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Novelty and Impact:  

The aim of this study was to gain insight into metabolic perturbations underlying the 

development of hepatocellular carcinoma using detailed data from a large, 

multinational prospective observational cohort. High resolution mass spectrometry-

based metabolomics was conducted on blood samples collected pre-diagnostically 

upon recruitment into the cohort. Cases were identified upon follow-up and compared 

to matched controls. We controlled for known aetiologies (hepatitis infection, heavy 

alcohol intake, smoking) and major confounding factors, such as obesity. Alterations 

were observed in a wide range of metabolites related to exogenous and mutagenic 

exposures, liver dysfunction and bile acid/phospholipid metabolism, providing insight 

into early metabolic perturbations and mechanisms leading to this deadly cancer.  

 

Abstract  

Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. 

Current knowledge on metabolic perturbations in HCC is derived mostly from case-

control designs, with sparse information from prospective cohorts. Our objective was 

to apply comprehensive metabolite profiling to detect metabolites whose serum 

concentrations are associated with HCC development, using biological samples from 

within the prospective EPIC cohort (>520,000 participants, ), where we identified 129 

HCC cases matched 1:1 to controls. We conducted high resolution untargeted liquid 
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chromatography-mass spectrometry based metabolomics on serum samples 

collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic 

regression was applied controlling for dietary habits, alcohol consumption, smoking, 

body size, hepatitis infection and liver dysfunction. Corrections for multiple 

comparisons were applied. Of 9,206 molecular features detected, 220 discriminated 

HCC cases from controls. Detailed feature annotation revealed 92 metabolites 

associated with HCC risk; 14 of which were unambiguously identified using pure 

reference standards. Positive HCC risk associations were observed for N1-

acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, L,L-

cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid, and 7-

methylguanine. Inverse risk associations were observed for retinol, 

dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl 

hydroxychroman, and creatine. Discernible differences for these metabolites were 

observed between cases and controls up to 10 years prior to diagnosis. Our 

observations highlight the diversity of metabolic perturbations involved in HCC 

development and replicate previous observations (metabolism of bile acids, amino 

acids, phospholipids) made in Asian and Scandinavian populations. These findings 

emphasize the role of metabolic pathways associated with steroid metabolism and 

immunity and specific dietary and environmental exposures in HCC development.    

Keywords: hepatocellular carcinoma; untargeted metabolomics; prospective 

observational cohort;  

Introduction 
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Primary liver cancer is the second most common cause of death from cancer 

worldwide (1). Established risk factors for hepatocellular carcinoma (HCC), the major 

histology of primary liver cancers, are chronic hepatitis infection, aflatoxin exposure, 

smoking and alcohol abuse (2), but obesity, diabetes and unhealthy dietary and 

lifestyle habits are also becoming increasingly recognized as important HCC risk 

factors, particularly in regions where hepatitis infection and aflatoxin exposures are 

less predominant (3). HCC are often diagnosed at late stages and have limited 

treatment options, which is worrisome owing to the growing incidence of this highly 

fatal disease in many populations (4). It has been suggested that high obesity and 

diabetes rates in some populations are major contributors to the observed incidence 

rate increases (5). Most HCC are considered to develop within a background of 

inflammation, liver damage and cirrhosis. However, a sizeable proportion is thought 

to develop in the absence of underlying cirrhosis, hence escaping traditional clinical 

surveillance particularly in populations with lower prevalence of hepatitis infection 

and alcohol abuse, and higher prevalence of metabolic syndrome and non-alcoholic 

fatty liver disease (NAFLD) which are largely obesity-related (6;7). Obesity may also 

impair the detection of cirrhosis or HCC by reducing the sensitivity of abdominal 

ultrasound, a primary tool for HCC surveillance in high risk populations (8). Thus, 

effective HCC control will need to rely on strategies for both primary prevention and 

early detection, necessitating additional research into HCC etiology.  

Decreased liver functionality is considered an early event in liver cancer development 

and given the central metabolic role of the liver various metabolic perturbations are 
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very likely to be observed in blood. In addition, circulating biomarkers indicative of 

various lifestyle or environmental exposures that may affect HCC risk are also likely 

observable (9).  Such metabolic signatures can be identified via various metabolomic 

techniques, such as those based on high resolution liquid chromatography mass 

spectrometry (LC-MS), which may be applied to blood samples to observe a broad 

spectrum of low-molecular-weight compounds which may be reflective of various 

exogenous exposures and associated with normal endogenous processes or 

perturbed metabolic functionality. In fact, several animal and human studies have 

already shown that metabolomics can provide novel insights into pathological 

processes during development of various liver diseases (10;11), and provide 

potentially novel diagnostic biomarkers of HCC for screening in high risk populations 

(12-14). Most of the studies that have applied metabolic profiling in HCC have been 

either based on case-control designs, or conducted on high risk patient groups (e.g. 

viral hepatitis, cirrhosis or other chronic liver diseases), or in populations where more 

traditional HCC risk factors predominate (15). However, comparatively very little 

information is available from prospective, observational cohorts about possible 

metabolic alterations related to HCC development, particularly from European or 

Western populations (16-18). Information derived from prospective observational 

cohorts is important because data and biological samples have been collected from 

healthy participants before diagnosis, thus reducing the biases of recall and reverse 

causality and allowing considerable insight into the complex processes of cancer 

development. For example, within the European Prospective Investigation on Cancer 
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and Nutrition (EPIC) cohort, a number of targeted metabolomic studies (i.e. the 

measurement of defined groups of characterized and annotated metabolites; about 

150 metabolites measured) have been conducted to assess metabolite patterns 

associated with risk of several cancers such as the breast (19) and prostate (20;21), 

as well as with various lifestyle factors, such as body mass index (22) and select 

dietary components (23). They have revealed important insights on development 

processes and exogenous exposures associated with these cancers. Similar 

metabolomics techniques have also been applied in other prospective studies to 

explore cancer development at various anatomical sites, including HCC (18;24-26). 

We have also previously conducted two other metabolomics studies on HCC risk 

factors in the EPIC cohort using nuclear magnetic resonance spectroscopy (NMR) 

(17) and a targeted kit-based LC-MS assay (16). We observed alterations in amino 

acid, lipid and carbohydrate metabolism associated with HCC development, but our 

findings provided little new insight into HCC etiology or specific environmental 

exposures potentially linked to HCC development, due in large part to the low 

sensitivity of NMR (17) and the limited number of metabolites measured with the kit-

based assay (16).  

In the present study, our objective was to delve more deeply into an exploration of 

metabolic perturbations in HCC development through application of untargeted 

metabolomics (i.e. the comprehensive analysis of all measurable analytes, but 

requiring intensive efforts towards metabolite annotation) using a highly sensitive LC-
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MS technique able to detect thousands of metabolites in typical blood samples (27) 

using a case-control design nested within the prospective EPIC cohort.  

Materials and methods 

Study design  

The rationale and study design of the large multi-center prospective, observational 

EPIC cohort have been previously described (28). Briefly, between 1991 and 2000 

more than 520,000 apparently healthy men and women aged 20-85 years were 

recruited in 23 centers throughout 10 countries (Denmark, France, Germany, 

Greece, Italy, the Netherlands, Norway, Spain, Sweden, and the United Kingdom). At 

recruitment, standardized dietary, lifestyle and socio-demographic questionnaires, 

blood samples and anthropometric measurements were collected from most 

participants (29). Blood samples are stored at the International Agency for Research 

on Cancer (IARC-WHO, Lyon, France) in -196°C liquid nitrogen for all countries 

except Denmark (-150°C, nitrogen vapour) and Sweden (-80°C, freezers), where 

they are stored locally.  

Nested Case-Control Study  

From 477,206 eligible participants, we included 129 HCC cases (diagnosed post-

recruitment into the cohort and identified up to December 2010) with available 

baseline (i.e. pre-diagnostic) blood samples. The cases were followed-up for a 

median of 6.2 years / mean of 5.9 years from baseline recruitment until HCC 

diagnosis. For each case, we selected one control (n=129) by incidence density 
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sampling from all eligible cohort participants alive and matched by age at blood 

collection (±1 year), sex, study center, time of the day at blood collection (±3 hours), 

fasting status at blood collection (<3, 3-6,and >6 hours); and additionally among 

women by menopausal status (pre-, peri-, and postmenopausal), and hormone 

replacement therapy use at time of blood collection (yes/no). Incidence density 

sampling for control selection is a common method of choice for unbiased results in 

case-control studies nested within a prospective cohort (30). The method involves 

matching each case to a sample of those who are at risk from within the cohort 

population at the time of case occurrence. 

HCC was defined as C22.0 according to the 10th revision of the International 

Statistical Classification of Diseases, Injury and Causes of Death (ICD10),  with 

morphology codes “8170/3” or “8180/3” according to the 2nd edition of the 

International Classification of Diseases for Oncology (ICD-O-2). For each case 

identified, the histology and diagnostic methods were reviewed by a trained 

pathologist to exclude metastatic cases or other types of primary liver cancers. 

Details on participant exclusion criteria and cancer incidence determination are 

described in the Supplementary Materials and Methods. 

Untargeted Metabolomics  

Detailed methods for the metabolomics analyses (i.e. sample preparation and 

analysis. data preprocessing, and feature identification) are provided in the 

Supplementary Materials and Methods. Briefly, samples were analysed with a 
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UHPLC-QTOF-MS system (Agilent Technologies, Santa Clara, CA, USA) using four 

different analytical configurations with reversed phase (RP) or hydrophilic interaction 

chromatography (HILIC) columns and positive or negative MS ionization modes (i.e. 

RP +/-, HILIC +/). Peak areas were used as a measurement of feature intensity. For 

identification, mass to charge rations (m/z) were searched against the Human 

Metabolome Database (31) and METLIN (32), using ions [M+H]+, [M+Na]+, [M-H]-, 

[M+FA-H]-, with 8 ppm molecular weight tolerance. Where pure chemical standards 

were commercially available, identification was confirmed by reanalysis of 

representative samples and pure chemical standards comparing retention times and 

MS/MS spectra. When standards were not available, MS/MS spectra were acquired 

when possible and compared against those in mzCloud (www.mzcloud.org) or 

METLIN. Level of identification was determined as proposed by Sumner et al (33) in 

line with recommendations of the Metabolomics Standards Initiative which ranks 

metabolites into 4 distinct categories: unambiguous identification using pure 

standards (Level 1), identified with a high level of confidence based on chemical 

features and characteristics (Level 2), identified to a known chemical class (Level 3) 

and unknown / unidentifiable compounds (Level 4). For the purposes of this analysis, 

Levels 1-3 are considered identified metabolites, but with varying levels of certainty 

(i.e. unambiguous, highly likely and chemical class only).  

Additional Laboratory Measures 
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In a large subset of subjects, a score of liver function (indicator of underlying liver 

damage) was computed using additional and already available biomarker measures 

(34;35) (details in Table 1 footnotes). 

Dataset preparation and statistical analyses 

A separate analysis was conducted for each dataset from the four analytical 

configurations (i.e. RP +/-, HILIC +/-). In each dataset, features missing from more 

than25% of all samples were excluded to avoid extensive imputation of the data 

before the paired statistical analysis (see Figure 1 for details). In order to retain a 

maximum number of complete case-control sets in the statistical analyses, missing 

values for any feature (features not detected in a given subject) for any feature were 

replaced with the minimum intensity of that feature in the dataset (Figure 1). To 

assess differences between cases and controls, feature intensities were log2-

transformed (to improve data normality) and z-standardized (to better enable 

comparisons across a wide intensity range), and subsequently entered into 

conditional logistic regression models from which odds ratios (OR) and 95% 

confidence intervals (95% CI) were computed. Two main statistical models were 

applied, (a) a crude model, conditioned on the matching criteria only and (b) a 

detailed multivariable model with additional adjustments for continuous variables 

body mass index (BMI, kg/m2), waist circumference (cm), recreational and household 

physical activity (Met-hours/week), alcohol intake at recruitment (g/d), and categories 

of lifetime alcohol intake pattern, smoking status and highest level of education 

attainment (for categories see Table 1). The Benjamini-Hochberg correction for 
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multiple testing was applied using the multi-test procedure in SAS and a q-value of 

≤0.05 was considered as statistically significant. Additionally, fold change between 

the median intensity for the cases vs. the controls was used to rank the features by 

their absolute intensity difference. Thresholds for the selection of the most 

discriminating features for annotation were based on absolute median fold change of 

≥1.20. Additional adjustments for hepatitis infection status (to correct for this 

established risk factor), self-reported type-2 diabetes at baseline (to correct for 

potential influence of diabetes-related metabolic dysfunction) and a composite score 

of liver function (to correct for the extent of liver dysfunctionality and capacity) were 

applied in supplementary analyses for all identified features.  

Sensitivity analyses were conducted excluding first 2 and 4 years of follow-up (n=22 

and n=43 cases excluded, respectively) to assess potential reverse causation. For 

these analyses, a p-value ≤0.05 was considered statistically significant.  

Pearson correlation coefficients were used to assess the correlations between 

metabolites that were annotated (i.e. those at Levels of identification 1-3(33), but not 

unknown metabolites). For these same annotated metabolites, we conducted 

principal component analyses in order to illustrate the separation of profiles from 

baseline over the timeline of the follow-up period (i.e. from baseline recruitment into 

the cohort to the date of diagnosis) between identified features of cases and controls. 

In addition, we then constructed a Receiver Operating Characteristics (ROC) curve 

based on stepwise forward selection of metabolites from the panel of metabolites that 

were annotated to Level 1 (i.e. the panel of metabolites that were significantly 

This article is protected by copyright. All rights reserved.



 
 

different between cases and controls and unambiguously identified using a pure 

standard) and those at Levels 1-3 (33). The final areas under the ROC curve for the 

identified discriminant features were obtained using leave-one-out cross validation. 

All statistical tests were two-sided. Analyses were conducted using SAS version 9.3 

(SAS Institute, Cary, NC), R version 3.4.3 (Principal Component Analyses) or 

MetaboAnalyst version 4.0 (Heatmap). 

Results 

Characteristics of the HCC cases and their matched controls are presented in Table 

1. Cases were primarily men, former drinkers and current smokers, and had higher 

waist circumference, higher prevalence of hepatitis B/C infection, and higher degree 

of liver dysfunction than matched controls. The average length of follow-up was 8.5 

years for cases and controls combined and 5.9 years for cases alone, with a 

maximum follow-up length of 15 years from baseline.   

From the combined total of 9,206 molecular features provided by the four analytical 

configurations of the LC-MS, 5,229 (i.e. 2551 (RP+), 1178 (RP-), 736 (HILIC+) and 

764 (HILIC-)) were present in at least 75% of all samples and were exported for 

statistical analyses (Figure 1). Initially, 333 (RP+), 20 (RP-), 68 (HILIC+) and 14 

(HILIC-) features were found to be statistically significantly associated with HCC risk 

in multivariable models (Supplementary Tables 1A, 1B, 1C and 1D, respectively). 

Excluding the features with a median fold change less than 1.20 resulted in a total of 

220 features from the 4 analytical configurations combined. From these 220 features, 
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114 individual compounds (i.e. confirmed molecules that consisted of one or more 

features) were observed in the four datasets (Figure 1) and are visualized in volcano 

plots (Supplementary Figure 1).  

Of the 114 individual compounds, 22 were also detected by at least one of the other 

three profiling configurations, leaving a total of 92 unique annotated compounds. 

Each profiling configuration identified at least 5 unique compounds, highlighting the 

advantages of applying all four orthogonal analytical configurations for more 

comprehensive metabolite coverage. Identification was attempted for each of these 

92 unique compounds, ranking them according to varying levels of confidence based 

on the recommendations of the Metabolomics Standards Initiative (33). Fourteen 

metabolites were unambiguously identified using pure reference standards (Level1, 

Table 2), another 23 compounds were identified with a high level of confidence 

based on chemical features and characteristics (Level 2, Table 3) and 9 compounds 

were identified to a known chemical class (Level 3, Table 4), summing to a total of 46 

identified metabolites. Pearson correlation coefficients between these 46 identified 

metabolites are shown in Supplementary Figure 2. The remaining 46 metabolites 

could not be identified and are listed as unknown (Level 4, Table 4). Intensity means, 

standard deviation and medians for these 92 compounds are shown in 

Supplementary Table 2A. 

The multivariable adjusted HCC risk associations for the 14 metabolites identified at 

Level 1 are shown in Table 2. Of these 14 metabolites, 5 were inversely associated 

with HCC risk (q-value ≤0.05): retinol (OR=0.27, 95%CI: 0.16-0.48), 
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dehydroepiandrosterone sulfate (DHEA-S; OR=0.35, 95%CI: 0.22-0.57), 

glycerophosphocholine (OR=0.44, 95%CI: 0.28-0.71), γ-carboxyethyl 

hydroxychroman (γ-CEHC; OR=0.56, 95%CI: 0.39-0.81), creatine (OR=0.56, 95%CI: 

0.37-0.83). The remaining 9 metabolites were positively associated with HCC risk: 

N1-acetylspermidine (OR=2.16, 95%CI: 1.38-3.37), isatin (OR=2.56, 95%CI: 1.53-

4.29), p-hydroxyphenyllactic acid (HPLA; OR=2.63, 95%CI: 1.62-4.28), tyrosine 

(OR=2.77, 95%CI: 1.58-4.83), sphingosine (OR=2.79, 95%CI: 1.66-4.71), L,L-

cyclo(leucylprolyl) (OR=3.25, 95%CI: 1.91-5.53), glycochenodeoxycholic acid 

(OR=3.31, 95%CI: 1.99-5.51), glycocholic acid (OR=4.07, 95%CI: 2.32-7.14), and 7-

methylguanine (OR=6.78, 95%CI: 3.24-14.18).  

We additionally conducted ROC discriminant analyses from the panel of the 14 Level 

1 identified metabolites. The analyses showed that the discrimination between cases 

and controls was largely driven by retinol, DHEA-s, LL-cycloleucylpropyl and 7-

methylguanine. Additional ROC analysis using leave-one-out cross validation for 

these 4 independent metabolites indicated a 84.6% discriminatory accuracy, 

compared to a 85.0% discriminatory accuracy when all 14 Level 1 identified 

metabolites were modelled. This method of validation was chosen to avoid likely 

statistical power issues that would arise from splitting the main dataset into discovery 

and validation sub-sets, each of which would include a smaller number of cases. 

Conversely, we applied the leave-one-out cross validation approach to the identified 

metabolites rather than at the stage of feature selection, as would be the case in a 
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true validation setting with training and validation sub-sets. Thus, the AUC estimate is 

likely to be biased. 

Multivariable-adjusted HCC risk associations for the twenty-three Level 2 metabolites 

(largely phosphatidylcholines (PC), lysophosphatidylcholines (lysoPC) of various 

chain lengths, diacylglycerols, two bilirubin metabolites and benzoylcarnitine) are 

shown in Table 3. Multivariable-adjusted HCC risk associations for Level 3 (some 

glycerophosphocholines and C19 steroid sulfates) and Level 4 compounds are 

shown in Table 4.  

Results for the crude models conditioned on the matching criteria only are shown in 

Supplementary Table 2B. Supplementary analyses with additional adjustments for 

hepatitis B and/or C infection status, self-reported diabetes status at baseline 

(Supplementary Table 2C), and a score of liver functionality within the multivariable 

analysis model did not materially alter the findings (Supplementary Table 2D). In 

sensitivity analyses, the observed associations, particularly for Level 1 and Level 2 

compounds were unaltered after exclusion of case-control pairs where the case 

participant was diagnosed within either the first 2 or 4 years of follow-up 

(Supplementary Table 2E).  

We conducted two principal component analyses, one based on the 46 metabolites 

identified to Levels 1-3 as well as a second one restricted to the 14 metabolites 

identified to Level 1 (Figure 2). These analyses show distinct differences between 

metabolic profiles of HCC cases compared to control participants, up to 10 years 
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prior to diagnosis. Additional sensitivity analyses excluding case-control pairs where 

the case was diagnosed within the first 4 years of enrolment into the cohort did not 

alter the clear distinction in metabolite profiles between HCC cases versus controls 

(Figure 2).  

Detailed information on metabolite identification with chromatograms and spectra is 

provided in Supplementary Materials (Identification of Metabolites). 

Discussion 

In this case-control study nested within a large, multinational observational 

prospective cohort, we applied a powerful MS-based untargeted metabolomics 

approach to explore metabolic perturbations underlying HCC development. The 

cases in our observational cohort were enrolled at the baseline period (i.e. data and 

blood samples collected upon recruitment) when the participants where under 

apparent health. Later, at various time points post-recruitment, some of the cohort 

participants were diagnosed with HCC. Thus, the cases in our study originate from 

different time points after baseline recruitment. In the sub-group of cases who were 

diagnosed closer to baseline, it is likely that the processes of HCC were already 

underway even though undiagnosed, possibly within a background of other liver 

pathologies. However, in the sub-group of subjects where the HCC was diagnosed 

later on during the cohort follow-up, the baseline blood samples are likely to have 

been collected in the absence of HCC or at its earlier stages. Due to the liver’s 

central metabolic roles, it is thought that metabolic disturbances are early events in 
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the development of chronic liver diseases and HCC (36). This premise underscores 

the rationale behind our study, conducted within the setting of an observational 

prospective cohort. We were able to determine 92 distinct metabolites whose relative 

concentrations were different between HCC cases and their matched controls in pre-

diagnostic blood samples. Of these 92 compounds, we were able to identify 46 of 

which 14 were unambiguous (Level 1 (33)) and an additional 23 and 9 with high 

degrees of confidence (Levels 2 and 3, respectively (33)). We show, using principle 

component analyses, that the differences between HCC cases and controls are 

apparent as far back as 10 years prior to diagnosis, even with exclusion of cases 

diagnosed within the first 2 or 4 years of follow-up. We observed perturbations in 

general classes of metabolites, such as amino acids and bile acids, but also in 

xenobiotics as indicators of lifestyle exposures, as well as some compounds with 

purported roles in immune function, hormone metabolism, gut microbiome activity 

and liver fat content - underscoring the complexity of metabolic disturbances in HCC 

development. The metabolites identified may be involved directly and/or be markers 

of various exposures associated with cancer risk. Moreover, we accounted for 

established etiologies of HCC such as hepatitis infection, high alcohol consumption 

and smoking in our statistical analysis models. Our observations were mostly 

unchanged with these adjustments, suggesting that metabolic perturbations in HCC 

may be largely similar, irrespective of the main underlying etiology of the tumor.  

Of the 46 metabolites that we could identify in this study, 14 were confirmed using 

authentic chemical standards. Several of these appear to be related to dietary and 
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lifestyle habits. Specifically, we observed inverse HCC risk associations for retinol 

(biologically active form of vitamin A) and γ-CEHC (a product of liver metabolism of γ-

tocopherol) (37;38). Retinol has a plausible role in liver carcinogenesis (e.g. 

modulation of immune function, cell growth (39)). Its potential association with liver 

cancer has been previously assessed in two prospective studies, a Finnish cohort of 

male smokers (40) as well as a cohort of Chinese men (41) both of whose findings 

are in line with our own observations. γ-CEHC shows some antioxidant and anti-

inflammatory properties, similar to γ-tocopherol (38;42). It has been purported as a 

treatment of non-alcoholic steatohepatitis, a precursor of liver cirrhosis and risk factor 

for HCC development (43), but little other data is available on any specific HCC 

protective roles for this compound.  

We also observed inverse HCC risk associations for glycerophosphocholine, several 

lysoPCs, creatine and DHEA-S, a steroid hormone. Interestingly, decreased 

glycerophosphocholine level has been observed to be predictive of higher circulating 

vitamin D concentrations (44), which would be in line with our earlier observation of a 

strong inverse HCC risk association with higher circulating vitamin D in these same 

subjects (45). Inverse HCC risk associations with higher circulating lysoPCs are 

consistent with other reports (10;15;46). The observed association with creatine may 

reflect decreased liver functionality and lower creatine synthesis in HCC 

development, although it has also been ascribed both antioxidant and oxidative 

properties (47). Our observation of an inverse association with DHEA-S is intriguing 

because androgen receptor activity, with which DHEA-S interacts, has been 
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implicated in HCC development (48;49) and the promotion of HCC by androgens has 

been put forward as one explanation for its higher incidence in men (50). On the 

other hand, liver cirrhosis has been linked to hormonal imbalances between 

estrogens and androgens resulting in a higher relative concentration of estrogens 

(50). Some animal data even suggest that DHEA-S may protect against development 

of liver lesions (51). Thus, our observations merit more detailed assessment of 

hormonal factors and circulating concentrations.  

In an earlier study based on NMR spectroscopy within the same subjects, we found a 

positive HCC risk association for the amino acid tyrosine (16). Similar observations 

have been made in a Korean prospective cohort (25) and the Alpha-Tocopherol, 

Beta-Carotene Cancer prevention cohort (ATBC) composed of Finnish male smokers 

(18). Our observations in the present study were similar for tyrosine along with HPLA, 

a tyrosine metabolite. Tyrosine is found in several foods (e.g. cheeses, which 

incidentally have also been associated with increased HCC risk in our data (52)) and 

is produced endogenously from phenylalanine. Tyrosine levels are known to be 

altered in liver disease (53) while HPLA has demonstrated carcinogenic activity after 

long term sub-cutaneous injection in mice (54), and its urinary levels have been 

observed to be elevated in breast cancer patients (55).  

Positive HCC risk associations were also observed for isatin, L,L-cyclo(leucylprolyl), 

N1-acetylspermidine and sphingosine – although, very little is known about any 

physiological roles for these compounds in HCC development. Isatin is a biologically 

active endogenous metabolite with antioxidant and antiviral effects (56) - properties 
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that may be considered as cancer protective rather than explanatory of our observed 

positive HCC risk association. However, isatin can also be derived from gut microbial 

metabolism (56), and we can speculate that its higher circulating concentrations in 

HCC cases may be due to leakage from the gut across a dysfunctional colonic 

barrier, something which we have previously observed in the same HCC cases (57). 

For its part, L,L-cyclo(leucyl-prolyl) has been associated with increased liver fat 

content in a German general population sample (58), possibly suggesting a link with 

fatty liver disease in some of our cases. There is sparse data on the possible roles of 

N1-acetylspermidine (a polyamine) and sphingosine (an aminodiol which can form 

ceramides, parent structures to sphingolipids) in HCC. The former may be affected 

by liver functionality (59) and its serum levels have been shown to be higher in liver 

cancer patients (60) whereas sphingosine has been observed to be elevated in 

chronic liver diseases, such as non-alcoholic fatty liver disease and chronic hepatitis 

C infection (61). Thus, alterations in circulating levels of these metabolites may be 

indicative of liver dysfunctionality and possibly early HCC development.   

Another interesting observation from our study is the positive HCC risk association of 

glycochenodeoxycholic acid and glycocholic acid – both of which are glycine 

conjugates of primary bile acids formed in the liver (62). Their circulating 

concentrations have been shown to be increased in various liver diseases, including 

HCC (10;15;25;46;63;64). In general, pro-inflammatory and carcinogenic properties 

have been ascribed to bile acids and as such they have a plausible role in HCC 

development (65). Perturbations in serum bile acid metabolism have been previously 
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observed in other settings, such as in largely hepatitis positive Chinese populations 

(66;67), and specifically for glycochenodeoxycholic acid and glycocholic acid in the 

ATBC cohort (18). The liver is central to bile acid metabolism, and hence 

perturbations in bile acid profiles may be amongst the earliest indicators of HCC 

development. A more detailed analysis of potential alterations in the profiles of 

various bile acids in the different phases of this disease would be of great interest.  

In our observations, the metabolite most strongly positively associated with HCC risk 

is 7-methylguanine, an indicator of exposure to methylating agents. It has previously 

been observed to be higher in the urine of smokers (68) and those with unhealthy 

lifestyle habits (69) – exposures which have also been associated with increased 

HCC risk in our cohort (34;70). Higher levels of this compound have also been 

associated with an increased risk of total mortality in a cohort of male smokers (71). It 

may thus be a metabolite related to smoking exposure, and so further study of its 

potential role in HCC development is warranted. 

Taken together, our findings relate to dietary and lifestyle exposures that may be 

potentially HCC promoting, as well as to liver dysfunctionality which is central to the 

development of HCC and other liver diseases.  

A major limitation of our study nested within a prospective cohort is the lack of 

information on the existence and severity of any other liver diseases leading up to 

HCC development. For example, information on existing liver cirrhosis would have 

been helpful in further characterizing our HCC cases between cirrhotic and non-
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cirrhotic pathways of HCC development. A related critique of our study design is the 

lack of a second control group composed of subjects with liver diseases. We do not 

have any access to relevant clinical information on liver diseases amongst our 

>520,000 cohort participants. However, such a control group would have allowed us 

to better understand transitions from existing liver pathologies towards early HCC. 

Although this is a reasonable assertion for studies designed to assess clinical 

surveillance for HCC in higher risk populations, it is less relevant to prospective 

cohorts geared towards exploring cancer etiology in the general population. 

Nevertheless, we have addressed these concerns by making multivariable statistical 

adjustments for main HCC risk factors in our study population. These adjustments 

did not meaningfully alter our findings, suggesting that different HCC etiologies – 

whether related mainly to chronic hepatitis infection, alcohol abuse, smoking or 

obesity – may have a large degree of overlap in terms of their metabolic 

consequences on the liver and hence transitions towards development of HCC. 

Patient cohorts comparing HCC cases to control subjects with liver disease provide 

vital insight towards risk stratification for HCC screening and identification of 

diagnostic biomarkers, they have to be distinguished from findings such as ours 

which are based on large-scale prospective cohort studies and which bring 

understanding of potential risk factors and metabolic perturbations in HCC 

development. Another limitation is our lack of information on any tumour staging 

criteria at diagnosis or treatments post-diagnosis. We did not consider survival and 

we cannot discount some degree of confounding by stage at diagnosis – but it must 
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be noted that biological samples in our cohort were collected at recruitment, pre-

diagnosis. In randomized clinical trials, allocation of exposure and prognostic factors 

would be random, but collection of data and biological samples in the cases is not 

likely to be pre-diagnostic. Studies with these different designs each provide crucial 

insight into the development of this lethal cancer, and should all be part of the 

evidence base for establishment of guidelines towards HCC prevention, as well as 

discovery of biomarkers for early diagnosis. We consider the fact that our HCC cases 

were derived from within an observational cohort with pre-diagnostically obtained 

biological samples and detailed confounder data as a major advantage that 

minimises recall and reverse causality biases adding another degree of robustness to 

our observations. At the same time, we acknowledge that our study design does not 

allow insight into transitions from existing liver pathologies towards HCC.  

Another important design advantage of this work is that we applied an agnostic 

metabolomics approach using high-resolution mass spectrometry with four 

complementary analytical configurations (72) enabling us to maximize the number of 

metabolites measured for a more complete assessment of metabolic profile changes 

between the HCC cases and their matched controls. We identified many metabolites 

with very high confidence, but we also observed a number which we could not 

identify despite our best efforts. We believe that the high number of metabolites 

observed to be associated with HCC risk, both identified and unknown, highlights the 

depth of metabolic perturbation in this disease. The magnitude of some of the risk 

associations for the unidentified metabolites, whether inverse or positive, shows that 
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we still have much to learn about the processes of HCC development. The 

unidentified metabolites provide considerable potential for discovery of additional 

novel exposure, diagnostic and prognostic biomarkers in other studies. Our findings 

on specific identified metabolites and metabolic pathways involved in HCC 

development may be followed up with experimental studies to more carefully query 

their functionality and mechanisms of action. Additionally, it would be of great interest 

to determine whether any of our observed metabolites may serve as early diagnostic 

markers. 

In summary, we show statistically significant associations between 46 identified 

metabolites, which could be either directly involved in HCC development or be the 

consequence of liver dysfunction caused by tumourigenesis in the liver. Our 

observations, based on pre-diagnostically collected blood samples, contribute 

towards a more in-depth understanding of HCC risk factors and underlying 

mechanisms of HCC development. They contribute to the evidence base that may be 

used towards public health guidelines for HCC prevention, but they should also be 

replicated in other prospective cohorts from different world regions with emphasis on 

comparing metabolic changes over time from the earliest phases of HCC 

development. 
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Table Titles 

Table 1. Characteristics of Hepatocellular Cancer (HCC) cases and matched control 

subjects, nested within the EPIC cohort. 

Table 2. Associations with risk of Hepatocellular Carcinoma (HCC) development for 

Level 1* identified metabolites.  

Table 3. Associations with risk of Hepatocellular Carcinoma (HCC) development for 

Level 2* (33) identified metabolites. 

Table 4. Associations with risk of Hepatocellular Carcinoma (HCC) development for 

Level 3 identified and Level 4 unidentified metabolites*. 

 

Figure Titles and Legends 

Figure 1 Title: Flow chart of the selection procedures for metabolites and number of 

annotated compounds for each analytical configuration of the UHPLC-QTOF-MS 

system. 

Figure 1 Legend: A total of 114 separate compounds (i.e. confirmed molecules that 

consisted of one or more features) were identified from the four datasets. Of these 

114 separate compounds, 22 were also detected by more than at least one of the 

other three profiling methods, leaving a total of 92 unique compounds. Of these 92 

compounds, 46 were identified into 3 distinct categories: unambiguously identified 

using pure standards (Level 1; n=14), identified to a high level of confidence based 

on chemical features and characteristics (Level 2; n=23), and identified to a known 

This article is protected by copyright. All rights reserved.



 
 

chemical class (Level 3; n=9). The remaining 46 compounds were not identified, i.e. 

unknown. 

1 After Benjamini-Hochberg correction for multiple testing, conditioned on matching 

factors: age at blood collection (±1 year), sex, study center, time of the day at blood 

collection (±3 hours), fasting status at blood collection (<3, 3-6,and >6 hours); among 

women, additionally by menopausal status (pre-, peri-, and postmenopausal), and 

hormone replacement therapy use at time of blood collection (yes/no).    

2 After Benjamini-Hochberg correction for multiple testing: matching factors + BMI 

(kg/m2, continuous), waist circumference (cm, continuous), physical activity (Met-

h/wk, continuous), alcohol intake at recruitment (g/d, continuous), lifetime alcohol 

intake pattern (categorical), smoking status (categorical) and attained education 

(categorical).  

Please see Tables 2 to 4 for additional details. 

Figure 2 Title: Principal component (PC) analyses based on metabolites associated 

with HCC risk for (1) the 46 metabolites associated with HCC risk and identified at 

Levels 1 to 3 33 and (2) the 14 metabolites associated with HCC risk and identified at 

Level 1 only, i.e. unambiguous identification using pure standards33. HCC cases are 

shown by green circles and matched controls by mauve triangles. 

Figure 2 Legend: (A) Score plots of PC analyses differentiating cases and controls, 

(B) plot of scores on PC1 versus follow-up time (all years, number of HCC case and 

matched control sets=129; and excluding cases with 4 or less years of follow-up, 
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number of HCC case and matched control sets=87) and (C) relative contributions of 

identified metabolites to PC1 and PC2. For A1, the proportion of variability is 29.86% 

for PC1 vs 11.12% for PC2. For A2, the values are 29.18% for PC1 and 11.16% for 

PC2. 
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Novelty and Impact: 

Changes in liver function precede the development of hepatocellular carcinoma (HCC). Many of 
these changes can be detected in the blood, as can biomarkers related to lifestyle or 
environmental exposures that may affect HCC risk. In this study, based on a large, prospective 
observational cohort, the authors used high resolution mass spectrometry-based metabolomics to 
identify alterations in circulating levels of 92 metabolites associated with HCC risk, 14 of which 
could be annotated with high confidence and some of which were observed up to 10 years prior 
to diagnosis. These results offer insight into early metabolic perturbations and mechanisms 
leading to this deadly cancer. 
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TABLES

Table 1. Characteristics of Hepatocellular Cancer (HCC) cases and matched control 

subjects, nested within the EPIC cohort.

Variables
HCC Cases

n=129

Matched 

Controls

n=129

p 

value*

Women (n, %) 41 31.8 41 31.8

Age at recruitment (years),  mean (SD) 60.0 7.3 60.1 7.4 0.717

BMI (kg/m2), mean (SD) 28.4 4.6 27.4 4.3 0.062

Waist circumference (cm), mean (SD) 97.5 14.0 93.0 12.3 0.002

Physical activity  (MET-h/week), mean (SD) 83.4 54.2 85.0 50.8 0.873

Dietary alcohol (g/day), mean (SD) 22.5 35.9 15.8 20.0 0.058

Education (n, %) None / primary 68 52.7 64 49.2 0.5945

Technical / 

professional
34 26.4 29 22.3

Secondary 6 4.7 10 7.8

University or higher 19 14.7 23 17.8

Alcohol intake pattern (n, %) Never drinkers 9 7.0 12 9.3 0.0018

Former drinkers 23 17.8 4 3.1

Drinkers only at 

recruitment 
7 5.4 8 6.2

Always drinkers 90 69.8 105 80.8

Smoking status (n, %) Never smokers 42 32.6 60 46.5 0.0124

Former smokers 40 31.0 42 32.3

Current smokers 46 35.7 26 20.0

Hepatitis B and/or C 

infection (n, %) **
Yes 33 25.6 4 3.1 <0.0001
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HCV (n, %) Yes 19 14.7 2 1.5 <0.0001

HBV (n, %) Yes 17 13.2 3 2.3 <0.0001

Self-reported diabetes status 

at baseline (n, %)
Yes 12 9.3 6 4.7 0.1426

Liver function score (n, %) ҂ 0 24 18.6 75 58.1 <0.0001

≥1 66 51.2 16 12.4

Missing values were not excluded from percentage calculations, thus the sum of percent 

values across sub-groups may not add up to 100%. 

Number of cases and controls with missing or unknown variable value: education 

(controls=3, HHCC=2), smoking status (controls=1, HCC=1), hepatitis infection status 

(controls=38, HC =38), diabetes status (self-reported, controls=13, HCC =11), liver function 

score (controls=38, HCC=38). The distribution of cases by country is as follows: 

Denmark=23, Germany=32, Greece=16, Italy=28, the Netherlands=4, Spain=11, United 

Kingdom=15. 

Categorical variables are presented as numbers and percentages. Continuous variables are 

presented as mean and standard deviation (SD).

* Paired t-test for continuous and Fisher’s exact test for categorical variables were used to 

calculate p-value.

** Hepatitis B and/or C seropositivity were detected using the ARCHITECT HBsAg and anti-

HCV chemiluminescent microparticle immunoassays (CMIAs; Abbott Diagnostics, France)

҂ Liver function biomarkers (ALT, AST, GGT, ALP, albumin, bilirurbin) were measured on the 

ARCHITECT c Systems™ (Abbott Diagnostics). A liver function score was computed as an 

indicator of possible underlying liver damage. The score ranges from 0 to 6 and is based on 

abnormal liver function tests (ALT>55 U/L, AST>34 U/L, GGT >64 U/L for men and > 36 U/L 

for women, ALP > 150 U/L, albumin < 34 g/L, total bilirubin > 20.5 μmol/L; values were 

provided by the laboratory). For each liver function biomarker, participants with abnormal 

values (as defined above) were assigned a score of 1. Possible liver impairment category 

was created for the score ≥1.
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Table 2. Associations with risk of Hepatocellular Carcinoma (HCC) development for Level 1* identified metabolites. 

Identified and Annotated Analytical Retention Absolute Multivariable Adjusted 3 

Compound  1 Method m/z 
Time 

(mins)

Fold 

Change2
OR (95% CI) q-value

Retinol RP+ 269.2273 7.27 -1.30 0.27 (0.16 - 0.48) 0.00060

Dehydroepiandrosterone 

Sulfate**
HILIC- 367.1561 0.80 -2.13 0.35 (0.22 - 0.57) 0.00350

Glycerophosphocholine RP+ 280.0920 0.64 -1.47 0.44 (0.28 - 0.71) 0.01080

γ-carboxyethyl hydroxychroman RP+ 265.1428 5.31 -1.23 0.56 (0.39 - 0.81) 0.01970

Creatine RP+ 132.0771 0.66 -1.20 0.56 (0.37 - 0.83) 0.03410

N1-Acetylspermidine* * HILIC+ 188.1759 6.85 1.20 2.16 (1.38 - 3.37) 0.01370

Isatin RP+ 148.0393 3.35 1.39 2.56 (1.53 – 4.29) 0.01490

p-Hydroxyphenyllactic acid HILIC- 181.0494 2.24 1.47 2.63 (1.62 – 4.28) 0.02200

Tyrosine RP+ 182.0816 1.28 1.20 2.77 (1.58 - 4.83) 0.02030

Sphingosine RP+ 300.2902 6.06 1.36 2.79 (1.66 - 4.71) 0.00360

L,L-Cyclo(leucylprolyl) RP+ 211.1442 3.90 2.37 3.25 (1.91 - 5.53) 0.00080
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Glycochenodeoxycholic acid ** RP+ 450.3218 6.48 3.37 3.31 (1.99 - 5.51) 0.00050

Glycocholic acid ** RP+ 466.3164 6.21 3.92 4.07 (2.32 - 7.14) 0.00040

7-methylguanine HILIC+ 166.0729 2.53 1.31 6.78 (3.24 - 14.18) 0.00030

* features identified with high confidence and verified by a chemical standard

** indicates that a compound was detected by more than one method. The listed method is the one showing the greatest intensity for the particular 

compound. Dehydroepiandrosterone Sulfate was also detected by RP-; N1-Acetylspermidine was also detected by RP+; Glycochenodeoxycholic 

acid was also detected by HILIC+, RP-; Glycocholic acid was also detected by RP-; Benzylcarnitine was also detected by RP+. 

1 Level 1 identified compounds: retention time and MS/MS matches with an authentic chemical standard (33). Information for compounds identified 

at Level 2 (identified compounds with high confidence; no standard available/analysed but matching isotope pattern, MS/MS spectra, and other 

supporting evidence) is shown on Table 3. Information for compounds identified at Level 3 (compounds identified from a known chemical class) 

and Level 4 (unidentified compounds) are shown in Table 4. 

2 Absolute fold change between the median intensities of cases to their matched controls.

3 The ORs represent the risk of HCC per 1 standard deviation (SD) of logarithm transformed value. Multivariable adjusted: matching factors + body 

mass index (BMI, kg/m2, continuous), Waist circumference (cm, continuous), alcohol intake at recruitment (g/d, continuous), Physical activity (Met-

h week, continuous), categories of smoking status, alcohol intake pattern and education (for categories see Table 1). 

Page 43 of 51

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



5

Table 3. Associations with risk of Hepatocellular Carcinoma (HCC) development for Level 2* identified metabolites.

Identified and Annotated Analytical Retention Absolute Multivariable Adjusted 3 

Compound 1 Method m/z 
Time 

(mins)

Fold 

Change2
OR (95% CI) q-value

LysoPC(17:0) ** HILIC+ 510.3554 2.42 -1.64 0.21 (0.11 - 0.40) 0.00030
LysoPC(15:0) ** HILIC+ 482.3251 2.60 -1.54 0.23 (0.12 - 0.42) 0.00030
LysoPC(20:5) ** HILIC+ 564.3104 2.38 -1.52 0.23 (0.12 - 0.46) 0.00030
LysoPC(16:0) ** RP+* 991.6772 7.03 -1.26 0.28 (0.16 - 0.49) 0.00060
LysoPC(20:4) ** HILIC+ 544.3407 2.33 -1.40 0.31 (0.19 - 0.51) 0.00030
LysoPC(P-16:0) ** HILIC+ 480.3460 2.12 -1.25 0.33 (0.19 - 0.55) 0.00030
LysoPC(22:5) HILIC+ 570.3539 2.30 -1.33 0.33 (0.20 - 0.54) 0.00030
PC(38:6) RP+ 806.5690 8.51 -1.29 0.36 (0.21 - 0.61) 0.00460
LysoPC(22:6) ** HILIC+ 568.3399 2.28 -1.41 0.37 (0.23 - 0.58) 0.00030
LysoPC(18:2) ** HILIC+ 520.3418 2.46 -1.31 0.40 (0.26 - 0.64) 0.00030
LysoPC(18:0) ** HILIC+ 524.3712 2.34 -1.25 0.41 (0.26 - 0.65) 0.00250
C5 acylcarnitine HILIC+ 246.1703 3.17 -1.22 0.46 (0.29 - 0.73) 0.01770
DG(18:2/18:2/0:0) RP+ 639.4946 9.54 -1.39 0.47 (0.31 - 0.72) 0.00950
LysoPC(14:0) ** HILIC+ 468.3088 2.70 -1.26 0.48 (0.31 - 0.72) 0.00900
LysoPC(17:1) HILIC+ 508.3406 2.46 -1.27 0.48 (0.31 - 0.75) 0.01530
LysoPC (18:1) HILIC+ 522.3570 2.38 -1.24 0.52 (0.34 - 0.78) 0.02450
LysoPC(20:3) ** RP+ 546.3548 7.04 -1.21 0.56 (0.39 - 0.80) 0.01790
DG(18:1/18:2/0:0) RP+ 641.5106 10.10 -1.27 0.58 (0.40 - 0.85) 0.04060

PC(16:1/16:1/0:0) HILIC+ 730.5398 1.17 1.39 1.79 (1.22 - 2.64) 0.03570
Bilirubin isomer 2 RP+ 585.2687 4.34 1.26 1.89 (1.20 - 2.97) 0.04510
Bilirubin isomer 1 RP+ 585.2696 5.13 1.27 1.94 (1.22 - 3.06) 0.03850
PC(16:1/16:0/0:0) ** HILIC+ 732.5552 1.16 1.54 2.01 (1.33 - 3.03) 0.01410
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6

Benzoylcarnitine ** HILIC+ 266.1392 3.36 1.46 2.74 (1.69 - 4.42) 0.00030
 features identified with high confidence

** indicates that a compound was detected by more than one method. The listed method is the one showing the greatest intensity for the particular 

compound. LysoPC(17:0) was also detected by RP+/-; LysoPC(15:0) also by RP+; LysoPC(20:5) also by HILIC-, RP+/-; LysoPC(16:0) also by 

HILIC-; LysoPC(20:4) also by HILIC-, RP+/-; LysoPC(P-16:0) also by RP+; LysoPC(22:6) also by RP+/-; LysoPC(18:2) also by RP+, HILIC-; 

LysoPC(18:0) also by RP+, HILIC-; LysoPC(14:0) also by RP+; LysoPC(20:3) also by HILIC-; PC(16:1/16:0/0:0) also by RP+; Benzoylcarnitine also 

by RP+.

1 Level 1 identified compounds: retention time and MS/MS matches with an authentic chemical standard (Table 2); Level 2 (identified compounds 

with high confidence): no standard available/analysed but matching isotope pattern, MS/MS spectra, and other supporting evidence (33). 

Information for compounds identified at Level 3 (compounds identified from a known chemical class) and Level 4 (unidentified compounds) are 

shown in Table 4. 

2 Absolute fold changes between the median intensities of cases to their matched controls.

3 The OR represents the risk of HCC per 1 SD of logarithm transformed value.  Multivariable adjusted: matching factors + body mass index (BMI, 

kg/m2, continuous), Waist circumference (cm, continuous), alcohol intake at recruitment (g/d, continuous), Physical activity (Met-h wk, continuous), 

categories of smoking status, alcohol intake pattern and education (for categories see Table 1). 
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Table 4. Associations with risk of Hepatocellular Carcinoma (HCC) development for Level 3 identified and Level 4 unidentified 

metabolites*.

Level of Chemical Class of Analytical Retention Absolute Multivariable Adjusted 3 

Identification 1 Compound Method m/z Time (min)
Fold 

Change2
OR (95% CI) q-value

3 C19H30O2-sulfate (Steroid-S) HILIC- 369.1710 0.81 -3.79 0.20 (0.11 - 0.39) 0.00080

3 Leucyl-Valine or isomer RP+ 231.1703 2.28 -2.32 0.28 (0.16 - 0.49) 0.00050

3 LysoPC/PC HILIC+ 633.3975 2.22 -1.67 0.35 (0.21 - 0.57) 0.00030

3 LysoPC(18:2) isomer HILIC- 564.3263 2.09 -1.30 0.39 (0.24 - 0.63) 0.01000

3 LysoPC/PC HILIC+ 609.3992 2.24 -1.38 0.41 (0.26 - 0.63) 0.00030

3 Tryptophyl-phenylalanine RP+ 352.1663 3.61 -1.30 0.48 (0.30 - 0.76) 0.01750

3 L,L-Cyclo(isoleucylprolyl) RP+ 211.1443 3.79 1.45 1.86 (1.21 - 2.84) 0.03600

3 C19H30O3-sulfate (OH-Steroid-S) RP- 385.1661 5.05 1.29 2.30 (1.46 - 3.61) 0.03050

3 C19H28O3-sulfate (OH-DHEA-S)** RP- 383.1505 5.48 1.87 2.59 (1.67 - 4.01) 0.00410

4 Unknown RP+ 551.3114 6.94 -1.32 0.22 (0.11 - 0.42) 0.00060

4 Unknown RP+ 571.2988 6.93 -1.30 0.24 (0.13 - 0.43) 0.00040
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Level of Chemical Class of Analytical Retention Absolute Multivariable Adjusted 3 

Identification 1 Compound Method m/z Time (min)
Fold 

Change2
OR (95% CI) q-value

4 Unknown RP+ 794.9647 6.96 -1.35 0.31 (0.18 - 0.54) 0.00160

4 Unknown RP+ 268.1413 0.88 -1.34 0.33 (0.18 - 0.62) 0.00950

4 Unknown RP+ 239.0915 4.29 -1.76 0.35 (0.19 - 0.63) 0.00910

4 Unknown RP+ 543.3458 7.28 -1.27 0.39 (0.24 - 0.62) 0.00330

4 Unknown RP+ 203.1392 0.88 -1.52 0.39 (0.23 - 0.68) 0.01160

4 Unknown RP+ 169.9858 0.62 -1.34 0.41(0.23 - 0.71) 0.01680

4 Unknown RP+ 203.1391 1.65 -1.46 0.42 (0.24 - 0.72) 0.01850

4 Unknown RP+ 548.3020 6.95 -1.29 0.42 (0.27 - 0.66) 0.00480

4 Unknown RP+ 500.2774 6.81 -1.25 0.44 (0.27 - 0.70) 0.00940

4 Unknown RP+ 257.2267 6.91 -1.49 0.45 (0.29 - 0.70) 0.00770

4 Unknown HILIC+ 116.1064 1.69 -1.38 0.46 (0.30 - 0.69) 0.00390

4 Unknown RP+ 423.7686 8.82 -1.30 0.46 (0.30 - 0.71) 0.00850

4 Unknown RP- 228.9786 3.40 -1.31 0.47 (0.31 - 0.72) 0.03380

4 Unknown RP+ 536.3023 6.97 -1.29 0.47 (0.30 - 0.73) 0.01090

4 Unknown RP+ 283.1552 6.21 -1.36 0.48 (0.30 - 0.75) 0.01680

4 Unknown RP+ 541.3301 7.10 -1.20 0.48 (0.30 - 0.76) 0.01880
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Level of Chemical Class of Analytical Retention Absolute Multivariable Adjusted 3 

Identification 1 Compound Method m/z Time (min)
Fold 

Change2
OR (95% CI) q-value

4 Unknown RP+ 401.3414 7.72 -1.21 0.53 (0.35 - 0.80) 0.02470

4 Unknown HILIC+ 183.1120 1.31 -1.30 0.54 (0.37 - 0.80) 0.02630

4 Unknown RP+ 118.0498 0.86 -1.21 0.55 (0.36 - 0.82) 0.02950

4 Unknown RP+ 254.0234 4.23 1.51 1.62 (1.17 - 2.24) 0.03190

4 Unknown RP+ 330.2464 5.98 1.22 1.78 (1.22 - 2.61) 0.02690

4 Unknown RP+ 243.1954 6.71 1.40 1.81 (1.24 - 2.63) 0.02020

4 Unknown RP+ 281.2489 6.81 1.42 1.82 (1.24 - 2.67) 0.02250

4 Unknown RP+ 175.0264 1.66 1.57 1.88 (1.23 - 2.87) 0.03130

4 Unknown HILIC+ 120.0657 1.83 1.22 1.97 (1.23 - 3.16) 0.04940

4 Unknown RP+ 241.1543 3.78 1.30 2.00 (1.30 - 3.09) 0.01880

4 Unknown RP+ 104.0710 0.64 1.27 2.05 (1.37 - 3.06) 0.00910

4 Unknown RP+ 202.1187 0.87 1.34 2.06 (1.30 - 3.25) 0.02070

4 Unknown HILIC- 308.0712 2.34 1.40 2.17 (1.42 - 3.31) 0.02200

4 Unknown RP+ 203.1393 0.73 1.27 2.20 (1.41 - 3.45) 0.00950

4 Unknown RP+ 129.0649 1.59 1.23 2.26 (1.42 - 3.59) 0.00990
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Level of Chemical Class of Analytical Retention Absolute Multivariable Adjusted 3 

Identification 1 Compound Method m/z Time (min)
Fold 

Change2
OR (95% CI) q-value

4 Unknown RP+ 129.0661 0.65 1.28 2.34 (1.45 - 3.74) 0.00840

4 Unknown RP- 71.0501 2.78 1.23 2.35 (1.44 - 3.82) 0.03690

4 Unknown RP- 475.3034 6.86 1.41 2.37 (1.57 - 3.60) 0.00680

4 Unknown RP+ 163.0752 2.09 1.20 2.38 (1.46 - 3.88) 0.00890

4 Unknown RP+ 203.0214 2.78 1.20 2.46 (1.43 - 4.24) 0.01470

4 Unknown HILIC+ 203.1395 5.32 1.37 2.51 (1.55 - 4.05) 0.00390

4 Unknown RP- 146.0448 0.65 1.34 2.56 (1.53 - 4.29) 0.03120

4 Unknown RP+ 619.5268 7.00 1.49 2.57 (1.61 - 4.13) 0.00280

4 Unknown RP+ 182.0814 0.87 1.25 2.63 (1.62 - 4.28) 0.00290

4 Unknown HILIC+ 126.0662 3.35 1.20 2.67 (1.59 - 4.48) 0.00390

4 Unknown RP+ 431.3169 6.85 1.38 2.80 (1.76 - 4.47) 0.00090

4 Unknown RP+ 389.2650 6.37 1.77 3.22 (1.77 - 5.85) 0.00380

4 Unknown RP+ 614.5721 7.00 1.25 3.75 (1.99 - 7.05) 0.00190

* features that are identified at the level of the chemical class (Level 3) or unknown (Level 4) (33).

** indicates that a compound was detected by more than one method, also listed. Data are provided only for the method that showed the greatest intensity for 

the particular compound: C19H28O3-sulfate (OH-DHEA-S) was also detected by HILIC-ve. 
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11

1 Compounds identified at Level 3 (compound from a known chemical class) and Level 4 (unknown compounds) are shown here (33). Information for 

compounds identified at Level 1 (retention time and MS/MS matches with an authentic chemical standard) and Level 2 (no standard available/analysed but 

matching isotope pattern, MS/MS spectra, and other supporting evidence) are shown in Tables 2 and 3, respectively. 

2 Absolute fold change between the median intensities of cases to their matched controls.

3 The OR represent the risk of HCC per 1 SD of logarithm transformed value. Multivariable adjusted: matching factors + body mass index (BMI, kg/m2, 

continuous), Waist circumference (cm, continuous), alcohol intake at recruitment (g/d, continuous), Physical activity (Met-h wk, continuous), categories of 

smoking status, alcohol intake pattern and education (for categories see Table 1).

LysoPC=lysophosphatidylcholine; Unknown = not identifiable; identity or chemical class not ascertainable.
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Figure 2. Principal component (PC) analyses based on metabolites associated with HCC 

risk for (1) the 46 metabolites associated with HCC risk and identified at Levels 1 to 3 33 and 

(2) the 14 metabolites associated with HCC risk and identified at Level 1 only, i.e. 

unambiguous identification using pure standards33. HCC cases are shown by green circles 

and matched controls by mauve triangles. 
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(1) 46 metabolites identified annotated at 
Levels 1-3  

(2) 14 metabolites identified at Level 1  

Excluding cases with 4 or less years of follow-
up, Levels 1-3 

Excluding cases with 4 or less years of follow-
up, Level 1 

129 cases 
129 matched controls 

129 cases 
129 matched controls 

87 cases 
87 matched controls 

87 cases 
87 matched controls 
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2 
 

C. Relative contributions of identified metabolites to PC1 and PC2. 

 

 

 

 

 

(1) 46 metabolites identified at Levels 1-3  

(2) 14 metabolites identified at Level 1  
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