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Abstract: Despite its perennial canopy, the Amazonian tropical evergreen forest shows significant
canopy growth seasonality, which has been represented by optical satellite-based observations. In
this paper, a new Microwave Temperature–Vegetation Drought Index (MTVDI) based on Advanced
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sensors was used to
capture the canopy seasonality from 2003 to 2010 in comparison with four climatic dryness indicators
(Palmer Drought Severity Index (PDSI), Climatological Water Deficit (CWD), Terrestrial Water Storage
(TWS), Vapor Pressure Deficit (VPD)) and two photosynthesis proxies (Enhanced Vegetation Index
(EVI) and Solar-Induced chlorophyll Fluorescence (SIF)), respectively. Our results suggest that the
MTVDI shows opposite seasonal variability with two photosynthesis proxies and performs better
than the four climatic dryness indicators in reflecting the canopy photosynthesis seasonality of
tropical forests in the Amazon. Besides, the MTVDI captures wet regions that show green-up during
the dry season with mean annual precipitation higher than 2000 mm per year. The MTVDI provides
a new way for monitoring the canopy seasonality of tropical forests from microwave signals.

Keywords: Microwave Temperature Vegetation Drought Index (MTVDI); tropical evergreen forests;
canopy growth index; photosynthesis seasonality; tropical phenology; Amazon

1. Introduction

The Amazon rainforest, holding 50% of tropical forests carbon stocks [1], accounting
for about 15% of global terrestrial photosynthesis [2], is commonly known as an important
and continuous part of Earth system functioning [3]. Understanding the seasonal and inter-
annual variations of photosynthesis and other gross CO2 fluxes of wet tropical forests offers
insights about how they may respond to climate change [4]. Despite its perennial canopy,
the Amazonian tropical evergreen forests show significant seasonality in leaf age groups
(e.g., young leaves, mature leaves and old leaves) [5], precipitation and radiation [6,7],
which dominate regulating the seasonal cycles of carbon and water fluxes [8].

Satellite optical remote-sensing sensors also discern significant canopy seasonality, i.e.,
a dry-season green-up phenomenon compared to the wet seasons in the parts of Amazon
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tropical evergreen forest [5,9–13]. For example, some studies analyzed Moderate Resolution
Imaging Spectrometer (MODIS) Enhanced Vegetation Index (EVI) and showed that the
canopy of the tropical forests ‘greened up’ during higher-sunlight dry seasons [14], which
increased greenness by 25% with sunlight during the dry season across Amazonian tropical
forests [11]. However, such a dry-season green-up in Amazonia from optical signal was
questioned by several studies [15–17]. The optical-based signals are easily affected by land
cover conditions and atmospheric conditions such as aerosols, atmospheric gases, clouds,
and water vapor [10,18–21]. That is the main cause of the biases on optical reflectance
changes, i.e., the interpretation of near-infrared reflectance changes can be induced by
cloud/aerosols contaminations and surface anisotropy and varying sensor and illumination
geometries [5,15–17]. Studies have shown that removing artifacts of changing sun-sensor
geometry in optical remote sensing red and near-infrared reflectance data will eliminate the
appearance of a green up (the change of EVI) during dry season months [15]. Thus, more
investigations from other types of satellite signals independent of optical sensors are
needed to verify such a dry-season green-up phenomenon across Amazonian tropical
evergreen forests.

Unlike optical sensors, microwave sensors are seen as an important alternative
for monitoring vegetation dynamics [22]. It detects and receives the electromagnetic
radiation and scattering characteristics of the measured object in the microwave band
(1 mm < wavelength < 1 m) to identify distant objects [23]. This enables microwave sensors
the ability of working under all atmospheric conditions and penetrating parts of vege-
tation canopies to detect targets below. Therefore, microwave remote sensing is often
used to detect changes in canopy structure, biomass, soil moisture and vegetation water
content [10,23,24]. Up to now, several studies have been carried out to evaluate the drought
impacts on Amazonian tropical forests. For example, novel low-frequency microwave satel-
lite data (L-VOD, L band Vegetation Optical Depth) was not only used to precisely monitor
the aboveground carbon (AGC) changes, but was also definitely used to monitor the in-
tensity and spatial distribution of AGC restoration in the tropical forest [25,26]. The data
from satellite microwave sensors which measure precipitation (TRMM, Tropical Rainfall
Measuring Mission) and canopy backscatter (QSCAT, Quick Scatterometer) are also used
to quantify the relative severity of recent droughts and potential impacts on Amazonian
tropical forests, and they showed severe water shortage in western Amazonia during the
drought period of 2005 [27]. Although focused on drought, the above microwave stud-
ies with relatively satisfactory experimental results fully demonstrate the great potential
of microwave data and its application advantages in tropical rain forest. However, to date,
few microwave remote sensing studies are focused on detecting the dry-season green-up
of tropical evergreen forests. The application of microwave signals in assessing the season-
ality of tropical forests has not been thoroughly studied and should be investigated more
extensively.

The Microwave Temperature–Vegetation Drought Index (MTVDI) is a microwave
drought index proposed by Liu et al. [10] in 2017 based on both the theory of Temperature–
Vegetation Drought Index (TVDI) [28] and brightness temperature data (Tb) of the Ad-
vanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) mi-
crowave sensor. It not only utilized the advantage of TVDI, which combines land surface
temperature (Ts) with Normalized Difference Vegetation Index (NDVI) when monitoring
the vegetation drought condition but also overcame the shortage of optical remote sensing,
which is greatly influenced by atmospheric conditions. The value of MTVDI ranges from 0
to 1, indicating the change from humid to drought conditions. Liu et al. [10] firstly derived
Ts based on the AMSR-E 18.7 GHz horizontal, 23.8 GHz and 89.0 GHz vertical polarized
Tb, and then developed the Microwave Normalized Difference Vegetation Index (MNDVI)
from the AMSR-E 23.8 GHz Microwave Polarization Difference Index (MPDI) and, finally,
constructed MTVDI based on Ts and MNDVI derived from microwave signals.

In this paper, we use the MTVDI to investigate the seasonality of canopy growth across
the tropical evergreen forests of the Amazon. And we compared MTVDI with four climatic
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dryness indicators including Terrestrial Water Storage (TWS) [29], Vapor Pressure Deficit
(VPD) [30], Palmer Drought Severity Index (PDSI) [31], and Climatological Water Deficit
(CWD) [32] and two canopy photosynthesis proxies including Enhanced Vegetation Index
(EVI) [33] and Solar-Induced Chlorophyll Fluorescence (SIF) [34]. The scientific objectives
of our study were (1) to assess the capacity of AMSRE-MTVDI in capturing the tropical
forests phenology over the Amazon and (2) to investigate the differences in the response
of tropical evergreen forests to climatic seasonal variability (light and water) in different
regions of the Amazon.

2. Materials and Methods
2.1. Study Area

The Amazon basin (20◦ S–10◦ N by 50◦ W–80◦ W) is the largest basin of the world
in terms of area (7.05 × 106 km2), has a tropical rain forest climate, and covers about
40% of South America [35]. Annual average precipitation and runoff are ∼2100 mm/year
and 1000 mm/year respectively [36], and, in some areas of the northern portions, yearly
rainfall can exceed 4000 mm [35,37]. Here, we mainly focused on tropical evergreen forests
(Figure 1). We firstly overlapped the boundary of the Amazon basin and the evergreen
forest map from MODIS Land Cover product (MCD12C1) [38] in 2005, and then we
removed the coastal area in the northeast considering the contamination of Tb data caused
by water [39].
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2.2. AMSR-E Data Processing

The Advanced Microwave Scanning Radiometer (AMSR) for the Earth Observing
System (AMSR-E) developed by the Japan Aerospace Exploration Agency (JAXA) was
launched in May 2002 on NASA’s (National Aeronautics and Space Administration) Aqua
satellite [40,41] and worked until October 2011. AMSR-E was the successor of AMSR,
which had lost due to satellite malfunction in October 2003, and nearly had the same
characteristics as AMSR. ASMR-2, as the successor of AMSR-E, launched in May 2012 is
still working. The detailed characteristics and performance of the AMSR family can be
seen from reference [42].
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In this study, the AMSR-E/Aqua ascending daily global 0.25-degree Tb data from
2003 to 2010 were provided by the National Snow and Ice Data Center (NSIDC) (http:
//nsidc.org/). For AMSR-E data preprocessing, first, we conducted a simple atmospheric
correction for the L-band, C-band, and X-band on the global scale by using Earth Vegetation
Atmosphere (EVA) model [43]. Second, we used spectral difference statistics (means
and standard deviations) to identify pixels contaminated by radio frequency influence
(RFI) and used RFI of K-band (RFIK) to shield high-frequency RFI for radio frequency
interference correction [44,45]. Finally, we aggregated daily Tb data into monthly by using
the average method.

2.3. Developing MTVDI

Here, we used Liu et al. [10]’s method to calculate the MTVDI. First, we calculated
Ts (Formula (1) in Liu et al. [10]) based on the AMSR-E 89.0 GHz vertical polarization Tb
(Tb89V), 23.8 GHz vertical polarization Tb (Tb23V) and 18.7 GHz horizontal polarization Tb
(Tb18H) (Formula (1)):

Ts = 6.134 × 10−3(Tb18H − 278.818)2 + 9.934 × 10−3(Tb23V − 216.029)2 − 0.353 Tb89V + 349.582 (1)

where Tb18H, Tb23V and Tb89V are 18.7 GHz horizontal polarization Tb, 23.8 GHz vertical
polarization Tb, and 89.0 GHz vertical polarization Tb respectively.

Then, the microwave normalized vegetation index (MNDVI) (Formula (2)) was cal-
culated based on AMSR-E 23.8 GHz microwave polarization difference index (MPDI)
(Formula (3)).

MNDVI = −0.231 × ln(MPDI)− 0.578 (2)

where MPDI is the microwave polarization difference index of AMSR-E 23.8 GHz.

MPDI =
TbV − TbH
TbV + TbH

(3)

where TbV and TbH are the 23.8 GHz vertical polarization Tb and 23.8 GHz horizontal
polarization Tb respectively.

Finally, based on the NDVI-Ts triangle space and definition of the temperature vegeta-
tion dryness index (TVDI) [28], we plotted the scatter diagrams between MNDVI and Ts
to construct the MTVDI triangle space (see Figure 2). In the MTVDI (Ts-MNDVI) triangle
space, the wet edge means that the vegetation growth is not limited by water due to
sufficient soil water supply and the surface evapotranspiration is equal to the potential
evapotranspiration, while the dry edge represents that the effectiveness of soil moisture
is low and the surface evapotranspiration is small. That means wet edge and dry edge
represent the thresholds of the wettest and driest condition of vegetation for a given
MNDVI. Detailed methods for constructing the MTVDI triangle space were shown in
Formulas (4)–(6).

MTVDI =
Ts − Tsmin

Tsmax − Tsmin
(4)

Tsmax = a × MNDVI + b (5)

Tsmin = c × MNDVI + d (6)

where MNDVI is the Microwave Normalized Difference Vegetation index, a and b are the
slope and intercept of dry edge; c and d are the slope and intercept of wet edge. Tsmax
and Tsmin are the maximum and minimum surface temperature observation for a given
MNDVI.

http://nsidc.org/
http://nsidc.org/
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2.4. Climatic Dryness Indicators and Canopy Photosynthesis Proxies for Comparing the MTVDI
Seasonality

In this study, we used Pearson correlation coefficient (Pearson R) and Nash–Sutcliffe
efficiency coefficient (NSE) [46] to compare the seasonal variations between MTVDI and
different climatic dryness indicators, and to evaluate the capability of MTVDI seasonality
in representing the canopy photosynthesis seasonality (Table 1).

2.4.1. Terrestrial Water Storage

The Terrestrial Water Storage (TWS) obtained by gravity measurement represents a
vertically integrated estimation of water storage, including groundwater, soil water content,
surface water, ice, snow and biological water content [47,48]. That is, the larger the TWS
value indicates more surface water reserves. The TWS seasonality is significantly related to
the variability in precipitation or runoff, evapotranspiration [49,50]. After obtaining the
terrestrial water reserves, each component can be estimated, such as the combination of
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water balance equation and hydrological model to estimate groundwater reserves, soil
water content, evapotranspiration, and calculation of precipitation-evapotranspiration
difference, river flow, etc. TWS measured by Gravity Recovery and Climate Experiment
(GRACE) is widely used in previous studies [49–51]. Here, we used 0.5◦ monthly TWS
data from the reconstructed GRACE Dataset (GRACE_REC_v03) [29].

2.4.2. Vapor Pressure Deficit

The Vapor Pressure Deficit (VPD) is the deficit between the amount of moisture in
the air and how much moisture the air can hold when it is saturated [30,52]. That means,
VPD can reflect the atmospheric dryness. The vegetation stomatal size is sensitive to the
change of VPD [53]. When the VPD is higher, the vegetation water is stressed and it tends
to close their stomata to prevent further water loss and hydraulic failure [54], therefore
the evaporation will decrease [55]. In this study, we used a 0.125◦ spatial resolution ERA-
Interim dataset, which is reanalysis products based on the Integrated Forecast System of
European Centre for Medium–Range Weather Forecasts (ECMWF-IFS) [56], to calculate the
VPD. The mathematical definition is as follows [30].

VPD = SVP − AVP (7)

AVP = 6.112 × fw × e
17.67Td

Td+243.5 (8)

SVP = 6.112 × fw × e
17.67Ta

Ta+243.5 (9)

where SVP and AVP are saturated vapor pressure and actual vapor pressure (hPa), re-
spectively. Ta and Td are the land air temperature (◦C) and dew point temperature (◦C),
respectively.

fw = 1 + 7 × 10−4 + 3.46 × 10−6Pmst (10)

Pmst = Pmsl

(
(Ta + 273.16)

(Ta + 273.16) + 0.0065 × Z

)5.625
(11)

where Z is the altitude (m). Pmst is the air pressure (hPa), and Pmsl is the air pressure
at mean sea level (1013.25 hPa).

2.4.3. Palmer Drought Severity Index

As one of the commonly used remote sensing drought monitoring models, the Palmer
Drought Severity Index (PDSI) is a good indicator for quantitatively describing drought
conditions [31]. PDSI is built based on meteorological data from field observations of mete-
orological monitoring stations, such as standard precipitation data, previous precipitation
data, and temperature. And it is fully taken into account the moisture conditions and
duration at a specific time and in previous periods [57]. The PDSI is a two-layer model
to assess soil water balance by accounting for both water supply and demand to express
the severity of drought within a period when the water supply in a region is continuously
lower than normal [58]. The positive and negative values of PDSI indicate wetter and drier
conditions, respectively. Here, we used the time-series monthly PDSI from Terraclimate
PDSI datasets [59].

2.4.4. Climatological Water Deficit

The Climatological Water Deficit (CWD) is defined as the most negative value of clima-
tological water deficit, related to the rainfall regime [32]. Therefore, CWD computed from
the Climatic Research Unit and National Centers for Environmental Prediction (CRUN-
CEP) precipitation monthly dataset [60] was calculated to the analysis of the forest water
stress [9]. Many studies have pointed out that the average evapotranspiration (E) in tropical
forest areas determines whether the vegetation is in a state of water scarcity. The threshold
is 100 mm per month [61–64]. Thus, the calculation logic relationship is
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If
CWDn−1(i,j) − E(i,j) + Pn(i,j) < 0 ;
Then CWDn(i,j) = CWDn−1(i,j) − E(i,j) + Pn(i,j) ;
Else CWDn(i,j) = 0.

(12)

therefore, when the monthly rainfall (P) for each month (n) is lower than this threshold,
the forest enters into water deficit. Therefore, smaller values of CWD indicate more severe
drought with less precipitation.

Table 1. Basic information of climatic dryness indicators and canopy photosynthesis proxies.

Indicator Evaluation
Dataset Abbr.

Original
Spatial

Resolution

Original
Temporal

Resolution
Period Reference

climatic
dryness
indicator

GRACE TWS TWS 0.50◦ Monthly 2003–2010 Humphrey and
Gudmundsson 2019 [29]

ERA-Interim
VPD VPD 0.125◦ Daily 2003–2010 Yuan et al., 2019; Dee et al.,

2011 [30,56]
Terraclimate

PDSI PDSI 0.50◦ Monthly 2003–2010 Abatzoglou et al., 2018 [59]

Climatological
Water Deficit CWD 0.50◦ Monthly 2003–2010 Aragão et al., 2007 [61]

canopy
photosynthesis

proxy

MODIS EVI EVI 0.05◦ Monthly 2003–2010 Huete et al., 2002 [33]
GOME-2 SIF

v26 SIF 0.50◦ Monthly 2007–2010 Joiner et al., 2013 [34]

2.4.5. Enhanced Vegetation Index

The Enhanced Vegetation Index (EVI) characterizes vegetation density, a greater value
of EVI indicates a better growth of the vegetation canopy (i.e., canopy has more leaves).
The EVI can optimize the vegetation signal by eliminating canopy background coupling
and reducing the atmospheric impact on the signal, and because the index signal receives
a composite of leaf area and chlorophyll content, thus it is not saturated in dense forests,
so making it more sensitive to changes in vegetation canopy structure in dense vegetation
areas [11,33,65]. Here, we obtained monthly 0.05 degree EVI (MYD13C3) from MODIS
website (https://modis.gsfc.nasa.gov/data/dataprod/mod13.php) and resampled it to
0.25 × 0.25 degree by using bilinear interpolation method [10].

2.4.6. Solar-Induced Chlorophyll Fluorescence

The Solar-Induced Chlorophyll Fluorescence (SIF) is radiation generated between
650nm and 800nm after vegetation absorbs energy [66]. It is not saturated in dense forests,
and is sensitive to the rate of photosynthetic electron transmission and the ratio of absorbed
radiation. It can directly measure the functional status of vegetation and can eliminate the
constraints imposed by the sunlight or sensor geometry on the vegetation index [67,68].
Therefore, the SIF can characterize the growth status and photosynthesis ability of vegeta-
tion. The satellite SIF data has been widely used to capture the photosynthetic activity of
terrestrial forests [34,68–70]. In the previous study, Guan et al. [61] identified a large-scale,
dry-season green-up area located in the northern, wetter part of Amazonia based on SIF
and MODIS EVI. In this study, the satellite SIF data covering the Amazon tropical forests
was provided from the monthly GOME-2 product-level 3 version 26 (V26) [34], which was
retrieved from observation from multiple wavelengths from 2007 to 2015.

2.5. Nash–Sutcliffe Efficiency Coefficient

Nash–Sutcliffe Efficiency (NSE) has been used to assess the predictive power of
hydrological models [46], and it can be also used to quantitatively describe the accuracy
of model outputs other than discharge as long as there is observed data to compare

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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the model results. Therefore, it was widely used for optimizing parameter values of
geophysical models [71], hydrology about water quality constituents such as sediment,
nitrogen, phosphorus loading [72], climate variables [73,74], land–atmosphere heat flux [75]
and Gross primary production (GPP) [76]. To only compare the phase of seasonality
correcting for the impacts of different seasonal amplitudes, we used the Z-transformed
variables to calculate the NSE between modeled and observation-based data.

NSE = 1 − ∑T
t = 1(MTVDIt − Obst)

2

∑T
t = 1

(
Obst − Obs

)2 (13)

where MTVDIt is the normalized MTVDI data at time t, and Obst is the normalized
photosynthesis proxies (EVI and SIF) or drought indicators (TWS, VPD, PDSI and CWD) at
time t (month). NSE is sensitive to both absolute values and seasonal variations [77]. The
range of NSE is (−∞, 1].

An efficiency of 1 (NSE = 1) corresponds to a perfect match of modeled outputs to
the observed data. An efficiency of 0 (NSE = 0) indicates that the model predictions are as
accurate as the mean of the observed data, whereas an efficiency less than zero (NSE < 0)
occurs when the model outputs perform poorly in comparison with the observed data.

Particularly, the MTVDI has a negative correlation with CWD, PDSI, TWS, EVI, and SIF,
therefore, we used minus MTVDI to calculate NSE between MTVDI and those indicators.

3. Results
3.1. The MTVDI Triangle Space

The monthly Ts-MNDVI triangle space in 2004 is shown in Figure 2. The magnitude of
the Ts and MNDVI vary between 280–330 (K) and 0–1.2, respectively. The dry edges (red) of
MTVDI represent the driest condition (Tsmax) at the specified MNDVI, and the wet edges
(blue) represent the wettest condition (Tsmin). Due to the space limitations, the monthly
MNDVI-Ts triangle space in 2003 and 2005 to 2010 are listed in the support materials
(Supplementary Materials Figures S1–S7).

The slope, intercept, and correlation coefficient (R) of regression of the dry and wet
edges in each month of 2004 are shown in Supplementary Materials Table S1. The slopes of
the dry edges are less than 0, while the slopes of wet edges are greater than 0. The negative
slopes of the dry edges show a negative correlation between Ts and MNDVI, indicating the
lower Tsmax when MNDVI increases; while the positive slopes of the wet edges indicate
that the Tsmin increases with the increasing of MNDVI (Supplementary Materials Table S1).

3.2. Seasonality of MTVDI

The spatial pattern of MTVDI differs greatly in different seasons (Figure 3), showing a
clear transition of higher MTVDI pixels from north to south. From November to March, the
drought mainly occurred in the northern Amazon tropical forests, which corresponds to the
wet season in the southern hemisphere and dry season in the northern hemisphere. From
the start of May to the end of September drought goes southward and then it releases from
October to the end of the year. It is because during the period from March to September,
the southern hemisphere gradually experiences dry season from north to south. It is
notable that in the northeastern part of the study area encountered drought throughout the
whole year.

To better understand the spatial divergences of Amazon tropical forests, we use the
K-means clustering analysis [78,79] of MTVDI to group the study areas into six parts,
named as NA1 (Northern Amazon 1), NA2 (Northern Amazon 2), CA (Central Amazon),
WA (Western Amazon), SA1 (Southern Amazon 1), SA2 (Southern Amazon 2) (Figure 4).
This result is similar to the seasonality cluster map identified from monthly climatology
data of Ts, QSCAT, and reflectance of near-infrared band (NIR) for the Amazon tropical
forests [79]. Results indicate the good ability of the MTVDI in reflecting the light and water
differences across Amazon tropical forests.
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Figure 3. Spatial pattern of MTVDI seasonality over Amazonian tropical forests. The seasonality represents the mean values
of each month from 2003 to 2010. Subplots (a–l) are monthly mean MTVDI from Januray to December, respectively.
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Figure 4. The spatial distribution of (a) K-means clustering analysis map of MTVDI, (b) The seasonality cluster map
identified from monthly data of land surface temperature (Ts), canopy backscatter from Quick Scatterometer (QSCAT), and
reflectance of near-infrared (NIR).

The seasonal variations of MTVDI over Amazonian tropical forests are presented in
Figure 5. For all Amazonian tropical forests (black solid curve in Figure 5), the MTVDI
increases in May at the end of the wet-season period and peaks around August dur-
ing the dry-season period, and then drops down in November at the end of the dry
season [54]. Among the six subregions, NA1 region shows annual higher MTVDI (an-
nual mean MTVDI = 0.76), while SA1 region has the smallest MTDVI throughout the year
(annual mean MTVDI = 0.58). In particular, the MTVDI in SA2, CA, WA, and NA1 regions
show significantly seasonality, with an increase at the early stages of the dry season, a peak
in August in the dry season and a drop during the wet season. However, the MTVDI in
NA2 region shows the opposite pattern, where MTVDI increases at the start of November,
but reaches its lowest point from June to October.
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3.3. Compare MTVDI Seasonality against with Climatic Dryness Indicators

To test the robustness of MTVDI, we compared it with four climatic dryness indicators:
TWS, VPD, PDSI and CWD, respectively (Figure 6). In general, the seasonality of MTVDI
shows consistency with VPD, of which positive value indicates drier condition, but shows
opposite trends to those of CWD, TWS, and PDSI, of which negative value means drier
conditions (Figure 6). This is also shown in six subregions (Supplementary Materials
Figure S8). We further used NSE to compare the seasonality matching between MTVDI
and four climatic dryness indicators. The seasonality of MTVDI matches well with those
of VPD (NSE = 0.40) and CWD (NSE = 0.25), compared with those of PDSI (NSE = −0.56)
and TWS (NSE = −0.72), especially in the regions NA1, WA, CA, and SA2 (Supplementary
Materials Table S2).
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Figure 6. Seasonality of MTVDI, Palmer Drought Severity Index (PDSI), Climatological Water Deficit (CWD), Terrestrial
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The spatial patterns of correlation between seasonality of MTVDI and seasonality
of VPD, CWD, TWS, PDSI at the pixel level are shown in Figure 7. In general, MTVDI
has better correlation (red pixels) with VPD (Figure 7a, |Mean R| = 0.44) and CWD
(Figure 7b, |Mean R| = 0.35) than TWS (Figure 7c, |Mean R| = 0.24) and PDSI (Figure 7d,
|Mean R| = 0.05) in seasonal variability. Previous studies have shown the great potential
of VPD in representing the Amazonian phenology [5]. Therefore, MTVDI not only has
the potential to represent the Amazonian tropical forest phenology, being well matched
with VPD in seasonality (NSE = 0.40), but also can be used as an integrated drought
index. MTVDI relates to both atmospheric drought (VPD) and soil water stress (CWD),
especially in southern regions of Amazon tropical forests (SA2) (Table S4), where there
is a transition from predominantly light-adapted to water-adapted canopy phenology
from west to east [80]. Besides, in the southern of NA1, the northern of WA, and the
CA regions, the MTVDI has poor correlation with all of four climatic dryness indicators
(Supplementary Materials Table S3). It is because those pixels are distributed along the
river and has lower brightness temperatures and higher polarization differences due to
contamination of water [39].
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Figure 7. The spatial pattern of correlation between seasonality of MTVDI and seasonality of (a) Vapor Pressure Deficit
(VPD), (b) Climatological Water Deficit (CWD), (c) Terrestrial Water Storage (TWS), and (d) Palmer Drought Severity Index
(PDSI).

3.4. Capability of MTVDI Seasonality in Representing Canopy Photosynthesis Seasonality

We further compare MTVDI with photosynthesis proxies, the Enhanced Vegetation
Index (EVI) and Solar-Induced Chlorophyll Fluorescence (SIF), which were found to have
the capability of representing the Amazon dry-season green up [14,67]. The seasonality
of MTVDI, SIF and EVI of the whole study area are presented in Figure 8. From Jan to
Jun, both EVI and SIF decline and reach the lowest values in Jun. After Jun, EVI and SIF
begin to rebound and reached the initial level of about Jan. On the contrary, the MTVDI
shows an approximately opposite variation, which corresponds to the fact that the growth
of vegetation is inhibited during the drought period (dry season) and is enhanced during
the wet season. Therefore, the approximately opposite seasonality between MTVDI and
EVI (NSE = 0.75), SIF (NSE = 0.35) indicate that MTVDI has a good capability in reflecting
the photosynthesis seasonality of tropical forests in Amazon. Especially in the SA2 (NSE of
EVI and SIF are 0.95 and 0.79, respectively) and WA regions (NSE of EVI and SIF are 0.75
and 0.39, respectively) (Supplementary Materials Figure S9, Table S2).

The spatial patterns of linear correlations at the pixel level are presented in Figure 9.
In northern parts (NA1 and NA2) of the Amazon tropical forests, the MTVDI shows a
positive correlation with both photosynthesis proxies, while in central (CA) and south
parts (WA, SA1 and SA2) their correlations are negative. This result exactly coincides with
Guan et al. [67]. Guan et al. [67] investigated the differences of the wet-season minus dry-
season quantities of simulated ∆EVI and ∆SIF (Figure 9c,d), respectively, and found that
those forests which green up during the dry season were located in wet regions with mean
annual precipitation (MAP) higher than 2000 mm per year (blue pixels in Figure 9c,d). That
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is, the red pixels in Figure 9a,b with a positive correlation between EVI, SIF and MTVDI,
where the forests show a dry-season green-up. In contrast, for the green pixels that show a
negative relation, the forests, however, show canopy loss during dry-season periods. The
MTVDI shows good capability in detecting the forest areas, which green up during the dry
season in wet regions.
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Figure 9. The spatial pattern of the correlation between seasonality of MTVDI and seasonality of (a) Enhanced Vegetation
Index (EVI) and (b) Solar-Induced Chlorophyll Fluorescence (SIF). Multiyear average of wet minus dry season differences
of simulated (c) ∆EVI and (d) ∆SIF.
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4. Discussions
4.1. MTVDI Captures Amazonian Seasonality

The comparison between MTVDI and drought indicators showed that MTVDI, as a
drought indicator [5], matched well with most drought indicators (Supplementary Mate-
rials Tables S2 and S3). Results also indicated that the MTVDI performed well in distin-
guishing different dryness patterns over the Amazon tropical forests. Additionally, MTVDI
kept consistent with VPD seasonality which showed great potential in representing the
Amazonian phenology [5]. In general, our analysis indicated that MTVDI captures the
drought-derived phenology in Amazon rainforest.

MTVDI showed an opposite relationship with photosynthesis proxies (EVI and SIF)
on the scale of the entire study area (Figure 8), which was consistent with common sense
for drought inhibited vegetation growth because increasing MTVDI cause leaf biomass
loss and then decline SIF and EVI. But the correlation between MTVDI and photosynthesis
proxies (EVI and SIF) show a divergent patterns between the northern and southern parts
of the study area (Figure 9 and Supplementary Materials Figure S9). In southern and
southwestern parts of the study area (CA, WA, SA1 and SA2), the opposite seasonal
variations (Supplementary Materials Figure S9c–f) between MTVDI and EVI and SIF
showed that the vegetation growth of those regions was mainly controlled by water
supply [79]. Meanwhile, in the northern and northeastern part of the study area (NA1
and NA2), the consistent seasonal variations (Supplementary Materials Figure S9a,b) and
positive correlation (Figure 9a,b) between MTVDI and EVI, SIF suggested the vegetation
growth of those regions was restricted by the availability of radiation instead of water
availability [6,11].

Seasonality of MTVDI showed consistent or opposite to those of photosynthesis
proxies (EVI and SIF) in different subregions (Figure 8, Supplementary Materials Figure S9),
which suggest MTVDI can capture the seasonality of both water-related and light-related
forests, and matches well with the seasonality of VPD (Figure 6 s and Figure 7a), showing
great potential in capturing well the canopy seasonality in Amazon tropical forests. MTVDI
especially successfully detected the forest areas which green up during the dry season in
wet regions with mean annual precipitation higher than 2000 mm per year (Figure 9c,d). It
is because the MTVDI strictly adheres to the physical model, and its construction is closely
related to two aspects: abiotic temperature (Ts) and biotic canopy characteristics (MPDI).
MTVDI showed better performance in capturing canopy seasonality than climatic dryness
indicators such as PDSI, CWD, TWS, and VPD across Amazon tropical forests.

4.2. Light and Water Limitations Identified by MTVDI

The direction and mechanism of canopy seasonality over Amazon tropical forests
at a large scale is a complicated and debated question. Some studies [67,81,82] used
TWS and CWD data to detect the spatial pattern of canopy dry-season green-up in the
Amazon. Meanwhile, in some other studies, VPD, which indicates how the dryness of air
temperature affects the closure of plant stomata and thus controls physiological processes
such as plant transpiration and photosynthesis [83], is used as a robust trigger of tropical
forests canopy seasonality [5]. Actually, the above studies indicate two different viewpoints
of Amazonian dry-season “green up”. The first is that it is more likely that Amazon tropical
forests encounter soil water deficit during the dry season, while the second is that it is more
likely that VPD triggers growth of new leaves and enhances canopy rejuvenation [5].
Wu et al. [8] shows significant canopy rejuvenation due to more new leaves growing in
the dry season. Bertani et al. [66] also pointed out that in most parts of the Amazon
tropical forests, the largest incident radiation was observed from Aug to Oct and induced
an enhanced photosynthesis activity that occurs mainly from Sep to Dec.

Different clusters (Figure 4b) identified by monthly Ts, QSCAT, and NIR data rep-
resented different light and water constraints on tropical canopy phenology [79]. The
water availability significantly dominated the canopy phenology in the southern parts
(e.g., Figure 4b SA1 and SA2) and the canopy phenology of the northeastern parts (e.g.,
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Figure 4b NA2), where there is a significant dry-season green-up, was strongly limited
by light availability, and there was a southwest-to-northeast transition from predomi-
nantly water-adapted to light-adapted canopy seasonality. The MTVDI clusters (Figure 4a)
showed a similar pattern with this previous study (Figure 4b), distinguishing the difference
between water-controlled canopy seasonality and light-controlled canopy seasonality.

5. Conclusions

In this paper, a novel Microwave TVDI (MTVDI) that uses passive microwave remote
sensing technology was used here to capture the canopy seasonality of tropical evergreen
forests across Amazon. Our results indicated that the MTVDI showed consistent or opposite
variability with photosynthesis proxies (i.e., EVI and SIF) in different subregions. The
MTVDI not only performed better than other climatic dryness indicators such as PDSI.
CWD, TWS, and VPD, but also showed good capability in detecting the forest areas which
green up during the dry season in wet regions across Amazon tropical forests. MTVDI
provides a new choice for the scientific community to investigate canopy growth dynamics
in the Amazonian tropical forests.
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space in 2009, Figure S7: The monthly MNDVI-Ts space in 2010, Figure S8: The seasonality of MTVDI,
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