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Size Dependence in Flux-Flow Hall Effect using Time Dependent Ginzburg-Landau Equations

We study the Hall effect in square, planar type-II superconductors using numerical simulations of time dependent Ginzburg-Landau (TDGL) equations. The Hall field in some type-II superconductors displays sign-change behavior at some magnetic fields due to the induced field of vortex flow, when its contribution is strong enough to reverse the field direction. In this work, we use modified TDGL equations which couple an externally applied current, and also incorporate normal-state and flux-flow Hall effects. We obtain the profile of Hall angle as a function of applied magnetic field for four different sizes (l × l) of the superconductor: l/ξ ∈ {3, 5, 15, 20}. We obtain vastly different profiles for each size, proving that size is an important parameter that determines Hall behavior. We find that electric field dynamics provides an insight into several anomalous features including signchange of Hall angle, and leads us to the precise transient behavior of order parameter responsible for them.

I. INTRODUCTION

One of the most interesting aspects of superconducting systems is the physics of vortices. Advances in experimental methods have made it possible to probe type-II superconductors at small lengthscales where the behaviour of individual vortices becomes visible. Vortices have been imaged with electron spins in diamonds [START_REF] Schlussel | Wide-field imaging of superconductor vortices with electron spins in diamond[END_REF][START_REF] Thiel | Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer[END_REF], scanning superconducting quantum-interference devices (SQUIDs) [START_REF] Kremen | Mechanical control of indi-vidual superconducting vortices[END_REF][START_REF] Embon | Imaging of super-fast dynamics and flow instabilities of superconducting vortices[END_REF] and Hall-probe magnetometry [START_REF] Raes | Local mapping of dissipative vortex motion[END_REF][START_REF] Cole | Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives[END_REF]. The behaviour of a superconducting system is expected to vary significantly if its dimensions are reduced to be comparable to the coherence length. In this work, we theoretically investigate the effect of finite size on the properties of vortices with numerical simulations of solutions of the time dependent Ginzburg-Landau (TDGL) equations. The flux-flow Hall effect in square planar type-II superconductors are studied for different sample sizes, given by l/ξ ratio of 3, 5, 15 and 20 (where l is the length of the square and ξ is the superconducting coherence length). It will be seen that the electric field and hall angle profiles under a unidirectional current are widely different depending upon the dimension of the superconductor.

Hall effect in superconductors has been observed to display anomalous properties below the critical temperature, most significant of which is the sign-reversal of Hall voltage at certain magnetic fields [START_REF] Artemenko | Vortex motion and kosterlitz-thouless transition in superconducting single crystals Bi2Sr2CaCu2Ox[END_REF][START_REF] Iye | Hall effect in high temperature superconductors near Tc[END_REF][START_REF] Hagen | Anomalous Hall effect in superconductors near their critical temperatures[END_REF]. This could not be explained by either the phenomenological models of vortex flow of the time, namely the Bardeen-Stephen (BS) model [START_REF] Bardeen | Theory of the motion of vortices in superconductors[END_REF] and the Nozières-Vinen (NV) model [START_REF] Nozières | The motion of flux lines in type II superconductors[END_REF], or by the microscopic theory [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF]. It was later proposed that the induced electric field of magnetic vortex flow could contribute to the Hall field and cause anomalous behavior [START_REF] Hagen | Anomalous Hall effect in superconductors near their critical temperatures[END_REF]. Dorsey [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF] and Kopnin et al. [START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF] proved using analytical approximations of a modified time dependent Ginzburg-Landau (TDGL) system, that indeed sign reversal of Hall effect is possible under some circumstances. These theories make use of microscopic quantities (related to the electronic structure) to define the regimes of sign-reversal. Alternatively, one may numerically compute the Hall effect in a superconducting sample governed by the modified TDGL system of Dorsey [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF] and Kopnin et al. [START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF], and find the magnetic field regimes of sign-reversal. This could provide insights into Hall effect behaviour of a superconductor, as a function of macroscopic quantities alone (e.g. GL parameter κ, sample size, etc.).

In this work, we follow the alternative numerical route mentioned above, which is direct and does not resort to any analytical approximations. We first use standard time dependent Ginzburg-Landau (TDGL) equations [START_REF] Du | High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model[END_REF][START_REF] Du | Numerical approximations of the Ginzburg-Landau models for superconductivity[END_REF][START_REF] Gor | Vortex motion and resistivity of type-ii superconductors in a magnetic field[END_REF] to numerically compute the time-varying order parameter of a planar superconductor in the vortex state. We benchmark our simulations by comparing the numerically obtained fluxoid value of each vortex against Φ o , the superconducting flux quantum, as a rigorous test (III A). With these benchmarks in hand, we simulate a modified TDGL system that includes an externally applied current to probe the Hall effect in these systems. Importantly, we go beyond existing literature by incorporating the normal-state Hall conductivity and flux-flow terms into the dynamical equations that we numerically simulate. In this, we have taken inspiration from the analytical works of Dorsey [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF] and Kopnin et al. [START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF] (III B). Next, in III C we study the resultant changes in flux-flow and resultant induced electric fields based on the numerical simulation of our modified TDGL system. We compute the Hall angle profile for various sizes of the superconductor, and find vastly different profiles. We find that transient electric fields and related order parameter behavior give us good insight into explaining the anomalous Hall behavior.

II. THEORETICAL MODEL

The TDGL equations are [START_REF] Du | High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model[END_REF][START_REF] Du | Numerical approximations of the Ginzburg-Landau models for superconductivity[END_REF][START_REF] Gor | Vortex motion and resistivity of type-ii superconductors in a magnetic field[END_REF]:

γ h ∂ψ ∂t + ie s Φψ + 1 2m s ih∇ + e s c A 2 ψ + αψ + β|ψ| 2 ψ = 0 (1a) ν 1 c ∂A ∂t + ∇Φ + ie s h 2m s (ψ * ∇ψ -ψ∇ψ * ) + e 2 s m s c |ψ| 2 A + c 4π ∇ × ∇ × A = 0 (1b)
where, ψ is the complex-valued order parameter, α and β are the phenomenological parameters of Ginzburg-Landau theory [START_REF] Landau | On the theory of superconductivity[END_REF][START_REF] Tinkham | Introduction to Superconductivity[END_REF] and φ, A are the electric and magnetic potentials respectively. ν is the normal-state conductivity and γ is a relaxation constant for the order parameter. The charge and mass of Cooper pairs are denoted by e s = 2e and m s = 2m e respectively.

A. Gauge invariance and normalization

For an arbitrary function χ(x, y, t) with well-defined spatial and time derivatives, the gauge invariance can be expressed as (ψ → ψe iκχ , A → A + ∇χ, φ → φ -∂χ ∂t ) . We choose the zero electric potential gauge (i.e. φ = 0) [START_REF] Du | High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model[END_REF][START_REF] Du | Numerical approximations of the Ginzburg-Landau models for superconductivity[END_REF][START_REF] Deang | A Study of Inhomogeneities and Anisotropies in Superconductors via Ginzburg-Landau Type Models[END_REF]. The physical quantities in (1) are renormalized as follows:

x ξ → x, t γh/(-α) → t, A √ 2H c ξ → A, ψ -α/β → ψ (2) 
where H c = 4πα 2 β and ξ is the GL coherence length [START_REF] Deang | A Study of Inhomogeneities and Anisotropies in Superconductors via Ginzburg-Landau Type Models[END_REF]. In the chosen gauge, the resulting dimensionless equations applicable over the superconducting domain are:

∂ψ ∂t + i∇ + 1 κ A 2 ψ -1 -|ψ| 2 ψ = 0 (3a) σ ∂A ∂t + ∇ × ∇ × A + i 2κ (ψ * ∇ψ -ψ∇ψ * ) + 1 κ 2 |ψ| 2 A = 0 (3b)
where, κ is the GL parameter and σ is normalized normal-state conductivity. When the sample is surrounded by vacuum on all sides and no external current is passed, the following boundary conditions (BCs) apply [START_REF] Du | High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model[END_REF][START_REF] Deang | A Study of Inhomogeneities and Anisotropies in Superconductors via Ginzburg-Landau Type Models[END_REF][START_REF] Ögren | Selfconsistent Ginzburg-Landau theory for transport currents in superconductors[END_REF][START_REF] Alstrøm | Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Depen-dent Ginzburg-Landau Equation[END_REF]:

∇ × A = H ext , i∇ + 1 κ A ψ • n = 0, -σ ∂A ∂t • n = 0 (4) 
(where H ext is the externally applied magnetic field, perpendicular to the sample). The first condition imposes continuity of transverse magnetic field across the boundary, while the second and third ensure that neither supercurrent nor normal current crosses the boundary, respectively.

In principle, one also needs to solve Maxwell's equation ∇ × ∇ × A = 0 (considering vacuum) in the surrounding domain [START_REF] Deang | A Study of Inhomogeneities and Anisotropies in Superconductors via Ginzburg-Landau Type Models[END_REF]. However, in the case of two-dimensional samples (i.e. infinitely long cylinders) with perpendicularly applied magnetic field, as in our system, solving the "interior problem" (3) alone is sufficient to a good approximation [START_REF] Du | Numerical approximations of the Ginzburg-Landau models for superconductivity[END_REF][START_REF] Chapman | Simplified ginzburg-landau models for superconductivity valid for high kappa and high fields[END_REF]. For reference, the "full problem" and its boundary conditions are discussed in Refs. [START_REF] Du | High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model[END_REF] and [START_REF] Deang | A Study of Inhomogeneities and Anisotropies in Superconductors via Ginzburg-Landau Type Models[END_REF].

B. Inclusion of externally applied current

Including an externally applied transport current in the TDGL system entails two tasks: (a) accounting for the magnetic field induced by the transport current and (b) modifying the boundary conditions (4) to account for flow of normal current across boundaries. The former can be achieved by modifying the first boundary condition to ∇ × A = H tot where H tot = H ext + H c is the sum of applied (H ext ) and induced (H c ) magnetic fields [START_REF] Ögren | Selfconsistent Ginzburg-Landau theory for transport currents in superconductors[END_REF]. H c is to be computed from the current profile (a function of ψ, A), making the system self-consistent. However, an approximation is frequently used in literature [START_REF] Ögren | Selfconsistent Ginzburg-Landau theory for transport currents in superconductors[END_REF][START_REF] Machida | Direct simulation of the time-dependent Ginzburg-Landau equation for type-II superconducting thin film: Vortex dynamics and V-I characteristics[END_REF][START_REF] Gropp | Numerical Simulation of Vortex Dynamics in Type-II Superconductors[END_REF][START_REF] Winiecki | Time-dependent Ginzburg-Landau simulations of the voltage-current characteristic of type-II superconductors with pinning[END_REF][START_REF] Vodolazov | Dynamics of the superconducting condensate in the presence of a magnetic field. Channelling of vortices in superconducting strips at high currents[END_REF] to simplify the computation of H c : the current profile is assumed to be a uniform band, which reduces H c to a simple expression involving J a , the applied (uniform) current density. In this paper, J a is assumed to be in the +x direction (fig. 1), which gives us H c along all four boundaries as H top, bottom c = ±W J a /2 ẑ (where W is the length of the sample along ŷ) and H left, right c vary linearly between the bottom and top edges.

Secondly, to account for flow of normal current across the boundary, the "vacuum-superconductor" BCs (4) are now replaced by "metal-superconductor" BCs (5b) [START_REF] Ögren | Selfconsistent Ginzburg-Landau theory for transport currents in superconductors[END_REF][START_REF] Vodolazov | Dynamics of the superconducting condensate in the presence of a magnetic field. Channelling of vortices in superconducting strips at high currents[END_REF] at the left and right edges, while retaining the former BCs (5a) at the top and bottom edges:

∇ × A = H tot , i∇ + 1 κ A ψ • n = 0, -σ ∂A ∂t • n = 0 (5a) ∇ × A = H tot , ψ = 0, -σ ∂A ∂t • n = J a • n (5b) 
In (5b), the third BC accounts for flow of current across the boundary, and the second condition ensures that the density of superconducting electrons is zero at the edges. This ensures that the injected normal current transitions to supercurrent gradually, rather than abruptly, inside the superconductor. 

C. Inclusion of Hall effect

Normal state hall effect is a result of the conduction of electrons transverse to applied electric field. This can be incorporated in the TDGL system (3), ( 5) by rewriting the normal-state conductivity σ as a tensor:

σ = σ xx σ xy σ yx σ yy (6) 
We assume an isotropic sample (σ xx = σ yy ), and by symmetry σ yx = -σ xy . In order to determine σ xx and σ xy , we use the following as the model for the normal-state conductivity [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF][START_REF] Hurd | The Hall Effect in Metals and Alloys[END_REF]:

σ xx = σ 0 1 1 + ω 2 c τ 2 , σ xy = σ 0 ω c τ 1 + ω 2 c τ 2 (7) 
where ω c is the cyclotron frequency e s (∇ × A) /m s and τ is the electron scattering time. Under typical conditions, we have ω c τ 1 (low-field limit) [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF][START_REF] Hurd | The Hall Effect in Metals and Alloys[END_REF]. Thus, σ xx ≈ σ 0 and σ xy ≈ ω c τ σ 0 . Due to the spatially varying magnetic field, cyclotron frequency ω c and consequently, σ xy are also spatially varying. In order to enforce the low-field limit, we take ω c τ = 10 -2 (∇ × A), where the pre-factor of 10 -2 ensures that ω c τ 1. Josephson [START_REF] Josephson | Potential differences in the mixed state of type II superconductors[END_REF] proved that macroscopically, a vortex moving at velocity v L gives rise to an induced electric field E = -1 c v L ×H,where all the quantities are spatially and temporally averaged [START_REF] Hagen | Anomalous Hall effect in superconductors near their critical temperatures[END_REF][START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF][START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF]. In the Bardeen-Stephen (BS) model [START_REF] Bardeen | Theory of the motion of vortices in superconductors[END_REF], under an applied current J a , vortices experience a Lorentz force ∼ J a × H [START_REF] Hagen | Anomalous Hall effect in superconductors near their critical temperatures[END_REF][START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF]. This force gives rise to velocity v L along J a × H and in a system such as ours (fig. 1), this results in vortex motion along -ŷ. This velocity v L along -ŷ produces a field E = -1 c v L × H along x, the same direction as J a , thereby causing dissipation. However, if we were to have an additional component of v L along x (the same direction as J a ), this would create a field contribution in the Hall direction. Dorsey [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF] and Kopnin et al. [START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF] proved that adding a non-zero imaginary part to the relaxation parameter γ in the TDGL system (1) produces such flux-flow contribution to the Hall field by lending the vortices a velocity component parallel to the applied current. Thus, we write γ = γ 1 + iγ 2 . In the microscopic picture, the value of γ 2 /γ 1 has been shown to depend upon the electronic structure of the material [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF][START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF]. The sign of γ 2 /γ 1 determines whether vortices travel along J a or against, and therefore crucially affects the sign of fluxflow contribution to Hall field. Kopnin et al. [START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF] proved that a sign reversal in Hall effect would be observed for negative values of γ 2 /γ 1 .

III. RESULTS AND DISCUSSION

We use COMSOL Multiphysics ® [29], a commercial finite element tool to numerically simulate TDGL equations (3)-( 5). Throughout the paper, we take GL parameter κ = 2 and normalized normal-state conductivity σ 0 = 1. In section III A, we obtain a vortex state solution and propose a procedure to rigorously verify the solution to help identify any numerical errors or artifacts. In sections III B-III C, we study a system with externally applied current and Hall effect included. Throughout these simulations, we apply an external current J a = 0.04 x. We consider four geometries: l × l square superconductors for l/ξ ∈ {3, 5, 15, 20}. We apply an external magnetic field H ext along ẑ, whose value is swept between 0 and H c2 = κ = 2 in steps of 0.05. For each combination of size l and H ext , we solve the modified TDGL system (3), [START_REF] Raes | Local mapping of dissipative vortex motion[END_REF] and compute the time-varying order parameter ψ (r, t) and vector potential A (r, t). This gives us a complete insight into the dynamic vortex motion and electric fields E x = -∂A x /∂t and E y = -∂A y /∂t, which form the basis for much of our analysis.

Since we use normalized units throughout the paper, we compute the order of magnitude for these units to understand the typical physical values. We chose κ = 2, which broadly corresponds to Niobium [START_REF] Finnemore | Superconducting properties of high-purity niobium[END_REF]. Using the physical parameters of Nb, we compute the time units as ∼ 10 -12 s [START_REF] Oripov | Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field[END_REF], current density units as ∼ 1 A m -1 [START_REF] Asada | Superconductivity of Niobium Films[END_REF][START_REF] Williamson | Nonlocal Characteristics of the Bulk Upper Critical Field of Niobium[END_REF] and the applied magnetic field units as ∼ 1 kOe [START_REF] Williamson | Nonlocal Characteristics of the Bulk Upper Critical Field of Niobium[END_REF].

A. Vortex state and verification

We first solve TDGL equations (3) on a 20ξ × 20ξ planar sample (GL parameter κ = 2) with no applied current or Hall effect enabled. Thus, in this case we use the vacuum-superconductor BCs (4) on all four sides, and observe a vortex state solution at H ext = 0.9ẑ (fig. 2). We perform a thorough verification of our simulation as described in the following. First, we confirm that the simulation results are stable with respect to mesh size. We then sweep |H ext | widely and observe the existence of both upper and lower critical fields marked by the vanishing of vortices, as expected from a type-II superconductor (κ > 1/ √ 2). We also observe that for the same κ, the number of vortices increases (decreases) when the external field |H ext | is increased (decreased). This is an expected qualitative behaviour of the superconductor to let more (less) incident flux pass through the superconductor. One of the hallmarks of superconducting vortices under Ginzburg-Landau theory is fluxoid quantization. It states that the fluxoid value Φ associated with each vortex is quantized by Φ 0 = hc 2e [START_REF] Tinkham | Introduction to Superconductivity[END_REF].

Φ = Φ + 4π c λ 2 J s • dl ( 8 
)
where Φ is the magnetic flux B • ds associated with the vortex, and the integral term involving super current J s and penetration depth λ is performed on a closed contour enclosing the vortex. We compute the fluxoid value, and obtain Φ ≈ 0.96Φ 0 for each vortex, confirming that our simulations firmly uphold fluxoid quantization (fig. 3).

B. Flux flow under applied current with Hall effect incorporated

In the Bardeen-Stephen (BS) model [START_REF] Bardeen | Theory of the motion of vortices in superconductors[END_REF], magnetic vortices experience a Lorentz force under applied external current along J a × H [START_REF] Hagen | Anomalous Hall effect in superconductors near their critical temperatures[END_REF][START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF]. We apply an external current J a = 0.04 x and H ext along +ẑ, and accordingly observe vortex flow along -ŷ with vortices entering at the top edge and leaving at the bottom (fig. 4). Consistent with the BS model, we observe faster (slower) motion For sizes l/ξ ∈ {15, 20}, we observe vortices and their movement, before the system eventually goes into normal state (ψ (r) = 0), whereas for sizes l/ξ ∈ {3, 5}, we do not observe vortices for any value of |H ext |. To understand further, we solve the standard TDGL system (3), (4) (with no applied current) for l/ξ ∈ {3, 5} and sweep the magnetic field |H ext | as earlier. We do not find a vortex state solution for any value of |H ext |. We conclude that this is a size-effect: the system is smaller than a critical size, forbidding the possibility of a vortex state solution.

Next, we also enable normal-state and flux-flow Hall effects following the discussion in II C, with γ 2 /γ 1 = 0.4 and -0.4 as separate cases. The choice of |γ 2 /γ 1 | was made in such a way that the vortices gain a perceivable amount of velocity in the direction of J a , but not significantly enough, so that vortices still primarily move along -ŷ. With Hall effect enabled, we observe complex vortex motion (fig. 5). Vortices enter the system at the top edge and traverse smooth but irregular trajectories through the domain, due to complex vortex-vortex and vortex-boundary interactions. The key difference is that they also obtain velocity in the ±x direction, unlike when Hall effect is not enabled. We seek to capture the effect of this complex motion on the longitudinal and Hall electric fields and explain the observed behavior. 

C. Analysis of electric fields and Hall angle

We obtain the spatially averaged electric field by averaging across the entire domain. We find that the so obtained E profiles can be grouped into three distinct types (fig. 6) of behaviour based on the l/ξ ratio and value of |H ext |. First, at a large l/ξ of 20 (fig. 6a), the longitudinal field saturates to σ 0 J a (normal state) with the observation of a series of spikes prior to that. This spiking occurs due to vortex entry and exit, as discussed in Ref. [START_REF] Machida | Direct simulation of the time-dependent Ginzburg-Landau equation for type-II superconducting thin film: Vortex dynamics and V-I characteristics[END_REF]. The Hall field E y also exhibits similar spiking as a result of the vortex velocity component in the direction of J a . Such behaviour occurs for sizes l/ξ ∈ {15, 20} and applied field |H ext | ≥ 0.35. For fields lower than 0.35, the system rapidly evolves to the superconducting Meissner state with E x reaching zero as shown in fig. 6b for |H ext | of 0.2. Sizes l/ξ ∈ {3, 5} are always driven into normal state. This results in the third type, with E x saturating to σ 0 J a (fig. 6c). These differences in electric field behavior produce significantly different Hall effect profiles, which we address next.

We characterize the Hall effect using Hall angle, the ratio of effective transverse to longitudinal conductivity: tan θ H = σ xy /σ xx [START_REF] Dorsey | Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach[END_REF][START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF]. These macroscopic effective conductivties are marked with a prime to distinguish them from the normal-state quantities σ xx and σ xy [START_REF] Artemenko | Vortex motion and kosterlitz-thouless transition in superconducting single crystals Bi2Sr2CaCu2Ox[END_REF]. From the macroscopic equation J a = σ • E, we have:

J a 0 = σ xx σ xy -σ xy σ xx • E x E y (9) 
Thus, we get tan θ H = σ xy /σ xx = E y /E x , where the fields are both spatially and temporally averaged. We underlying states are different. We next note that the Hall angle profile is completely linear for size l/ξ = 3. This is a result of it behaving as a normal metal with no vortex state, and electric field E x (t) saturating to σ 0 J a for all values of |H ext | (third type shown in fig. 6c). However, size l/ξ = 5 also exhibits identical behavior, but we find significant deviations from linearity. To understand further, we look at the difference in transient fields between the two sizes. Large transients in E x (t) are common for size l/ξ = 5, such as the one shown in fig. 6c, whereas the transient is highly suppressed in size l/ξ = 3. In fact, across all values of |H ext |, the maximum percentage change in E x (t) (relative to saturation value σ 0 J a ) is limited to ≈ 0.02% for size l/ξ = 3, and to ≈ 760% in the case of size l/ξ = 5. We conclude that this enormous difference in transient levels leads to deviations from linearity in size l/ξ = 5, in spite of non-superconducting behavior.

We next look at sign-reversal of Hall angle, a key anomaly in the Hall behavior of some superconductors. For size l/ξ = 20, we observe a region of sharp deviation from linear, "normal-conductor" behavior for intermediate values of applied field, i.e. around |H ext | ≈ 0.5 (fig. 7). This is the region where flux-flow contribution to the Hall effect is most significant, because for higher fields, normal state sets in rapidly, and for lower fields, there are no vortices (Meissner state). We find that strong, negative flux-flow contribution leads to signreversal for γ 2 /γ 1 = -0.4, and positive contribution leads to a peak for γ 2 /γ 1 = 0.4, in agreement with Kopnin et al. [START_REF] Kopnin | The fluxflow hall effect in type II superconductors. an explanation of the sign reversal[END_REF]. In order to understand the precise transient be- havior leading to this vast difference, we look at the spatially averaged fields E x and E y as functions of time (for |H ext | = 0.5). First, we find that for both γ 2 /γ 1 = 0.4 and -0.4, E x has an identical profile. This is expected because γ 2 only influences the motion of vortices along J a , thus affecting only E y (ref. II C). On the other hand, we find significant difference in E y (t) profiles (fig. 8). It is evident that the difference in Hall behavior between γ 2 /γ 1 = 0.4 and -0.4 can be attributed almost entirely to the transients starting at t ≈ 1500. Although spiking behavior results in peaks in the opposite direction, they have negligible contribution to the average. Instead, the gradual transient starting at t ≈ 1500 leads to different profiles for γ 2 /γ 1 = 0.4 and -0.4, giving a strong positive and negative contribution to Hall field, respectively. We try to relate this transient with order parameter (fig. 5) in order to determine the precise behavior causing such transients. We find that this transient is the induced field resulting from variation in A during the onset of normal state (fig. 5). This onset occurs from the right boundary for γ 2 /γ 1 = 0.4 (as seen in fig. 5), and from the left for γ 2 /γ 1 = -0.4 (fig. 8). For both γ 2 /γ 1 = 0.4 and -0.4, this transient leads ultimately to saturation of E y to the same, small positive value. This is the nonflux-flow, or normal-state contribution to the Hall field. Interestingly, we find that although size l/ξ = 15 exhibits vortex behavior similar to l/ξ = 20, we do not find sign-reversal in Hall angle. This is due to the suppressed gradual transient fields in l/ξ = 15, leading to a much weaker contribution of flux-flow Hall effect. Therefore, it is evident that along with γ 2 (whose value depends on the electronic structure) and several other parameters, size alters Hall behavior significantly, adding to the reasoning behind the observation of a diverse variety of Hall angle profiles in various materials.

In summary, we have simulated the anomalous Hall effect using the modified TDGL equations in COMSOL Multiphysics and shown that the solutions provide insights into the precise temporal dynamics of transient fields and vortex behavior that scale with the sample size. We have explored theoretically how features of the anomalous Hall effect evolve with a variation of the linear dimensions when the lengths are only a few times the coherence length. The Hall effect behaviour predicted by these simulations may be probed with advanced experimental techniques that have already been applied to image vortices [START_REF] Schlussel | Wide-field imaging of superconductor vortices with electron spins in diamond[END_REF][START_REF] Thiel | Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer[END_REF][START_REF] Kremen | Mechanical control of indi-vidual superconducting vortices[END_REF][START_REF] Embon | Imaging of super-fast dynamics and flow instabilities of superconducting vortices[END_REF][START_REF] Raes | Local mapping of dissipative vortex motion[END_REF][START_REF] Cole | Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives[END_REF][START_REF] Lillie | Laser modulation of superconductivity in a cryogenic wide-field nitrogen-vacancy microscope[END_REF]. Such studies would be important for understanding finite-size effects in superconductors and their evolution at microscopic lengthscales.
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 1 Figure1: Schematic representation of our simulation domain when an external current is applied -l × l square superconductor with metallic contacts on the left and right, and vacuum at top and bottom. Current J a is applied along x and magnetic field H ext along ẑ.

2 Figure 2 :

 22 Figure 2: |ψ| 2 at various instants of depicting major events in the formation of a vortex state in the 20ξ × 20ξ sample. Applied magnetic field is |H ext | = 0.9.

Figure 3 :

 3 Figure 3: We verify that the fluxoid value of each of our vortices is ≈ Φ 0 . To compute the fluxoid value we take a circular area centred at the vortex-centre defined by the local maxima in magnetic field, with a radius 2.4ξ (shown with a dotted hatch on the top-left vortex). Figure shown for |H ext | = 0.9.

2 Figure 4 :

 24 Figure 4: We observe vortex motion under an applied external current in the transverse direction. Vortices enter at the top edge and leave at the bottom. This motion is followed by the superconductor being driven into normal state. (|H ext | = 0.5)

Figure 5 :Figure 6 :

 56 Figure 5: Complex vortex flow under an applied external current with Hall effect enabled. The setting in of normal state from the right edge starting at t = 1500 induces a gradual transient field largely affecting Hall behavior (fig. 8). (|H ext | = 0.5 and γ 2 /γ 1 = 0.4)

4 Size l/ξ 3 5 15 20 Figure 7 :

 45207 Figure 7: (a)Hall angle profiles for γ 2 /γ 1 = +0.4.(b) Hall angle profiles for γ 2 /γ 1 = -0.4. Evidently, size is an important parameter in determining Hall behavior, with the smallest size l/ξ = 3 behaving identical to a normal conductor. Sign-reversal is only seen for l/ξ = 20, in which case γ 2 /γ 1 = 0.4 and -0.4 show opposite behavior. Fields were averaged from t = 0 to 11000.

4 Figure 8 :

 48 Figure 8: E y fields for size l/ξ = 20 at |H ext | = 0.5 The gradual transients starting at t ≈ 1500 are responsible for the vastly different Hall angle for γ2/γ1 = 0.4 and -0.4. Similar transients are seen for |Hext| ≈ 0.5, leading to the Hall angle profile in fig. 7.
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