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FINITE-TIME STABILIZATION OF AN OVERHEAD CRANE WITH A
FLEXIBLE CABLE SUBMITTED TO AN AFFINE TENSION

MARC WIJNAND, BRIGITTE D’ANDRÉA-NOVEL, AND LIONEL ROSIER

ABSTRACT. The paper is concerned with the finite-time stabilization of a hybrid PDE-ODE system de-
scribing the motion of an overhead crane with a flexible cable. The dynamics of the flexible cable is
described by the wave equation with a variable coefficient which is an affine function of the curvilinear ab-
scissa along the cable. Using several changes of variables, a backstepping transformation, and a finite-time
stable second-order ODE for the dynamics of a conveniently chosen variable, we prove that a global finite-
time stabilization occurs for the full system constituted of the platform and the cable. The kernel equations
and the finite-time stable ODE are numerically solved in order to compute the nonlinear feedback law, and
numerical simulations validating our finite-time stabilization approach are presented.
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1. INTRODUCTION

1.1. Stabilization of hybrid PDE-ODE systems. The stabilization of hybrid PDE-ODE systems has
attracted the attention of the control community since several decades. We can mention applications such
as the control of a rotating body-beam without natural damping [11] as well as the case of a rotating and
translating body-beam [19], a slide-flute [4], a switched power converter with a transmission line [13],
turbulent fluid motion and traffic flow [29], and the overhead crane taking into account the flexibility of
the cable, as discussed below.

1.2. Crane model. In [1], the authors derived and investigated a model for the dynamics of a motorized
platform of mass M moving along a horizontal bench. A flexible (and nonstretching) cable of length 111
was attached to the platform and was holding a load mass m. Assuming that the transversal and angular
displacements were small and that the acceleration of the load mass could be neglected, they obtained
the following system:

ytt − (d(s)ys)s = 0, (1.1)

ys(0, t) = 0, (1.2)

y(1, t) = Xp(t), (1.3)

Ẍp(t) = λ (dys)(1, t)+
V (t)

M
, (1.4)

1
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where

d(s) := gs+
gm
ρ

, (1.5)

λ :=
(m+ρ)g
Md(1)

· (1.6)

The initial conditions are y(s,0) = y0(s), yt(s,0) = y1(s),Xp(0) = X0
p , Ẋp(0) = X1

p . In the above system, s
denotes the curvilinear abscissa (i.e. the arclength) along the cable, y = y(s, t) is the horizontal displace-
ment at time t of the point on the cable of curvilinear abscissa s, Xp is the abscissa of the platform, ρ

the mass per unit length of the cable, and V the force applied to the platform. As usual, ytt = ∂ 2y/∂ t2,
yss = ∂ 2y/∂ s2, etc., and Ẍp = d2Xp/dt2.

In [5], the authors supposed that m� ρ , so that gm/ρ � gs for s ∈ (0,1) and it could be assumed
that the function d = d(s) was constant. In the present paper, we go back to the original problem without
this assumption, so that the tension d(s) is given by its affine expression (1.5). After the following
intermediate feedback law:

V (t) = MU(t)− (m+ρ)gθ(t), with θ(t) := ys(1, t), (1.7)

where the angular deviation θ(t) of the cable with respect to the vertical axis, at the curvilinear abscissa
s = 1 (i.e. at the connection point to the platform), is supposed to be measured (see Fig. 1), we obtain
the following system:

ytt − (d(s)ys)s = 0, (s, t) ∈ (0,1)× (0,+∞), (1.8)
ys(0, t) = 0, t ∈ (0,+∞), (1.9)

y(1, t) = Xp(t), t ∈ (0,+∞), (1.10)

Ẍp(t) =U(t), t ∈ (0,+∞). (1.11)

with initial conditions y(s,0) = y0(s), yt(s,0) = y1(s),Xp(0) = X0
p , Ẋp(0) = X1

p .

1.3. Previously obtained control results for the crane. An asymptotic (but not exponential) stabiliza-
tion of (1.1)-(1.4) was established in [1], while an exponential stabilization was subsequently derived
in [2] by using the cascaded structure of the system and a backstepping approach. A similar result was
obtained for system (1.8)-(1.11) with a constant tension (but with Dirichlet boundary conditions) in [22].
The dynamics of the load mass was taken into account in [20].

The backstepping approach is a powerful tool for the design of stabilizing controllers in the context
of finite dimensional systems (see for example [27]), but the cascaded structure of flexible mechanical
systems coupling ODE and PDE is also a useful property in regard to stabilization, as for the overhead
crane with flexible cable. One can also refer to [11], where the authors proposed a class of nonlinear
asymptotically stabilizing boundary feedback laws for a rotating body-beam without natural damping.
Let us also mention that in [3] the authors considered the case of a variable length flexible cable.

In [2], if we restrict ourselves to system (1.8)-(1.11) with a constant tension (rescaled to be 1), the
authors considered the linear feedback law

U(t) =−K−1 (yst(1, t)+ kyt(1, t)) −µ
(
Ẋp(t)+K−1 (ys(1, t)+ ky(1, t))

)
,

where k,K > 0 and µ >K/2 were some constants, and proved that system (1.8)-(1.11) was exponentially
stable.
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FIGURE 1. The overhead crane with flexible cable

In [5], the same system with constant tension was stabilized in finite time by the nonlinear feedback
law

U(t) =−yst(1, t)−byt(1, t)+ ys(1, t)eν2 −
⌊

y(1, t)+
∫ 1

0
yt(ξ , t)dξ

⌉ν1

, (1.12)

where 0 < ν2 < 1, ν1 > ν2
2−ν2

and bxeν1 := sign(x)|x|ν1 . (Actually, the finite-time stability was fully
justified in [5] when 0 < ν2 < 1 and ν1 = 1, although numerical simulations suggested that it was valid
for 0 < ν2 < 1 and ν1 >

ν2
2−ν2
·)

1.4. Finite-time stabilization of 2× 2 hyperbolic systems. Solutions of certain hyperbolic systems
with transparent boundary conditions can reach the equilibrium state in finite time. Such a property,
called finite-time stability in [6, 23] or super-stability in [28], was first noticed in [17] for the usual
wave equation. The extension of such a property to the wave equation on a network was investigated
in [6, 28]. It turns out that the finite-time stability also holds for one-dimensional first order quasilinear
hyperbolic systems of diagonal form without source terms [16, 23]. If source terms are incorporated in
such systems, the finite-time stability is in general lost when using transparent boundary conditions, but
a rapid stabilization still occurs [14]. In the linear case, however, the use of a boundary feedback law
based on a backstepping transformation allows to recover the finite-time stability for hyperbolic systems
with source terms [12].

1.5. Finite-stability of an abstract evolution system. Let Φ = Φ(x, t), x ∈ H, t ∈ R+, be the flow
associated with an evolution system in a Hilbert space H. We assume that Φ satisfies the semigroup
property: Φ(Φ(x,s), t) = Φ(x, t+ s) for all x ∈H and all t,s ∈R+, and that x = 0 is an equilibrium point;
that is, Φ(0, t) = 0 for all t ∈ R+.

We say that the flow
(
Φ(x, t)

)
(x,t)∈H×R+

is globally finite-time stable if there exists a nondecreasing
function T : (0,+∞)→ (0,+∞) such that Φ(x, t) = 0 for all x ∈ H \{0} and all t ≥ T (‖x‖H), and if the
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equilibrium point x = 0 is Lyapunov stable; that is, for each ε > 0, there exists some δ > 0 such that

‖x‖H < δ ⇒‖Φ(x, t)‖H < ε ∀t ≥ 0.

The finite-time stability of the second-order ODE ẍ = −bẋeν2 −bxeν1 , or equivalently of the first-order
system

ẋ1 = x2, (1.13)
ẋ2 = −bx2eν2−bx1eν1 , (1.14)

was established for 0 < ν2 < 1 and ν1 >
ν2

2−ν2
by Haimo (see [15]), and for 0 < ν2 < 1 and ν1 =

ν2
2−ν2

by
Bhat and Bernstein (see [8, 9]).

1.6. Aim and structure of the present paper. The aim of the paper is to design a boundary feedback
law U(t) leading to the finite-time stability of the system with affine tension. For that purpose, we first
use several changes of variables to transform the original system (1.8)-(1.11) into a 2×2 hyperbolic
system with coupling terms. Next, following [12], we define a target system for which the application of
transparent boundary conditions gives a finite-time stability, and we define a backstepping transformation
leading to this target system. Finally, we show that the finite-time stabilization of a certain quantity φ

defined in terms of Xp(t) and z = z(x, t) (see below (4.2)) yields the finite-time stabilization of both the
platform and the cable.

The paper is scheduled as follows. In Section 2, the original system is transformed into a 2×2 hyper-
bolic system with coupling terms. In Section 3, the 2×2 hyperbolic system is transformed into the target
system by using some Volterra integral transformation borrowed from [12]. Methods for numerically
solving the kernel equations are described. Section 4 is dedicated to the proof of our main result con-
cerning the finite-time stabilization of the hybrid PDE-ODE system. Our theoretical result is illustrated
by a simulation of the finite-time stabilization of the overhead crane in Section 5. Finally, we give some
words of conclusion in Section 6.

2. DERIVATION OF THE 2×2 HYPERBOLIC SYSTEM

The second order hyperbolic equation (1.8) with boundary conditions (1.9)-(1.10) and initial condi-
tions is rewritten as a 2×2 quasilinear hyperbolic system by performing two transformations.

2.1. First transformation. Following [18], we set z(x, t) := y(s, t), where

x(s) :=
1
J

∫ s

0
d−1(σ)dσ =

1
gJ

ln
(

1+
ρ

m
s
)
≥ 0 (2.1)

and

J :=
∫ 1

0
d−1(σ)dσ =

1
g

ln
(

1+
ρ

m

)
> 0,

so that x(0) = 0 and x(1) = 1. With this transformation, the PDE (1.8) can be rewritten as

ztt(x, t)−λ
2(x)zxx(x, t) = 0, (2.2)

where

λ (x) :=
1

J
√

d̃(x)
, d̃(x) := d(s(x)) =

gm
ρ

egJx.
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The PDE (2.2) has to be supplemented with the boundary conditions
zx(0, t) = 0,

z(1, t) = Xp(t),

Ẍp(t) =U(t),

(2.3)

and the initial conditions {
z(x,0) = z0(x) = y0(s),

zt(x,0) = z1(x) = y1(s).
(2.4)

2.2. Second transformation. Equation (2.2) is subsequently rewritten as a system of two first-order
PDEs. Noticing that (∂t−λ∂x)(∂t +λ∂x)z =−λλ ′zx = (∂t +λ∂x)(∂t−λ∂x)z, we infer that the Riemann
invariants S := zt +λ zx and D := zt −λ zx satisfy the system

St(x, t)−λ (x)Sx(x, t) = −λ ′(x)
2

(S(x, t)−D(x, t)), (2.5)

Dt(x, t)+λ (x)Dx(x, t) = −λ ′(x)
2

(S(x, t)−D(x, t)). (2.6)

Setting

www(x, t) =
[

u(x, t)
v(x, t)

]
:=

[
e−

1
2 ln(λ (x))D(x, t)

e−
1
2 ln(λ (x))S(x, t)

]
=

1√
λ (x)

[
D(x, t)
S(x, t)

]
, (2.7)

we obtain the system

wwwt =

[
−λ (x) 0

0 λ (x)

]
wwwx +

[
0 −λ ′(x)

2
λ ′(x)

2 0

]
www (2.8)

with boundary conditions

u(0, t) = v(0, t), (2.9)
v(1, t) = W (t), (2.10)

W (t) denoting a feedback law that can be expressed in terms of the original control U(t) = Ẍp(t) and the
angle θ(t) = ys(1, t) as

W (t) =
√

J 4
√

d(1)
(

Ẋp(t)+
√

d(1)θ(t)
)
.

System (2.8)-(2.10) is in the form required to apply the backstepping transformation from [12].

3. BACKSTEPPING TRANSFORMATION AND KERNEL CALCULATION

3.1. Finite-time stabilization of the PDE. In [12], the following 2× 2 linear hyperbolic PDE system
is considered:

wwwt(x, t) =

[
−ε1(x) 0

0 ε2(x)

]
︸ ︷︷ ︸

ΣΣΣ(x)

wwwx(x, t)+
[

0 c1(x)
c2(x) 0

]
︸ ︷︷ ︸

CCC(x)

www(x, t) (3.1)

u(0, t) = qv(0, t) v(1, t) =W (t), (3.2)
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where www(x, t) =
[
u v

]ᵀ
(x, t), x ∈ [0,1], t ≥ 0, c1(x) and c2(x) are functions in C0([0,1]), ε1(x) and ε2(x)

are strictly positive functions in C1([0,1]), and q ∈ R∗. (For a discussion of the case q = 0, see [12,
§3.5].)

Clearly, system (2.8)-(2.10) is of the form (3.1)-(3.2) if we pick

ε1(x) = ε2(x) = λ (x) ∀x ∈ [0,1],

c2(x) =
λ ′(x)

2
=−c1(x) ∀x ∈ [0,1],

q = 1.

A backstepping transform is defined between the original state variables www(x, t) =
[
u v

]ᵀ
(x, t) and

the target state variables γγγ(x, t) =
[
α β

]ᵀ
(x, t) that satisfy the target system

γγγ t(x, t) = ΣΣΣ(x)γγγx(x, t), (3.3)
α(0, t) = qβ (0, t), β (1, t) = 0. (3.4)

Note that the target system (3.3)-(3.4) is finite-time stable, since after some time we have transparent
boundary conditions for both α and β .

Definition 1 (Backstepping transform [12]). The backstepping transform between the original state vari-
ables www(x, t) and the target state variables γγγ(x, t) is defined through a Volterra integral equation

γγγ(x, t) = www(x, t)−
∫ x

0
KKK(x,ξ )www(ξ , t) dξ (3.5)

with the direct kernels KKK(x,ξ ) decomposed as

KKK(x,ξ ) =
[

Kuu Kuv

Kvu Kvv

]
(x,ξ ).

The inverse transformation is given by

www(x, t) = γγγ(x, t)+
∫ x

0
LLL(x,ξ )γγγ(ξ , t) dξ (3.6)

with the inverse kernels

LLL(x,ξ ) =
[

Lαα Lαβ

Lβα Lββ

]
(x,ξ ).

By a direct calculation, it is proven in [12] that the direct kernels KKK are the solution of the following
Goursat system of two 2×2 first-order hyperbolic PDEs

ε1(x)Kuu
x + ε1(ξ )Kuu

ξ
=−ε

′
1(ξ )K

uu− c2(ξ )Kuv,

ε1(x)Kuv
x − ε2(ξ )Kuv

ξ
= ε

′
2(ξ )K

uv− c1(ξ )Kuu,

ε2(x)Kvu
x − ε1(ξ )Kvu

ξ
= ε

′
1(ξ )K

vu + c2(ξ )Kvv,

ε2(x)Kvv
x + ε2(ξ )Kvv

ξ
=−ε

′
2(ξ )K

vv + c1(ξ )Kvu

(3.7)
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on the triangular domain T = {(x,ξ ) | 0≤ ξ ≤ x≤ 1} (see Fig. 2) with the boundary conditions

Kuu(x,0) =
ε2(0)
qε1(0)

Kuv(x,0),

Kuv(x,x) =
c1(x)

ε1(x)+ ε2(x)
,

Kvu(x,x) =− c2(x)
ε1(x)+ ε2(x)

,

Kvv(x,0) =
qε1(0)
ε2(0)

Kvu(x,0)

for x ∈ [0,1].
It is also shown in [12] that the indirect kernels LLL satisfy a similar Goursat system of 4×4 first-order

hyperbolic PDEs defined on T.

x

ξ

0

1

1

T

∆x

∆
ξ

FIGURE 2. Domain T with uniform discretization grid

Note that it is also possible to compute the inverse kernels LLL from the direct kernels KKK [7]:

LLL(x,ξ ) = KKK(x,ξ )+
∫ x

ξ

KKK(x,σ)LLL(σ ,ξ )dσ . (3.8)

If the coefficients εi(x) and ci(x) in the Goursat systems are constant (independent of x or ξ ), explicit
solutions for the kernels have been obtained in [30]. In the general case, numerical methods have been
designed in [7]. These methods approximate the left-hand side of the equations of the Goursat system
(for instance (3.7)) by a directional derivative and interpolate between values at points of a triangular
half of an equidistant square grid as shown in Figure 2.

Lemma 3.1 (Finite-time feedback law for system (3.1)-(3.2) [12]). System (3.1)-(3.2) is mapped on
(3.3)-(3.4) with finite-time dynamics by the backstepping transform (3.5) with kernels satisfying (3.7)
and by using the feedback law

W (t) =
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ +

∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ . (3.9)
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3.2. Finite-time stabilization of the hybrid PDE-ODE system. In the case of the hybrid (PDE-ODE)
crane model (1.8)-(1.11), one does not control the dynamics of the system cable–platform through the
boundary condition v(1, t) =W (t), but rather through the acceleration Ẍp(t) =U(t) of the platform.

In that case, the transparent boundary condition β (1, t) = 0 in (3.4) is not necessarily satisfied.
Our goal is to design a feedback law U(t) in such a way that both β (1, t) and a new variable φ(t)

vanish after a finite time depending on the initial data. Next, both the target variable γγγ(x, t) and Xp(t)
will be stabilized in a finite time, after which the entire system will be at the equilibrium position. This
is the subject of the next section.

4. FINITE-TIME STABILITY OF THE COMPLETE SYSTEM

A finite-time stabilizer U(t) for the crane and the cable with affine tension is constructed as follows.
Our goal is to have the condition β (1, t) = 0 satisfied for t large enough. We write

2
Ẋp√
λ (1)

= 2
zt(1, t)√

λ (1)

=
[
1 1

]
www(1, t)

=
[
1 1

]
γγγ(1, t)+

∫ 1

0

[
1 1

]
LLL(1,ξ )γγγ(ξ , t)dξ

= α(1, t)+β (1, t)

+
∫ 1

0
[
(
Lαα(1,ξ )+Lβα(1,ξ )

)
α(ξ , t)+

(
Lαβ (1,ξ )+Lββ (1,ξ )

)
β (ξ , t)]dξ (4.1)

Let

φ(t) :=
2√
λ (1)

Xp(t)+
∫ 1

0
[a(x)α(x, t)+b(x)β (x, t)] dx (4.2)

where a(x) and b(x) are two functions to be defined. Then we have

φ̇(t) =
2√
λ (1)

Ẋp(t)+
∫ 1

0
[aαt +bβt ]dx

=
2√
λ (1)

Ẋp(t)+
∫ 1

0
[−aλαx +bλβx]dx

=
2√
λ (1)

Ẋp(t)+ [−a(x)λ (x)α(x, t)+b(x)λ (x)β (x, t)]1x=0 +
∫ 1

0
[(aλ )xα− (bλ )xβ ]dx (4.3)

where we used an integration by parts in the last line. Replacing in (4.3) Ẋp(t) by its expression in (4.1)
results in

φ̇(t) = α(1, t)+β (1, t)+ [−aλα +bλβ ]1x=0

+
∫ 1

0

[
(Lαα(1,x)+Lβα(1,x)+(aλ )x)α +(Lαβ (1,x)+Lββ (1,x)− (bλ )x)β

]
dx. (4.4)
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We define the functions a and b as

a(x) :=
1

λ (x)

(
a0−

∫ x

0

(
Lαα(1,ξ )+Lβα(1,ξ )

)
dξ

)
, (4.5)

b(x) :=
1

λ (x)

(
b0 +

∫ x

0

(
Lαβ (1,ξ )+Lββ (1,ξ )

)
dξ

)
(4.6)

with a0,b0 some constants still to choose. Then

Lαα(1,x)+Lβα(1,x)+(aλ )x = 0 = Lαβ (1,x)+Lββ (1,x)− (bλ )x,

and hence (4.4) becomes

φ̇ = [1− (aλ )(1)]α(1, t)+ [1+(bλ )(1)]β (1, t)+(a0−b0)α(0, t) (4.7)

for α(0, t) = β (0, t), (q = 1). Now we let

a0 = b0 := 1+
∫ 1

0

(
Lαα(1,ξ )+Lβα(1,ξ )

)
dξ ,

so that

1− (aλ )(1) = 0 = a0−b0.

We obtain

φ̇(t) = [1+(bλ )(1)]β (1, t)

=

[
1+b0 +

∫ 1

0
[Lαβ (1,x)+Lββ (1,x)]dx

]
β (1, t)

= µβ (1, t) (4.8)

with

µ := 2+
∫ 1

0

(
Lαα(1,x)+Lβα(1,x) +Lαβ (1,x)+Lββ (1,x)

)
dx. (4.9)

Later on, we shall define β (1, t) from φ̇(t) using (4.8). It is thus important to prove that µ 6= 0. This
is done in the following proposition.

Proposition 4.1. The kernels L satisfy

Lαα(x,ξ ) = Lββ (x,ξ )≥ 0 ∀(x,ξ ) ∈ T,

Lαβ (x,ξ ) = Lβα(x,ξ )≥ 0 ∀(x,ξ ) ∈ T,

and hence µ ≥ 2.

Proof. Recall that ε1(x) = ε2(x) = λ (x) and that c1(x) = −c2(x) = −λ ′(x)
2 . Let C1 > 0 and C2 > 0 be

defined by

λ (x) =
1

J
√

gm
ρ

egJx
=: C1e−C2x.
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Then the Goursat system satisfied by the kernels L reads (see [12])

λ (x)Lαα
x +λ (ξ )Lαα

ξ
= −λ

′(ξ )Lαα − λ ′(x)
2

Lβα , (x,ξ ) ∈ T, (4.10)

λ (x)Lαβ
x −λ (ξ )Lαβ

ξ
= λ

′(ξ )Lαβ − λ ′(x)
2

Lββ , (x,ξ ) ∈ T, (4.11)

λ (x)Lβα
x −λ (ξ )Lβα

ξ
= λ

′(ξ )Lβα − λ ′(x)
2

Lαα , (x,ξ ) ∈ T, (4.12)

λ (x)Lββ
x +λ (ξ )Lββ

ξ
= −λ

′(ξ )Lββ − λ ′(x)
2

Lαβ , (x,ξ ) ∈ T, (4.13)

with the boundary conditions

Lαα(x,0) = Lαβ (x,0), 0≤ x≤ 1, (4.14)

Lαβ (x,x) = − λ ′(x)
4λ (x)

=
C2

4
, 0≤ x≤ 1, (4.15)

Lβα(x,x) =
C2

4
, 0≤ x≤ 1, (4.16)

Lββ (x,0) = Lβα(x,0), 0≤ x≤ 1. (4.17)

The existence and uniqueness of the solution (Lαα ,Lαβ ,Lβα ,Lββ ) ∈ [C0(T)]4 was already established in
[12, Theorem A.1]. However, the claims in Proposition 4.1 are still to be justified.

We introduce the following 2×2 system:

λ (x) fx +λ (ξ ) fξ = −λ
′(ξ ) f +µ(x)g, (x,ξ ) ∈ T, (4.18)

λ (x)gx−λ (ξ )gξ = λ
′(ξ ) f +µ(x) f , (x,ξ ) ∈ T, (4.19)

with the boundary conditions

f (x,0) = g(x,0), 0≤ x≤ 1, (4.20)
g(x,x) = C, 0≤ x≤ 1, (4.21)

where C := C2/4 > 0 and µ(x) = −λ ′(x)/2 > 0 for x ∈ [0,1]. If we prove the existence of a solution
( f ,g) of (4.18)-(4.21) in [C0(T)]2, then setting Lαα = Lββ := f , Lαβ = Lβα := g, we obtain a solution
of (4.10)-(4.17) in [C0(T)]4. The uniqueness of such a solution reduces the study of system (4.10)-(4.17)
to those of system (4.18)-(4.21). Therefore, Proposition 4.1 is a direct consequence of the following
lemma.

Lemma 4.2. Let C > 0, λ ∈C1([0,1]) and µ ∈C0([0,1]) with λ (x)> 0 and µ(x)> 0 for all x ∈ [0,1].
Then there exists a unique solution ( f ,g) ∈ [C0(T,R+)]

2 of (4.18)-(4.21), where R+ = [0,+∞).

Proof of Lemma 4.2. We first express ( f ,g) as a fixed-point of a map from [C0(T,R+)]
2 into itself. Next,

reducing the domain for (x,ξ ) to a “trapezoid”, we prove that the above map is a contraction. The full
domain T is covered by iterating the above construction.
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The characteristic system for (4.18) reads

dx
ds

= λ (x),

dξ

ds
= λ (ξ ),

dz
ds

= −λ
′(ξ )z+µ(x)g

with the boundary conditions x(0) = x0, ξ (0) = 0, and z(0) = g(x0,0).
Let Λ(x) :=

∫ x
0

ds
λ (s) . Then one readily obtains

x(s) = Λ
−1(Λ(x0)+ s), ξ (s) = Λ

−1(s)

and

f (x(s),ξ (s)) = z(s) = e−
∫ s

0 λ ′(ξ (σ))dσ

(
g(x0,0)+

∫ s

0
e
∫

σ

0 λ ′(ξ (τ))dτ
µ(x(σ))g(x(σ),ξ (σ))dσ

)
.

Since s = Λ(ξ ), x0 = Λ−1(Λ(x)−Λ(ξ )), we have that x(σ) = Λ−1(Λ(x)−Λ(ξ )+σ), ξ (σ) = Λ−1(σ)
and

f (x,ξ ) = e−
∫ Λ(ξ )

0 λ ′(Λ−1(σ))dσ
[
g(Λ−1(Λ(x)−Λ(ξ )),0)

+
∫

Λ(ξ )

0
e
∫

σ

0 λ ′(Λ−1(τ))dτ
µ(Λ−1(Λ(x)−Λ(ξ )+σ))g(Λ−1(Λ(x)−Λ(ξ )+σ),Λ−1(σ))dσ

]
(4.22)

Similarly, the characteristic system for (4.19) reads

dx
ds

= λ (x),

dξ

ds
= −λ (ξ ),

dz
ds

= λ
′(ξ )z+µ(x) f

with the boundary conditions x(0) = x0, ξ (0) = x0, and z(0) =C.
We readily obtain

x(s) = Λ
−1(Λ(x0)+ s), ξ (s) = Λ

−1(Λ(x0)− s)

so that

s =
Λ(x)−Λ(ξ )

2
, x0 = Λ

−1
(

Λ(x)+Λ(ξ )

2

)
,

and

g(x(s),ξ (s)) = z(s) = e
∫ s

0 λ ′(ξ (σ))dσ

(
C+

∫ s

0
e−

∫
σ

0 λ ′(ξ (τ))dτ
µ(x(σ)) f (x(σ),ξ (σ))dσ

)
.
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It follows that

g(x,ξ )= e
∫ Λ(x)−Λ(ξ )

2
0 λ ′

(
Λ−1

(
Λ(x)+Λ(ξ )

2 −σ

))
dσ

(
C+

∫ Λ(x)−Λ(ξ )
2

0
e−

∫
σ

0 λ ′
(

Λ−1
(

Λ(x)+Λ(ξ )
2 −τ

))
dτ

µ

(
Λ
−1
(

Λ(x)+Λ(ξ )

2
+σ

))
× f
(

Λ
−1
(

Λ(x)+Λ(ξ )

2
+σ

)
,Λ−1

(
Λ(x)+Λ(ξ )

2
−σ

))
dσ

)
. (4.23)

Replacing in (4.23) f by its expression in (4.22), we arrive to g = Γ(g), where

Γ(g)(x,ξ ) :=

e
∫ Λ(x)−Λ(ξ )

2
0 λ ′

(
Λ−1

(
Λ(x)+Λ(ξ )

2 −σ

))
dσ

(
C+

∫ Λ(x)−Λ(ξ )
2

0
e−

∫
σ

0 λ ′
(

Λ−1
(

Λ(x)+Λ(ξ )
2 −τ

))
dτ

µ

(
Λ
−1
(

Λ(x)+Λ(ξ )

2
+σ

))
×e−

∫ Λ(x)+Λ(ξ )
2 −σ

0 λ ′(Λ−1(σ))dσ

{
g(Λ−1(2σ),0) +

∫ Λ(x)+Λ(ξ )
2 −σ

0
e
∫

κ

0 λ ′(Λ−1(τ))dτ
µ(Λ−1(2σ +κ))

×g(Λ−1(2σ +κ),Λ−1(κ))dκ

}
dσ

)
. (4.24)

For 0≤ ε1 ≤ ε2 ≤ 1, let

Tε1,ε2 := {(x,ξ ) ∈ T; Λ(ε1)≤ Λ(x)−Λ(ξ )≤ Λ(ε2)},
Eε1,ε2 := C0(Tε1,ε2 ,R+).

Let ε ∈ (0,1). Noticing that the restriction of Γ(g) to T0,ε depends only on the restriction of g to T0,ε , we
can define a map g∈ E0,ε → Γ(g)∈ E0,ε and find a constant K = K

(
‖µ‖L∞(0,1),‖λ ′‖L∞(0,1),‖Λ‖L∞(0,1)

)
>

0 such that

‖Γ(g1)−Γ(g2)‖L∞(T0,ε ) ≤ K sup
(x,ξ )∈T0,ε

Λ(x)−Λ(ξ )

2
‖g1−g2‖L∞(T0,ε ) ≤

KΛ(ε)

2
‖g1−g2‖L∞(T0,ε ).

For ε > 0 small enough, we have that KΛ(ε)/2 < 1, so that the map g ∈ E0,ε → Γ(g) ∈ E0,ε is a contrac-
tion, and hence it has a unique fixed point by the contraction mapping theorem. Using (4.22), this yields
a unique solution ( f ,g) ∈ E2

0,ε . Proceeding in the same way (using the values of g on the characteristic
curve Λ(x)−Λ(ξ ) = Λ(ε) computed in the previous step), we can extend g and f on the trapezoids Tε,2ε ,
T2ε,3ε , etc. Finally, the functions g and f are defined on the whole domain T and they take nonnegative
values. The proofs of Lemma 4.2 and of Proposition 4.1 are complete. �

Remark 1. Actually, it follows from (4.22) and (4.23) that f and g take strictly positive values on T. The
same is true for Lαα = Lββ and Lαβ = Lβα .

The control input Ẍp(t) =U(t) is designed in such a way that φ(t) obeys the following dynamics with
finite-time stability (see [9, 15])

φ̈(t)+ bφ̇(t)eν2 + bφ(t)eν1 = 0, (4.25)
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where 0 < ν2 < 1, ν1 ≥ ν2
2−ν2

and bxeν1 := sign(x)|x|ν1 . After substitution of the expression (4.2) in
(4.25), one obtains the feedback law

U(t) :=−
√

λ (1)
2

(∫ 1

0
(a(x)αtt(x, t)+b(x)βtt(x, t)) dx

+

⌊
2√
λ (1)

Ẋp(t)+
∫ 1

0
(a(x)αt(x, t)+b(x)βt(x, t)) dx

⌉ν2

+

⌊
2√
λ (1)

Xp(t)+
∫ 1

0
(a(x)α(x, t)+b(x)β (x, t)) dx

⌉ν1
)
. (4.26)

We claim that with this feedback law, the crane and the cable with affine tension are stabilized in finite
time. We first establish the finite-stability of the system in the new variables (γγγ,φ), and next we go back
to the original variables (z,Xp). Let H := [L2(0,1)]2×R2 be endowed with the norm

‖(α,β ,φ 0,φ 1)‖2
H :=

∫ 1

0
[α(x)2 +β (x)2]dx+ |φ 0|2 + |φ 1|2.

Theorem 4.3. Let ν2,ν1 ∈ R with 0 < ν2 < 1 and ν1 ≥ ν2
2−ν2

. Then the system (3.3), (4.25), with the
boundary conditions

α(0, t) = β (0, t), β (1, t) = µ
−1

φ̇(t), (4.27)

is well-posed and globally finite-time stable in the Hilbert space H. More precisely, there exists a non-
decreasing function T1 : (0,+∞)→ (0,+∞) such that for all (α0,β 0,φ 0,φ 1) ∈ H, the solution of (3.3),
(4.25), (4.27) and (α(.,0),β (.,0),φ(0), φ̇(0)) = (α0,β 0,φ 0,φ 1) satisfies

α(x, t) = β (x, t) = 0, ∀x ∈ [0,1], ∀t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H), (4.28)

φ(t) = 0, ∀t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H). (4.29)

Proof. We use the cascaded structure of the PDE-ODE system. The Cauchy problem

φ̈(t)+ bφ̇(t)eν2 + bφ(t)eν1 = 0, t ∈ [0,T ], (4.30)

(φ(0), φ̇(0)) = (φ 0,φ 1) (4.31)

admits solutions φ ∈ C2([0,T ]) for some (possibly small) T > 0 by Peano’s theorem. The solution is
actually unique forward, defined on [0,T ] for all T > 0, and a global finite-time stability occurs for
system (4.25) (see [8, 9, 15]). Let T0 : (0,+∞)→ (0,+∞) be a nondecreasing function such that

φ(t) = 0 if t ≥ T0(||(φ 0,φ 1)||).

where ||(φ 0,φ 1)||= (|φ 0|2 + |φ 1|2) 1
2 . Next we consider the system

βt = λ (x)βx, x ∈ (0,1), t > 0, (4.32)

β (1, t) = µ
−1

φ̇(t), t > 0, (4.33)

β (x,0) = β
0(x), x ∈ (0,1). (4.34)
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Following [10, Definition 2.1 p. 25], for given T > 0, β 0 ∈ L2(0,1) and φ ∈ H1(0,T ), we say that a
solution of the Cauchy problem (4.32)-(4.34) is a function β ∈ C0([0,T ],L2(0,1)) such that, for every
τ ∈ [0,T ] and every η ∈C1([0,1]× [0,τ]) such that η(0, t) = 0 for all t ∈ [0,T ], we have

−
∫

τ

0

∫ 1

0
(ηt − (λη)x)β dxdt− λ (1)

µ

∫
τ

0
η(1, t)φ̇(t)dt +

∫ 1

0
[η(x,τ)β (x,τ)−η(x,0)β 0(x)]dx = 0.

Then, following closely [10, Theorem 2.4 p. 27], it can be proved that there exists a unique solution β ∈
C0([0,T ],L2(0,1)) of the Cauchy problem (4.32)-(4.34). Furthermore, using the writing λ (x) =C1e−C2x,
we readily obtain with the method of characteristics that β is given by

β (x, t) =

 β 0
(

1
C2

ln(eC2x +C1C2t)
)

if t < eC2−eC2x

C1C2
,

µ−1φ̇

(
t + eC2x−eC2

C1C2

)
if t ≥ eC2−eC2x

C1C2
·

(4.35)

In particular, since φ(t) = 0 for t ≥ T0(‖(φ 0,φ 1)‖), we infer that β (x, t) = 0 for x ∈ [0,1] and t ≥
T0(‖(φ 0,φ 1)‖)+ eC2−eC2x

C1C2
.

Note also that β has a trace β (0, ·) ∈ L2(0,T ) for all T > 0, which is given by

β (0, t) =

 β 0
(

1
C2

ln(1+C1C2t)
)

if t < eC2−1
C1C2

,

µ−1φ̇

(
t + 1−eC2

C1C2

)
if t ≥ eC2−1

C1C2
·

Similarly, it can be proved that for any α0 ∈ L2(0,1), there exists for all T > 0 a unique solution
α ∈C0([0,T ],L2(0,1)) of the Cauchy problem

αt =−λ (x)αx, x ∈ (0,1), t > 0, (4.36)
α(0, t) = β (0, t), t > 0, (4.37)

α(x,0) = α
0(x), x ∈ (0,1). (4.38)

Furthermore, it is given by

α(x, t) =

 α0
(

1
C2

ln(eC2x−C1C2t)
)

if t < eC2x−1
C1C2

,

β

(
0, t− eC2x−1

C1C2

)
if t ≥ eC2x−1

C1C2
·

(4.39)

Since α(0, t) = β (0, t) = 0 for t ≥ T0(‖(φ 0,φ 1)‖)+ eC2−1
C1C2

, we infer that α(x, t) = 0 for x ∈ [0,1] and

t ≥ T0(‖(φ 0,φ 1)‖)+ eC2+eC2x−2
C1C2

. Thus

φ(t) = 0, for t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H) := T0(‖(φ 0,φ 1)‖)+ 2eC2−2
C1C2

,

α(x, t) = β (x, t) = 0, for t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H) and x ∈ [0,1].

Using the stability of the origin in R2 for (4.25) and the formulas (4.35), (4.39), we infer the stability
of the origin in H for system (3.3), (4.25) and (4.27), which is thus finite-time stable. �
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Introduce the space

H := {(z0,z1,Ω0,Ω1) ∈ H2(0,1)×H1(0,1)×R×R;

z0
x(0) = 0, z0(1) = Ω

0,

µβ
0(1) =

2√
λ (1)

Ω
1−a(1)λ (1)α0(1)+b(1)λ (1)β 0(1)+

∫ 1

0
[(aλ )xα

0− (bλ )xβ
0]dx,

with
[

α0

β 0

]
(x) :=

[
u0

v0

]
(x)−

∫ x

0
K(x,ξ )

[
u0

v0

]
(ξ )dξ ∀x ∈ [0,1]

and
[

u0

v0

]
(x) :=

1√
λ (x)

[
z1(x)−λ (x)z0

x(x)

z1(x)+λ (x)z0
x(x)

]
∀x ∈ [0,1]}

endowed with the norm ‖(z0,z1,Ω0,Ω1)‖2
H := ‖z0‖2

H2(0,1)+‖z
1‖2

H1(0,1)+ |Ω
0|2 + |Ω1|2.

We are in a position to state the main result in this paper.

Theorem 4.4. Let ν2,ν1 ∈ R with 0 < ν2 < 1 and ν1 ≥ ν2
2−ν2

. Then the system (2.2)-(2.3) with the
feedback law (4.26) is well-posed and globally finite-time stable in the Hilbert space H. More precisely,
there exists a nondecreasing function T : (0,+∞)→ (0,+∞) such that for all (z0,z1,Ω0,Ω1) ∈H, the
solution of (2.2)-(2.3), (4.26) and (z(.,0),zt(.,0),Xp(0), Ẋp(0)) = (z0,z1,Ω0,Ω1) satisfies

z(x, t) = 0, ∀x ∈ [0,1], ∀t ≥ T (‖(z0,z1,Ω0,Ω1)‖H), (4.40)

Xp(t) = 0, ∀t ≥ T (‖(z0,z1,Ω0,Ω1)‖H). (4.41)

Proof. Let u0,v0,α0,β 0 ∈ H1(0,1) be as in the definition of the space H. Note that α0(0) = β 0(0), for
z0

x(0) = 0. Let

φ
0 :=

2√
λ (1)

Ω
0 +

∫ 1

0

[
a(x)α0(x)+b(x)β 0(x)

]
dx, (4.42)

φ
1 := µβ

0(1). (4.43)

We infer from Theorem 4.3 the existence and uniqueness of a solution (α,β ,φ) on R+ of (3.3), (4.25),
(4.27), and (α(.,0),β (.,0),φ , φ̇) = (α0,β 0,φ 0,φ 1), and this solution satisfies (4.28)-(4.29). We know
also from Theorem 4.3 that α,β ∈C0([0,T ],L2(0,1)) and that φ ∈C2([0,T ]) for all T > 0.

Here the initial data are more regular, and therefore the trajectories are expected to be more regular.

CLAIM 1. α,β ∈C0([0,T ],H1(0,1))∩C0([0,1],H1(0,T )) for all T > 0.

Indeed, using the properties β 0 ∈H1(0,1), φ̇ ∈C1([0,T ])⊂H1(0,T ), the compatibility condition (4.43)
and the formula (4.35), we infer that β ∈C0([0,T ],H1(0,1))∩C0([0,1],H1(0,T )). In particular, β (0, .)∈
H1(0,T ). In the same way, using the properties α0 ∈H1(0,1), β (0, .)∈H1(0,T ), the compatibility con-
dition α0(0)= β 0(0) and the formula (4.39), we conclude that α ∈C0([0,T ],H1(0,1))∩C0([0,1],H1(0,T )).

Next, we define respectively Xp(t) as

Xp(t) :=

√
λ (1)
2

(
φ(t)−

∫ 1

0
[a(x)α(x, t)+b(x)β (x, t)]dx

)
, (4.44)
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www(x, t) as

www(x, t) =
[

u(x, t)
v(x, t)

]
:= γγγ(x, t)+

∫ x

0
LLL(x,ξ )γγγ(ξ , t)dξ (4.45)

(with γγγ(x, t) :=
[
α(x, t) β (x, t)

]ᵀ), and [D(x, t) S(x, t)]T as[
D(x, t)
S(x, t)

]
:=
√

λ (x)w(x, t). (4.46)

Clearly, we also have that

u,v,D,S ∈C0([0,T ],H1(0,1))∩C0([0,1],H1(0,T )) ∀T > 0. (4.47)

Furthermore, since γγγ satisfies (3.3), we obtain that www satisfies (2.8) and that the functions D,S satisfy
system (2.5)-(2.6). We are in a position to define the function z(x, t).

CLAIM 2. For every T > 0, there exists a unique function z ∈C0([0,T ],H2(0,1))∩C0([0,1],H2(0,T ))
of the system

zt =
S+D

2
, (x, t) ∈ (0,1)× (0,T ), (4.48)

zx =
S−D

2λ
, (x, t) ∈ (0,1)× (0,T ), (4.49)

z(1,0) = z0(1) = Xp(0). (4.50)

Indeed, setting f := (S +D)/2 and g = (S−D)/(2λ ), we notice that Schwarz’ condition fx = gt is
satisfied, since by (2.5)-(2.6)

gt =
St −Dt

2λ
= λ

Sx +Dx

2λ
+0 = fx.

On the other hand, the compatibility condition z0(1) = Xp(0) is fulfilled, for

Xp(0) =

√
λ (1)
2

(
φ

0−
∫ 1

0
[a(x)α0(x)+b(x)β 0(x)]dx

)
= Ω

0 = z0(1),

where we used (4.44), (4.42) and the property z0(1) = Ω0 from the definition of H. It follows that there
exists a unique solution z = z(x, t) of system (4.48)-(4.50) which is given explicitly by

z(x, t) = Xp(0)+
∫ t

0
f (1,s)ds+

∫ x

1
g(s, t)ds = z0(1)+

∫ x

1
g(s,0)ds+

∫ t

0
f (x,s)ds. (4.51)

Combined with (4.47), this yields

z ∈C0([0,T ],H2(0,1))∩C1([0,T ],H1(0,1))∩C0([0,1],H2(0,T )). (4.52)
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We claim that z(x,0) = z0(x) for all x ∈ [0,1]. Indeed, we have by (4.51), (4.46), and some condition
in the definition of H that for all x ∈ [0,1]

z(x,0) = z0(1)+
∫ x

1
g(s,0)ds

= z0(1)+
∫ x

1

S(s,0)−D(s,0)
2λ (s)

ds

= z0(1)+
∫ x

1

1
2
√

λ (s)
(v0(s)−u0(s))ds

= z0(1)+
∫ x

1
z0

x(s)ds

= z0(x)

We also claim that
z(1, t) = Xp(t) ∀t ≥ 0. (4.53)

Indeed, we infer from (4.51) and (4.46) that

z(1, t) =
∫ t

0
f (1,s)ds+Xp(0) =

∫ t

0

S(1,s)+D(1,s)
2

ds+Xp(0) =

√
λ (1)
2

∫ t

0
(u(1,s)+v(1,s))ds+Xp(0)

so that with (4.45)

zt(1, t) =

√
λ (1)
2

(
u(1, t)+ v(1, t)

)
=

√
λ (1)
2

(
α(1, t)+β (1, t)+

∫ 1

0

[
1 1

]
LLL(1,ξ )

[
α(ξ , t)
β (ξ , t)

]
dξ

)
.

On the other hand, (4.44) gives (4.2) and hence (4.3). Using (4.5)-(4.6), we obtain

φ̇(t) =
2√
λ (1)

Ẋp(t)

+

(
−a0 +

∫ 1

0

(
Lαα(1,ξ )+Lβα(1,ξ )

)
dξ

)
︸ ︷︷ ︸

=−1

α(1, t)+
(

b0 +
∫ 1

0

(
Lαβ (1,ξ )+Lββ (1,ξ )

)
dξ

)
︸ ︷︷ ︸

=µ−1

β (1, t)

−
∫ 1

0
[(Lαα(1,x)+Lβα(1,x))α(x, t)+(Lαβ (1,x)+Lββ (1,x))β (x, t)]dx.

Combined with (4.33), this yields

Ẋp(t) =

√
λ (1)
2

(
α(1, t)+β (1, t)+

∫ 1

0
[(Lαα(1,x)+Lβα(1,x))α(x, t)+(Lαβ (1,x)+Lββ (1,x))β (x, t)]dx

)
= zt(1, t).

Integrating w.r.t t and using Xp(0) = z0(1) = z(1,0), we obtain (4.53).
Let us check that z solves system (2.2)-(2.4).
Replacing zt and zx by their expressions in terms of S,D and using (2.5)-(2.6), we obtain

ztt −λ
2zxx =

St +Dt

2
−λ

2
(

Sx−Dx

2λ
−λ

′ S−D
2λ 2

)
= 0.
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For the boundary conditions (2.3), we have that z(1, t) = Xp(t) (by construction of z), and that

zx(0, t) =
S(0, t)−D(0, t)

2λ (0)
=

√
λ (0)

2λ (0)
(v(0, t)−u(0, t)) =

1
2
√

λ (0)
(β (0, t)−α(0, t)) = 0.

For the initial conditions (2.4), we have that z(·,0) = z0 (by construction of z) and that

zt(x,0) =
S(x,0)+D(x,0)

2
=

√
λ (x)
2

(u(x,0)+ v(x,0)) =

√
λ (x)
2

(u0(x)+ v0(x)) = z1(x) ∀x ∈ [0,1].

Let us investigate the dynamics of Xp. Set U(t) := Ẍp(t) for t ∈ R+.

CLAIM 3. U ∈ L2(0,T ) for all T > 0.

We infer from (4.25) and (4.44) that

U(t) = Ẍp(t)

=

√
λ (1)
2

(
φ̈(t)−

∫ 1

0
[aαtt +bβtt ]dx

)
= −

√
λ (1)
2

(
bφ̇(t)eν2 + bφ(t)eν1−

∫ 1

0
[aαtt +bβtt ]dx

)
.

As φ ∈ C2([0,T ]), the two first terms in the last equation are in C0([0,T ]), and hence in L2(0,T ). It
remains to show that the map t→

∫ 1
0 [aαtt +bβtt ]dx is in L2(0,T ) for all T > 0. Using (4.32) and (4.36)

and next an integration by parts, we obtain∫ 1

0
[aαtt +bβtt ]dx =

∫ 1

0
[a(−λαxt)+bλβxt ]dx

=
∫ 1

0
[(aλ )xαt − (bλ )xβt ]dx+[−aλαt +bλβt ]

1
0.

Replacing in the last integral term αt and βt by −λαx and λβx, respectively, and integrating by parts
again, we obtain∫ 1

0
[aαtt +bβtt ]dx =

∫ 1

0
[((aλ )xλ )xα +((bλ )xλ )xβ ]dx− [(aλ )xλα +(bλ )xλβ ]10 (4.54)

+[−aλαt +bλβt ]
1
0.

(Note that (aλ )x = −Lαα(1,x)− Lβα(1,x) and (bλ )x = Lαβ (1,x) + Lββ (1,x).) It is clear that the
two first terms in the right hand side of (4.54) are in C0([0,T ]) (and thus in L2(0,T )), for α,β ∈
C0([0,T ],H1(0,1)). On the other hand, using (4.25), (4.33) and (4.37), we obtain that

[−aλαt +bλβt ]
1
0 = −a(1)λ (1)αt(1, t)+b(1)λ (1)µ−1

φ̈(t)

= −a(1)λ (1)αt(1, t)+b(1)λ (1)µ−1(bφ̇(t)eν2 + bφ(t)eν1).

As φ ∈ C2([0,T ]) and α ∈ C0([0,1],H1(0,T )) (and hence, αt(1, .) ∈ L2(0,T )), we infer that the map
t→ [−aλαt +bλβt ]

1
0 is also in L2(0,T ) for all T > 0. Claim 3 is proved.



FINITE-TIME STABILIZATION OF AN OVERHEAD CRANE WITH A FLEXIBLE CABLE 19

Let us have a look at the initial conditions for Xp. By (4.31), (4.42) and (4.44), we have that

Xp(0) =

√
λ (1)
2

(
φ

0−
∫ 1

0
[a(x)α0(x)+b(x)β 0(x)]dx

)
= Ω

0.

On the other hand, (4.44) gives (4.2) and (4.3). Picking t = 0 and using (4.33), we arrive at

µβ (1,0) = φ̇(0) =
2√
λ (1)

Ẋp(0)−a(1)λ (1)α0(1)+b(1)λ (1)β 0(1)+
∫ 1

0
[(aλ )xα

0− (bλ )xβ
0]dx.

Comparing with the condition

µβ
0(1) =

2√
λ (1)

Ω
1−a(1)λ (1)α0(1)+b(1)λ (1)β 0(1)+

∫ 1

0
[(aλ )xα

0− (bλ )xβ
0]dx

present in the definition of H, we infer that Ẋp(0) = Ω1.
Using Claim 2, we see that the uniqueness of (z,Xp) follows from those of (α,β ,φ).
We know that α(x, t) = β (x, t) = φ(t) = 0 for x ∈ [0,1] and t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H). We infer

from (4.44) that Xp(t) = 0 for t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H).
Finally, from (4.45) and (4.46), we infer that

u(x, t) = v(x, t) = D(x, t) = S(x, t) = 0, ∀x ∈ [0,1], ∀t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H).

It follows that
zt(x, t) = zx(x, t) = 0, ∀x ∈ [0,1], ∀t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H).

Since z(1, t) = Xp(t) = 0 for t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H), we arrive at the conclusion that

z(x, t) = 0, ∀x ∈ [0,1], ∀t ≥ T1(‖(α0,β 0,φ 0,φ 1)‖H).

One can pick
T (R) := sup{T1(‖(α0,β 0,φ 0,φ 1)‖H); ‖(z0,z1,Ω0,Ω1)‖H ≤ R}.

It remains to prove the stability of the origin in H for system (2.2)-(2.3) and (4.26). Assume that
‖(z0,z1,Ω0,Ω1)‖H is small, and (at least) less than 1. Then ‖(α0,β 0,φ 0,φ 1)‖H is small, and by Theorem
4.3, φ(t) and φ̇(t) remain small. We know that z(., t),Xp(t),α(., t),β (., t), and φ(t) vanish for t ≥ T (1).
Using (4.35) and (4.39), we see that ‖β (., t)‖H1(0,1) and ‖α(., t)‖H1(0,1) remain small. Using (4.44) and
(4.3), we conclude that Xp(t) and Ẋp(t) also remain small. Clearly, ‖D(., t)‖H1(0,1) and ‖S(., t)‖H1(0,1)
also remain small by (4.45)-(4.46). This yields that ‖zt(., t)‖H1(0,1) remains small, by (4.48). Using
(4.49) and (4.53), we infer that ‖z(., t)‖H2(0,1) remains small. �

5. SIMULATION

As numerical illustration, system (1.8)-(1.11) controlled by the feedback law (4.26) is simulated. The
following system parameters are used: m = 2kg, ρ = 2kg/m, g = 9.81m/s2.

5.1. Numerical calculation of the kernels. The direct kernels KKK are calculated by numerically solving
system (3.7) [7], where the domain T is discretized using a uniform grid with ∆x = ∆ξ = 0.005 (see
Fig. 2). Knowing the direct kernels KKK, the inverse kernels LLL are calculated numerically using (3.8).
The obtained kernels are shown in Figures 3-4. The used controller gains correspond to the kernels LLL
evaluated at the boundary (x = 1,ξ ), that are shown in detail in Fig 5.
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FIGURE 3. Direct kernels KKK. Dotted boundaries correspond to boundary conditions at
(x,0) and (x,x) of the Goursat system (3.7). Dashed boundaries correspond to controller
gains at (1,ξ ) used in the control law (3.9).

5.2. Time evolution of the controlled system. Once the direct and inverse kernels are known, the sys-
tem (1.8)-(1.11) controlled by the law (4.26) can be simulated in the coordinates (Xp(t),α(x, t),β (x, t)).
Finally, the inverse state transformation will be applied in order to obtain the simulated time evolution in
the original coordinates (Xp(t),y(s)).

We consider zero initial conditions, except for Xp(0) = 0.5, i.e., the system is initially at rest with the
platform at a nonzero position.

5.2.1. Time evolution of φ(t). The finite-time dynamics of the variable φ(t) (4.2) is simulated using
the numerical method proposed in [25]. This method supposes that the system’s vector field FFF is ddd-
homogeneous [25, Def. 3.6], which corresponds to imposing that ν1 =

ν2
2−ν2

in (4.25). A nonlinear state
transformation is provided with which an alternative continuous time system representation żzz = F̃FF(zzz)
is obtained, that admits an implicit discretization scheme preserving the finite-time stability property in
discrete time. Performing the inverse state transformation then yields a discretization scheme preserving
the finite-time stability in the original coordinates.

Rewrite the finite-time ODE dynamics (4.25) as

d
dt

[
φ

φ̇

]
=

[
φ̇

−bφe
ν2

2−ν2 −bφ̇eν2

]
=: FFF

([
φ

φ̇

])
. (5.1)
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FIGURE 4. Inverse kernels LLL. Dotted boundaries correspond to boundary conditions
at (x,0) and (x,x) of the Goursat system. Dashed boundaries correspond to controller
gains at (1,ξ ) used in the equations (4.5), (4.6), (4.9).

Let us check that the assumptions in [25, Theorem 4.1] are fulfilled. We have that the vector field
FFF(xxx), with xxx :=

[
x1 x2

]ᵀ, is uniformly continuous on the unit sphere, ddd-homogeneous with homogene-

ity degree νddd = −1 for the weighted dilation ddd(s) =
[

er1s 0
0 er2s

]
where

[
r1 r2

]
=
[

2−ν2
1−ν2

1
1−ν2

]
, and

FFF(−xxx) = −FFF(xxx). Let GGGddd = diag(r1,r2) be the generator of the dilatation ddd(s) and take the symmetric
matrix PPP := III2 that satisfies PPPGGGddd +GGGᵀdddPPP� 0.

Lastly, it is required that the condition

zzzᵀΞΞΞᵀ(zzz)PPPΞΞΞ(zzz)
[
(III2−GGGddd)zzzzzzᵀPPP

zzzᵀPPPGGGdddzzz
+ III2

]
FFF
(

zzz
‖zzz‖

)
< 0 (5.2)

be satisfied for all zzz ∈ R2\{000}, where ΞΞΞ = III2 and ‖zzz‖=
√

zzzᵀPPPzzz, which according to [25, Thm. 3.8]-[24,
Thm. 4] guarantees that the quadratic form V (zzz) = zzzᵀPPPzzz = ‖zzz‖2 is a Lyapunov function for the system

żzz =
(
(III2−GGGddd)zzzzzzᵀPPP

zzzᵀPPPGGGdddzzz
+ III2

)
FFF
(

zzz
‖zzz‖

)
:= F̃FF(zzz), (5.3)

which is the transformed version of the original system ẋxx = FFF(xxx) using the nonlinear state transformation
(5.6)-(5.7) (see below).

Condition (5.2) simplifies to

‖zzz‖3

r1z2
1 + r2z2

2

[
z1z2

‖zzz‖2 −
z2

‖zzz‖

⌊
z1

‖zzz‖

⌉ν1

− z2

‖zzz‖

⌊
z2

‖zzz‖

⌉ν2
]
< 0. (5.4)
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FIGURE 5. Controller gains LLL(1,ξ ).

We note that the strict inequality (5.4) is not satisfied for z2 = 0, since the left-hand expression equals 0.
One notes that for z2 = 0 = ż2, (5.3) reduces to[

ż1
0

]
=

[
0

−bsign(z1)e
ν2

2−ν2

]
,

which implies that z1 = ż1 = 0. Then, the asymptotic stability of the origin for (5.3) is obtained by
LaSalle’s invariance theorem if we prove the strict inequality (5.4) for the case z2 6= 0. It suffices to
consider the strict negativity of the expression between brackets.

Lemma 5.1. Let ν2 ∈ (0,1) and ν1 = ν2/(2−ν2) ∈ (0,1). Then for all zzz = (z1,z2) ∈ R×R∗, it holds

z2

‖zzz‖

[
z1

‖zzz‖
−
⌊

z1

‖zzz‖

⌉ν1

−
⌊

z2

‖zzz‖

⌉ν2
]
< 0.

Proof. Let

f (zzz) =
z2

‖zzz‖

[
z1

‖zzz‖
−
⌊

z1

‖zzz‖

⌉ν1

−
⌊

z2

‖zzz‖

⌉ν2
]
, zzz ∈ R×R∗.

Note first that f (0,z2) = −
∣∣∣ z2
‖zzz‖

∣∣∣1+ν2
< 0 for z2 6= 0. Thus we can assume that z1 6= 0, as well. Let

yyy := (y1,y2) = zzz/‖zzz‖. Then y1,y2 ∈ (−1,0)∪(0,1), ‖yyy‖= 1 and f (zzz) = g(yyy) = y2
(
y1−by1eν1−by2eν2

)
.

From ‖yyy‖= 1, we infer that y2 =±
√

1− y2
1. We have to consider four cases:
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(i) y1 ∈ (0,1) and y2 =
√

1− y2
1;

(ii) y1 ∈ (0,1) and y2 =−
√

1− y2
1;

(iii) y1 ∈ (−1,0) and y2 =
√

1− y2
1;

(iv) y1 ∈ (−1,0) and y2 =−
√

1− y2
1.

In case (i), we have g(yyy)< 0, for y1−by1eν1 < 0. In case (iv), we also have that g(yyy)< 0, for

y1−by1eν1−by2eν2 =−(|y1|− |y1|ν1)+ |y2|ν2 > 0.

Let h(s) =−s+sν1−(1−s2)
ν2
2 for s∈ (0,1). Then in case (ii), we have that g(yyy) =

√
1− y2

1h(y1), while
in case (iii) we have that

g(yyy) =
√

1− y2
1

(
−|y1|+ |y1|ν1−

(
1− y2

1
) ν2

2

)
=
√

1− y2
1 h(|y1|).

Thus, it remains to show that h(s)< 0 for s ∈ (0,1). Denoting σ := sν1 ∈ (0,1), we note that

h(s)< 0 ⇐⇒ −σ
1

ν1 +σ <
(

1−σ
2

ν1

) ν2
2

⇐⇒ σ

(
1−σ

1
ν1
−1
)
<
(

1+σ
1

ν1

) ν2
2
(

1−σ
1

ν1

) ν2
2

⇐⇒ σ
2

ν2

(
1−σ

1
ν1
−1
) 2

ν2 <
(

1+σ
1

ν1

)(
1−σ

1
ν1

)
. (5.5)

But for σ ∈ (0,1), we have that
(

1−σ
1

ν1
−1
) 2

ν2 < 1−σ
1

ν1
−1

< 1−σ
1

ν1 (since 2/ν2 > 2 and 1/ν1 > 1)

and σ
2

ν2 < 1 < 1+σ
1

ν1 , so that (5.5) holds true. �

Applying [25, Theorem 4.1] to the two-dimensional vector field (5.1), we define the nonlinear state
transformation between the original state xxx =

[
x1 x2

]ᵀ :=
[
φ φ̇

]ᵀ and a new state zzz =
[
z1 z2

]ᵀ:
zzz = ΦΦΦ(xxx) = ‖xxx‖dddddd (− ln‖xxx‖ddd)xxx, (5.6)

with inverse transformation

xxx = ΦΦΦ
−1(zzz) = ddd (ln‖zzz‖) zzz

‖zzz‖
. (5.7)

Here, the canonical homogeneous ”norm” [25, Eq. 3.4] is defined as

‖xxx‖ddd = esx

where sx ∈ R satisfies

‖ddd(−sx)xxx‖= 1. (5.8)
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More explicitly, (5.6) corresponds to

[
z1
z2

]
=



[
e
−sx

1−ν2 x1

e
−ν2sx
1−ν2 x2

]
if (x1,x2) 6= (0,0)[

0
0

]
else,

where sx is the solution of the implicit condition (5.8)√
e−

2(2−ν2)sx
1−ν2 x2

1 + e−
2sx

1−ν2 x2
2 = 1

that is solved numerically [21].
Finally, the obtained implicit numerical scheme in the transformed coordinates zzz is

zzz(t +∆t)− zzz(t)
∆t

= F̃FF(zzz(t +∆t)),

where

F̃FF(zzz) =
(
(III2−GGGddd)zzzzzzᵀ

zzzᵀGGGdddzzz
+ III2

)
FFF
(

zzz√
zzzᵀzzz

)
.

Using this method, the time evolution of φ(t) with control parameters ν2 =
1
2 , ν1 =

1
3 is simulated for

a time step ∆t = 0.01 (Fig. 6). We observe that it is stabilized in a finite time T0 ≈ 4.23.

5.2.2. Time evolution of α(x, t) and β (x, t). The two first order hyperbolic PDEs for β (x, t), (4.32),
and α(x, t), (4.36), are solved numerically using a first order downwind-upwind scheme [26]. Uniform
spatial (∆x = 0.05) and temporal (∆t = 0.01) discretization steps are chosen, respecting the CFL stability
condition max(λ (x)) ∆t

∆x ≤ 1.
At each time t, the following steps are executed. First the boundary condition β (1, t) is evaluated from

(4.8) knowing the value of φ̇(t), where µ = 2.379 is calculated from (4.9) by the trapezoidal rule on the
spatial grid. Then, the first order downwind scheme

β (x, t) = β (x, t−∆t)+λ (x)
∆t
∆x

(β (x+∆x, t−∆t)−β (x, t−∆t))

translates the information for x from 1 to 0 on the spatial grid. Next, the boundary condition α(0, t) =
β (0, t) is evaluated. Finally, the first order upwind scheme

α(x, t) = α(x, t−∆t)−λ (x)
∆t
∆x

(α(x, t−∆t)−α(x−∆x, t−∆t))

translates the information for x from 0 to 1 on the spatial grid.
The simulated time evolution of β (x, t) and α(x, t) is shown in Figure 7. We observe that they are

stabilized in a finite time whose value can be verified using the expression

T1 = T0 +2
∫ 1

0

1
λ (x)

dx = T0 +4
√

m
ρg

(
e

gJ
2 −1

)
≈ 4.76.
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FIGURE 6. Simulated time evolution of φ(t) and φ̇(t).
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FIGURE 7. Simulated time evolution of β (x, t) and α(x, t), plotted for x = 0 and x = 1.
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5.2.3. Time evolution of Xp(t). At each discrete time t, φ(t), α(x, t) and β (x, t) are known on a grid for
x. The corresponding numerical value for Xp(t) is computed from the definition for φ(t) (see (4.2)), nu-
merically evaluating the integral by the trapezoidal rule on the spatial grid. The simulated time evolution
of Xp(t) is shown in Figure 8.

5.2.4. Time evolution of y(s, t). Given the simulated time evolutions of (α(x, t),β (x, t)), one can perform
the inverse transformations in order to express the movement of the cable in the original coordinates
y(s, t):[

α

β

]
(x, t)

(3.6)−−→
[

u
v

]
(x, t)

(2.7)−−→ 1√
λ (x)

[
D(x, t)
S(x, t)

]
linear−−−−−−→

combination
zx(x, t)

∫
·dx−−→ z(x, t)

(2.1)−−→ y(s, t).

For the numerical integration of zx(x, t) at a given time t, z(1, t) is set to Xp(t) in order to satisfy the
compatibility condition corresponding to (1.10). The spatial integration is then evaluated numerically
using the trapezoidal rule for x from 1 to 0 on the spatial grid.

The obtained time evolution of y(s, t) is shown in Figure 8. In conclusion, both the platform Xp(t) and
the cable y(s, t) have been stabilized at the origin in a finite time, namely T1 ≈ 4.76.

6. CONCLUSIONS AND FUTURE WORKS

A finite-time controller for the motion of an overhead crane described by a hybrid PDE-ODE system
with varying tension along the cable is derived. Our feedback law incorporates existing results for the
finite-time stabilization of 2× 2 quasilinear hyperbolic systems, that involve kernels that are defined
by a Goursat-type system of PDEs. Recent numerical methods are used to calculate the kernels and a
simulation of the finite-time stabilization of the overhead crane is shown.

The computation of the proposed control law u(t) (4.26) needs the knowledge of the position y(s, t)
of the cable on its entire length. An observer for this position would be needed if one wants to obtain a
more realistic implementation using only the measurement of the position Xp(t) of the platform and the
angle θ(t) at the top of the cable.

Furthermore, the proposed crane model could be extended to the case with a variable length cable,
and with an additional degree of freedom for the bench on which the platform moves (a perpendicular
translation of the bench in the case of an overhead crane, or a rotation of the bench in the case of a tower
crane).
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