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Abstract: Anesthesia induces a reconfiguration of the repertoire of functional brain states 
leading to a high function-structure similarity. However, it is unclear how these functional 
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changes lead to loss of consciousness. Here we suggest that the mechanism of conscious 
access is related to a general dynamical rearrangement of the intrinsic hierarchical organization 
of the cortex. To measure cortical hierarchy, we applied the Intrinsic Ignition analysis to resting-
state fMRI data acquired in awake and anesthetized macaques. Our results reveal the existence 
of spatial and temporal hierarchical differences of neural activity within the macaque cortex, with 
a strong modulation by the depth of anesthesia and the employed anesthetic agent. Higher 
values of Intrinsic Ignition correspond to rich and flexible brain dynamics whereas lower values 
correspond to poor and rigid, structurally driven brain dynamics. Moreover, spatial and temporal 
hierarchical dimensions are disrupted in a different manner, involving different hierarchical brain 
networks. All together suggest that disruption of brain hierarchy is a new signature of 
consciousness loss. 
 
1. Introduction 

 
Recent studies suggest dynamical disruptions on brain activity during general anesthesia, sleep 
and disorders of consciousness (Dehaene & Changeux, 2011; Mashour et al., 2020). 
Nevertheless, whatever the level of consciousness, the resting-state brain activity displays 
highly organized coherent networks (Biswal, Yetkin, Haughton, & Hyde, 1995; Buckner, 
Andrews-Hanna, & Schacter, 2008; Fox et al., 2005; Fransson, 2006; Vincent et al., 2007). 
Examples are anticorrelated networks still present under anesthesia (Boveroux et al., 2010; 
Vincent et al., 2007) and early stages of sleep (Fukunaga et al., 2006; Picchioni et al., 2008). 
Evidence suggests that anesthesia modulates the strength of functional connectivity (Martuzzi, 
Ramani, Qiu, Rajeevan, & Constable, 2010; Barttfeld et al., 2015; Boveroux et al., 2010; 
Schrouff et al., 2011). In Barttfeld et al. (Barttfeld et al., 2015), dynamical resting-state analyses 
of functional magnetic resonance imaging (fMRI) data acquired in awake and propofol 
anesthetized macaques, indicate that during the awake state, the brain activity at rest displays a 
rich repertoire of flexible functional patterns that is independent of the underlying anatomical 
connectivity. Conversely, during anesthesia-induced loss of consciousness, the resting-state 
brain activity is shifted toward a poor repertoire of rigid functional patterns with higher similarity 
to structural connectivity. A finding that was generalized to different anesthetic agents (Uhrig et 
al., 2018) and also applied to classify different categories of chronic loss of consciousness 
(Demertzi et al., 2019). This dynamical disruption at long-distance networks might be the 
common fingerprint of all different types of loss of consciousness (anesthesia-induced, injuries-
induced loss of consciousness and sleep).  
 
Unfortunately, it is still unclear how these functional disruptions are induced and if they are 
causal or consequence of other factors. We hypothesised these dynamical disruptions are due 
to the breakdown of the hierarchical organization of the cortex and cortico-sub-cortical networks 
(Mesulam, 1998). Independently of the molecular pathways of different anesthetics, stages of 
sleep or localization/types of brain injuries, if this is enough to disturb the hierarchical structure 
of the conscious brain, it will lead to a loss of consciousness. Differently than previous 
hierarchical auditory regularities studied in awake and anesthetized macaques (Bekinschtein 
et al., 2009; Uhrig, Janssen, Dehaene, & Jarraya, 2016), the causal driven forces that generate 
similar global disruptions would correspond to any local or global disturbance with enough 



 

power to reorganize the network hierarchy. These disruptions become a common signature for 
loss of consciousness, at the same time as saving the specificity of different impairments 
(Sherrington, 1906).  
 
To investigate the brain mechanisms of consciousness loss, a newly introduced measure called 
Intrinsic Ignition, together with general anesthesia, offer a unique opportunity to quantify the 
hierarchy of neural activity and its disruptions (Deco & Kringelbach, 2017). On the one hand, 
this is possible through the massive modulation of both arousal and conscious access (i.e. 
awareness) by elective pharmacological drugs, called anesthetic agents. Different anesthetics, 
with different pharmacological and molecular pathways, generate comparable dynamical 
disruption (Uhrig et al., 2018). On the other hand, Intrinsic Ignition quantifies the neural 
propagation activity in space and time, from one region to other areas of the brain (Deco et al., 
2017).  
 
Intrinsic Ignition combines simplified versions of integration from the “integrated information 
theory (IIT)” (Deco, Tononi, Boly, & Kringelbach, 2015; Tononi & Koch, 2015) and broadcasting 
from “the global neuronal workspace theory (GNW)” (Dehaene & Changeux, 2011). Moreover, 
Intrinsic Ignition is complementary to the concept of ignition/broadcasting from the GNW theory. 
The former being considered intrinsic (due to internal interactions under resting state) and the 
later extrinsic (due to external stimuli) (Van Vugt et al., 2018), however, in its original 
formulation, ignition was also related to spontaneous neural activity (Dehaene & Changeux, 
2005). Intrinsic ignition might become a middle concept to unify ideas about phenomenal 
consciousness and access consciousness. Broadcasting, as the first stage of neural processing 
and integration as the second stage, are combined into one measure of brain activity (Deco & 
Kringelbach, 2017). Intrinsic Ignition uses the graph theory to define integration. Integration is 
the accumulative and averaged value of the maximal path in a network at different states, 
computing the value among spatial areas and time evolution. This measure quantifies different 
modes of consciousness and estimates the type of hierarchical organization for different 
conditions. At spontaneous waking brain activity, analyses using Intrinsic Ignition suggest that 
the brain organization is maximally hierarchical, but not uniformly graded (Deco & Kringelbach, 
2017; Deco, Tagliazucchi, Laufs, Sanjuán, & Kringelbach, 2017). Intrinsic Ignition has been 
applied to compare awake versus sleep conditions (Deco & Kringelbach, 2017; Deco et al., 
2017) and normal subjects versus meditators (Escrichs et al., 2019). 
 
Here, we measured Intrinsic Ignition of cortical areas from awake and anesthetized macaques, 
with unique access to six experimental conditions (awake, ketamine, light/deep propofol, 
light/deep sevoflurane anesthesia) (Barttfeld et al., 2015; Uhrig et al., 2018). Intrinsic Ignition of 
cortical areas assessed with fMRI reveals spatial-temporal hierarchical differences and allows 
clustering anaesthetics. Finally, Intrinsic Ignition, as a unifying concept across theoretical 
frameworks of consciousness, quantifies the dynamical disruption in terms of hierarchical 
organization arrangement and defines a multidimensional signature of consciousness.  
 
2. Results 

 



 

2.1 Dynamical differences among Anesthetics 

 
The analyzed data here corresponds to 119 runs. An example of the time series for one subject 
in the awake condition is plotted in Figure 1a. The probability density (density distribution) of 
fMRI values is plotted after a normalization procedure (using z-score). These plots suggest the 
use of non-parametric statistical tests since the center of the data distributions present close to 
zero mean, but seemingly different variance. The Kolmogorov–Smirnov test finds statistical 
differences among all conditions (p<0.001, confidence intervals (CI) reported in Captions Figure 
1b). The FC matrix plotted as the average among subjects also supports dynamical differences 
among conditions (Figure 1c). 
 
These differences also appear when plotting the dynamical functional connectivity (dFC) (Figure 
1d). Awake (followed by light propofol and light sevoflurane sedation) seems to present more 
correlated activity among functional matrices across time than the deep anesthesia conditions. 
Deep propofol anesthesia is slightly more activated than ketamine and deep sevoflurane. To 
quantify these qualitative differences a Pearson correlation between the FC per subject and the 
structural connectivity (SC, CoCoMac) is performed (Figure 1e). It reveals that the awake state 
has a lower correlation value, indicating that functional activity is farther from SC, than other 
conditions (Kolmogorov–Smirnov test, p<0.001). The violin plots in Figure 1e also demonstrate 
differences in the type of distributions. Light propofol sedation has the highest mean correlation 
value, however, anesthetics are not differentiated in terms of statistical tests (p>0.01). 
Quantifying the dynamical variability through metastability, as the standard deviation of the 
Kuramoto’s order parameter (synchrony), shows the awake condition with higher values of 
metastability (Figure 1f, Kolmogorov–Smirnov test, p<0.001), light propofol and light sevoflurane 
sedation slightly higher than ketamine and deep sedations, but not statistically significant. Deep 
propofol anesthesia has a slightly lower value than ketamine anesthesia (Kolmogorov–Smirnov 
test, p=0.01), as well as light propofol (p<0.001) and light sevoflurane anesthesia (p=0.0011). 
Other conditions do not present major statistical differences in terms of metastability (p>0.01). 
 
These dynamical analyses support and replicate previous results suggesting disruption of the 
dynamical functional organization under anesthesia (Barttfeld et al., 2015; Uhrig et al., 2018). 
However, they do not distinguish among anesthetics or quantify the degree of disruption in 
terms of hierarchical organization. Therefore, extra analyses may offer a complementary 
picture.  
 
2.2 Intrinsic Ignition and global Hierarchical Organization 

 
The computation of Intrinsic Ignition is based on network theory and binarization techniques 
(Methods and Figure 2a). An example of the raster plot generated for each subject is shown in 
Figure 2b. In this case, the raster plot is calculated for one subject in six conditions. The ignition 
capability generates two measures: Intrinsic Ignition and Ignition Variability. 
 
Plotting the Intrinsic Ignition per node values from highest to lower creates a sorted curve. The 
shape of that curve informs about the possible types of hierarchical organization in a network. 



 

Qualitatively, the Intrinsic Ignition per node curve for the awake condition seems to correspond 
to a graded non-uniform hierarchy, as previously reported (Deco & Kringelbach, 2017; Deco et 
al., 2017). While the anesthesia curves transit from graded non-uniform hierarchy to less 
pronounced curve slope, suggesting spatial modifications towards weak non-hierarchies (Figure 
3a). However, a zoom on these curves indicates that the graded non-uniform nature is 
maintained, and what changes are the degrees of this non-uniformity (Supplementary Figure 2). 
The higher values of Intrinsic Ignition are found in the awake condition, followed by light 
sevoflurane and light propofol, and later deep propofol, deep sevoflurane, and ketamine 
anesthesia. Ketamine anesthesia has a similar effect than deep propofol and deep sevoflurane 
anesthesia. The curves seem to differentiate at least two groups: awake and anesthesia. 
 
Taking both the Intrinsic Ignition value and the Ignition Variability generate a scatter plot with 
one point per node (Figure 3b). Two clusters are now clearly separated; one corresponds to the 
awake condition (green dots) and the others to sedation conditions. The box plots, on the right 
side, shows the distribution of Intrinsic Ignition values across nodes in each condition. Awake 
values are significantly higher than other anesthetic conditions (Kolmogorov–Smirnov test 
p<0.001, CI reported in captions Figure 3b), supporting the idea of maximal hierarchical 
organization. Values for ketamine anesthesia differentiate from light propofol, light and deep 
sevoflurane (p<0.001) but not deep propofol anesthesia (p>0.01). Light propofol anesthesia 
presents slightly higher values of Intrinsic Ignition per node, becoming statistically differentiated 
from deep propofol and deep sevoflurane anesthesia (p<0.001) but not from light sevoflurane 
anesthesia (p>0.01) which is the third-highest value after the awake condition and light propofol 
sedation. Intrinsic Ignition in deep propofol anesthesia is significantly lower than in light 
sevoflurane anesthesia (p<0.001) and slightly higher than in deep sevoflurane anesthesia 
(p=0.0013). Finally, light and deep sevoflurane anesthesia also present statistical differences as 
shown in the box plot. All the Intrinsic Ignition per node values across different subjects (full 
distribution) lead to similar conclusions (Supplementary Figure 3a). Effect size analyses, 
performed to quantify these differences, also support these findings (Supplementary Figure 4a 
and Supplementary Table 1). These results support the idea that the spatial dimension 
regarding the hierarchical organization is disrupted differently among conditions. This disruption 
is classified in at least three clusters: Awake, Light and Deep sedation effects. 
 
In terms of how these hierarchical disruptions affect the temporal dimension, the distribution of 
Ignition Variability per nodes across conditions is also plotted in the lower part of Figure 3b. 
Statistical tests suggest that the Ignition Variability values are more sensitive to the effect of 
each anesthetic. All the conditions are differentiated (Kolmogorov–Smirnov test p<0.001) 
between them, with the exception of deep propofol and deep sevoflurane anesthesia (p=0.02). 
The awake condition, once again, presents the highest Ignition Variability per node value, 
followed by light sevoflurane, light propofol, ketamine, deep sevoflurane and deep propofol 
anesthesia (Figure 3b, c, and Supplementary Figure 3b). The effect size analysis is also in 
agreement with these results (Supplementary Figure 4b and Supplementary Table 1). It 
indicates that disruption effects are bigger among the temporal dimension of hierarchical 
organization, especially at the moment of differentiating conditions. To look for these effects, the 
Ignition Variability curves are plotted in Figure 3c (values are sorted from highest to lowest). The 



 

shapes of the Ignition Variability curves seem to capture more complex relations. One example 
is the case of deep sevoflurane anesthesia, higher values are close to the values of light 
sevoflurane, while lower values are near deep propofol anesthesia. These results suggest more 
intricate ways to disrupt the temporal organization than the observed spatial network hierarchy. 
 
One form to quantify the hierarchical disruption is by using the standard deviation of the Intrinsic 
Ignition curve across nodes, generating one value for each subject (Method and Figure 2c). 
This, together with the mean across nodes, defined as the Mean Intrinsic Ignition value per each 
subject, can characterize the spatial hierarchy for each subject. Using both values per subjects, 
the mean of Intrinsic Ignition and Hierarchy produces another scatter plot in Figure 3d. The 
clusters are not as evident as before, instead, the points tendency shows a correlation between 
Mean Intrinsic Ignition and Hierarchy values (Pearson coefficient 0.6, CI [0.47 0.70]). 
Furthermore, in terms of the Mean Intrinsic Ignition, the awake condition is significantly different 
from the anesthetics (upper box plot, Kolmogorov–Smirnov test p<0.001, CI reported in captions 
Figure 3d), while no anesthetics are differentiated between them (Kolmogorov–Smirnov test, 
p>0.01). Similar analyses on the mean of Ignition Variability are found in Supplementary Figure 
5. In terms of hierarchy, the awake condition is also differentiated (bottom box plot, 
Kolmogorov–Smirnov test p<0.001, CI reported in captions Figure 3d), with the exception of 
light sevoflurane anesthesia (p=0.08, light sevoflurane). Hence, light sevoflurane anesthesia is 
the only anesthetic condition which seems to be distinguished from the others (p<0.05), with the 
exception of deep sevoflurane anesthesia (p=0.39).  
 
Another form to characterize the hierarchical structure is the spectrum hierarchies of each 
condition (Figure 3e and Supplementary Figure 2). This is a plot that takes the mean and 
standard deviation of the Intrinsic Ignition per node curve (Spatial, Figure 3e upper) and Ignition 
Variability per node curve (Temporal, Figure 3e bottom) to describe levels and number of areas 
for each level. The spatial graphs show how the spectrum changes from a graded non-uniform 
in the awake condition to a different type of graded and non-uniformity under anesthesia. 
Among anesthetics, each spectrum presents non-evident visual changes from one spectrum to 
the other, with only slight changes on light and deep sevoflurane anesthesia (as Hierarchy tests 
confirmed above), suggesting again that the spatial dimension of the hierarchical organization 
does not change dramatically across anesthetics. Quite intriguing, if the temporal spectrum is 
now observed among conditions, no huge differences are perceived from awake state, 
ketamine, and light propofol anesthesia, but some differences appear in comparison of the 
awake state, deep propofol, light, and deep sevoflurane anesthesia. This seems to be the 
opposite tendency from the spatial spectrum. These two different types of changes on the 
spectrum hierarchies support the idea that disturbing one of the two dimensions (spatial or 
temporal) may be enough to cause loss of consciousness. It suggests more complex structural 
qualitative differences concerning spectrum hierarchies that need to be solved in terms of the 
local number of nodes per level. For example, different regions seem to take different dynamical 
roles across different conditions, in order to preserve part of the hierarchical organization 
(Supplementary Tables 2 and 3). Everything together indicates that there is a hierarchical 
disruption between the awake condition and the anesthetics conditions, while under anesthesia 



 

the global values of hierarchy seem to correspond to a similar organization. To understand what 
is changing and what is not, a local analysis of the differences among nodes is needed. 
 
2.3 Local hierarchical Organization 

 
Following the results in Figure 3, each value of Intrinsic Ignition and Ignition Variability per node 
was plotted in Figures 4 and 5 to show how local differences evolve across conditions. 
Moreover, a local analysis is performed to isolate regions that may have a bigger impact on the 
global changes of spatial and temporal hierarchy disruption (Figure 6). To find those regions, 
the global tendency was defined in terms of three logical propositions from previous analyses 
(Methods, Figure 2). This global tendency corresponds to higher values of Intrinsic Ignition and 
Ignition Variability per node during awake (����� ≥ �), middle values in light sedation (� + 	 ≥
�����) and lower levels during deep sedation (� ≥ �����). Each node was classified in terms of 
the spectrum hierarchies levels (Supplementary Tables 2 and 3). Nodes satisfying the logical 
proposition per condition were defined as a potential area to follow/drive the global tendency 
observed (red indexes in Supplementary Tables 2 and 3). To visualize the areas and their 
changes, all values were rescaled/normalized, taking the lower value as zero and the highest as 
1 (other normalizations present similar visualizations, data not shown). In Figures 4 and 5, 
results for Intrinsic Ignition per node and Ignition Variability are plotted respectively. According 
to this intuitive classification/level method, regions that follow the global tendency are 
distinguished from others. In the case of the Intrinsic Ignition, these nodes are the right 
subgenual cingulate cortex, the right posterior cingulate cortex, the right inferior parietal cortex, 
the right intraparietal cortex, the right frontal eye field, the left parahippocampal cortex, the left 
subgenual cingulate cortex, the left primary somatosensory cortex, the left intraparietal cortex 
and the left superior parietal cortex. For Intrinsic Variability, the regions are the right temporal 
polar, the right central temporal cortex, the right subgenual cingulate cortex, and the left 
dorsomedial prefrontal cortex. In Figures 4 and 5, these regions are signaled by red arrows 
(names indexes reported in Supplementary Table 4). 
 
Supplementary analyses were performed using the median instead of the mean as a cut off on 
the logical propositions (plots available by request). It slightly changes the results for Intrinsic 
Ignition. In the case of Ignition Variability, using the median instead of the mean gives no 
results. Finally, to ensure consistency, the same analyses were performed subject by subject 
(see Methods), generating a histogram of occurrences. Nodes that appear to satisfy the logical 
propositions per conditions above the 60% of the time were identified. These regions are the 
right subgenual cingulate cortex and the right intraparietal cortex for Intrinsic Ignition 
(Supplementary Figure 6b), and only the right central temporal cortex, for Ignition Variability 
(Supplementary Figure 6b). 
 

3. Discussion 

In this study, we analyzed resting-state fMRI acquired from non-human primates in the awake 
state and during anesthesia-induced loss of consciousness using distinct pharmacological 
agents. By applying Intrinsic Ignition measurements, we demonstrate that loss of consciousness 



 

is paralleled by a disruption of brain hierarchy, making it both a new signature of consciousness 
and consciousness loss. 

At the neuronal level, anesthetic agents act through different molecular pathways (Hudetz & 
Mashour, 2016), such as gamma-aminobutyric acid (GABA) receptors, N-methyl-D-aspartate 
(NMDA) receptors and K+ channels (Franks, 2008) to induce loss of consciousness. At the 
system level, anesthetics strongly affect brain networks that are involved in arousal and 
awareness. Propofol (Bonhomme et al., 2001), sevoflurane (Kaisti et al., 2003) and xenon 
(Laitio et al., 2007) inhibit midbrain areas, associated with the ascending reticular system, the 
thalamus and cortical areas such as the precuneus, posterior cingulate cortex, and the 
prefrontal cortex. Moreover, studies with ketamine, propofol, and sevoflurane (Lee et al., 2013; 
Uhrig et al., 2018) reported disruption of frontoparietal activity despite their distinct 
neurophysiology. Ketamine and sevoflurane have opposite effects on thalamocortical 
connectivity. Under ketamine, an NMDA receptors antagonist (Anis, Berry, Burton, & Lodge, 
1983), thalamocortical functional correlations seems to be preserved (Bonhomme et al., 2016), 
while sevoflurane, a γ-aminobutyric acid receptor type A agonist and NMDA antagonist (Wu, 
Harata, & Akaike, 1996), induces a decrease in thalamocortical functional correlations, but 
preserving functional correlations between thalamus and sensory cortex (Huang et al., 2014; 
Ranft et al., 2016). Propofol, targeting γ-aminobutyric acid-mediated neurotransmission (Peduto, 
Concas, Santoro, Biggio, & Gessa, 1991), induces disconnections in thalamocortical circuits. 
Under anesthesia, the brain patterns are not uniform, some areas seem more deactivated than 
others, while most anesthetics, with the exception of ketamine (Langsjo et al., 2005), cause a 
global reduction of cerebral blood flow (Franks, 2008). Taking this evidence, finding a common 
neurophysiological pathway for this different anesthetics is challenging, but might involve the 
disruption of thalamocortical connectivity and/or frontoparietal connectivity. 
 
Our results indicate that Intrinsic Ignition can discriminate between the awake condition and 
different anesthetics, as well as between different levels of sedation (i.e. light versus deep 
anesthesia). Moreover, higher values of ignition are associated with richer brain dynamics, while 
lower values relate to structural driven dynamics, as shown in previous reports (Barttfeld et al., 
2015; Uhrig et al., 2018; Demertzi et al., 2019). Our results (Figure 1) are in line with these 
previous studies, and additionally indicate that the spatial and temporal dimensions of 
hierarchical organization change under anesthesia, while keeping different types of the same 
graded non-uniform hierarchy through all conditions. Different regions occupy different levels on 
those hierarchies, indicating that different anesthetic paths may indeed act differently, however, 
generating the same hierarchical disruption. Everything together supports the hierarchical 
breakdown hypothesis and places the local and global disruption of the hierarchy as a possible 
common signature to reconcile seemingly different types of loss of consciousness.  

Reports from non-REM sleep also provide evidence for a partial breakdown of the hierarchical 
organization of large scale networks (Boly, Perlbarg, et al. 2012). In order to quantify these 
disruptions, Intrinsic Ignition (Figure 3), was applied in two hierarchical dimensions: spatial and 
temporal. The awake condition in monkeys presents maximal hierarchical organization (Figure 
3), while different concentrations of anesthetics range from middle to lower values of Intrinsic 
Ignition, under light and deep anesthesia (Figure 3b and d). Changes observed on the spatial 



 

dimension (Intrinsic Ignition per node), recognized three groups: awake, light (propofol and 
sevoflurane) and deep (propofol, sevoflurane, and ketamine). On the other hand, changes 
observed on the temporal dimension (Intrinsic Variability per node) seems more sensitive, 
distinguishing among all the conditions (Figure 3b and c) and suggesting more complex 
hierarchical disruptions across time. Interestingly, light conditions presented middle values on 
both Intrinsic Ignition (spatial) and Ignition Variability (temporal), while ketamine was closer to 
deep conditions under spatial dimension but near to light conditions when compared across the 
temporal aspect. This suggests that the previous evidence on the dynamical disruptions is 
related to more complex multidimensional disruptions given by at least two dimensions: 
structural organization (spatial) and dynamical organization (temporal). It supports the idea that 
spatial and temporal hierarchies are affected differently among conditions.  

The degree of Hierarchy seems disturbed among all the different sedations (with the exception 
of light sevoflurane). It may imply that hierarchical disruptions are indeed more complexly 
related to possible local mechanisms. The Hierarchy quantifier recognizes that light and deep 
sevoflurane anesthesia might be affecting similarly but in different degrees the hierarchical 
organization, in turn that estimates that light sevoflurane anesthesia may have weaker effects 
on that disruption and still be closer to an awake organization. If this interpretation is right, 
ketamine, light, and deep propofol anesthesia would break similarly the hierarchical 
organization, since they present similar distributions in terms of Hierarchy. Moreover, spectrum 
hierarchies reveal similar spatial disruptions between ketamine, light, and deep propofol 
anesthesia (Figure 3e upper) and partially similar ones in the temporal dimension (Figure 3e 
lower). It indicates that different mechanisms disrupt one or another aspect of hierarchical 
organizations: the spatial dimension conveys the impression that some anesthetics are 
distinguished but not others, while in the temporal dimension it happens among different 
anesthetics. Plot curves (Figure 3a and c) and spectrum plots (Figure 3e, Supplementary Figure 
2) show that graded non-uniform type of hierarchy is maintained across conditions. Disturbing 
one of the two dimensions may be enough to cause loss of consciousness and different 
anesthetics target differently these two aspects of the neural organization: ketamine and 
propofol would target spatial aspects, while sevoflurane would disturb temporal aspects of that 
configuration.  

To deal with these structural differences, local analyses were performed. According to our 
results, organizational disruptions cannot be reduced to only global effects but also local 
differences (Figures 4, 5, 6 and Supplementary Tables 2 and 3). Globally, some anesthetics 
may act similarly in terms of concentration, such as light propofol and light sevoflurane 
anesthesia, however, locally, different anesthetics may also present differences given mainly in 
terms of Ignition Variability curves (Figure 3). This is clearly noticed from the different 
distributions of values for Intrinsic Ignition and Ignition Variability per node presented in Figures 
4 and 5. Once observed which areas followed the global tendency as candidates for driving 
these changes, Subgenual cingulate cortex and Intraparietal cortex presented a consistent 
occurrence in terms of Intrinsic Ignition, and Central temporal cortex in terms of Ignition 
Variability. Additionally, Posterior cingulate cortex, Inferior and Superior parietal cortex, 
Parahippocampal cortex, and somatosensory cortex among other prefrontal regions appeared 
as relevant areas for spatial aspects of ignition. Most of these regions have been previously 



 

associated with GNW (Uhrig et al., 2014; Uhrig et al., 2016, 2018). In terms of the temporal 
component, Temporal polar cortex, Subgenual cingulate cortex, and Dorsomedial prefrontal 
cortex also seem to play a role in the global disruptions among the six conditions.  

These local findings are in line with previous reports. For instance, studies on anesthesia and 
early stages of sleep have identified that the precuneus and lateral temporoparietal components 
of DMN persisted under anesthesia (Vincent et al., 2007), but the connectivity of the posterior 
cingulate cortex (PCC) is reduced during sedation (Kaisti et al., 2002; Greicius et al., 2008; 
Uhrig et al., 2018). Moreover, studies using light propofol point out changes among PCC 
connectivity with other areas, such as somatomotor cortex, the anterior thalamic nuclei and the 
reticular activating system (Stamatakis, Adapa, Absalom, & Menon, 2010). According to our 
results, the PCC is following the global tendency among conditions and therefore, is a candidate 
for globally driving the hierarchical changes observed. An fMRI meta-analysis of resting-state 
activity in disorders of consciousness concluded that a reduction of activity in midline cortical 
(PCC, precuneus, medial temporal lobe, middle frontal lobe) and subcortical sites (bilateral 
medial dorsal nuclei of the thalamus) is associated with conscious impairments (Hannawi, 
Lindquist, Caffo, Sair, & Stevens, 2015), with a more pronounced reduction in the vegetative 
state than in the minimally conscious state.  Moreover, medial parietal cortex, PCC and 
precuneus are the first regions to reactivate when patients recover (Laureys, Boly, & Maquet, 
2006). Due to the current parcellation, our method cannot target all these areas, nevertheless, 
according to intrinsic ignition, some of them may be related to the global changes observed.  

Our results, however, are not free of limitations. The data analyzed was with a parcellation of 
only 82 cortical regions of interest  (CoComac) and therefore does not allow to infer the 
disruption of the whole brain hierarchical organization. A subcortical parcellation and better 
definition for SC (although not mostly used here) are desirable for these effects (Kennedy, 
Knoblauch, & Toroczkai, 2013). The preprocessing pipeline can be improved (Tasserie et al., 
2019) in order to avoid the extra cleaning procedure. Although our results indicate similar global 
hierarchical disruptions as a common signature driven by locally different re-organizations, 
these results need modelling and simulations to give a full answer about the casual driving 
disruptions. For example in (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 2015) and 
(Joglekar, Mejias, Yang, & Wang, 2018) the ignition capability was explored as an inter-areal 
balanced amplification signal through large scale circuits, supporting ignition models of 
consciousness (Joglekar et al., 2018). Moreover, temporal hierarchies naturally emerged from 
the heterogeneity of local networks (Chaudhuri et al., 2015), with slower prefrontal and temporal 
regions having a strong impact on global brain dynamic. Therefore, in order to link intrinsic 
ignition and mechanistic models, large scale models (Breakspear, 2017) are expected as future 
steps to give light on part of the neuronal mechanisms involved. It may help to connect our 
results with other studies on sleep (Jobst et al., 2017) and disorders of consciousness, as well 
as the simulation and exploration of manipulated brain states using deep brain stimulation 
(Saenger et al., 2017).  
 
Another relevant question is about our understanding of hierarchy (Hilgetag & Goulas, 2020). 
Hierarchical brain structures might refer to i) topological sequence of projections, ii) a gradient of 
structural or functional cortical features, iii) a progression of scales or iv) a laminar projection 



 

pattern. These hierarchies can be nested or non-nested  (Feinberg, 2011; Northoff et al., 2011). 
In the first case, the low levels are incorporated into the higher ones, forming intertwined 
relationships (Feinberg, 2011). As such, higher levels on the hierarchy weakly constrain low 
levels. It defines an embodied system lacking a clear “control zone”. Contrary, non-nested 
hierarchies convey strong control hubs. Some examples of non-nested hierarchies involve the 
anatomical hierarchical organization of a rich club where the brain region's topological 
connectivity exceeds the connectivity given by random networks (Honey et al., 2010; van den 
Heuvel & Sporns, 2011, 2013). Another example is the dynamical core, a hypothetical functional 
cluster in which the regions inside are connected between them much more than with the rest of 
the brain under conscious processing (DePasquale et al., 2018; Tononi & Edelman, 1998). This 
dynamical core also resembles the idea of a workspace of neurons allowing conscious access. 
In both cases, structural or functional, hierarchy is quantified with topological measures such as 
degree of centrality. In our case, Intrinsic Ignition measure quantifies a type of function 
hierarchy. However, hierarchy is not defined by the anatomical or functional connectivity, as in 
the case of the rich club and dynamical core respectively. Here, the hierarchical structure is 
defined by dynamical signal processing, where upper regions may trigger activity on lower ones 
more frequently than in the opposite direction. In this line, our findings suggest that the brain 
hierarchical organization is not uniformly graded (Deco & Kringelbach, 2017),  contrary to 
dynamical core and GNW implies, but probably a more complex combination of functionally 
nested and anatomically non-nested hierarchies (Feinberg, 2011; Northoff et al., 2011). 
 
Finally, the intrinsic character of our measurement raises the question of embodied and 
interoceptive signals (Tanabe et al., 2020; Signorelli & Meling, 2020). Physiological fluctuations 
may have subtle but important cognitive effects. In this case, it is important to highlight two 
types of contributions, the “first-order” and the “second-order” contribution of physiological 
signals (Breakspear, 2017). The first order (e.g. respiration and heart rate) contribute to many 
cofounds in the blood oxygen level-dependent (BOLD) signal. In our analyses, these 
contributions were avoided by our regression method and the preprocessing of the data. 
Regarding the second-order effects, for example, heart rate variability, it is known that some of 
these effects co-vary with a specific activity in the interoceptive cortex, such as the insula. Some 
of these spontaneous fluctuations locked to heartbeats seemed to predict and shape conscious 
visual detection (Park et al., 2014). Other authors demonstrated that the interoceptive activity of 
heartbeats sent to the insula has a systemic effect on conscious perception, modulating 
exteroceptive awareness (Nguyen et al., 2016; Salomon et al., 2016). Explicit cardiac 
perception also influences activity in regions such as the posterior and anterior insula, dorsal 
anterior cingulate, somatomotor cortices, among others, supporting interoceptive awareness 
(Critchley et al., 2004). If all these effects are removed, the nonstationarities observed in neural 
data are also removed (Laumann et al., 2017), i.e. it might also remove true neuronal 
fluctuations. As such, we did not intend to remove those effects. The remaining contributions of 
the second-order effects might be also intrinsic to the true neuronal fluctuations and 
nonstationarities of a brain embodied in a physiological body. While a very interesting question, 
in this paper we do not intend to answer the question about all the sources of these intrinsic 
fluctuations, but only identify the main regions that are participating in those intrinsic 
interactions.  



 

 
4. Conclusion 

In conclusion, the global values of hierarchical organization indicate similar global organization 
(disruptions) under anesthesia, while local analyses on which areas habit hierarchical levels 
inform on the different ways that anesthetics affect spatial and temporal aspects of that 
organization. Our study provides a common brain signature of anesthesia-induced loss of 
consciousness beyond molecular pharmacology, also called “common anesthetic endpoint” 
(Hudetz & Mashour 2016). This is in line with the idea that disruptions in long-distance network 
dynamics are a common signature of anesthesia-induced loss of consciousness, but adding the 
breakdown of hierarchical organization and its two dimensions, space and time. The hierarchical 
organization is characterized by internal ignition activity, reconciling the observed common 
global changes (hierarchies) with different local changes (ignition power by node).  

Our local results suggest that areas proposed by GNW, such as fronto-parieto-cingular 
networks, which underpin conscious access (Dehaene & Changeux, 2011), and regions 
considered by IIT as the parietal-posterior cortical zones (supporting phenomenal or subjective 
experience (Siclari et al., 2017)), are both participating in changes of hierarchical organization. 
These hierarchical changes find their common ground in cingulate and parietal regions. Under 
other theoretical frameworks such as temporo-spatial theory of consciousness (Northoff & 
Huang, 2017), embodiment theories (Varela et al., 2016) and interoceptive approaches (Tallon-
Baudry et al., 2018), our funding might be discussed in light of intrinsic space and time 
dimensions of neural activity. In those cases, spontaneous activity given by intrinsic local activity 
triggering global patterns may become a common signature for consciousness. It may imply, 
that under the hierarchical hypothesis, these theories are complementary to each other, and 
approaching compatible aspects of the same conscious phenomenon (Aru, Bachmann, Singer, 
& Melloni, 2012; Block, 2005; Dehaene et al., 2014; Tagliazucchi, 2017; Northoff & Lamme, 
2020; Mashour et al., 2020). This solves in part the requirement of a desirable common and 
global signature to explain how brain dynamics are similarly affected under anesthetics, at the 
same time than recovering the specificity of affecting and modulating correlations and couplings 
of brain regions. 

5. Methods 

 
5.1 Animals 

 
The acquisition of this data set is previously reported in (Barttfeld et al., 2015) and (Uhrig et al., 
2018, http://links.lww.com/ALN/B756). Five rhesus macaques were included for analyses 
(Macaca mulatta, one male, monkey J, and four females, monkeys A, K, Ki, and R, 5-8 kg, 8-12 
yr of age), in a total of six different arousal conditions: Awake state, ketamine, light propofol, 
deep propofol, light sevoflurane, and deep sevoflurane anesthesia. Three monkeys were used 
for each condition: Awake (monkeys A, K, and J), Ketamine (monkeys K, R and Ki), Propofol  
(monkeys K, R, and J), Sevoflurane  (monkeys Ki, R, and J). Each Monkey had fMRI resting-
state acquisitions on different days and several monkeys were scanned in more than one 
experimental condition. Only one monkey, monkey A was scanned in one experimental 



 

condition, the awake state. This experimental design ensures (under the limitations of current 
regulation), that our data set is as representative as possible. All procedures are in agreement 
with the European Convention for the Protection of Vertebrate Animals used for Experimental 
and Other Scientific Purposes (Directive 2010/63/EU) and the National Institutes of Health’s 
Guide for the Care and Use of Laboratory Animals. Animal studies were approved by the 
institutional Ethical Committee (Commissariat à l'Énergie atomique et aux Énergies alternatives; 
Fontenay aux Roses, France; protocols CETEA #10-003 and 12-086).  
 
 
5.2 Anesthesia Protocols 

 
The anesthesia protocol is thoroughly described in previous studies (Barttfeld et al., 2015; Uhrig 
et al., 2018). Monkeys received anesthesia either with ketamine (Uhrig et al., 2018), propofol 
(Barttfeld et al., 2015) or sevoflurane (Uhrig et al., 2018), with two different levels of anesthesia 
depth for propofol and sevoflurane anesthesia (Light and Deep). These levels were defined 
according to the monkey sedation scale, based on spontaneous movements and the response 
to external stimuli (presentation, shaking or prodding, toe pinch), and corneal reflex. For each 
scanning session, the clinical score was determined at the beginning and end of each scanning 
session, together with continuous electroencephalography monitoring (Uhrig et al., 2016). 
 
During ketamine, deep propofol anesthesia, and deep sevoflurane anesthesia, monkeys 
stopped responding to all stimuli, reaching a state of general anesthesia. Monkeys were 
intubated and ventilated as previously described (Barttfeld et al., 2015; Uhrig et al., 2018). Heart 
rate, noninvasive blood pressure, oxygen saturation, respiratory rate, end-tidal carbon dioxide, 
and cutaneous temperature were monitored (Maglife, Schiller, France) and recorded online 
(Schiller).  
 
Ketamine was applied by intramuscular injection (20 mg/kg; Virbac, France) for induction of 
anesthesia, followed by a continuous intravenous infusion of ketamine (15 to 16 mg · kg–1 · h–
1) to maintain anesthesia. Atropine (0.02 mg/kg intramuscularly; Aguettant, France) was 
injected 10 min before induction, to reduce salivary and bronchial secretions. For propofol, 
monkeys were trained to be injected an intravenous propofol bolus (5 to 7.5 mg/kg; Fresenius 
Kabi, France), followed by a target-controlled infusion (Alaris PK Syringe pump, CareFusion, 
USA) of propofol (light propofol sedation, 3.7 to 4.0 µg/ml; deep propofol anesthesia, 5.6 to 7.2 
µg/ml) based on the “Paedfusor” pharmacokinetic model (Absalom & Kenny, 2005). During 
sevoflurane anesthesia, monkeys received first an intramuscular injection of ketamine 
(20 mg/kg; Virbac) for induction, followed by sevoflurane anesthesia (light sevoflurane, 
sevoflurane inspiratory/expiratory, 2.2/2.1 volume percent; deep sevoflurane, sevoflurane 
inspiratory/expiratory, 4.4/4.0 volume percent; Abbott, France). Only 80 minutes after the 
induction the scanning sessions started to get a washout of the initial ketamine injection 
(Schroeder et al., 2016). To avoid artefacts related to potential movements throughout magnetic 
resonance imaging acquisition, a muscle-blocking agent was coadministered (cisatracurium, 
0.15 mg/kg bolus intravenously, followed by continuous intravenous infusion at a rate of 0.18 mg 



 

· kg–1 · h–1; GlaxoSmithKline, France) during the ketamine and light propofol sedation 
sessions. 
 
5.3 Functional Magnetic Resonance Imaging Data Acquisition 

 
For the awake condition, monkeys were implanted with a magnetic resonance–compatible head 
post and trained to sit in the sphinx position in a primate chair (Uhrig, Dehaene, & Jarraya, 
2014). For the awake scanning sessions, monkeys sat inside the dark magnetic resonance 
imaging scanner without any task and the eye position was monitored at 120 Hz (Iscan Inc., 
USA).  The eye-tracking was performed to make sure that the monkeys were awake during the 
whole scanning session and not sleeping. The eye movements were not regressed out from 
rfMRI data. For the anesthesia sessions, animals were positioned in a sphinx position, 
mechanically ventilated, and their physiologic parameters were monitored. No eye-tracking was 
performed in anesthetic conditions. Before each scanning session, a contrast agent, 
monocrystalline iron oxide nanoparticle (Feraheme, AMAG Pharmaceuticals, USA; 10 mg/kg, 
intravenous), was injected into the monkey’s saphenous vein (Vanduffel et al., 2001). Monkeys 
were scanned at rest on a 3-Tesla horizontal scanner (Siemens Tim Trio, Germany) with a 
single transmit-receive surface coil customized to monkeys. Each functional scan consisted of 
gradient-echoplanar whole-brain images (repetition time = 2,400 ms; echo time = 20 ms; 1.5-
mm3 voxel size; 500 brain volumes per run).  Monkeys were scanned with F-W phase encoding 
direction to avoid the major axis of distortion since no visual task was performed. 
 
5.4 Functional Magnetic Resonance Imaging Preprocessing 

 
A total of 157 functional magnetic imaging runs were acquired (Barttfeld et al., 2015; Uhrig et 
al., 2018): Awake, 31 runs (monkey A, 4 runs; monkey J, 18 runs; monkey K, 9 runs), Ketamine, 
25 runs (monkey K, 8 runs; monkey Ki, 7 runs; monkey R, 10 runs), Light Propofol, 25 runs 
(monkey J, 2 runs; monkey K, 10 runs; monkey R, 12 runs), Deep Propofol, 31 runs (monkey J, 
9 runs; monkey K, 10 runs; monkey R, 12 runs), Light Sevoflurane, 25 runs (monkey J, 5 runs; 
monkey Ki, 10 runs; monkey R, 10 runs), Deep Sevoflurane anesthesia, 20 runs (monkey J, 2 
runs; monkey Ki, 8 runs; monkey R, 11 runs). For details, check the supplementary tables for 
(Uhrig et al., 2018) (http://links.lww.com/ALN/B756).  
 
Functional images were reoriented, realigned, and rigidly coregistered to the anatomical 
template of the monkey Montreal Neurologic Institute (Montreal, Canada) space with the use of 
Python programming language and Oxford Centre Functional Magnetic Resonance Imaging of 
the Brain Software Library software (United Kingdom, http://www.fmrib.ox.ac.uk/fsl/; accessed 
February 4, 2018) (Uhrig et al., 2014). From the images, the global signal was regressed out to 
remove any confounding effect due to physiologic changes (e.g., respiratory or cardiac 
changes). If this regression is not performed, the functional connectivity artificially increases, 
and preliminary results do not recover the previously observed SC vs FC correlations changes 
under anesthetics. Voxel time series were filtered with a low-pass (0.05-Hz cutoff) and high-
pass (0.0025-Hz cutoff) filters and a zero-phase fast-Fourier notch filter (0.03 Hz) to remove an 
artifactual pure frequency present in all the data (Barttfeld et al., 2015; Uhrig et al., 2018). 



 

 
Furthermore, an extra cleaning procedure was performed to ensure the quality of the data after 
time-series extraction (Supplementary Figure 1). The procedure was based on a visual 
inspection of the time series for all the nodes, the Fourier transform of each signal, the 
functional connectivity for each subject and the dynamical connectivity computed with phase 
correlation. Trials were kept when the row signal did not present signs of artifactual activity, 
functional connectivity was coherent with the average and dynamical connectivity presented 
consistent patterns across time. 
 
Finally, a total of 119 runs are analyzed in subsequent sections: Awake state 24 runs, ketamine 
anesthesia 22 runs, light propofol anesthesia 21 runs, deep propofol anesthesia 23 runs, light 
sevoflurane anesthesia 18 runs, deep sevoflurane anesthesia 11 runs. 
 

5.5 Anatomical Parcellation and Structural Connectivity 

 
Anatomical (structural) data were derived from the CoCoMac 2.0 (Bakker, Wachtler, & 
Diesmann, 2012) database (cocomac.g-node.org) of axonal tract-tracing studies using the 
Regional Map parcellation (Kötter & Wanke, 2005). This parcellation comprises 82 cortical ROIs 
(41 per hemisphere; Supplementary Table 4). Structural (i.e., anatomical) connectivity data are 
expressed as matrices in which the 82 cortical regions of interest are displayed in x-axis and y-
axis. Each cell of the matrix represents the strength of the anatomical connection between any 
pair of cortical areas. The CoCoMac connectivity matrix classifies the strength of the anatomical 
connections as weak, moderate, or strong, codified as 1, 2, and 3, respectively (Barttfeld et al., 
2015). 
 
5.6 Dynamic Analyzes 
 
Functional connectivity matrices (FC) for each condition are first computed for each subject 
using Pearson correlation and then averaged across subjects. Each FC has 82 cortical regions. 
The dynamical functional connectivity (dFC) is computed using a sliding window technique (50 
TR correlation window and 5 TR sliding size). The chosen TR intervals are better suited for 
visualization purposes. This procedure results in 90-time partitions and for each one of them, 
one FC is computed. Then, the dFC is the correlation among these 90 FCs. Correlations 
between FC and Structural connectivity (SC) for each subject are computed with Pearson 
correlation and plotted as a violin plot. For violin plots, the shape describes the distribution 
density, the white dot corresponds to the median, the thick inner line is the first quartile (down), 
and the third quartile (up). The borders are the upper and lower adjacent values (Hintze & 
Nelson, 1998). Finally, metastability is computed as the standard deviation of the Kuramoto’s 
order parameter (synchrony). 
 
5.7 Intrinsic Ignition Analyzes 

 

The ignition capability can be defined in terms of its spatial and temporal components, 
generating two measures: Intrinsic Ignition and Ignition Variability. This procedure generates 



 

one value for each node and subject that is later averaged to form the Intrinsic Ignition per node 
and Ignition Variability per node value. Therefore, Intrinsic Ignition tells us about the spatial 
diversity of a network, while the Ignition Variability, about the diversity across time. 
 
Intrinsic Ignition is a novel technique based on graph and network theory (Figure 2a). For any 
node, its inner ignition capability is fully characterized by the Intrinsic Ignition as a measure of its 
spatial diversity, and its variability as a measure of its diversity across time. To compute both 
aspects, any continuous signal can be binarized using a threshold 
 such that the binary 
sequence 	�(
) = 1  �� ��(
) > 
, crossing the threshold from below, and 	�(
) = 0, otherwise 
(Tagliazucchi, Balenzuela, Fraiman, & Chialvo, 2012). This simple method generates a raster 
plot with a discrete sequence of events, which is more efficient in terms of complex 
computations (see raster plots examples for each condition in Figure 2b).  
 
Moreover, a Hilbert transform is performed to the continuous signal, defining the phases for 
each time point and node. Using these phases, a phase correlation or pairwise phase 

synchronization between regions � and � is defined as ���(
) = ����(� ��!)�. For each of these 

matrices, another binarization process is applied for a given absolute threshold 
 between 0 and 
1 (scanning the whole range), and therefore the symmetric phase lock matrix ���(
) can be 

binarized such as 0 �� ���(
) < 
, 1 otherwise. Then the length of the largest component is 
computed, generating a curve with this value for each binarized phase lock matrix. The area 
below the curve is defined as the integration value for that node (ROI) at that time point. 
Running the same procedure for all time points creates a table of integration across time for 
each node. For each event defined from the first binarization procedure, and a flag window 
(commonly 4 TR), the total integration is computed as the average across the delta time defined 
by the event and the flag. It builds a matrix of integration across events. The average integration 
across events is defined as the Intrinsic Ignition, while the standard deviation integration 
across the same events corresponds to the Ignition Variability. 
 
Intrinsic Ignition and Intrinsic Variability produce one value for each of the 82 nodes. The 
procedure is repeated through subjects and conditions, creating a data matrix #�� for each 

condition such that � corresponds to the nodes and � to the subjects (Figure 2c). The mean of 
these values across subjects (�) corresponds to the Intrinsic Ignition per node and Ignition 

Variability per node, respectively. The mean across nodes (�) is defined as the Mean Intrinsic 

Ignition and the Mean Ignition Variability. The standard deviation of the Mean Intrinsic Ignition 
(intrinsic ignition across nodes)  returns a quantification value of the shape of the Intrinsic 
Ignition curve (considering all the values sorted from higher to lower), which here is defined as 
the Hierarchy, a quantifier for each subject.  
 
To complement these analyses, a Spectrum Hierarchy plot is specified as a circle plot with 
different levels. Each level corresponds to a threshold of the Intrinsic Ignition (Spatial) and/or 
Ignition Variability (Temporal) curve: � ≥  � + 	;  � + 	 > � ≥  �;  � > � ≥  � − 	;  � –  	 > �. � 
refers to the index node, � the mean value, and 	 the standard deviation of the curve. The 
distance between level is given by the thickness of the level and the value of � + 	 for level 1, � 



 

for level 2, � − 	 for level 3, � − 	 − '��(�����) for level 4 (Supplementary Figure 2).  The 
thickness of each level line is the number of nodes on that level; a thicker line means more 
nodes than thinner lines (e.g. red line in the figure marks the thickness of level two). The 
uniformity of the spectrum hierarchy for one condition characterizes the ignition curves in terms 
of the hierarchical organization across nodes (Deco & Kringelbach, 2017).  
 
To explore if some nodes would be locally driving the global changes observed, a local analysis 
was performed on Intrinsic Ignition and Ignition Variability per node. This test consisted of 
finding which nodes are following the global tendency measured in the spatial and temporal 
aspects of ignition. As will be discussed in Results, the global tendency was the highest values 
of Intrinsic Ignition and Ignition Variability in awake, medium values in light sedation, and lower 
values in deep conditions. These tendencies were translated to logical propositions in order to 
find the nodes that satisfied all the propositions across conditions. These propositions were: 
����� ≥ � for awake, � + 	 ≥ ����� for light conditions and � ≥ ����� for deep conditions. 
More restricted logical propositions do not produce results. Additionally, instead of the mean (�), 
the median was also used as cut off in order to search for consistent results. The number of 
regions obtained from one or another method changes slightly for Intrinsic Ignition, but there is a 
clear overlap of regions, confirming part of the consistency expected. Finally, a subject by 
subject analysis was also performed as a supplementary test. In this case, the same 
propositions above were run in each subject to later generate a histogram of occurrence. A 
threshold of 60% of occurrence was imposed to find the regions above the threshold. 
 
5.8 Statistical Analyzes 

 
The main statistical test used in this work was the non-parametric Kolmogorov–Smirnov test 
(unless another test is explicitly stated). It is due to the characteristics of the data and their 
distributions (Rosner, 2012), for example in order to compensate for the unbalanced number of 
trials per condition. Therefore, the independence of measures and conditions is a statistical 
assumption commonly accepted for monkey data (Uhrig et al., 2018), together with the 
continuous nature of our measures (Rosner, 2012). Confidence intervals (CI) at 95% were 

computed as � ± 1.96 ∗ 	/√�. As above, � is the mean, 	 the standard deviation and � the 
length of the data points.  
 
Additionally, effect size analyses were performed to quantify the differences given by statistical 
tests on Intrinsic Ignition and Ignition Variability per node. The method used was the rank-
biserial correlation analysis for independent samples (other effect size techniques such as mean 
difference, AUROC and Cohen U1 did not present major differences with the results of rank-
biserial correlation). In this test, ranks between -1 to +1 correspond to maximal effects and 0 
means no effect. To compute a confidence interval for effect size analyzes, 10.000 
bootstrapping iterations were performed (more details (Hentschke & Stüttgen, 2011)). 
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I. Main figures 



 

 



 

 
 
Figure 1. Dynamical Analysis. A) Example of time series for one monkey, awake condition, 
500-time points with a 2400 ms repetition time (TR). B) Distribution plots of the fMRI signal for 
each condition. All conditions are significantly different (Kolmogorov–Smirnov test p<0.001, 
awake CI [0.0062  -0.0332], ketamine [0.0027  -0.0021], light propofol CI [0.0025 -0.0026], deep 
propofol CI [0.0033 -0.0029], light sevoflurane CI [0.0032 -0.0058], deep sevoflurane anesthesia 
CI [0.0061 -0.0057] ). C) Functional connectivity matrices (FC) for each condition, CoCoMac, 82 
cortical regions. D) Example of dynamical functional connectivity (dFC) for one subject in each 
condition. E) Pearson Correlation between FC and Structural connectivity (SC) for each subject 
and plotted as a violin plot, see methods, and (Hintze & Nelson, 1998). SC matrix is plotted 
alongside for reference. Awake condition is significantly different than the other conditions 
(Kolmogorov–Smirnov test p<0.001, awake CI [0.1671 0.1369], ketamine CI [0.2926 0.2687], 
light propofol CI [0.3093 0.2738], deep propofol CI [0.2957 0.2568], light sevoflurane CI [0.2943 
0.2601], deep sevoflurane CI [0.2725 0.2196] ), while other conditions are not statistically 
different (p>0.01). F) Metastability is higher in the awake state than in the anesthesia conditions 
(Kolmogorov–Smirnov test p<0.001, awake CI [0.1143 0.1024], ketamine CI [0.0835 0.0759], 
light propofol CI [0.0849 0.0775], deep propofol CI [0.0762 0.0697], light sevoflurane CI [0.0853 
0.0759], deep sevoflurane CI [0.0844 0.0687]).  



 

 



 

Figure 2. Intrinsic Ignition Measures. A) From a binarization (Methods), a raster plot is 
generated for all nodes. In parallel, a Hilbert transform is applied to each time series, from which 
a phase correlation or pairwise phase synchronization between regions is defined. For each 
matrix generated (e.g, 
 = 50 and 
 = 300) another binarization process is applied. With the 
remaining connections, the largest component is computed as the level of integration given by 
the length of the connected component of that undirected graph. It creates a curve (lower figure) 
and the area below the curve (green) corresponds to the integration value for that node at that 
time-point. Running the same procedure for all time-points results in a table of integration 
across time for each node. Finally, for each event, the total integration is computed as the 
average across the time window, the event and a flag of 4TR, building a matrix of integration 
across events. The average integration across events corresponds to the Intrinsic Ignition, 
while the standard deviation integration across the same events is the Ignition Variability. B) 

Example of raster plot for one subject in six conditions, 82 nodes. C) The previous procedure is 
repeated through subjects and conditions, creating a data matrix #�� for each condition, such 

that � corresponds to the nodes and � to the subjects. The mean across subjects (�) is the 

Intrinsic Ignition per node and Ignition Variability per node respectively. The mean across 
nodes (�) defines the Mean Intrinsic Ignition and the Mean Ignition Variability. The standard 
deviation of the Mean Intrinsic Ignition (intrinsic ignition across nodes) returns a quantification 
value of the shape of the Intrinsic Ignition curve, which is defined as the Hierarchy. Ultimately, a 
Spectrum Hierarchy is a circle plot with different levels. Each level corresponds to a threshold 
of the Intrinsic Ignition and/or Ignition Variability curve (see Methods and Supplementary Figure 
2). The thickness of each level line is the number of nodes on that level (e.g. red line marks the 
thickness of level two).  
 



 

 
 

Figure 3. Intrinsic Ignition reveals hierarchical disruption. A) The shape of ignition curves 
changes slightly across conditions, suggesting spatial modifications towards weak non-
hierarchies. Nodes are indexed in descendent order. B) Scattering plot shows two different 
groups, awake and anesthesia. Upper right, awake group is significantly different than other 
conditions (Kolmogorov–Smirnov test p<0.001, awake CI [0.5926 0.5912], ketamine CI [0.5732 
0.5727], light propofol CI [0.5752 0.5746], deep propofol CI [0.5733 0.5727], light sevoflurane CI 



 

[0.5750 0.5740], deep sevoflurane CI [0.5725 0.5718]). Bottom left, awake is again 
differentiated from the others conditions (Kolmogorov–Smirnov test p<0.001, awake CI [0.0465 
0.0456], ketamine CI [0.0384 0.0377], light propofol CI [0.0392 0.0384], deep propofol CI 
[0.0371 0.0363], light sevoflurane CI [0.0405 0.0394], deep sevoflurane CI [0.0391 0.0376] ). C) 
Ignition Variability curves suggest more intricate ways to disrupt the temporal organization. D) 

Scatter histogram. Awake condition is significantly different than sedations (upper right, 
Kolmogorov–Smirnov test p<0.001, awake CI [0.5963 0.5875], ketamine CI [0.5750 0.5708], 
light propofol CI [0.5774 0.5724], deep propofol CI [0.5756 0.5705], light sevoflurane CI [0.5773 
0.5716], deep sevoflurane CI [0.5750 0.5693]), as well as across the Hierarchy (bottom left, 
Kolmogorov–Smirnov test p<0.005, awake CI [0.0102 0.0083], ketamine CI [0.0058 0.0052], 
light propofol CI [0.0064 0.0053], deep propofol CI [0.0061 0.0052], deep sevoflurane CI [0.0070 
0.0053]), with the exception of light sevoflurane (p=0.08, light sevoflurane CI [0.0081 0.0064]). 
E) Spectrum Hierarchies, spatial and temporal. Different changes suggest that disturbing one of 
the two dimensions of the hierarchical organization may be enough to cause loss of 
consciousness. For each Box Plot, the bottom and top edges of the box indicate the 25th and 
75th percentiles, respectively. The whiskers extend the extreme values without outliers, while 
outliers are marked as a red cross. The center indicates the median. 



 

Figure 4. Local tendency of Intrinsic Ignition among conditions. The absolute value of 
Intrinsic Ignition per node was rescaled from zero (minimal value) to one (max value), allowing a 
visual comparison across nodes and conditions. The red vertical line corresponds to the mean 
value of the distribution (�) and black vertical lines are the limits given by � ± 	, with 	 the 
standard deviation for each condition. The global tendency was translated into three logical 
propositions: ����� ≥ �for awake,� + 	 ≥ ����� for light conditions and � ≥ ����� for deep 
conditions. Only 10 regions (Subgenual cingulate cortex right, Posterior cingulate cortex right, 
Inferior parietal cortex right, Intraparietal cortex right, Frontal eye field right, Parahippocampal 
cortex left, Subgenual cingulate cortex left, Primary somatosensory cortex left, Intraparietal 
cortex left, Superior parietal cortex left) satisfied the three propositions simultaneously 
(Supplementary Tables 3, 4 and 5), becoming candidates for areas which follow the global 
tendency of Intrinsic Ignition changes.  These regions are signaled by red arrows and 
correspond to the indexes 17, 27, 33, 36, 38, 51, 58, 71, 77, and 78 respectively 
(Supplementary Table 9).  



 

 
Figure 5. Local tendency Ignition Variability among conditions. The red vertical line 
corresponds to the mean value of the distribution (�) and black vertical lines are the limits given 
by � ± 	, with 	 the standard deviation for each condition. The global tendency was translated 
into three logical propositions: ����� ≥ �for awake, � + 	 ≥ ����� for light conditions and � ≥
����� for deep conditions. Only 4 regions (Tempolar polar right, Central temporal cortex right, 
Subgenual cingulate cortex right, Dorsomedial prefrontal cortex left) survived the three 
propositions simultaneously (Supplementary Tables 6, 7 and 8), becoming candidates for areas 
which follow the global tendency of ignition variability changes. These regions are signaled by 
red arrows and correspond to the indexes 1, 7, 17, and 76 respectively (Supplementary Table 
9).  
 



 

 



 

Figure 6. Global and local aspects of the brain functional network. A graphical way to 
observe how local and global disruption are intrinsically connected but probably differently 
driven under dissimilar anesthetics. A) Intrinsic Ignition driven network. For each condition and 
node, the values of Intrinsic Ignition are plotted as the size of the node, while the links 
correspond to the functional correlation only for the nodes identified as relevant from Figure 4. 
Changes among both sizes as well as the number of links at different anesthetics are observed, 
suggesting interdependency between the local (nodes) and global (network) changes. B) 
Similar plots for Ignition Variability driven network with the functional correlation only for the 
relevant nodes from Figure 5. In this case, changes among node sizes seem more relevant than 
among the number of links, suggesting that Ignition Variability may be more sensitive to these 
local (node) changes.  
 




