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We study the Hall effect in square, planar type-II superconductors using numerical simulations of
time dependent Ginzburg-Landau (TDGL) equations. The Hall field in some type-II superconduc-
tors displays sign-change behavior at some magnetic fields due to the induced field of vortex flow,
when its contribution is strong enough to reverse the field direction. In this work, we use modified
TDGL equations which couple an externally applied current, and also incorporate normal-state and
flux-flow Hall effects. We obtain the profile of Hall angle as a function of applied magnetic field
for four different sizes (l × l) of the superconductor: l/ξ ∈ {3, 5, 15, 20}. We obtain vastly different
profiles for each size, proving that size is an important parameter that determines Hall behavior. We
find that electric field dynamics provides an insight into several anomalous features including sign-
change of Hall angle, and leads us to the precise transient behavior of order parameter responsible
for them.

I. INTRODUCTION

One of the most interesting aspects of superconduct-
ing systems is the physics of vortices. Advances in ex-
perimental methods have made it possible to probe type-
II superconductors at small lengthscales where the be-
haviour of individual vortices becomes visible. Vortices
have been imaged with electron spins in diamonds [1, 2],
scanning superconducting quantum-interference devices
(SQUIDs) [3, 4] and Hall-probe magnetometry [5, 6].
The behaviour of a superconducting system is expected
to vary significantly if its dimensions are reduced to be
comparable to the coherence length. In this work, we the-
oretically investigate the effect of finite size on the prop-
erties of vortices with numerical simulations of solutions
of the time dependent Ginzburg-Landau (TDGL) equa-
tions. The flux-flow Hall effect in square planar type-II
superconductors are studied for different sample sizes,
given by l/ξ ratio of 3, 5, 15 and 20 (where l is the
length of the square and ξ is the superconducting co-
herence length). It will be seen that the electric field
and hall angle profiles under a unidirectional current are
widely different depending upon the dimension of the su-
perconductor.

Hall effect in superconductors has been observed to
display anomalous properties below the critical temper-
ature, most significant of which is the sign-reversal of
Hall voltage at certain magnetic fields [7–9]. This could
not be explained by either the phenomenological models
of vortex flow of the time, namely the Bardeen-Stephen
(BS) model [10] and the Nozières-Vinen (NV) model [11],
or by the microscopic theory [12]. It was later proposed
that the induced electric field of magnetic vortex flow
could contribute to the Hall field and cause anomalous
behavior [9]. Dorsey [12] and Kopnin et al. [13] proved
using analytical approximations of a modified time de-
pendent Ginzburg-Landau (TDGL) system, that indeed

sign reversal of Hall effect is possible under some circum-
stances. These theories make use of microscopic quan-
tities (related to the electronic structure) to define the
regimes of sign-reversal. Alternatively, one may numeri-
cally compute the Hall effect in a superconducting sam-
ple governed by the modified TDGL system of Dorsey
[12] and Kopnin et al. [13], and find the magnetic field
regimes of sign-reversal. This could provide insights into
Hall effect behaviour of a superconductor, as a function
of macroscopic quantities alone (e.g. GL parameter κ,
sample size, etc.).

In this work, we follow the alternative numerical route
mentioned above, which is direct and does not resort
to any analytical approximations. We first use stan-
dard time dependent Ginzburg-Landau (TDGL) equa-
tions [14–16] to numerically compute the time-varying
order parameter of a planar superconductor in the vortex
state. We benchmark our simulations by comparing the
numerically obtained fluxoid value of each vortex against
Φo, the superconducting flux quantum, as a rigorous test
(IIIA). With these benchmarks in hand, we simulate a
modified TDGL system that includes an externally ap-
plied current to probe the Hall effect in these systems.
Importantly, we go beyond existing literature by incor-
porating the normal-state Hall conductivity and flux-flow
terms into the dynamical equations that we numerically
simulate. In this, we have taken inspiration from the
analytical works of Dorsey [12] and Kopnin et al. [13]
(III B). Next, in III C we study the resultant changes in
flux-flow and resultant induced electric fields based on the
numerical simulation of our modified TDGL system. We
compute the Hall angle profile for various sizes of the su-
perconductor, and find vastly different profiles. We find
that transient electric fields and related order parameter
behavior give us good insight into explaining the anoma-
lous Hall behavior.
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II. THEORETICAL MODEL

The TDGL equations are [14–16]:
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where, ψ is the complex-valued order parameter, α
and β are the phenomenological parameters of Ginzburg-
Landau theory [17, 18] and φ, A are the electric and
magnetic potentials respectively. ν is the normal-state
conductivity and γ is a relaxation constant for the or-
der parameter. The charge and mass of Cooper pairs are
denoted by es = 2e and ms = 2me respectively.

A. Gauge invariance and normalization

For an arbitrary function χ(x, y, t) with well-defined
spatial and time derivatives, the gauge invariance can
be expressed as (ψ → ψeiκχ, A → A + ∇χ, φ → φ −
∂χ
∂t ) . We choose the zero electric potential gauge (i.e.
φ = 0) [14, 15, 19]. The physical quantities in (1) are
renormalized as follows:

x
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whereHc =
√

4πα2

β and ξ is the GL coherence length [19].
In the chosen gauge, the resulting dimensionless equa-
tions applicable over the superconducting domain are:
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where, κ is the GL parameter and σ is normalized
normal-state conductivity. When the sample is sur-
rounded by vacuum on all sides and no external current
is passed, the following boundary conditions (BCs) apply
[14, 19–21]:

∇×A = Hext,

(
i∇+

1

κ
A

)
ψ · n = 0, −σ∂A

∂t
· n = 0

(4)

(where Hext is the externally applied magnetic field, per-
pendicular to the sample). The first condition imposes
continuity of transverse magnetic field across the bound-
ary, while the second and third ensure that neither su-
percurrent nor normal current crosses the boundary, re-
spectively.

In principle, one also needs to solve Maxwell’s equation
∇×∇×A = 0 (considering vacuum) in the surrounding
domain [19]. However, in the case of two-dimensional
samples (i.e. infinitely long cylinders) with perpendic-
ularly applied magnetic field, as in our system, solving
the “interior problem” (3) alone is sufficient to a good
approximation [15, 22]. For reference, the “full problem”
and its boundary conditions are discussed in Refs. [14]
and [19].

B. Inclusion of externally applied current

Including an externally applied transport current in
the TDGL system entails two tasks: (a) accounting for
the magnetic field induced by the transport current and
(b) modifying the boundary conditions (4) to account for
flow of normal current across boundaries. The former can
be achieved by modifying the first boundary condition to
∇ × A = Htot where Htot = Hext + Hc is the sum of
applied (Hext) and induced (Hc) magnetic fields [20]. Hc

is to be computed from the current profile (a function of
ψ, A), making the system self-consistent. However, an
approximation is frequently used in literature [20, 23–26]
to simplify the computation of Hc: the current profile
is assumed to be a uniform band, which reduces Hc to
a simple expression involving Ja, the applied (uniform)
current density. In this paper, Ja is assumed to be in the
+x̂ direction (fig. 1), which gives us Hc along all four
boundaries as Htop, bottom

c = ±WJa/2 ẑ (whereW is the
length of the sample along ŷ) and Hleft, right

c vary linearly
between the bottom and top edges.

Secondly, to account for flow of normal current across
the boundary, the “vacuum-superconductor” BCs (4) are
now replaced by “metal-superconductor” BCs (5b) [20,
26] at the left and right edges, while retaining the former
BCs (5a) at the top and bottom edges:

∇×A = Htot,

(
i∇+

1

κ
A

)
ψ · n = 0, −σ∂A

∂t
· n = 0

(5a)

∇×A = Htot, ψ = 0, −σ∂A
∂t
· n = Ja · n

(5b)

In (5b), the third BC accounts for flow of current across
the boundary, and the second condition ensures that the
density of superconducting electrons is zero at the edges.
This ensures that the injected normal current transitions
to supercurrent gradually, rather than abruptly, inside
the superconductor.
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Figure 1: Schematic representation of our simulation
domain when an external current is applied – l × l

square superconductor with metallic contacts on the left
and right, and vacuum at top and bottom. Current Ja
is applied along x̂ and magnetic field Hext along ẑ.

C. Inclusion of Hall effect

Normal state hall effect is a result of the conduction of
electrons transverse to applied electric field. This can be
incorporated in the TDGL system (3), (5) by rewriting
the normal-state conductivity σ as a tensor:

σ =

(
σxx σxy
σyx σyy

)
(6)

We assume an isotropic sample (σxx = σyy), and by sym-
metry σyx = −σxy. In order to determine σxx and σxy,
we use the following as the model for the normal-state
conductivity [12, 27]:

σxx = σ0
1

1 + ω2
cτ

2
, σxy = σ0

ωcτ

1 + ω2
cτ

2
(7)

where ωc is the cyclotron frequency es (∇×A) /ms and
τ is the electron scattering time. Under typical condi-
tions, we have ωcτ � 1 (low-field limit) [12, 27]. Thus,
σxx ≈ σ0 and σxy ≈ ωcτσ0. Due to the spatially varying
magnetic field, cyclotron frequency ωc and consequently,
σxy are also spatially varying. In order to enforce the
low-field limit, we take ωcτ = 10−2 (∇×A), where the
pre-factor of 10−2 ensures that ωcτ � 1.

Josephson [28] proved that macroscopically, a vortex
moving at velocity vL gives rise to an induced electric
field E = − 1

cvL×H,where all the quantities are spatially
and temporally averaged [9, 12, 13]. In the Bardeen-
Stephen (BS) model [10], under an applied current Ja,
vortices experience a Lorentz force ∼ Ja × H [9, 12].
This force gives rise to velocity vL along Ja × H and
in a system such as ours (fig. 1), this results in vortex
motion along −ŷ. This velocity vL along −ŷ produces
a field E = − 1

cvL × H along x̂, the same direction as

Ja, thereby causing dissipation. However, if we were to
have an additional component of vL along x̂ (the same
direction as Ja), this would create a field contribution in
the Hall direction. Dorsey [12] and Kopnin et al. [13]
proved that adding a non-zero imaginary part to the re-
laxation parameter γ in the TDGL system (1) produces
such flux-flow contribution to the Hall field by lending
the vortices a velocity component parallel to the applied
current. Thus, we write γ = γ1 + iγ2. In the microscopic
picture, the value of γ2/γ1 has been shown to depend
upon the electronic structure of the material [12, 13]. The
sign of γ2/γ1 determines whether vortices travel along Ja
or against, and therefore crucially affects the sign of flux-
flow contribution to Hall field. Kopnin et al. [13] proved
that a sign reversal in Hall effect would be observed for
negative values of γ2/γ1.

III. RESULTS AND DISCUSSION

We use COMSOL Multiphysics® [29], a commercial
finite element tool to numerically simulate TDGL equa-
tions (3)–(5). Throughout the paper, we take GL pa-
rameter κ = 2 and normalized normal-state conductivity
σ0 = 1. In section IIIA, we obtain a vortex state solution
and propose a procedure to rigorously verify the solution
to help identify any numerical errors or artifacts. In sec-
tions III B–III C, we study a system with externally ap-
plied current and Hall effect included. Throughout these
simulations, we apply an external current Ja = 0.04 x̂.
We consider four geometries: l × l square superconduc-
tors for l/ξ ∈ {3, 5, 15, 20}. We apply an external mag-
netic field Hext along ẑ, whose value is swept between 0
and Hc2 = κ = 2 in steps of 0.05. For each combination
of size l and Hext, we solve the modified TDGL system
(3), (5) and compute the time-varying order parameter
ψ (r, t) and vector potential A (r, t). This gives us a com-
plete insight into the dynamic vortex motion and electric
fields Ex = −∂Ax/∂t and Ey = −∂Ay/∂t, which form
the basis for much of our analysis.

Since we use normalized units throughout the paper,
we compute the order of magnitude for these units to
understand the typical physical values. We chose κ = 2,
which broadly corresponds to Niobium [30]. Using the
physical parameters of Nb, we compute the time units as
∼ 10−12 s [31], current density units as ∼ 1 A m−1 [32, 33]
and the applied magnetic field units as ∼ 1 kOe [33].

A. Vortex state and verification

We first solve TDGL equations (3) on a 20ξ× 20ξ pla-
nar sample (GL parameter κ = 2) with no applied cur-
rent or Hall effect enabled. Thus, in this case we use the
vacuum-superconductor BCs (4) on all four sides, and
observe a vortex state solution at Hext = 0.9ẑ (fig. 2).
We perform a thorough verification of our simulation as
described in the following. First, we confirm that the
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Figure 2: |ψ|2 at various instants of time, depicting
major events in the formation of a vortex state in the

20ξ× 20ξ sample. Applied magnetic field is |Hext| = 0.9.

simulation results are stable with respect to mesh size.
We then sweep |Hext| widely and observe the existence
of both upper and lower critical fields marked by the van-
ishing of vortices, as expected from a type-II supercon-
ductor (κ > 1/

√
2). We also observe that for the same

κ, the number of vortices increases (decreases) when the
external field |Hext| is increased (decreased). This is an
expected qualitative behaviour of the superconductor to
let more (less) incident flux pass through the supercon-
ductor. One of the hallmarks of superconducting vortices
under Ginzburg-Landau theory is fluxoid quantization.
It states that the fluxoid value Φ′ associated with each
vortex is quantized by Φ0 = hc

2e [18].

Φ′ = Φ +
4π

c

∮
λ2Js · dl (8)

where Φ is the magnetic flux
∫
B · ds associated with the

vortex, and the integral term involving super current Js
and penetration depth λ is performed on a closed contour
enclosing the vortex. We compute the fluxoid value, and
obtain Φ′ ≈ 0.96Φ0 for each vortex, confirming that our
simulations firmly uphold fluxoid quantization (fig. 3).

B. Flux flow under applied current with Hall effect
incorporated

In the Bardeen-Stephen (BS) model [10], magnetic vor-
tices experience a Lorentz force under applied external
current along Ja ×H [9, 12]. We apply an external cur-
rent Ja = 0.04 x̂ and Hext along +ẑ, and accordingly ob-
serve vortex flow along −ŷ with vortices entering at the
top edge and leaving at the bottom (fig. 4). Consistent
with the BS model, we observe faster (slower) motion

0 10 20
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20

y

0.36

0.48

0.60

0.72

0.84

0.96
|H|

Figure 3: We verify that the fluxoid value of each of our
vortices is ≈ Φ0. To compute the fluxoid value we take
a circular area centred at the vortex-centre defined by
the local maxima in magnetic field, with a radius 2.4ξ
(shown with a dotted hatch on the top-left vortex).

Figure shown for |Hext| = 0.9.

of vortices with increased (decreased) magnitudes of Ja.
Choosing a larger value of |Ja| would increase the mag-
nitude of current-induced magnetic field Hc, driving the
superconductor into normal state (after some time) for
even low values of applied field Hext. With our chosen
value of |Ja| = 0.04, we find that the system is ultimately
driven into normal state for all values of |Hext| ≥ 0.35 in
the case of sizes l/ξ ∈ {15, 20}. For the other two smaller
sizes, the system is driven into normal state for all values
of |Hext|.

For sizes l/ξ ∈ {15, 20}, we observe vortices and their
movement, before the system eventually goes into normal
state (ψ (r) = 0), whereas for sizes l/ξ ∈ {3, 5}, we do
not observe vortices for any value of |Hext|. To under-
stand further, we solve the standard TDGL system (3),
(4) (with no applied current) for l/ξ ∈ {3, 5} and sweep
the magnetic field |Hext| as earlier. We do not find a vor-
tex state solution for any value of |Hext|. We conclude
that this is a size-effect: the system is smaller than a
critical size, forbidding the possibility of a vortex state
solution.

Next, we also enable normal-state and flux-flow Hall
effects following the discussion in II C, with γ2/γ1 = 0.4
and −0.4 as separate cases. The choice of |γ2/γ1| was
made in such a way that the vortices gain a perceivable
amount of velocity in the direction of Ja, but not sig-
nificantly enough, so that vortices still primarily move
along −ŷ. With Hall effect enabled, we observe complex
vortex motion (fig. 5). Vortices enter the system at the
top edge and traverse smooth but irregular trajectories
through the domain, due to complex vortex-vortex and
vortex-boundary interactions. The key difference is that
they also obtain velocity in the ±x̂ direction, unlike when
Hall effect is not enabled. We seek to capture the effect of
this complex motion on the longitudinal and Hall electric
fields and explain the observed behavior.
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Figure 4: We observe vortex motion under an applied
external current in the transverse direction. Vortices
enter at the top edge and leave at the bottom. This

motion is followed by the superconductor being driven
into normal state. (|Hext| = 0.5)

C. Analysis of electric fields and Hall angle

We obtain the spatially averaged electric field by aver-
aging across the entire domain. We find that the so ob-
tained E profiles can be grouped into three distinct types
(fig. 6) of behaviour based on the l/ξ ratio and value of
|Hext|. First, at a large l/ξ of 20 (fig. 6a), the longi-
tudinal field saturates to σ0Ja (normal state) with the
observation of a series of spikes prior to that. This spik-
ing occurs due to vortex entry and exit, as discussed in
Ref. [23]. The Hall field Ey also exhibits similar spiking
as a result of the vortex velocity component in the direc-
tion of Ja. Such behaviour occurs for sizes l/ξ ∈ {15, 20}
and applied field |Hext| ≥ 0.35. For fields lower than
0.35, the system rapidly evolves to the superconducting
Meissner state with Ex reaching zero as shown in fig. 6b
for |Hext| of 0.2. Sizes l/ξ ∈ {3, 5} are always driven into
normal state. This results in the third type, with Ex
saturating to σ0Ja (fig.6c). These differences in electric
field behavior produce significantly different Hall effect
profiles, which we address next.

We characterize the Hall effect using Hall angle, the
ratio of effective transverse to longitudinal conductivity:
tan θH = σ′xy/σ

′
xx [12, 13]. These macroscopic effec-

tive conductivties are marked with a prime to distinguish
them from the normal-state quantities σxx and σxy (7).
From the macroscopic equation Ja = σ′ ·E, we have:(

Ja
0

)
=

(
σ′xx σ′xy
−σ′xy σ′xx

)
·
(
Ex
Ey

)
(9)

Thus, we get tan θH = σ′xy/σ
′
xx = Ey/Ex, where the

fields are both spatially and temporally averaged. We
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Figure 5: Complex vortex flow under an applied
external current with Hall effect enabled. The setting in
of normal state from the right edge starting at t = 1500
induces a gradual transient field largely affecting Hall

behavior (fig. 8). (|Hext| = 0.5 and γ2/γ1 = 0.4)

obtain the tangent of Hall angle tan θH for each com-
bination of applied magnetic field |Hext| and size l/ξ ∈
{3, 5, 15, 20} (fig. 7). We first note that the Hall angle
profiles resulting from our choice of |γ2/γ1| closely re-
semble the experimental data with respect to orders of
magnitude (tan θH ∼ 10−2) [8, 34].

We find that as |Hext| → Hc2, when the superconduc-
tor is rapidly driven into normal state, Hall angle varies
linearly with |Hext|, as in the case of normal metals. In
this regime, flux-flow contribution is negligible and all
sizes l/ξ ∈ {3, 5, 15, 20} have the same profile. This is
in agreement with expected behavior because we do not
have any size-effect for normal metals. When |Hext| ≈ 0,
the Hall angle approaches 0. At these low fields, sizes
l/ξ ∈ {3, 5} are driven to normal-state. As normal met-
als, they have negligible Hall fields at |Hext| ≈ 0, and
consequently a very small Hall angle. On the other hand,
sizes l/ξ ∈ {15, 20} are in the superconducting state at
these low fields, and therefore have negligible Ey and Ex.
The small non-zero contribution is a result of transient
behavior as seen in fig. 6b. Thus, although the Hall an-
gle is small for both groups of sizes at |Hext| ≈ 0, the
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Figure 6: The three different types of electric field
profiles observed in our simulations across all sizes and
magnitudes of applied field |Hext|. (a) Saturates to

σ0Ja, exhibits spiking behavior corresponding to entry
and exit of vortices from sample of size l/ξ = 20, and
|Hext| = 0.8. (b) Saturates to 0, of sample size l/ξ = 20,
and |Hext| = 0.2). (c) Saturates to σ0Ja, for sample size

l/ξ = 5, and |Hext| = 1.2.

underlying states are different.
We next note that the Hall angle profile is completely

linear for size l/ξ = 3. This is a result of it behaving as
a normal metal with no vortex state, and electric field
Ex (t) saturating to σ0Ja for all values of |Hext| (third
type shown in fig. 6c). However, size l/ξ = 5 also ex-
hibits identical behavior, but we find significant devia-
tions from linearity. To understand further, we look at
the difference in transient fields between the two sizes.
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Figure 7: (a)Hall angle profiles for γ2/γ1 = +0.4.(b)
Hall angle profiles for γ2/γ1 = −0.4. Evidently, size is
an important parameter in determining Hall behavior,
with the smallest size l/ξ = 3 behaving identical to a

normal conductor. Sign-reversal is only seen for
l/ξ = 20, in which case γ2/γ1 = 0.4 and −0.4 show

opposite behavior. Fields were averaged from t = 0 to
11000.

Large transients in Ex (t) are common for size l/ξ = 5,
such as the one shown in fig. 6c, whereas the transient is
highly suppressed in size l/ξ = 3. In fact, across all values
of |Hext|, the maximum percentage change in Ex (t) (rel-
ative to saturation value σ0Ja) is limited to ≈ 0.02% for
size l/ξ = 3, and to ≈ 760% in the case of size l/ξ = 5.
We conclude that this enormous difference in transient
levels leads to deviations from linearity in size l/ξ = 5,
in spite of non-superconducting behavior.

We next look at sign-reversal of Hall angle, a key
anomaly in the Hall behavior of some superconductors.
For size l/ξ = 20, we observe a region of sharp devia-
tion from linear, “normal-conductor” behavior for inter-
mediate values of applied field, i.e. around |Hext| ≈ 0.5
(fig. 7). This is the region where flux-flow contribu-
tion to the Hall effect is most significant, because for
higher fields, normal state sets in rapidly, and for lower
fields, there are no vortices (Meissner state). We find
that strong, negative flux-flow contribution leads to sign-
reversal for γ2/γ1 = −0.4, and positive contribution leads
to a peak for γ2/γ1 = 0.4, in agreement with Kopnin et
al. [13]. In order to understand the precise transient be-
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Figure 8: Ey fields for size l/ξ = 20 at |Hext| = 0.5

The gradual transients starting at t ≈ 1500 are responsible
for the vastly different Hall angle for γ2/γ1 = 0.4 and −0.4.
Similar transients are seen for |Hext| ≈ 0.5, leading to the

Hall angle profile in fig. 7.

havior leading to this vast difference, we look at the spa-
tially averaged fields Ex and Ey as functions of time (for
|Hext| = 0.5). First, we find that for both γ2/γ1 = 0.4
and −0.4, Ex has an identical profile. This is expected
because γ2 only influences the motion of vortices along
Ja, thus affecting only Ey (ref. II C). On the other hand,
we find significant difference in Ey (t) profiles (fig. 8). It
is evident that the difference in Hall behavior between
γ2/γ1 = 0.4 and −0.4 can be attributed almost entirely
to the transients starting at t ≈ 1500. Although spiking
behavior results in peaks in the opposite direction, they
have negligible contribution to the average. Instead, the
gradual transient starting at t ≈ 1500 leads to different
profiles for γ2/γ1 = 0.4 and −0.4, giving a strong positive
and negative contribution to Hall field, respectively. We
try to relate this transient with order parameter (fig. 5)
in order to determine the precise behavior causing such

transients. We find that this transient is the induced
field resulting from variation in A during the onset of
normal state (fig. 5). This onset occurs from the right
boundary for γ2/γ1 = 0.4 (as seen in fig. 5), and from
the left for γ2/γ1 = −0.4 (fig. 8). For both γ2/γ1 = 0.4
and −0.4, this transient leads ultimately to saturation of
Ey to the same, small positive value. This is the non-
flux-flow, or normal-state contribution to the Hall field.
Interestingly, we find that although size l/ξ = 15 ex-
hibits vortex behavior similar to l/ξ = 20, we do not find
sign-reversal in Hall angle. This is due to the suppressed
gradual transient fields in l/ξ = 15, leading to a much
weaker contribution of flux-flow Hall effect. Therefore,
it is evident that along with γ2 (whose value depends on
the electronic structure) and several other parameters,
size alters Hall behavior significantly, adding to the rea-
soning behind the observation of a diverse variety of Hall
angle profiles in various materials.

In summary, we have simulated the anomalous Hall
effect using the modified TDGL equations in COMSOL
Multiphysics and shown that the solutions provide in-
sights into the precise temporal dynamics of transient
fields and vortex behavior that scale with the sample
size. We have explored theoretically how features of the
anomalous Hall effect evolve with a variation of the lin-
ear dimensions when the lengths are only a few times the
coherence length. The Hall effect behaviour predicted by
these simulations may be probed with advanced experi-
mental techniques that have already been applied to im-
age vortices [1–6, 35]. Such studies would be important
for understanding finite-size effects in superconductors
and their evolution at microscopic lengthscales.
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