 0 ∈ H 1 (0, 1) be as in the definition of the space H. Note that α 0 (0) = β 0 (0), for z 0 x (0) = 0. Let We infer from Theorem 4.3 the existence and uniqueness of a solution (α, β , φ ) on R + of (3.3), (4.25), (4.27), and (α(., 0), β (., 0), φ , φ ) = (α 0 , β 0 , φ 0 , φ 1 ), and this solution satisfies (4.28)-(4.29). We know also from Theorem 4.3 that α, β ∈ C 0 ([0, T ], L 2 (0, 1)) and that φ ∈ C 2 ([0, T ]) for all T > 0.

φ 0 := 2 λ (1) Ω 0 + 1 0 a(x)α 0 (x) + b(x)β 0 (x) dx, ( 4 
Here the initial data are more regular, and therefore the trajectories are expected to be more regular.

CLAIM 1. α, β ∈ C 0 ([0, T ], H 1 (0, 1)) ∩C 0 ([0, 1], H 1 (0, T )) for all T > 0.
Indeed, using the properties β 0 ∈ H 1 (0, 1), φ ∈ C 1 ([0, T ]) ⊂ H 1 (0, T ), the compatibility condition (4.43) and the formula (4.35), we infer that β ∈ C 0 ([0, T ], H 1 (0, 1))∩C 0 ([0, 1], H 1 (0, T )). In particular, β (0, .) ∈ H 1 (0, T ). In the same way, using the properties α 0 ∈ H 1 (0, 1), β (0, .) ∈ H 1 (0, T ), the compatibility condition α 0 (0) = β 0 (0) and the formula (4.39), we conclude that α

∈ C 0 ([0, T ], H 1 (0, 1))∩C 0 ([0, 1], H 1 (0, T )).
Next, we define respectively X p (t) as Clearly, we also have that

X p (t) := λ (1) 2 φ (t) - 1 0 [a(x)α(x,t) + b(x)β (x,t)] dx , ( 4 
u, v, D, S ∈ C 0 ([0, T ], H 1 (0, 1)) ∩C 0 ([0, 1], H 1 (0, T )) ∀T > 0. (4.47)
Furthermore, since γ γ γ satisfies (3.3), we obtain that w w w satisfies (2.8) and that the functions D, S satisfy system (2.5)-(2.6). We are in a position to define the function z(x,t).

CLAIM 2. For every T > 0, there exists a unique function z ∈ C 0 ([0, T ], H 2 (0, 1)) ∩C 0 ([0, 1], H 2 (0, T )) of the system

z t = S + D 2 , (x,t) ∈ (0, 1) × (0, T ), (4.48) z x = S -D 2λ , (x,t) ∈ (0, 1) × (0, T ), (4.49) z(1, 0) = z 0 (1) = X p (0). (4.50)
Indeed, setting f := (S + D)/2 and g = (S -D)/(2λ ), we notice that Schwarz' condition f x = g t is satisfied, since by (2.5)-(2.6)

g t = S t -D t 2λ = λ S x + D x 2λ + 0 = f x .
On the other hand, the compatibility condition z 0 (1) = X p (0) is fulfilled, for

X p (0) = λ (1) 2 φ 0 - 1 0 [a(x)α 0 (x) + b(x)β 0 (x)] dx = Ω 0 = z 0 (1),
where we used (4.44), (4.42) and the property z 0 (1) = Ω 0 from the definition of H. It follows that there exists a unique solution z = z(x,t) of system (4.48)-(4.50) which is given explicitly by

z(x,t) = X p (0) + t 0 f (1, s) ds + x 1 g(s,t) ds = z 0 (1) + x 1 g(s, 0) ds + t 0 f (x, s) ds. (4.51)
Combined with (4.47), this yields

z ∈ C 0 ([0, T ], H 2 (0, 1)) ∩C 1 ([0, T ], H 1 (0, 1)) ∩C 0 ([0, 1], H 2 (0, T )). (4.52)
We claim that z(x, 0) = z 0 (x) for all x ∈ [0, 1]. Indeed, we have by (4.51), (4.46), and some condition in the definition of H that for all x ∈ [0, 1]

z(x, 0) = z 0 (1) + x 1 g(s, 0) ds = z 0 (1) + x 1 S(s, 0) -D(s, 0) 2λ (s) ds = z 0 (1) + x 1 1 2 λ (s) (v 0 (s) -u 0 (s)) ds = z 0 (1) + x 1 z 0 x (s) ds = z 0 (x)
We also claim that

z(1,t) = X p (t) ∀t ≥ 0. (4.53)
Indeed, we infer from (4.51) and (4.46) that

z(1,t) = t 0 f (1, s)ds + X p (0) = t 0 S(1, s) + D(1, s) 2 ds + X p (0) = λ (1) 2 t 0 (u(1, s) + v(1, s)) ds + X p (0)
so that with (4.45)

z t (1,t) = λ (1) 2 u(1,t) + v(1,t) = λ (1) 2 α(1,t) + β (1,t) + 1 0 1 1 L L L(1, ξ ) α(ξ ,t) β (ξ ,t) dξ .
On the other hand, (4.44) gives (4.2) and hence (4.3). Using (4.5)-(4.6), we obtain

φ (t) = 2 
λ (1)

Ẋp (t) + -a 0 + 1 0 L αα (1, ξ ) + L β α (1, ξ ) dξ =-1 α(1,t) + b 0 + 1 0 L αβ (1, ξ ) + L β β (1, ξ ) dξ =µ-1 β (1,t) - 1 0 [(L αα (1, x) + L β α (1, x))α(x,t) + (L αβ (1, x) + L β β (1, x))β (x,t)]dx.
Combined with (4.33), this yields

Ẋp (t) = λ (1) 2 α(1,t) + β (1,t) + 1 0 [(L αα (1, x) + L β α (1, x))α(x,t) + (L αβ (1, x) + L β β (1, x))β (x,t)] dx = z t (1,t).
Integrating w.r.t t and using X p (0) = z 0 (1) = z(1, 0), we obtain (4.53).

Let us check that z solves system (2.2)-(2.4). Replacing z t and z x by their expressions in terms of S, D and using (2.5)-(2.6), we obtain

z tt -λ 2 z xx = S t + D t 2 -λ 2 S x -D x 2λ -λ S -D 2λ 2 = 0.
For the boundary conditions (2.3), we have that z(1,t) = X p (t) (by construction of z), and that

z x (0,t) = S(0,t) -D(0,t) 2λ (0) = λ (0) 2λ (0) (v(0,t) -u(0,t)) = 1 2 λ (0) (β (0,t) -α(0,t)) = 0.
For the initial conditions (2.4), we have that z(•, 0) = z 0 (by construction of z) and that

z t (x, 0) = S(x, 0) + D(x, 0) 2 = λ (x) 2 (u(x, 0) + v(x, 0)) = λ (x) 2 (u 0 (x) + v 0 (x)) = z 1 (x) ∀x ∈ [0, 1].
Let us investigate the dynamics of X p . Set U(t) := Ẍp (t) for t ∈ R + .

CLAIM 3. U ∈ L 2 (0, T ) for all T > 0.

We infer from (4.25) and (4.44) that

U(t) = Ẍp (t) = λ (1) 2 φ (t) - 1 0 [aα tt + bβ tt ] dx = - λ (1) 2 φ (t) ν 2 + φ (t) ν 1 - 1 0 [aα tt + bβ tt ] dx .
As φ ∈ C 2 ([0, T ]), the two first terms in the last equation are in C 0 ([0, T ]), and hence in L 2 (0, T ). It remains to show that the map t → 1 0 [aα tt + bβ tt ] dx is in L 2 (0, T ) for all T > 0. Using (4.32) and (4.36) and next an integration by parts, we obtain

1 0 [aα tt + bβ tt ] dx = 1 0 [a(-λ α xt ) + bλ β xt ] dx = 1 0 [(aλ ) x α t -(bλ ) x β t ] dx + [-aλ α t + bλ β t ] 1 0 .
Replacing in the last integral term α t and β t by -λ α x and λ β x , respectively, and integrating by parts again, we obtain

1 0 [aα tt + bβ tt ] dx = 1 0 [((aλ ) x λ ) x α + ((bλ ) x λ ) x β ] dx -[(aλ ) x λ α + (bλ ) x λ β ] 1 0 (4.54) +[-aλ α t + bλ β t ] 1 0 . (Note that (aλ ) x = -L αα (1, x) -L β α (1, x) and (bλ ) x = L αβ (1, x) + L β β (1, x)
.) It is clear that the two first terms in the right hand side of (4.54) are in C 0 ([0, T ]) (and thus in L 2 (0, T )), for α, β ∈ C 0 ([0, T ], H 1 (0, 1)). On the other hand, using (4.25), (4.33) and (4.37), we obtain that

[-aλ α t + bλ β t ] 1 0 = -a(1)λ (1)α t (1,t) + b(1)λ (1)µ -1 φ (t) = -a(1)λ (1)α t (1,t) + b(1)λ (1)µ -1 ( φ (t) ν 2 + φ (t) ν 1 ). As φ ∈ C 2 ([0, T ]) and α ∈ C 0 ([0, 1], H 1 (0, T )) (and hence, α t (1, .) ∈ L 2 (0, T )), we infer that the map t → [-aλ α t + bλ β t ] 1 0 is also in L 2 (0, T ) for all T > 0. Claim 3 is proved.
Let us have a look at the initial conditions for X p . By (4.31), (4.42) and (4.44), we have that

X p (0) = λ (1) 2 φ 0 - 1 0 [a(x)α 0 (x) + b(x)β 0 (x)] dx = Ω 0 .
On the other hand, (4.44) gives (4.2) and (4.3). Picking t = 0 and using (4.33), we arrive at

µβ (1, 0) = φ (0) = 2 λ (1)
Ẋp (0) -a(1)λ (1)α 0 (1) + b(1)λ (1)β 0 (1) + 1 0 [(aλ ) x α 0 -(bλ ) x β 0 ] dx.
Comparing with the condition

µβ 0 (1) = 2 λ (1) Ω 1 -a(1)λ (1)α 0 (1) + b(1)λ (1)β 0 (1) + 1 0 [(aλ ) x α 0 -(bλ ) x β 0 ] dx present in the definition of H, we infer that Ẋp (0) = Ω 1 .
Using Claim 2, we see that the uniqueness of (z, X p ) follows from those of (α, β , φ ).

We know that α(x,t) = β (x,t) = φ (t) = 0 for x ∈ [0, 1] and t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ). We infer from (4.44) that X p (t) = 0 for t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ).

Finally, from (4.45) and (4.46), we infer that

u(x,t) = v(x,t) = D(x,t) = S(x,t) = 0, ∀x ∈ [0, 1], ∀t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ). It follows that z t (x,t) = z x (x,t) = 0, ∀x ∈ [0, 1], ∀t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ). Since z(1,t) = X p (t) = 0 for t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ), we arrive at the conclusion that z(x,t) = 0, ∀x ∈ [0, 1], ∀t ≥ T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ).
One can pick T (R) := sup{T 1 ( (α 0 , β 0 , φ 0 , φ 1 ) H ); (z 0 , z 1 , Ω 0 , Ω 1 ) H ≤ R}.

It remains to prove the stability of the origin in H for system (2.2)-(2.3) and (4.26). Assume that (z 0 , z 1 , Ω 0 , Ω 1 ) H is small, and (at least) less than 1. Then (α 0 , β 0 , φ 0 , φ 1 ) H is small, and by Theorem 4.3, φ (t) and φ (t) remain small. We know that z(.,t), X p (t), α(.,t), β (.,t), and φ (t) vanish for t ≥ T (1). Using (4.35) and (4.39), we see that β (.,t) H 1 (0,1) and α(.,t) H 1 (0,1) remain small. Using (4.44) and (4.3), we conclude that X p (t) and Ẋp (t) also remain small. Clearly, D(.,t) H 1 (0,1) and S(.,t) H 1 (0,1) also remain small by (4.45)- (4.46). This yields that z t (.,t) H 1 (0,1) remains small, by (4.48). Using (4.49) and (4.53), we infer that z(.,t) H 2 (0,1) remains small.

SIMULATION

As numerical illustration, system (1.8)-(1.11) controlled by the feedback law (4.26) is simulated. The following system parameters are used: m = 2 kg, ρ = 2 kg/m, g = 9.81 m/s 2 . 5.1. Numerical calculation of the kernels. The direct kernels K K K are calculated by numerically solving system (3.7) [START_REF] Anfinsen | Adaptative Control of Hyperbolic PDEs[END_REF], where the domain T is discretized using a uniform grid with ∆x = ∆ξ = 0.005 (see Fig. 2). Knowing the direct kernels K K K, the inverse kernels L L L are calculated numerically using (3.8). The obtained kernels are shown in Figures 34 

K uu = K vv K uv = K vu x ξ FIGURE 3
. Direct kernels K K K. Dotted boundaries correspond to boundary conditions at (x, 0) and (x, x) of the Goursat system (3.7). Dashed boundaries correspond to controller gains at (1, ξ ) used in the control law (3.9). 5.2. Time evolution of the controlled system. Once the direct and inverse kernels are known, the system (1.8)-(1.11) controlled by the law (4.26) can be simulated in the coordinates (X p (t), α(x,t), β (x,t)). Finally, the inverse state transformation will be applied in order to obtain the simulated time evolution in the original coordinates (X p (t), y(s)).

We consider zero initial conditions, except for X p (0) = 0.5, i.e., the system is initially at rest with the platform at a nonzero position. 5.2.1. Time evolution of φ (t). The finite-time dynamics of the variable φ (t) (4.2) is simulated using the numerical method proposed in [START_REF] Polyakov | Consistent discretization of finite-time and fixed-time stable systems[END_REF]. This method supposes that the system's vector field F F F is d d dhomogeneous [START_REF] Polyakov | Consistent discretization of finite-time and fixed-time stable systems[END_REF]Def. 3.6], which corresponds to imposing that ν 1 = ν 2 2-ν 2 in (4.25). A nonlinear state transformation is provided with which an alternative continuous time system representation ż z z = F F F(z z z) is obtained, that admits an implicit discretization scheme preserving the finite-time stability property in discrete time. Performing the inverse state transformation then yields a discretization scheme preserving the finite-time stability in the original coordinates.

Rewrite the finite-time ODE dynamics (4.25) as 

d dt φ φ = φ -φ ν 2 2-ν 2 -φ ν 2 =: F F F φ φ . ( 5 
+ I I I 2 F F F z z z z z z := F F F(z z z), (5.3) 
which is the transformed version of the original system ẋ x x = F F F(x x x) using the nonlinear state transformation (5.6)-(5.7) (see below).

Condition (5.2) simplifies to 

z z z 3 r 1 z 2 1 + r 2 z 2 2 z 1 z 2 z z z 2 - z 2 z z z z 1 z z z ν 1 - z 2 z z z z 2 z z z ν 2 < 0. ( 5 
L αα (1, ξ ) = L β β (1, ξ ) L αβ (1, ξ ) = L β α (1, ξ ) FIGURE 5. Controller gains L L L(1, ξ ).
We note that the strict inequality (5.4) is not satisfied for z 2 = 0, since the left-hand expression equals 0. One notes that for z 2 = 0 = ż2 , (5.3) reduces to

ż1 0 = 0 -sign(z 1 ) ν 2 2-ν 2
, which implies that z 1 = ż1 = 0. Then, the asymptotic stability of the origin for (5.3) is obtained by LaSalle's invariance theorem if we prove the strict inequality (5.4) for the case z 2 = 0. It suffices to consider the strict negativity of the expression between brackets. Lemma 5.1. Let ν 2 ∈ (0, 1) and

ν 1 = ν 2 /(2 -ν 2 ) ∈ (0, 1). Then for all z z z = (z 1 , z 2 ) ∈ R × R * , it holds z 2 z z z z 1 z z z - z 1 z z z ν 1 - z 2 z z z ν 2 < 0. Proof. Let f (z z z) = z 2 z z z z 1 z z z - z 1 z z z ν 1 - z 2 z z z ν 2 , z z z ∈ R × R * . Note first that f (0, z 2 ) = -z 2 z z z 1+ν 2
< 0 for z 2 = 0. Thus we can assume that z 1 = 0, as well. Let y y y := (y 1 , y 2 ) = z z z/ z z z . Then y 1 , y 2 ∈ (-1, 0)∪(0, 1), y y y = 1 and f (z z z) = g(y y y) = y 2 y 1y

1 ν 1 -y 2 ν 2 .
From y y y = 1, we infer that y 2 = ± 1y 2 1 . We have to consider four cases:

1 ν 1 . (5.5) 
But for σ ∈ (0, 1), we have that 1σ

1 ν 1 -1 2 ν 2 < 1 -σ 1 ν 1 -1 < 1 -σ 1 ν 1 (since 2/ν 2 > 2 and 1/ν 1 > 1)
and σ

2 ν 2 < 1 < 1 + σ 1 ν 1 
, so that (5.5) holds true.

Applying [START_REF] Polyakov | Consistent discretization of finite-time and fixed-time stable systems[END_REF]Theorem 4.1] to the two-dimensional vector field (5.1), we define the nonlinear state transformation between the original state x x x = x 1 x 2 := φ φ and a new state z z z = z 1 z 2 :

z z z = Φ Φ Φ(x x x) = x x x d d d d d d (-ln x x x d d d ) x x x, (5.6) 
with inverse transformation More explicitly, (5.6) corresponds to

x x x = Φ Φ Φ -1 (z z z) = d d d (ln z z z ) z z z z z z . ( 5 
z 1 z 2 =            e -sx 1-ν 2 x 1 e -ν 2 sx 1-ν 2 x 2 if (x 1 , x 2 ) = (0, 0) 0 0 else,
where s x is the solution of the implicit condition (5.8)

e - 2(2-ν 2 )sx 1-ν 2 x 2 1 + e -2sx 1-ν 2 x 2 2 = 1
that is solved numerically [START_REF] Moré | User guide for MINPACK-1[END_REF].

Finally, the obtained implicit numerical scheme in the transformed coordinates z z z is

z z z(t + ∆t) -z z z(t) ∆t = F F F(z z z(t + ∆t)),
where

F F F(z z z) = (I I I 2 -G G G d d d ) z z zz z z z z z G G G d d d z z z + I I I 2 F F F z z z √ z z z z z z .
Using this method, the time evolution of φ (t) with control parameters ν 2 = 1 2 , ν 1 = 1 3 is simulated for a time step ∆t = 0.01 (Fig. 6). We observe that it is stabilized in a finite time T 0 ≈ 4.23. 5.2.2. Time evolution of α(x,t) and β (x,t). The two first order hyperbolic PDEs for β (x,t), (4.32), and α(x,t), (4.36), are solved numerically using a first order downwind-upwind scheme [START_REF] Sainsaulieu | Calcul scientifique[END_REF]. Uniform spatial (∆x = 0.05) and temporal (∆t = 0.01) discretization steps are chosen, respecting the CFL stability condition max(λ (x)) ∆t ∆x ≤ 1. At each time t, the following steps are executed. First the boundary condition β (1,t) is evaluated from (4.8) knowing the value of φ (t), where µ = 2.379 is calculated from (4.9) by the trapezoidal rule on the spatial grid. Then, the first order downwind scheme β (x,t) = β (x,t -∆t) + λ (x) ∆t ∆x (β (x + ∆x,t -∆t)β (x,t -∆t))

translates the information for x from 1 to 0 on the spatial grid. Next, the boundary condition α(0,t) = β (0,t) is evaluated. Finally, the first order upwind scheme α(x,t) = α(x,t -∆t)λ (x) ∆t ∆x (α(x,t -∆t)α(x -∆x,t -∆t))

translates the information for x from 0 to 1 on the spatial grid.

The simulated time evolution of β (x,t) and α(x,t) is shown in Figure 7. We observe that they are stabilized in a finite time whose value can be verified using the expression 

T 1 = T 0 + 2

Time evolution of X p (t).

At each discrete time t, φ (t), α(x,t) and β (x,t) are known on a grid for x. The corresponding numerical value for X p (t) is computed from the definition for φ (t) (see (4.2)), numerically evaluating the integral by the trapezoidal rule on the spatial grid. The simulated time evolution of X p (t) is shown in Figure 8. 5.2.4. Time evolution of y(s,t). Given the simulated time evolutions of (α(x,t), β (x,t)), one can perform the inverse transformations in order to express the movement of the cable in the original coordinates y(s,t): --→ y(s,t).

For the numerical integration of z x (x,t) at a given time t, z(1,t) is set to X p (t) in order to satisfy the compatibility condition corresponding to (1.10). The spatial integration is then evaluated numerically using the trapezoidal rule for x from 1 to 0 on the spatial grid.

The obtained time evolution of y(s,t) is shown in Figure 8. In conclusion, both the platform X p (t) and the cable y(s,t) have been stabilized at the origin in a finite time, namely T 1 ≈ 4.76.

CONCLUSIONS AND FUTURE WORKS

A finite-time controller for the motion of an overhead crane described by a hybrid PDE-ODE system with varying tension along the cable is derived. Our feedback law incorporates existing results for the finite-time stabilization of 2 × 2 quasilinear hyperbolic systems, that involve kernels that are defined by a Goursat-type system of PDEs. Recent numerical methods are used to calculate the kernels and a simulation of the finite-time stabilization of the overhead crane is shown.

The computation of the proposed control law u(t) (4.26) needs the knowledge of the position y(s,t) of the cable on its entire length. An observer for this position would be needed if one wants to obtain a more realistic implementation using only the measurement of the position X p (t) of the platform and the angle θ (t) at the top of the cable.

Furthermore, the proposed crane model could be extended to the case with a variable length cable, and with an additional degree of freedom for the bench on which the platform moves (a perpendicular translation of the bench in the case of an overhead crane, or a rotation of the bench in the case of a tower crane).

FIGURE 1 .

 1 FIGURE 1. The overhead crane with flexible cable

Lemma 3 . 1 (

 31 Finite-time feedback law for system (3.1)-(3.2) [12]). System (3.1)-(3.2) is mapped on (3.3)-(3.4) with finite-time dynamics by the backstepping transform (3.5) with kernels satisfying (3.7) and by using the feedback law

Remark 1 .

 1 Actually, it follows from (4.22) and (4.23) that f and g take strictly positive values on T. The same is true for L αα = L β β and L αβ = L β α .

.42) φ 1 :

 1 = µβ 0 (1). (4.43)

  . The used controller gains correspond to the kernels L L L evaluated at the boundary (x = 1, ξ ), that are shown in detail in Fig 5.

15 LFIGURE 4 .r 1 s 0 0 e r 2 s where r 1 r 2 = 2

 15422 FIGURE 4. Inverse kernels L L L. Dotted boundaries correspond to boundary conditions at (x, 0) and (x, x) of the Goursat system. Dashed boundaries correspond to controller gains at (1, ξ ) used in the equations (4.5), (4.6), (4.9).

. 7 )

 7 Here, the canonical homogeneous "norm" [25, Eq. 3.4] is defined asx x x d d d = e s x where s x ∈ R satisfies d d d(-s x )x x x = 1.(5.8)

FIGURE 6 .

 6 FIGURE 6. Simulated time evolution of φ (t) and φ (t).

FIGURE 7 .

 7 FIGURE 7. Simulated time evolution of β (x,t) and α(x,t), plotted for x = 0 and x = 1.

Definition 1 (Backstepping transform[START_REF] Coron | Local exponential H 2 stabilization of a 2×2 quasilinear hyperbolic system using backstepping[END_REF]). The backstepping transform between the original state variables w w w(x,t) and the target state variables γ γ γ(x,t) is defined through a Volterra integral equation
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