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Reaction-diffusion fronts in funnel-shaped
domains

François Hamel∗ and Mingmin Zhang†

Abstract

We consider bistable reaction-diffusion equations in funnel-shaped domains of RN made
up of straight parts and conical parts with positive opening angles. We study the large
time dynamics of entire solutions emanating from a planar front in the straight part of
such a domain and moving into the conical part. We show a dichotomy between blocking
and spreading, by proving especially some new Liouville type results on stable solutions
of semilinear elliptic equations in the whole space RN . We also show that any spreading
solution is a transition front having a global mean speed, which is the unique speed of
planar fronts, and that it converges at large time in the conical part of the domain to
a well-formed front whose position is approximated by expanding spheres. Moreover, we
provide sufficient conditions on the size R of the straight part of the domain and on the
opening angle α of the conical part, under which the solution emanating from a planar
front is blocked or spreads completely in the conical part. We finally show the openness
of the set of parameters (R,α) for which the propagation is complete.
Mathematics Subject Classification: 35B08; 35B30; 35B40; 35B53; 35C07; 35J61; 35K57
Key words: Reaction-diffusion equations; Transition fronts; Blocking; Spreading; Propa-
gation; Liouville type results.

1 Introduction and main results
This paper is devoted to the study of propagation phenomena of time-global (entire) bounded
solutions u = u(t, x) of reaction-diffusion equations of the type{

ut = ∆u+ f(u), t ∈ R, x ∈ Ω,

ν · ∇u = 0, t ∈ R, x ∈ ∂Ω,
(1.1)

in certain unbounded smooth domains Ω ⊂ RN with N ≥ 2. Here ut stands for ∂u
∂t
, and ν = ν(x)

is the outward unit normal on the boundary ∂Ω, that is, Neumann boundary conditions are
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imposed on ∂Ω. Equations of type (1.1) arise especially in the fields of population dynamics,
mathematical ecology, physics and also medicine and biology. The function u typically stands
for the temperature or the concentration of a species. It is assumed to be bounded, then with
no loss of generality we suppose that it takes values in [0, 1]. The reaction term f is assumed
to be of class C1,1([0, 1],R) and such that

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, (1.2)

which means that both 0 and 1 are stable zeros of f . Moreover, we assume that f is of the
bistable type with positive mass, that is, there exists θ ∈ (0, 1) such that

f < 0 in (0, θ), f > 0 in (θ, 1), f ′(θ) > 0,

∫ 1

0

f(s)ds > 0. (1.3)

The fact that f has a positive mass over [0, 1] means the state 1 is in some sense more stable
than 0.1 A typical example of a function f satisfying (1.2)-(1.3) is the cubic nonlinearity
f(u) = u(1− u)(u− θ) with θ ∈ (0, 1/2). For mathematical purposes, we extend f in R\[0, 1]
to a C1,1(R,R) function as follows: f(s) = f ′(0)s for s < 0, and f(s) = f ′(1)(s− 1) for s > 1.

One main question of interest for the solutions of (1.1) is the description of their dynamical
properties as t → ±∞. The answer to this question depends strongly on the geometry of
the underlying domain Ω. In the one-dimensional real line R, a prominent role is played by
a class of particular solutions, namely the traveling fronts. More precisely, with assumptions
(1.2)-(1.3) above, equation (1.1) in R admits a unique planar traveling front φ(x− ct) solving{

φ′′ + cφ′ + f(φ) = 0 in R,

φ(−∞) = 1, φ(+∞) = 0, 0 < φ < 1 in R, φ(0) = θ,
(1.4)

see, for instance, [1,21,31]. The profile φ is then a connection between the stable steady states 1
and 0. Moreover, φ′ < 0 in R, and c is positive since f has a positive integral over [0, 1]. The
traveling front φ(x − ct) is invariant in the moving frame with speed c, and it attracts as
t → +∞ a large class of front-like solutions of the associated Cauchy problem, see [21]. It is
also known that φ (resp. 1− φ) decays exponentially fast at +∞ (resp. −∞), that is,

c1e
−µ∗z ≤ φ(z) ≤ C1e

−µ∗z, z ≥ 0, with µ∗ =
c+

√
c2 − 4f ′(0)

2
> 0,

c2e
µ∗z ≤ 1− φ(z) ≤ C2e

µ∗z, z < 0, with µ∗ =
−c+

√
c2 − 4f ′(1)

2
> 0,

(1.5)

where c1, c2, C1 and C2 are positive constants. The derivative φ′(z) also satisfies{
c3e
−µ∗z ≤ −φ′(z) ≤ C3e

−µ∗z, z ≥ 0,

c4e
µ∗z ≤ −φ′(z) ≤ C4e

µ∗z, z < 0,
(1.6)

with positive constants c3, c4, C3 and C4. Such planar fronts exist under the assumptions (1.2)-
(1.3), whereas if f satisfies (1.2) only, fronts connecting 0 and 1 do not exist in general, see [21]
for more precise conditions for the existence and non-existence. Throughout this paper, we
assume that f satisfies (1.2)-(1.3) and that φ and c > 0 are uniquely defined as in (1.4).

1If the integral of f over [0, 1] were negative, the study would be similar, after changing u into 1−u and f(s)
into −f(1− s). If the integral of f over [0, 1] were equal to 0, the analysis of the propagation phenomena would
be very different, since then no front connecting 0 and 1 with nonzero speed can exist in the one-dimensional
version of (1.1).

2



1.1 Notations

We focus in this paper on the case of equation (1.1) set in unbounded domains of RN , made
up of a straight part and a conical part: we assume that the left (say, with respect to the
direction x1) part of Ω, namely Ω− = Ω ∩ {x ∈ RN : x1 ≤ 0}, is a straight half-cylinder in the
direction −x1 with cross section of radius R > 0, while the right part, namely Ω+ = Ω\Ω−, is
a cone-like set with respect to the x1-axis and with opening angle α ≥ 0. More precisely, we
assume that Ω is rotationally invariant with respect to the x1-axis, that is,

Ω =
{
x = (x1, x

′) ∈ RN : x1 ∈ R, |x′| < h(x1)
}
, (1.7)

where | | denotes the Euclidean norm, and that h : R → R+ is a C2,β(R) (with 0 < β < 1)
function satisfying the following properties:

0 ≤ h′ ≤ tanα in R, for some angle α ∈ [0, π/2),

h = R in (−∞, 0], for some radius R > 0,

h(x1) = x1 tanα in [L cosα,+∞), for some L > R,

(1.8)

see Figure 1. Such a domain is then called “funnel-shaped”. In the particular limit case α = 0,
the domain Ω amounts to a straight cylinder in RN with cross section of radius R. Notice
that, when α > 0, the cross section is unbounded as x1 → +∞. To emphasize the dependence
on R and α, we will also use the notation ΩR,α for convenience. The domains ΩR,α are not
uniquely defined by (1.7)-(1.8), and they also depend on the parameter L in (1.8), but only
the parameters R > 0 and α ∈ [0, π/2) will play an important role in our study (except in
Theorem 1.9 below). Other domains which have a globally similar shape, but may be only
asymptotically straight in the left part or asymptotically conical in the right part could have
been considered, at the expense of less precise estimates and more technical calculations. Since
the domains satisfying (1.7)-(1.8) lead to a variety of interesting and non-trivial phenomena,
we restrict ourselves to (1.7)-(1.8) throughout the paper.

Figure 1: Schematic figure of the domain ΩR,α for R > 0 and α ∈ (0, π/2).

If the domain is a straight cylinder in the direction x1 (this happens in the case α = 0),
then the planar front φ(x1− ct) given by (1.4) solves (1.1) (furthermore, up to translation, any
transition front connecting 0 and 1 in the sense of Definition 1.1 below is equal to that front,
see [26,28]). Here a domain Ω = ΩR,α satisfying (1.7)-(1.8) is straight in its left part only, and
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the standard planar front φ(x1 − ct) does not fulfill the Neumann boundary conditions when
α > 0. But it is still very natural to consider solutions of (1.1) behaving in the past like the
planar front φ(x1− ct) coming from the left part of the domain, and to investigate the outcome
of these solutions as they move into the right part of the domain. More precisely, we consider
time-global solutions of (1.1) emanating from the planar front φ(x1 − ct), that is,

u(t, x)− φ(x1 − ct)→ 0 as t→ −∞, uniformly with respect to x ∈ Ω (1.9)

(notice that, in the right part Ω+ of Ω, this condition simply means that u(t, ·)→ 0 as t→ −∞
uniformly in Ω+). We will see that such solutions exist and are unique, and the main goal of
the paper is to study their behavior as t→ +∞, in terms of the parameters R and α.

1.2 Background

To describe the dynamical properties of the solutions of (1.1) satisfying (1.9), we use the
unifying notions of generalized traveling fronts, called transition fronts, introduced in [5,6]. In
order to recall these notions of transition fronts and that of global mean speed, let us introduce
some notations. Let dΩ be the geodesic distance in Ω (with respect to the Euclidean distance d
in RN). For any two subsets A and B of Ω, we set

dΩ(A,B) = inf
{
dΩ(x, y) : (x, y) ∈ A×B

}
,

and dΩ(x,A) = dΩ({x}, A) for x ∈ Ω. We also use similar definitions with d, instead of dΩ, for
the Euclidean distance between subsets of RN . Consider now two families (Ω−t )t∈R and (Ω+

t )t∈R
of open non-empty subsets of Ω such that

∀ t ∈ R,

{
Ω−t ∩ Ω+

t = ∅, ∂Ω−t ∩ Ω = ∂Ω+
t ∩ Ω =: Γt 6= ∅, Ω−t ∪ Γt ∪ Ω+

t = Ω,

sup
{
dΩ(x,Γt) : x ∈ Ω+

t

}
= sup

{
dΩ(x,Γt) : x ∈ Ω−t

}
= +∞

(1.10)

and{
inf
{

sup{dΩ(y,Γt) : y ∈ Ω+
t , dΩ(y, x) ≤ r} : t ∈ R, x ∈ Γt

}
→ +∞

inf
{

sup{dΩ(y,Γt) : y ∈ Ω−t , dΩ(y, x) ≤ r} : t ∈ R, x ∈ Γt
}
→ +∞

as r → +∞. (1.11)

Condition (1.11) says that for anyM > 0, there is rM > 0 such that for every t ∈ R and x ∈ Γt,
there are y± = y±t,x ∈ RN such that

y± ∈ Ω±t , dΩ(x, y±) ≤ rM and dΩ(y±,Γt) ≥M. (1.12)

In other words, any point on Γt is not too far from the centers of two large balls (in the sense
of the geodesic distance in Ω) included in Ω−t and Ω+

t , this property being uniform with respect
to t and to the point on Γt. Moreover, in order to avoid interfaces with infinitely many twists,
the sets Γt are assumed to be included in finitely many graphs: there is an integer n ≥ 1 such
that, for each t ∈ R, there are n open subsets ωi,t ⊂ RN−1 (for 1 ≤ i ≤ n), n continuous maps
ψi,t : ωi,t → R and n rotations Ri,t of RN with

Γt ⊂
⋃

1≤i≤n

Ri,t

({
x = (x′, xN) ∈ RN : x′ ∈ ωi,t, xN = ψi,t(x

′)
})
. (1.13)
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Definition 1.1 ([5, 6]). For problem (1.1), a transition front connecting 1 and 0 is a classical
solution u : R × Ω → (0, 1) for which there exist some sets (Ω±t )t∈R and (Γt)t∈R satisfying
(1.10)-(1.13) and for every ε > 0 there exists Mε > 0 such that{

∀ t ∈ R, ∀x ∈ Ω+
t , dΩ(x,Γt) ≥Mε =⇒ u(t, x) ≥ 1− ε,

∀ t ∈ R, ∀x ∈ Ω−t , dΩ(x,Γt) ≥Mε =⇒ u(t, x) ≤ ε.
(1.14)

Furthermore, u is said to have a global mean speed γ ∈ [0,+∞) if

dΩ(Γt,Γs)

|t− s|
→ γ as |t− s| → +∞.

This definition has been shown in [5,6,28] to cover and unify all classical cases of traveling
fronts in various situations. Condition (1.14) means that the transition between the steady
states 1 and 0 takes place in some uniformly-bounded-in-time neighborhoods of Γt. For a given
transition front connecting 1 and 0, the families (Ω±t )t∈R and (Γt)t∈R satisfying (1.10)-(1.14)
are not unique, but the global mean speed γ, if any, does not depend on the choice of the
families (Ω±t )t∈R and (Γt)t∈R, see [6].

Before stating the main results of this paper, let us recall here some related works on the role
of the geometry of Ω on propagation phenomena for equations of the type (1.1). It was shown
in [11] that, for Ω being a succession of two semi-infinite straight cylinders with square cross
sections of different sizes r and R, the solution u emanating from the planar front φ(x1 − ct)
in the left half-cylinder with smaller section and going to the right one with larger section can
be blocked, in the sense that

u(t, x)→ u∞(x) as t→ +∞ locally uniformly in x ∈ Ω, with u∞(x)→ 0 as x1 → +∞. (1.15)

Later, propagation and blocking phenomena for different kinds of cylindrical domains with
uniformly bounded cross sections were investigated in [3].2 Especially, if the section of the
cylindrical domain is non-increasing with respect to x1, or if it is non-decreasing, large enough,
and axially star-shaped, then the solution of (1.1) emanating from the planar front φ(x1 − ct)
propagates completely in the sense that

u(t, x)→ 1 as t→ +∞ locally uniformly in x ∈ Ω. (1.16)

However, under some other geometrical conditions (when typically, the cross section is narrow
and then becomes abruptly much wider), blocking phenomena can occur, in the sense of (1.15).
Further propagation and/or blocking phenomena were also shown for bistable equations set in
the real line R (with periodic heterogeneities [12,13,16,29,39–41], with local defects [9,10,32,33,
35, 37], or with asymptotically distinct left and right environments [18]), as well as in straight
infinite cylinders with non-constant drifts [19,20], and in some periodic domains [14] or the whole
space with periodic coefficients [15, 23]. In [36], a reaction-diffusion model was considered to
analyse the effects on population persistence of simultaneous changes in the position and shape
of a climate envelope. Recently, the existence and characterization of the global mean speed
of transition fronts in domains with multiple cylindrical branches were investigated in [26]. It

2The existence and uniqueness of time-global solutions emanating from planar fronts in more general asymp-
totically straight cylindrical domains was also proved in [34].
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was proved that the front-like solutions emanating from planar fronts in some branches and
propagating completely are transition fronts moving with the planar speed c and eventually
converging to planar fronts in the other branches. The classification of such fronts in domains
with multiple asymptotically cylindrical branches was shown in [25].

Meanwhile, the interaction between smooth compact obstacles K ⊂ RN and a bistable
planar front φ(x1 − ct) was studied in [7]. An entire solution u(t, x) converging to φ(x1 − ct)
as t → −∞ uniformly in Ω = RN\K̊ was constructed in [7]. It was also proved that if the
obstacle K is star-shaped or directionally convex with respect to some hyperplane, then the
solution passes the obstacle in the sense that u(t, x) converges to φ(x1−ct) as t→+∞ uniformly
in Ω. In particular, the propagation is then complete in the sense of (1.16). Furthermore, the
solution is a transition front connecting 0 and 1, in the sense of Definition 1.1, and one can
choose Γt = {x ∈ Ω = RN\K : x1 = ct} in (1.10) (the transition front is then said to be almost
planar). Moreover, the authors constructed non-convex obstacles K for which the solution u
emanating from the bistable planar front φ(x1 − ct) as t → −∞ does not pass the obstacle
completely, in the sense that (1.16) is not fulfilled. Furthermore, it follows from [26] that all
transition fronts connecting 1 and 0 propagate completely and have a global mean speed equal
to the planar speed c (examples of such fronts are the almost-planar fronts given in [7] and the
V -shaped fronts constructed in [27]). The solutions which do not propagate completely are still
transition fronts, but they connect 0 and a steady state less than 1 in Ω, see [26].

Unlike the cylindrical domains with two branches considered in [3,11,19,20] or with multiple
branches considered in [25,26], the domains Ω = ΩR,α given by (1.7)-(1.8) have sections which
are not uniformly bounded, as soon as α > 0. Natural questions are to derive estimates,
as t→ +∞, on the location and shape of the level sets of the solutions of (1.1) satisfying (1.9),
and also to know whether the solutions remain front-like in the sense of Definition 1.1. We
also study in this paper the role of the geometrical parameters R and α on the propagation
or blocking phenomena. Since standard planar traveling fronts do not exist anymore in such
domains (as soon as α > 0), the analysis of the spreading properties of the solutions of (1.1) is
much more complex than in the one-dimensional case or the case of straight cylinders. First of
all, the existence and uniqueness of the entire solution u of (1.1) satisfying (1.9) is derived as
in [3, 7, 34]. Then, we will show that the blocking or complete propagation properties, (1.15)
or (1.16), are the only possible outcomes of the solution u at large time. We will see that u is
always a transition front connecting 1 and 0 and that it has a global mean speed, equal to c,
if the propagation is complete. It is worth to mention that the solution can never go ahead of
the planar front φ(x1 − ct), as that planar front is a supersolution for (1.1). We will actually
show that, if α > 0, and even if the propagation is complete, the solution lags far behind the
planar front φ(x1 − ct) in the direction of x1 at t → +∞, in the sense that any level set of u
is well approximated by the expanding spherical surface of radius ct− ((N − 1)/c) ln t + O(1)
and is asymptotically locally planar. Then, we will give some sufficient conditions related
to the parameters (R,α) so that u will propagate completely or be blocked. Moreover, we
will also prove the openness of the set of parameters (R,α) ∈ (0,+∞) × (0, π/2) for which u
propagates completely. In short, our results will then give a refined picture of the spatial shape
and temporal dynamics of the level sets of front-like solutions in funnel-shaped domains, a
geometrical configuration which had not been investigated before.
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1.3 General properties for any given (R,α)

Our first result is the well-posedness of problem (1.1) with the asymptotic past condition (1.9)
as t→ −∞, for any given R > 0 and α ∈ [0, π/2).

Proposition 1.2. For any R > 0 and α ∈ [0, π/2), problem (1.1) admits a unique entire
solution u(t, x) emanating from the planar front φ(x1 − ct), in the sense of (1.9). Moreover,
ut(t, x) > 0 and 0 < u(t, x) < 1 for all (t, x) ∈ R × Ω, and there exists u∞(x) = lim

t→+∞
u(t, x)

in C2
loc(Ω) satisfying 0 < u∞(x) ≤ 1 in Ω and{

∆u∞ + f(u∞) = 0 in Ω,

ν · ∇u∞ = 0 on ∂Ω.
(1.17)

Lastly, for each t ∈ R, the function u(t, ·) is axisymmetric with respect to the x1-axis, that is,
it only depends on x1 and |x′|, with x′ = (x2, · · · , xN).

From the strong maximum principle, one has either u∞ ≡ 1 in Ω, or u∞ < 1 in Ω. Notice
also that, from (1.9) and the monotonicity in t, there holds u∞(x)→ 1 as x1 → −∞ uniformly
in |x′| ≤ R. The proof of Proposition 1.2 follows from the construction of a sequence of Cauchy
problems and of some suitable sub- and supersolutions, as in [3,7,18,34]. It will be just sketched
in Section 2.

Once the well-posedness of (1.1) with the past condition (1.9) is established, we then focus
on the large time dynamics of the solution u given in Proposition 1.2. It turns out that the
complete propagation in the sense of (1.16) or the blocking in the sense of (1.15) are the only
two possible outcomes. Namely, we will show that the following dichotomy holds.

Theorem 1.3. For any R > 0 and α ∈ [0, π/2), let u be the solution of (1.1) and (1.9) given
in Proposition 1.2. Then, either u propagates completely in the sense of (1.16), or it is blocked
in the sense of (1.15) and then the convergence of u(t, ·) to u∞ as t→ +∞ in (1.15) is uniform
in Ω.

Remark 1.4. When α = 0 in (1.7)-(1.8), Ω amounts to a straight cylinder and, by uniqueness,
the solution u given in Proposition 1.2 is nothing but the planar front φ(x1 − ct), hence the
propagation is complete in this very particular case.

Theorem 1.3 means that, under the notations of Proposition 1.2, either u∞ ≡ 1 in Ω, or
u∞(x) → 0 as x1 → +∞. Any other more complex behavior is impossible. Theorem 1.3 is
a consequence of the stability of the solution u∞ and of some Liouville type results for the
stable solutions of some semilinear elliptic equations in the two-dimensional plane, or in a two-
dimensional half-plane, or in the whole space RN with axisymmetry. In order to give a flavor
of these properties and results, which are also of independent interest, let us state here the
definition of stability3 as well as one of the typical results shown in Section 3.2. So, for a
non-empty open connected set ω ⊂ RN , we say that a C2(ω) solution U of ∆U +f(U) = 0 in ω
is stable if ∫

ω

|∇ψ|2 − f ′(U)ψ2 ≥ 0 (1.18)

for every ψ ∈ C1(ω) with compact support (for instance, it turns out that the solution u∞
of (1.17) in Ω, given in Proposition 1.2, is stable, see Lemma 3.6 below). The following result,
concerned with stable axisymmetric solutions, is also shown in Section 3.2.

3For a thorough study of stable solutions of elliptic equations, we refer to the book [17].

7



Proposition 1.5. Let 0 ≤ U ≤ 1 be a C2(RN) stable solution of ∆U + f(U) = 0 in RN .
Assume that U is axisymmetric with respect to the x1-axis, that is, U depends on x1 and |x′|
only, with x′ = (x2, · · · , xN). Then, either U ≡ 0 in RN or U ≡ 1 in RN .

Coming back to problem (1.1) in funnel-shaped domains, we then turn to the study of the
spreading properties and the behavior of the level sets of the solutions under the complete
propagation condition (1.16) when α ∈ (0, π/2). In the sequel, we denote the level sets and the
upper level sets of u by:

Eλ(t) =
{
x ∈ Ω : u(t, x) = λ

}
, Uλ(t) =

{
x ∈ Ω : u(t, x) > λ

}
, for λ ∈ (0, 1) and t ∈ R. (1.19)

Theorem 1.6. For any R > 0 and α ∈ (0, π/2), let u be the solution of (1.1) and (1.9) given
in Proposition 1.2. If u propagates completely in the sense of (1.16), then it is a transition
front connecting 1 and 0 with global mean speed c, and (Γt)t∈R, (Ω±t )t∈R in Definition 1.1 can
be defined by Γt =

{
x ∈ Ω : x1 = ct

}
for t ≤ t0,

Γt =
{
x ∈ Ω : x1 > 0 and |x| = ct− N − 1

c
ln t
}

for t > t0,
(1.20)

and 
Ω±t =

{
x ∈ Ω : ±(x1 − ct) < 0

}
for t ≤ t0,

Ω+
t =

{
x ∈ Ω : x1 ≤ 0, or x1 > 0 and |x| < ct− N − 1

c
ln t
}

for t > t0,

Ω−t =
{
x ∈ Ω : x1 > 0 and |x| > ct− N − 1

c
ln t
}

for t > t0,

(1.21)

with t0 > 0 large enough such that ct−((N−1)/c) ln t > L for all t > t0.4 Moreover, u converges
to planar fronts locally along its level sets as t→ +∞: for any λ ∈ (0, 1), any sequence (tn)n∈N
diverging to +∞ and any sequence (xn)n∈N in Ω such that u(tn, xn) = λ, then

u(t+ tn, x+ xn)− φ
(
x · xn
|xn|
− ct+ φ−1(λ)

)
−→ 0 in C1,2

(t,x);loc(R× RN) as n→ +∞ (1.22)

if d(xn, ∂Ω) → +∞ as n → +∞, and the same limit holds with the additional restriction
x + xn ∈ Ω if lim supn→+∞ d(xn, ∂Ω) < +∞. Lastly, for every λ ∈ (0, 1), there exists r0 > 0
such that the upper level set Uλ(t) satisfies

Sr(t)−r0 ⊂ Uλ(t) ⊂ Sr(t)+r0 (1.23)

for all t large enough (see Figure 2), with Sr and r(t) given by

Sr = Ω− ∪
{
x ∈ Ω : |x| ≤ r

}
, r(t) = ct− N − 1

c
ln t.

4We recall that L is given in (1.8), with L > R.
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Figure 2: Possible location of the level set Eλ(t) for λ ∈ (0, 1) and t > 0 large.

In other words, the past condition (1.9) and the complete propagation condition (1.16)
guarantee the spreading of the solution u and the propagation with global mean speed c.
Furthermore, the width of the transition between the limit states 1 and 0 is uniformly bounded
in time in the sense of Definition 1.1 and the solution locally converges to planar fronts as
t → +∞. The estimates of the location of the level sets as t → +∞ are established by
constructing sub- and supersolutions whose level sets have roughly expanding spherical shapes
of radii ct−((N−1)/c) ln t+O(1), see Lemma 4.1 below. The logarithmic gap ((N−1)/c) ln t is
due to the curvature of the level sets, and these estimates are similar to those obtained in [38]
for the solutions of the Cauchy problem in RN with compactly supported initial conditions
and complete propagation. In our case, at time t = 0 (as at any other time), the function
x 7→ u(t, x) converges to 0 as x1 → +∞, but it then invades the right part of the domain,
a situation similar to the case of invading solutions with initial compact support in RN . The
proof of the asymptotic planar property is based on compactness arguments and a Liouville-type
theorem for entire solutions of the bistable equation in the whole space given in [5, Theorem 3.1].

Theorem 1.6 shows that the solutions u of Proposition 1.2 that propagate completely are
transition fronts connecting 0 and 1, with global mean speed equal to c. It also turns out, this
time immediately from Proposition 1.2, that the solutions u that are blocked are still transition
fronts connecting 1 and 0, but they do not have any global mean speed.

Theorem 1.7. For any R > 0 and α ∈ (0, π/2), let u be the solution of (1.1) and (1.9) given in
Proposition 1.2. If u is blocked in the sense of (1.15), then it is a transition front connecting 1
and 0 without any global mean speed, and (Γt)t∈R, (Ω±t )t∈R can be defined by{

Γt =
{
x ∈ Ω : x1 = ct

}
and Ω±t =

{
x ∈ Ω : ±(x1 − ct) < 0

}
for t ≤ 0,

Γt =
{
x ∈ Ω : x1 = 0

}
and Ω±t =

{
x ∈ Ω : ±x1 < 0

}
for t > 0.

(1.24)
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1.4 Complete propagation for large R

From now on, we investigate the effect of the parameters R and α of the funnel-shaped do-
mains Ω = ΩR,α on the propagation phenomena of the front-like solution u of (1.1) satisfying
the past condition (1.9). We first recall that, when α = 0, u(t, x) ≡ φ(x1−ct) and the propaga-
tion is complete, whatever R > 0 may be. Our next result provides some sufficient conditions
on the size R > 0 to ensure the complete propagation condition (1.16) when α > 0.

Theorem 1.8. There is R0 > 0 such that, if R ≥ R0 and α > 0, then the unique solution
u of (1.1) satisfying (1.9) propagates completely in the sense of (1.16), and therefore all the
conclusions of Theorem 1.6 are valid.

This theorem shows that the invasion always occurs no matter the size of the opening angle
in the right part is, provided the left part of the domain is not too thin (see Figure 3). The proof
relies on the existence of a compactly supported subsolution, with maximum larger than θ, to
the elliptic problem (1.17), and on the sliding method used to compare u∞ with some shifts of
this subsolution.

Figure 3: Schematic figure of the domain ΩR,α for α ∈ (0, π/2) and R > R0.

1.5 Blocking for R� 1 and α not too small

The next result is concerned with blocking phenomena. We prove that the solution u of (1.1)
in ΩR,α with past condition (1.9) is blocked if R is sufficiently small and α is sufficiently close
to π/2 (see Figure 4).
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Figure 4: Schematic figure of the domain Ωε,α for R = ε� 1.

Theorem 1.9. Assume that N ≥ 3 and let L∗ > 0 and α∗ ∈ (0, π/2) be given. Then there
is R∗ > 0 such that, if 0 < R ≤ R∗, α∗ ≤ α < π/2 and L ≤ L∗ in (1.7)-(1.8), then the
solution u of (1.1) in Ω with past condition (1.9) is blocked, in the sense of (1.15).

From a biological point of view, Theorem 1.9 says that as the species goes from a very
narrow passage into a suddenly wide open space, the diffusion disperses the population to
lower density where the reaction behaves adversely. That prevents the species from rebuilding
a strong enough basis to invade the right part of the domain. This phenomenon is similar to the
problem studied in [11], although the proof given here, based on the construction of suitable
supersolutions, is completely different.

Let us now make some further remarks on the effect of the geometry of the domain on
invasion or blocking phenomena. In population dynamics, where u stands for the population
density, one can think of the invasion of fishes from mountain streams into an endless ocean, and
more generally speaking the invasion of plants or animals subject to an Allee effect and going
from an isthmus into a large area. In medical sciences, the bistable reaction-diffusion equation
is used to model the motion of depolarization waves in the brain, in which the domain can be
thought of as a portion of grey matter of the brain with different thickness: here u represents
the degree of depolarization, and the Neumann boundary condition means that the grey matter
is assumed to be isolated. Equations of the type (1.1) can also be used to study ventricular
fibrillations. Ventricular fibrillation is a state of electrical anarchy in part of the heart that
leads to rapid chaotic contractions, which are fatal unless a normal rhythm can be restored by
defibrillation. When excitation waves enter the circular area of cardiac tissue, they are trapped
and their propagation triggers off ventricular fibrillations [2]. Therefore, understanding how the
geometrical properties of the cardiac fibres or fibre bundles affect or even block the propagation
of excitation waves is of vital importance. For more detailed backgrounds and explanations from
biological view point, we refer to [3, 11,24] and the references therein.

1.6 The set of parameters (R,α) with complete propagation is open
in (0,+∞)× (0, π/2)

In the final main result, we show that if the front-like solution u emanating from the planar
traveling front satisfies the complete propagation property (1.16) in ΩR,α for some R > 0 and
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α ∈ (0, π/2), then, with a slight perturbation of R and α, the solution u will still propagate
completely in the perturbed domain. For this result, we use an additional assumption on the
continuous dependence of ΩR,α with respect to (R,α).

Theorem 1.10. Assume that the functions h given in (1.7)-(1.8) depend continuously on the
parameters (R,α) ∈ (0,+∞)× (0, π/2) in the C2,β

loc (R) sense, with 0 < β < 1. Then the set of
parameters (R,α) such that the solution u of (1.1) in ΩR,α with past condition (1.9) propagates
completely, in the sense of (1.16), is open in (0,+∞)× (0, π/2).

The continuity of the functions h given in (1.7)-(1.8) implies the local continuity of the
domains ΩR,α in the sense of the Hausdorff distance. This continuity holds only in a local
sense, since actually the Hausdorff distance between ΩR,α and ΩR′,α′ is infinite as soon as
α 6= α′. But the local continuity is sufficient to guarantee the validity of (1.16) under small
perturbations of (R,α). The proof of Theorem 1.10 is done by way of contradiction and it uses,
as that of Theorem 1.8, the existence of a compactly supported subsolution, with maximum
larger than θ, to the elliptic problem (1.17).

From Theorems 1.3 and 1.10, the next corollary follows immediately.

Corollary 1.11. Under the assumptions of Theorem 1.10, the set of parameters (R,α) ∈
(0,+∞)× (0, π/2) such that the solution u of (1.1) in ΩR,α with past condition (1.9) is blocked,
in the sense of (1.15), is relatively closed in (0,+∞)× (0, π/2).

We finally conjecture that, under the assumptions of Theorem 1.10, the set of parame-
ters (R,α) for which the solution u of (1.1) in ΩR,α with past condition (1.9) propagates
completely is actually convex in both variables R and α, and that this property is stable by
making α decrease or R increase. This conjecture can be formulated as follows.

Conjecture 1.12. Assume that the functions h given in (1.7)-(1.8) depend continuously on
the parameters (R,α) ∈ (0,+∞)× (0, π/2) in the C2,β

loc (R) sense, with 0 < β < 1. We say that
complete propagation (resp. blocking) holds in ΩR,α if the solution u of (1.1) in ΩR,α with past
condition (1.9) satisfies (1.16) (resp. (1.15)). Then,

• for every R > 0, there is αR ∈ (0, π/2] such that complete propagation holds in ΩR,α for
all α ∈ (0, αR), and blocking holds for all α ∈ [αR, π/2) if αR < π/2;

• for every α ∈ [0, π/2), there is ρα ∈ [0,+∞) such that complete propagation holds in ΩR,α

for all R > ρα, and blocking holds for all R ∈ (0, ρα] if ρα > 0;

From Theorem 1.8 one knows that αR exists and αR = π/2 when R ≥ R0 (with the notations
of Theorem 1.8). Furthemore, ρ0 exists and ρ0 = 0. On the other hand, Theorem 1.9 implies
that, in dimension N ≥ 3, for any given α∗ ∈ (0, π/2) and L∗ > 0, the angle αR, if any, satisfies
αR ≤ α∗ when R ∈ (0, R∗] (with the notations of Theorem 1.9), and that ρα, if any, satisfies
ρα ≥ R∗ when α ∈ [α∗, π/2).

Outline of the paper. This article is organized as follows. The proof of Proposition 1.2 on the
existence and uniqueness of the entire solution u emanating from the planar front in the left part
of a given domain Ω satisfying (1.7)-(1.8) is sketched in Section 2. The proof of Theorem 1.3
on the dichotomy between complete propagation and blocking is shown in Section 3, as are
various Liouville type results for the solutions of (1.17) in funnel-shaped domains and in the
whole space. Section 4 is devoted to the proof of Theorem 1.6 on the spreading properties in
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case of complete propagation. The immediate proof of Theorem 1.7 is also done in Section 4.
In Section 5, we prove Theorem 1.8 on the existence of a threshold R0 > 0 such that the
solution u propagates completely if R ≥ R0, and Theorem 1.9 on blocking when R is small
enough and α is not too small, by constructing a suitable stable non-constant stationary solution
of (1.1). Lastly, Section 6 is devoted to the proof of Theorem 1.10 on the openness of the set
of parameters for which complete propagation holds.

2 Existence and uniqueness for problem (1.1) with past
condition (1.9)

This section is devoted to the sketch of the proof of Proposition 1.2 on the well-posedness
of problem (1.1) in Ω with the past condition (1.9), for any given R > 0 and α ∈ [0, π/2).
From the construction of the solution of (1.1) and (1.9), we also deduce another comparison
result which will be used later in the proof of Theorem 1.10. The proof of Proposition 1.2
is inspired from [3, 7, 18, 34], so we just sketch it here. However, some important elements of
the construction of the solution u to (1.1) satisfying (1.9) and several auxiliary estimates are
pointed out since they will be used in the proofs of other main results in the following sections.

The main steps of the proof of Proposition 1.2 are the following:

• for µ∗ > 0 defined as in (1.5), there exist M > 0 and

T ′ ≤ T :=
1

µ∗c
ln

c

c+M
< 0

such that the function w− defined in (−∞, T ]× Ω by:

w−(t, x) =

{
φ(x1 − ct+ ξ(t))− φ(−x1 − ct+ ξ(t)), t ≤ T, x ∈ Ω with x1 < 0,

0, t ≤ T, x ∈ Ω with x1 ≥ 0,
(2.1)

with ξ(t) = (1/µ∗) ln(c/(c−M eµ
∗ct)), is a generalized subsolution of (1.1) in (−∞, T ′]×Ω,

and it satisfies (1.9) (notice that ξ(−∞) = 0); furthermore, the real numbersM , T and T ′
can be chosen independently of R > 0 and α ∈ [0, π/2) (these coefficients depend on f
and φ only, and thus actually on f only);

• thanks to (1.7)-(1.8), the function w+ defined in R× Ω by

w+(t, x) = φ(x1 − ct) (2.2)

is a supersolution of (1.1) in R× Ω, and it satisfies (1.9) and w− ≤ w+ in (−∞, T ]× Ω,
since φ is positive decreasing and ξ > 0 in (−∞, T ];

• for each n ∈ N with n > −T ′, let un be the solution of the Cauchy problem associated
to (1.1) in (−n,+∞)× Ω, with initial (at time −n) condition defined by

un(−n, x) = sup
s≤−n

w−(s, x) ∈ [0, 1], for x ∈ Ω; (2.3)

each function un(−n, ·) only depends on x1 and, from the strong parabolic maximum
principle and the well-posedness of this Cauchy problem and the axisymmetry of Ω with
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respect to the x1-axis, one has 0 < un < 1 in (−n,+∞)×Ω and, for each t ≥ −n, un(t, ·)
is axisymmetric with respect to the x1-axis, that is, it depends only on x1 and |x′|, with
x′ = (x2, · · · , xN); furthermore, the maximum principle again and the fact that w− is
a subsolution in (−∞, T ′] × Ω, imply that un(t, ·) ≥ un(−n, ·) in Ω for all t ∈ [−n, T ′],
hence un is non-decreasing with respect to the variable t in [−n,+∞)× Ω;

• the maximum principle also implies that un+1(−n, ·) ≥ un(−n, ·) in Ω for each n > −T ′,
hence un+1 ≥ un in [−n,+∞)× Ω for each n > −T ′; from standard parabolic estimates,
the functions un converge in C1,2

(t,x);loc(R × Ω) to a classical solution u of (1.1) such that
0 ≤ u ≤ 1 and ut ≥ 0 in R × Ω; furthermore, for each t ∈ R, the function u(t, ·) is
axisymmetric with respect to the x1-axis;

• one has 1 ≥ un(−n, ·) ≥ w−(−n, ·) in Ω for each n > −T ′, hence 1 ≥ un(t, ·) ≥ w−(t, ·)
in Ω for all t ∈ [−n, T ′] and

1 ≥ u(t, ·) ≥ w−(t, ·) in Ω for all t ≤ T ′; (2.4)

• since w− ≤ w+ in (−∞, T ] × Ω and w+ is increasing with respect to the variable t, one
has un(−n, ·) ≤ w+(−n, ·) in Ω for each n > −T ′, hence un(t, ·) ≤ w+(t, ·) in Ω for all
t ≥ −n, and

u(t, x) ≤ w+(t, x) = φ(x1 − ct) for all (t, x) ∈ R× Ω; (2.5)

• from the inequalities w− ≤ u ≤ w+ in (−∞, T ′] × Ω, the past condition (1.9) follows
immediately; one also gets that

0 < u < 1 and ut > 0 in R× Ω

from the strong parabolic maximum principle;

• from standard parabolic estimates and the monotonicity in t, one has u(t, ·) → u∞ as
t → +∞ in C2

loc(Ω), and 0 < u∞ ≤ 1 solves (1.17); furthermore, 1 ≥ u∞(x) > u(t, x) ≥
w−(t, x) for all (t, x) ∈ (−∞, T ′]× Ω; in particular,

1 ≥ u∞(x) ≥ w−(T ′, x) = φ(x1 − cT ′ + ξ(T ′))− φ(−x1 − cT ′ + ξ(T ′))

for all x ∈ Ω with x1 < 0; since ξ and T ′ do not depend on R > 0 and α ∈ [0, π/2), one
gets that

u∞(x)→ 1 as x1 → −∞ uniformly with respect to R > 0 and α ∈ [0, π/2); (2.6)

• for each η ∈ (0, 1/2), the past condition (1.9) and the monotonicity of u in t, together
with the strong parabolic maximum principle, yield lim inft→−∞, u(t,x)∈[η,1−η] ut(t, x) > 0;

• for any solution v of (1.1) satisfying (1.9), there are β > 0 and σ > 0 such that, for every
ε > 0 small enough, there is Tε < 0 such that v < u+ ε in (−∞, Tε]×Ω and the function

(t, x) 7→ min
(
u(t+ σε(1− e−β(t−t0)), x) + εe−β(t−t0), 1

)
is a supersolution of (1.1) in [t0, Tε] × Ω for all t0 < Tε; as this supersolution is larger
than v at time t0, with any t0 < Tε, so is it in [t0, Tε] × Ω, hence u(t + σε, x) ≥ v(t, x)
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in (−∞, Tε] × Ω at the limit t0 → −∞, and finally v ≤ u(· + σε, ·) in R × Ω from the
comparison principle; since this holds for all ε > 0 small enough, one gets v ≤ u in R×Ω;
similarly, the inequality v ≥ u holds, leading to the uniqueness for problem (1.1) with the
past condition (1.9).

This completes the proof of Proposition 1.2. 2

From the proof of Proposition 1.2, an important corollary follows, that will be used later in
the proof of Theorem 1.10.

Corollary 2.1. For any R > 0 and α ∈ [0, π/2), let u be the solution of (1.1) and (1.9)
given in Proposition 1.2. If there is a C2(Ω) solution U of the elliptic problem (1.17) such that
0 < U ≤ 1 in Ω and U(x)→ 1 as x1 → −∞, then u(t, x) ≤ U(x) for all (t, x) ∈ R× Ω.

Proof. We recall that f(1) = 0, f ′(1) < 0, and f is extended by f(s) = f ′(1)(s− 1) for s > 1.
Let δ > 0 be such that f ′ < 0 in [1− δ,+∞), and let A > 0 be such that

1− δ ≤ U(x) ≤ 1 for all x ∈ Ω with x1 ≤ −A. (2.7)

Since U is positive and continuous in Ω, it follows from the definitions of Ω and w− in (1.7)-(1.8)
and (2.1) that there exists T1 ∈ (−∞, T ′] ⊂ (−∞, T ] ⊂ (−∞, 0) such that

w−(t, x) ≤ U(x) for all t ≤ T1 and x ∈ Ω with x1 ≥ −A. (2.8)

We now claim that w−(t, x) ≤ U(x) for all t ≤ T1 and x ∈ Ω, an inequality that will easily
lead to the desired conclusion. To show this inequality, define

ε∗ = min
{
ε ≥ 0 : w−(t, x) ≤ U(x) + ε for all t ≤ T1 and x ∈ Ω

}
.

Since w− and U are globally bounded and continuous, ε∗ is a well-defined nonnegative real
number, and one has w−(t, x) ≤ U(x) + ε∗ for all t ≤ T1 and x ∈ Ω. One shall show that
ε∗ = 0. Assume by way of contradiction that ε∗ > 0. Notice that w−(t, ·) → 0 as t → −∞
locally uniformly in Ω, and remember that w− ≤ 1 in (−∞, T1] × Ω and U > 0 in Ω with
limx1→−∞ U(x) = 1. It then follows from (2.8) and the definition of ε∗ that there is (t∗, x∗) ∈
(−∞, T1]× Ω with x∗1 < −A such that

w−(t∗, x∗) = U(x∗) + ε∗.

But the function U + ε∗ is a supersolution of (1.17) in {x ∈ Ω : x1 ≤ −A}, owing to (2.7) and
the definitions of δ and A (one has f(U(x) + ε∗) ≤ f(U(x)) for all x ∈ Ω with x1 ≤ −A). On
the other hand, the function w− is a generalized subsolution of (1.1) in (−∞, T1]×Ω (remember
that T1 ≤ T ′). The strong parabolic maximum principle (namely, the interior version if x∗ ∈ Ω
with x∗1 < −A, or the strong parabolic Hopf lemma if x∗ ∈ ∂Ω, still with x∗1 < −A) then imply
that w−(t, x) = U(x) + ε∗ for all t ≤ t∗ and x ∈ Ω with x1 ≤ −A. This is clearly ruled out,
since w− ≤ 1 and U(x) + ε∗ → 1 + ε∗ > 1 as x1 → −∞. Therefore, ε∗ = 0, hence

w−(t, x) ≤ U(x) for all t ≤ T1 and x ∈ Ω.

In particular, owing to (2.3), there holds un(−n, ·) = sups≤−nw
−(s, ·) ≤ U in Ω for all n ∈ N

with n ≥ −T1. Hence, from the parabolic maximum principle, one has un(t, ·) ≤ U in Ω for all
n ∈ N with n ≥ −T1 and for all t ≥ −n. Therefore, u(t, ·) ≤ U in Ω for all t ∈ R, which is the
desired conclusion.
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3 Dichotomy between complete propagation and blocking:
proof of Theorem 1.3

This section is devoted to the proof of the dichotomy between complete propagation and blo-
cking for the solutions u of (1.1) and (1.9) constructed in Proposition 1.2, for any given R > 0
and α ∈ [0, π/2). The proof of this dichotomy relies itself on several Liouville type results of
independent interest for the solutions of elliptic equations ∆U + f(U) = 0 in certain domains
of RN . We start in Section 3.1 with Liouville type results for (1.17) in funnel-shaped domains Ω,
and we then continue in Section 3.2 with such results for stable solutions of ∆U + f(U) = 0 in
the plane, a half-plane and the whole space. Theorem 1.3 is finally proved in Section 3.3.

3.1 Auxiliary Liouville type results for (1.17) in funnel-shaped do-
mains

The first two auxiliary Liouville type results used in the proof of Theorem 1.3, as well as in other
main results, are Lemmas 3.2 and 3.3 below for the solutions u∞ of (1.17) in funnel-shaped
domains Ω. They rely themselves on the existence of some not-too-small solutions of the same
equation in large balls with Dirichlet boundary conditions. In the sequel, we call Br(x) the
open Euclidean ball of center x ∈ RN and radius r > 0, and we denote Br := Br(0).

Lemma 3.1. There are R0 > 0 and a C2(BR0) solution ψ of the semilinear elliptic equation
∆ψ + f(ψ) = 0 in BR0 ,

0 ≤ ψ < 1 in BR0 ,

ψ = 0 on ∂BR0 ,

max
BR0

ψ = ψ(0) > θ.

(3.1)

Proof. The proof is standard and is therefore omitted. In short, it can be done by using
variational arguments (see e.g. [8, Theorem A] and [26, Problem (2.25)]): such a solution ψ is
obtained as a minimizer in H1

0 (BR0) of the functional ϕ 7→
∫
BR0
|∇ϕ|2/2−

∫
BR0
F (ϕ), with F ′=f .

Furthermore, such a minimizer is radially symmetric and decreasing in |x| as soon as it is not
identically 0 (see [22]), and its maximal value, which is the value at the origin, converges to 1
as the radius of the ball converges to +∞, thanks to (1.2)-(1.3).

In Proposition 1.2, the constructed solutions u of (1.1) and (1.9) converge as t→ +∞ to a
stationary solution u∞ of (1.17). By construction, u∞ satisfies 0 < u∞ ≤ 1 in Ω, and u∞(x)→ 1
as x1 → −∞ (and this limit actually holds uniformly with respect to the parameters (R,α)).
But this limit is not enough to guarantee that u∞ ≡ 1 in Ω in general: Theorems 1.8 and 1.9
provide some conditions for u∞ to be equal to 1 or not, according to the values of R and α. We
now prove in the next result (which will be used in the proof of Theorem 1.3) that, whatever R
and α may be, if u∞(x) is assumed to converge to 1 (or is assumed to be not too small)
as x1 → +∞, then u∞ is identically equal to 1.

Lemma 3.2. Let Ω be a funnel-shaped domain satisfying (1.7)-(1.8), and let 0 < u∞ ≤ 1 be a
solution of (1.17) in Ω. If lim infx∈Ω, x1→+∞ u∞(x) > θ with θ as in (1.3), then u∞ ≡ 1 in Ω.

16



Proof. First of all, if (xn)n∈N = (xn1 , x
n
2 , · · · , xnN)n∈N = (xn1 , (x

n)′)n∈N is any sequence in Ω such
that xn1 → +∞ and h(xn1 )− |(xn)′| → +∞ as n→ +∞, then, from standard elliptic estimates,
the functions x 7→ u∞(x + xn) converge in C2

loc(RN), up to extraction of a subsequence, to
a C2(RN) solution U of

∆U + f(U) = 0 in RN ,

such that θ < infRN U ≤ supRN U ≤ 1. Since f(1) = 0 and f > 0 in (θ, 1), it then easily
follows that U ≡ 1 in RN . Similarly, if (xn)n∈N is any sequence in Ω such that xn1 → +∞ and
lim supn→+∞(h(xn1 )− |(xn)′|) < +∞, then there are an open half-space H of RN and a C2(H)
function U such that, up to extraction of a subsequence, ‖u∞(· + xn) − U‖C2(K∩(Ω−xn)) → 0

as n→ +∞ for every compact set K ⊂ H. Hence, U obeys ∆U+f(U) = 0 in H and ν ·∇U = 0
on ∂H, together with θ < infH U ≤ supH U ≤ 1. As above, one infers that U ≡ 1 in H. From
the previous observations, it follows that

u∞(x)→ 1 as x1 → +∞

with x ∈ Ω, that is, uniformly with respect to the variables (x2, · · · , xN).
Now, from (1.2)-(1.3) and the affine C1 extension of f outside [0, 1], there is ε > 0 small

enough such that the C1(R) function f − ε satisfies f(αε)− ε = f(θε)− ε = f(βε)− ε = 0 for
some

αε < 0 < θ < θε < βε < 1,

with f ′(αε) < 0, f ′(θε) > 0, f ′(βε) < 0, f − ε < 0 in (αε, θε), f − ε > 0 in (θε, βε), and∫ βε
αε

(f − ε) > 0. Therefore, there exist cε > 0 and a C2(R) function φε : R→ (αε, βε) solving

φ′′ε + cεφ
′
ε + f(φε)− ε = 0 in R, and φε(−∞) = βε, φε(+∞) = αε.

Since u∞ is positive in Ω and converges to 1 as x1 → +∞, there exists A > 0 such that
u∞(x) ≥ φε(−x1 +A) for all x ∈ Ω. But the function φε is decreasing in R and the function h
in (1.8) is nondecreasing. Hence, for each t ∈ R, the function x 7→ φε(−x1 − cεt + A) has a
nonpositive normal derivative at any point x ∈ ∂Ω. Furthermore, u(t, x) := φε(−x1 − cεt+ A)
satisfies ut = ∆u + f(u) − ε ≤ ∆u + f(u) in R × RN by definition of φε. Remembering that
u∞ ≥ u(0, ·) in Ω, the parabolic maximum principle then implies that u∞ ≥ u(t, ·) in Ω for
all t ≥ 0. The limit as t→ +∞ and the positivity of cε yield

u∞ ≥ φε(−∞) = βε in Ω.

Since θ < βε ≤ u∞ ≤ 1 and f > 0 in (θ, 1), one then gets that u∞ ≡ 1 in Ω, which is the
desired conclusion.

The next result, which can be viewed as a corollary of Lemmas 3.1 and 3.2, will also be a
key-ingredient in the proof of Theorems 1.8 and 1.10.

Lemma 3.3. Let Ω be a funnel-shaped domain satisfying (1.7)-(1.8), and let 0 < u∞ ≤ 1 be
a C2(Ω) solution of (1.17) in Ω. Let R0 > 0 and ψ ∈ C2(BR0) be as in Lemma 3.1. If there is
a point x0 ∈ Ω such that BR0(x0) ⊂ Ω and u∞ ≥ ψ(· − x0) in BR0(x0), then u∞ ≡ 1 in Ω.

Proof. Write
x0 = (x0,1, x

′
0)
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with x0,1 ∈ R and x′0 ∈ RN−1. Owing to the properties (1.7)-(1.8) satisfied by Ω, one has
BR0(x0,1, sx′0) ⊂ Ω for all s ∈ [0, 1]. Since ψ satisfies (3.1) and vanishes on ∂BR0 , and since the
solution u∞ of (1.17) is positive in Ω, the strong maximum principle implies that u∞ > ψ(·−x0)
in BR0(x0) and, by continuity, u∞ > ψ(· − (x0,1, sx

′
0)) in BR0(x0,1, sx′0) for all s ∈ [η, 1], for

some 0 ≤ η < 1. We then claim that

u∞ > ψ(· − (x0,1, sx
′
0)) in BR0(x0,1, sx′0) for all s ∈ [0, 1]. (3.2)

Indeed, otherwise, there exists s∗ ∈ [0, 1) such that u∞ ≥ ψ(· − (x0,1, s
∗x′0)) in BR0(x0,1, s∗x′0)

with equality at a point x∗ ∈ BR0(x0,1, s∗x′0). The point x∗ can not lie on the boundary
∂BR0(x0,1, s

∗x′0), since ψ(· − (x0,1, s
∗x′0)) vanishes there whereas u∞ is positive. Hence, x∗ is in

the open ball BR0(x0,1, s
∗x′0) and the strong maximum principle yields u∞ ≡ ψ(· − (x0,1, s

∗x′0))

in BR0(x0,1, s∗x′0), which is impossible on ∂BR0(x0,1, s
∗x′0). Therefore, (3.2) holds and, in par-

ticular, u∞ > ψ(· − (x0,1, 0)) in BR0(x0,1, 0).
Similarly, since BR0(s, 0) ⊂ Ω for all s ≥ x0,1, one then infers that u∞ > ψ(· − (s, 0))

in BR0(s, 0) for all s ≥ x0,1. Consider then any

s ≥ max(x0,1, L cosα +R0),

with L > R > 0 and α ∈ [0, π/2) given in (1.8), and any unit vector e′ of RN−1. For each
σ ∈ [0, h(s)], two cases may occur, owing to (1.7)-(1.8):{

either BR0(s, σe
′) ⊂ Ω,

or BR0(s, σe
′) ∩ ∂Ω 6= ∅ and ν(x) · (x− (s, σe′)) ≥ 0 for every x ∈ BR0(s, σe

′) ∩ ∂Ω,

where ν(x) denotes the outward unit normal to Ω at x. In the latter case, one then has
ν(x) ·∇ψ(x−(s, σe′)) ≤ 0, since the function y 7→ ψ(y) is radially symmetric and nonincreasing
with respect to |y| in BR0 . In all cases, for each σ ∈ [0, h(s)], the function ψ(· − (s, σe′)) is
a subsolution of (1.17) in BR0(s, σe

′) ∩ Ω (this closed set is actually equal to BR0(s, σe
′) ∩ Ω

from the definition of Ω, since σ ∈ [0, h(s)]), and the open set BR0(s, σe
′) ∩ Ω is connected

and not empty, with its boundary meeting ∂BR0(s, σe
′)∩Ω. Hence, the function ψ(· − (s, σe′))

can not be identically equal to u∞ in BR0(s, σe
′) ∩ Ω. Since u∞ > ψ(· − (s, 0)) in BR0(s, 0),

one then gets as in the previous paragraph, by sliding ψ below u∞ in the direction (0, e′) and
using the strong interior maximum principle and the Hopf lemma, that u∞ > ψ(· − (s, σe′))
in BR0(s, σe

′) ∩ Ω for all σ ∈ [0, h(s)]. As a consequence,

u∞(s, σe′) > ψ(0) for all s ≥ max(x0,1, L cosα +R0) and σ ∈ [0, h(s)].

Since this holds for every unit vector e′ of RN−1, one infers that u∞(x) > ψ(0) for all x ∈ Ω
with x1 ≥ max(x0,1, L cosα + R0). Since u∞ ≤ 1 in Ω together with ψ(0) > θ, one concludes
from Lemma 3.2 that u∞ ≡ 1 in Ω. The proof of Lemma 3.3 is thereby complete.

3.2 Auxiliary Liouville type results for stable solutions of ∆U+f(U)=0

The last three auxiliary results for the proof of Theorem 1.3 are still Liouville type results
for semilinear elliptic equations ∆U + f(U) = 0 in ω. But these results, of independent
interest, deal with other geometric configurations: ω will be the two-dimensional plane, or a
two-dimensional half-plane, or the whole space RN . In all these statements, we are concerned
with stable solutions, in the sense of (1.18).
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Proposition 3.4. Let 0 ≤ U ≤ 1 be a C2(R2) stable solution of ∆U + f(U) = 0 in R2. Then,
either U ≡ 0 in R2 or U ≡ 1 in R2.

Proof. The proof uses some properties of the principal eigenvalues of some elliptic operators,
together with some results of [4]. First of all, since f ∈ C1,1([0, 1]), standard elliptic estimates
imply that U is of class C3(R2) and has bounded partial derivatives up to the third order.

Now, for any R > 0, let

λ(−∆− f ′(U), BR) = min
ψ∈H1

0 (BR), ‖ψ‖L2(BR)=1

∫
BR

|∇ψ|2 − f ′(U)ψ2 (3.3)

and
λ(−∆, BR) = min

ψ∈H1
0 (BR), ‖ψ‖L2(BR)=1

∫
BR

|∇ψ|2

be the principal eigenvalues of the operators −∆− f ′(U) and −∆ in BR (the two-dimensional
Euclidean disc) with Dirichlet boundary conditions on ∂BR. One has λ(−∆− f ′(U), BR) ≥ 0
by assumption, and

λ(−∆− f ′(U), BR) ≤ max
[0,1]
|f ′|+ λ(−∆, BR) = max

[0,1]
|f ′|+ λ(−∆, B1)

R2
.

Hence supR≥1 |λ(−∆ − f ′(U), BR)| < +∞. Furthermore, the map R 7→ λ(−∆ − f ′(U), BR) is
nonincreasing (and even actually decreasing) in (0,+∞), and there exists

λ∞ = lim
R→+∞

λ(−∆− f ′(U), BR) ∈ [0,+∞).

Notice also that the map x 7→ f ′(U(x)) is Lipschitz continuous from the C1,1 regularity of f
and the Lipschitz continuity of U . For each n ∈ N with n ≥ 1, there exists a unique principal
eigenfunction ϕn ∈ C2(Bn) solving

−∆ϕn − f ′(U)ϕn = λ(−∆− f ′(U), Bn)ϕn in Bn,

with ϕn = 0 on ∂Bn, ϕn > 0 in Bn and ϕn(0) = 1. The Harnack inequality and standard
elliptic estimates then imply that, up to extraction of a subsequence, the functions ϕn converge
in C2

loc(R2) to a positive function ϕ solving −∆ϕ − f ′(U)ϕ = λ∞ϕ ≥ 0 in R2 (together with
ϕ(0) = 1). Since the space dimension is here equal to 2, and since each function e · ∇U (with
a unit vector e of R2) is bounded in R2 and solves

∆(e · ∇U) + f ′(U)(e · ∇U) = 0 in R2,

it follows from [4, Theorem 1.8] that e ·∇U ≡ Ceϕ in R2 for some real number Ce. In particular,
each partial derivative e · ∇U is either identically 0 or has a strict constant sign in R2. As a
consequence, either the function U is constant, or it depends on one variable only and it is
strictly monotone in that variable.

If U is constant, it may be equal to 0, θ or 1, from (1.2)-(1.3). However, if U were equal
to θ, then

0 ≤ λ(−∆− f ′(U), BR) = −f ′(θ) + λ(−∆, BR) = −f ′(θ) +R−2λ(−∆, B1) −→
R→+∞

−f ′(θ) < 0,
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a contradiction. Thus, if U is constant, then either U ≡ 0 or U ≡ 1 in R2.
If U were one-dimensional and strictly monotone, that is U(x) = V (x · e) for some unit

vector e and V increasing in R, then V would solve V ′′+f(V ) = 0 in R with (V (−∞), V (+∞)) ∈
{(0, θ), (0, 1), (θ, 1)}, but the integration of this equation against V ′ over R would lead to∫ V (+∞)

V (−∞)
f(s)ds = 0, contradicting (1.2)-(1.3). Thus, this monotone one-dimensional case is

ruled out.
As a conclusion, one has shown that U is constant in R2, and identically equal to 0 or 1.

The proof of Proposition 3.4 is thereby complete.

From Proposition 3.4, the following analogue in a half-plane easily follows.

Proposition 3.5. Let H be an open half-plane and let 0 ≤ U ≤ 1 be a C2(H) stable solution
of ∆U + f(U) = 0 in H with Neumann boundary condition ν · ∇U = 0 on ∂H. Then,
either U ≡ 0 in H or U ≡ 1 in H.

Proof. Up to translation and rotation, one can assume that H = {(x1, x2) ∈ R2 : x2 < 0}
without loss of generality. Thus, ∂H = R × {0} and ∂x2U(x1, 0) = 0 for all x1 ∈ R. Consider
now the function V in R2 defined by

V (x1, x2) =

{
U(x1, x2) if x2 ≤ 0,

U(x1,−x2) if x2 > 0.

It is of class C2(R2) and it solves ∆V + f(V ) = 0 in R2, together with 0 ≤ V ≤ 1 in R2.
Furthermore, for any ψ ∈ C1(R2) with compact support, one has∫

R2

(
|∇ψ|2 − f ′(V )ψ2

)
=

∫
{x2<0}

(
|∇ψ|2 − f ′(U)ψ2

)
+

∫
{x2>0}

(
|∇ψ|2 − f ′(V )ψ2

)
=

∫
H

(
|∇ψ|2 − f ′(U)ψ2

)
+

∫
H

(
|∇ψ̃|2 − f ′(U)ψ̃2

)
,

where ψ̃(x1, x2) = ψ(x1,−x2). But the restrictions of the functions ψ and ψ̃ in H are of
class C1(H) with compact support in H. Therefore, the two terms of the right-hand side of
the previous formula are nonnegative by assumption. Hence,∫

R2

(
|∇ψ|2 − f ′(V )ψ2

)
≥ 0

for any ψ ∈ C1(R2) with compact support. Proposition 3.4 implies that V is identically equal
to either 0 or 1 in R2, which leads to the desired conclusion for U in H.

The last Liouville type result is Proposition 1.5, which was stated in Section 1.3. It is
concerned with stable axisymmetric solutions in RN , and it also follows from Proposition 3.4,
as well as from some arguments inspired by [4].

Proof of Proposition 1.5. Throughout the proof, U : RN → [0, 1] is a stable C2(RN) solution
of ∆U + f(U) = 0 in RN , which is axisymmetric with respect to the x1-axis. Let us first show
that

either U(x1, x
′)→ 0 or U(x1, x

′)→ 1 as |x′| → +∞, uniformly in x1 ∈ R. (3.4)
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To show this property, since U is continuous and axisymmetric with respect to the x1-axis, it
is sufficient to show that, for any sequence

(xn)n∈N = ((xn1 , x
n
2 , 0, · · · , 0))n∈N

in RN such that xn2 → +∞ as n → +∞, one has, up to extraction of a subsequence, either
U(xn) → 0 or U(xn) → 1. Consider any such sequence (xn)n∈N. Up to extraction of a
subsequence, the functions U(·+xn) converge in C2

loc(RN) to a solution U∞ of ∆U∞+f(U∞) = 0
in RN , with 0 ≤ U∞ ≤ 1 in RN . Furthermore, since U is axisymmetric with respect to the
x1-axis, and xn = (xn1 , x

n
2 , 0, · · · , 0) with xn2 → +∞, there is a C2(R2) function V∞ such

that U∞(x) = V∞(x1, x2) for all x ∈ RN . Notice that V∞ then obeys ∆V∞ + f(V∞) = 0 in R2.
Let us now show that V∞ is stable, in the sense of (1.18) with ω = R2. Consider any C1(R2)
function ψ with compact support. For n ∈ N, let us define

ψn(x) = ψ(x1 − xn1 , |x′| − xn2 )

for x = (x1, x
′) ∈ RN . Since ψ is compactly supported in R2 and since xn2 → +∞ as n→ +∞,

the function ψn is of class C1(RN) with compact support for all n large enough. Together with
the semistability of the solution U of ∆U + f(U) = 0 in RN , one gets that, for all n large
enough, ∫

RN
|∇ψn|2 − f ′(U)ψ2

n ≥ 0.

But since both U and ψn are axisymmetric with respect to the x1-axis, the above inequality
means that, for all n large enough,∫

R2

[
|∇ψ(x1 − xn1 , x2 − xn2 )|2 − f ′(U(x1, x2, 0, · · · , 0))ψ(x1 − xn1 , x2 − xn2 )2

]
dx1dx2 ≥ 0,

that is, ∫
R2

[
|∇ψ(x1, x2)|2 − f ′(U(x1 + xn1 , x2 + xn2 , 0, · · · , 0))ψ(x1, x2)2

]
dx1dx2 ≥ 0.

Since U(x1 + xn1 , x2 + xn2 , 0, · · · , 0) → U∞(x1, x2, 0, · · · , 0) = V∞(x1, x2) locally uniformly
in (x1, x2) ∈ R2 as n→ +∞, since ψ has a compact support, and since f is of class C1(R), one
gets that ∫

R2

|∇ψ|2 − f ′(V∞)ψ2 ≥ 0.

As a consequence, the C2(R2) function V∞ is a stable solution of ∆V∞+ f(V∞) = 0 in R2 such
that 0 ≤ V∞ ≤ 1 in R2. Proposition 3.4 then implies that either V∞ ≡ 0 in R2, or V∞ ≡ 1
in R2. In particular, either U(xn) → 0 or U(xn) → 1 as n → +∞, at least for a subsequence.
But as already emphasized, this is sufficient to infer (3.4).

Let us now show that |∇U(x1, x
′)| decays to 0 exponentially as |x′| → +∞, uniformly

in x1 ∈ R. To do so, let us consider only the limit 0 in (3.4) (the limit 1 can be handled similarly
even if it means changing U into 1−U and f(s) into −f(1− s)). Since f ′(0) < 0 = f(0), there
is δ ∈ (0, 1) such that

f(s) ≤ f ′(0)

2
s for all s ∈ [0, δ] (3.5)
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and there is then A > 0 such that

0 ≤ U(x1, x
′) ≤ δ for all |x′| ≥ A and x1 ∈ R. (3.6)

Take γ > 0 small enough such that γ2 + f ′(0)/2 < 0. The function U(x) = δ e−γ(|x′|−A) obeys

∆U(x) +
f ′(0)

2
U(x) = δ

(
γ2 − (N − 2)γ

|x′|

)
e−γ(|x′|−A) +

f ′(0) δ e−γ(|x′|−A)

2

≤ δ
(
γ2 +

f ′(0)

2

)
e−γ(|x′|−A) < 0

for all |x′| ≥ A and x1 ∈ R. Since U(x1, x
′) ≤ δ = U(x1, x

′) for all |x′| = A and x1 ∈ R, together
with (3.5)-(3.6) and (3.4) with limit 0, it then easily follows from the maximum principle that
U(x1, x

′) ≤ U(x1, x
′) = δ e−γ(|x′|−A) for all |x′| ≥ A and x1 ∈ R. From standard elliptic

estimates, the function |∇U | is bounded in RN and moreover there is a positive real number B
such that

|∇U(x)| ≤ B e−γ|x
′| for all x ∈ RN . (3.7)

Now, as in the proof of Proposition 3.4, from the semistability of U , one gets the existence
of a positive C2(RN) function ϕ and of a nonnegative real number λ∞ such that

−∆ϕ− f ′(U)ϕ = λ∞ϕ ≥ 0 in RN .

Consider any unit vector e of RN and denote

w =
e · ∇U
ϕ

.

From standard elliptic estimates and the C1,1 smoothness of f , the function U is of class C3(RN)
and it is elementary to check that the C2(RN) function w obeys

w∇ · (ϕ2∇w) = λ∞ϕ
2w2 ≥ 0 in RN .

Take a C∞(R) function ζ such that 0 ≤ ζ ≤ 1 in R, ζ = 1 in [−1, 1] and ζ = 0 in R \ (−2, 2).
For R ≥ 1 and x = (x1, x

′) ∈ RN , we define

ζR(x) = ζ
( x1

RN−1

)
× ζ
( |x′|
R

)
.

Each function ζR is of class C∞(RN) with compact support and there is a positive real number C
such that, for every R ≥ 1 and x = (x1, x

′) ∈ RN , |∂x1ζR(x)| ≤ C R1−N and |∇ζR(x)| ≤ C R−1.
For any R ≥ 1, let us define

ER =
{
x = (x1, x

′) ∈ RN : |x′| ≤ R, RN−1 ≤ |x1| ≤ 2RN−1
}
,

FR =
{
x = (x1, x

′) ∈ RN : R ≤ |x′| ≤ 2R, |x1| ≤ 2RN−1
}
,

GR = ER ∪ FR.

Observe that |∇ζR| = 0 in RN \ GR and that |∇ζR(x)| = |∂x1ζR(x)| ≤ C R1−N for all x ∈ ER.
By integrating the inequation w∇ · (ϕ2∇w) ≥ 0 against ζ2

R (notice that all integrals below
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converge since all involved functions are continuous and ζR is compactly supported), one gets
that∫

RN
ϕ2ζ2

R|∇w|2 ≤ −2

∫
RN
wϕ2ζR∇ζR · ∇w = −2

∫
GR

wϕ2ζR∇ζR · ∇w

≤ 2

√∫
GR

ϕ2ζ2
R|∇w|2

√∫
GR

w2ϕ2|∇ζR|2.
(3.8)

Furthermore, from the above estimates on ∇ζR and from (3.7), one has∫
GR

w2ϕ2|∇ζR|2 =

∫
ER

|e · ∇U |2|∇ζR|2 +

∫
FR

|e · ∇U |2|∇ζR|2

≤ 2B2C2ωN−1 +B2e−2γRC2R−2ωN−1((2R)N−1 −RN−1)× (4RN−1),

where ωN−1 denotes the (N − 1)-dimensional Lebesgue measure of the unit Euclidean ball
in RN−1. Therefore, there is a positive real number D such that∫

GR

w2ϕ2|∇ζR|2 ≤ D (3.9)

for all R ≥ 1, hence ∫
RN
ϕ2ζ2

R|∇w|2 ≤ 4D

by (3.8). Therefore, owing to the definition of ζR, the integral
∫
RN ϕ

2|∇w|2 converges and∫
GR

ϕ2ζ2
R|∇w|2 → 0 as R→ +∞.

Together with (3.8)-(3.9), one infers that∫
RN
ϕ2|∇w|2 = 0,

hence w is constant in RN . Owing to the definition of w = (e · ∇U)/ϕ, this implies that e · ∇U
is either of a strict constant sign, or is identically 0 in RN . By taking now e = (0, e′) with a
unit vector e′ of RN−1, and remembering that U(x1, x

′) → 0 as |x′| → +∞, one infers that
e · ∇U ≡ 0 in RN for any such e = (0, e′), and finally U ≡ 0 in RN . As already underlined, the
case of the limit 1 in (3.4) can be handled similarly, and the proof of Proposition 1.5 is thereby
complete.

3.3 Proof of Theorem 1.3

Throughout this section, we consider a domain Ω of the type (1.7)-(1.8), for any R > 0 and α ∈
[0, π/2), and we call u the time-increasing solution of (1.1) and (1.9) given in Proposition 1.2.
Let 0 < u∞ ≤ 1 be its C2

loc(Ω) limit as t→ +∞. The function u∞ solves (1.17), and

0 < u(t, x) < u∞(x) ≤ 1 for all (t, x) ∈ R× Ω. (3.10)

23



Let us first notice that (2.1) and (2.4) imply that u(t, x) → 1 as x1 → −∞, at least for
every t negative enough. Since u is increasing in t and u < 1 in R×Ω, one infers that, for every
τ ∈ R,

u(t, x)→ 1 as x1 → −∞, uniformly with respect to t ≥ τ . (3.11)

Together with (3.10), it follows that, if the solution u is blocked in the sense of (1.15), then the
convergence of u(t, ·) to u∞ as t→ +∞ is actually uniform in Ω.

After this preliminary observation, the first main step of the proof of Theorem 1.3 consists
in showing that u∞ is a stable solution of (1.17) in Ω in the sense of (1.18) with ω = Ω,
whether u∞ be identically 1 or less than 1 in Ω.

Lemma 3.6. The function u∞ is a stable solution of (1.17) in Ω in the sense of (1.18).

Proof. Consider any C1(Ω) function ψ with compact support. The function u satisfies

0 ≤ ut = ∆(u− u∞) + f(u)− f(u∞) (3.12)

in R× Ω. Since ν(x) · ∇(u(t, x)− u∞(x)) = 0 for all (t, x) ∈ R× ∂Ω and since ψ has compact
support, multiplying (3.12) by the nonnegative function ψ2/(u∞ − u(t, ·)) and integrating by
parts over Ω, at a fixed time t ∈ R, leads to

0 ≤
∫

Ω

∇(u∞ − u(t, ·)) · ∇
( ψ2

u∞ − u(t, ·)

)
− f(u(t, ·))− f(u∞)

u(t, ·)− u∞
ψ2

=

∫
Ω

2
ψ∇(u∞ − u(t, ·)) · ∇ψ

u∞ − u(t, ·)
− |∇(u∞ − u(t, ·))|2ψ2

(u∞ − u(t, ·))2
− f(u(t, ·))− f(u∞)

u(t, ·)− u∞
ψ2

≤
∫

Ω

|∇ψ|2 − f(u(t, ·))− f(u∞)

u(t, ·)− u∞
ψ2,

where all the above integrals converge since ψ has compact support and all integrated functions
or fields are at least continuous in Ω. But since ψ has compact support and u(t, ·) → u∞ as
t → +∞ at least locally uniformly in Ω, the passage to the limit as t → +∞ in the above
formula yields

0 ≤
∫

Ω

|∇ψ|2 − f ′(u∞)ψ2.

From the arbitrariness of ψ ∈ C1(Ω) with compact support, the proof is complete.

Proof of Theorem 1.3. In order to show that u either propagates completely in the sense of (1.16)
or is blocked in the sense of (1.15), we have to show that either u∞ ≡ 1 in Ω, or u∞(x) → 0
as x1 → +∞. Since the case α = 0 is trivial, as already noticed in the introduction (u∞ ≡ 1
in Ω in this case), one can assume that

α > 0

in the sequel. From Lemma 3.2, it is then sufficient to show that either u∞(x)→ 1 as x1 → +∞
or u∞(x)→ 0 as x1 → +∞. Since, for each B ∈ R, the set {x ∈ Ω : x1 ≥ B} is connected and
since u∞ is continuous in Ω, it is sufficient to show that, for any sequence (xn)n∈N with

xn1 → +∞ as n→ +∞,
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then, up to extraction of a subsequence, either u∞(xn) → 0 or u∞(xn) → 1 as n → +∞.
Consider such a sequence (xn)n∈N in the sequel. Since the functions u and u∞ are axisymmetric
with respect to the x1-axis, one can assume without loss of generality that

xn = (xn1 , x
n
2 , 0, · · · , 0), with 0 ≤ xn2 ≤ h(xn1 ),

for each n ∈ N. Up to extraction of a subsequence, three cases can occur: either supn∈N x
n
2 <

+∞, or xn2 → +∞ and h(xn1 ) − xn2 → +∞ as n → +∞, or supn∈N(h(xn1 ) − xn2 ) < +∞. We
consider these three cases separately.

Let us firstly consider the case supn∈N x
n
2 < +∞. Call

yn = (xn1 , 0, · · · , 0).

Here, up to extraction of a subsequence, the functions u∞(· + yn) converge in C2
loc(RN) to

a C2(RN) solution U of ∆U + f(U) = 0 in RN which is axisymmetric with respect to the
x1-axis (since so is u∞). Furthermore, 0 ≤ U ≤ 1 in RN . Let us now show that U is stable in
the sense of (1.18) (Proposition 1.5 will then yield the desired conclusion). Pick any C1(RN)
function ψ with compact support K. For n ∈ N, denote ψn(x) = ψ(x − yn) for x ∈ Ω. Each
function ψn is of class C1(Ω) with compact support, hence∫

Ω

|∇ψn|2 − f ′(u∞)ψ2
n ≥ 0

by the semistability of u∞ established in Lemma 3.6. But, for every n large enough, the
support yn +K of ψn is included in Ω, and the previous inequality then means that∫

K

|∇ψ|2 − f ′(u∞(·+ yn))ψ2 ≥ 0.

Since u∞(· + yn) → U as n → +∞ at least locally uniformly in RN and f is of class C1(R),
one concludes by passing to the limit n→ +∞∫

RN
|∇ψ|2 − f ′(U)ψ2 =

∫
K

|∇ψ|2 − f ′(U)ψ2 ≥ 0.

Therefore, U is a stable solution of ∆U +f(U) = 0 in RN and it satisfies the other assumptions
of Proposition 1.5. One then deduces that either U ≡ 0 in RN or U ≡ 1 in RN . In particular,
since the sequence (xn2 )n∈N was assumed to be bounded, one concludes that either u∞(xn)→ 0
or u∞(xn)→ 1, up to extraction of a subsequence.

In the second case, we assume that xn2 → +∞ and h(xn1 )− xn2 → +∞ as n→ +∞. Define
Un(x) = u∞(x + xn) for x ∈ Ω − xn. From standard elliptic estimates, together with the
axisymmetry of u∞ with respect to the x1-axis, the functions Un converge in C2

loc(RN), up to
extraction of a subsequence, to a C2(RN) function Ũ , which actually depends on (x1, x2) only,
that is,

Ũ(x1, · · · , xN) = U(x1, x2)

for some C2(R2) function U , and there holds ∆U + f(U) = 0 in R2. Furthermore, 0 ≤ U ≤ 1
in R2. Let us now show that U satisfies the condition (1.18) with ω = R2, and Proposition 3.4
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will then yield the desired conclusion. So, consider any C1(R2) function ψ with compact
support K. For n ∈ N, define the following function ψn in Ω by:

ψn(x) = ψn(x1, x
′) =

{
ψ(x1 − xn1 , |x′| − xn2 ) if (x1, |x′|) ∈ K + (xn1 , x

n
2 ),

0 otherwise.

Since limn→+∞ x
n
2 = +∞, it follows that, for every n large enough, ψn is a C1(Ω) function with

compact support. Lemma 3.6 implies that, for all n large enough,∫
Ω

|∇ψn|2 − f ′(u∞)ψ2
n ≥ 0.

But since both u∞ and ψn are axisymmetric with respect to the x1-axis, the above inequality
means that, for all n large enough,∫

{x1∈R, 0≤x2≤h(x1)}

[
|∇ψ(x1 − xn1 , x2 − xn2 )|2

−f ′(u∞(x1, x2, 0, · · · , 0))ψ(x1 − xn1 , x2 − xn2 )2
]
dx1dx2 ≥ 0.

(3.13)

Since both sequences (xn2 )n∈N and (h(xn1 ) − xn2 )n∈N converge to +∞ and since ψ has compact
support, denoted by K, the previous inequality means that, for all n large enough,∫

K

[
|∇ψ(x1, x2)|2 − f ′(u∞(x1 + xn1 , x2 + xn2 , 0, · · · , 0))ψ(x1, x2)2

]
dx1dx2 ≥ 0. (3.14)

Since u∞(x1 + xn1 , x2 + xn2 , 0, · · · , 0) → Ũ(x1, x2, 0, · · · , 0) = U(x1, x2) locally uniformly in
(x1, x2) ∈ R2 as n→ +∞, and since f is of class C1(R), one gets that∫

R2

|∇ψ|2 − f ′(U)ψ2 ≥ 0.

As a consequence, the C2(R2) function U is a stable solution of ∆U +f(U) = 0 in R2 such that
0 ≤ U ≤ 1 in R2. Proposition 3.4 then implies that either U ≡ 0 in R2 or U ≡ 1 in R2, that is,
either Ũ ≡ 0 or Ũ ≡ 1 in RN . Hence, either u∞(xn)→ 0 or u∞(xn)→ 1, up to extraction of a
subsequence.

Consider thirdly the case supn∈N h(xn1 )− xn2 < +∞. Define

yn = (xn1 , h(xn1 ), 0, · · · , 0), Un(x) = u∞(x+ yn) for x ∈ Ω− yn,

and
H = {(x1, x2) ∈ R2 : x2 < x1 tanα},

which is an open half-plane of R2. From standard elliptic estimates, together with the defini-
tions (1.7)-(1.8) and the axisymmetry of u∞ with respect to the x1-axis, there is a C2(H×RN−2)

function Ũ , which actually depends on (x1, x2) only, that is,

Ũ(x1, · · · , xN) = U(x1, x2)
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for some U ∈ C2(H), such that, up to extraction of a subsequence, ‖Un−Ũ‖C2(K∩(Ω−yn)) → 0 as
n→ +∞ for every compact set K ⊂ RN (notice that, for each such K, there holds K∩(Ω−yn) ⊂
H × RN−2 for all n large enough). The function U then satisfies

∆U + f(U) = 0 in H,

together with ν · ∇U = 0 on ∂H and 0 ≤ U ≤ 1 in H. Let us now show that U satisfies
the condition (1.18) with ω = H, and Proposition 3.5 will then yield the desired conclusion.
So, consider any C1(H) function ψ with compact support K. For n ∈ N, define the following
function ψn in Ω by:

ψn(x) = ψn(x1, x
′) =

{
ψ(x1 − xn1 , |x′| − h(xn1 )) if (x1, |x′|) ∈ K + (xn1 , h(xn1 )),

0 otherwise.

Since limn→+∞ h(xn1 ) = +∞, it follows that, for all n large enough, ψn is a C1(Ω) function with
compact support. Lemma 3.6 implies that, for all n large enough,∫

Ω

|∇ψn|2 − f ′(u∞)ψ2
n ≥ 0.

But since both u∞ and ψn are axisymmetric with respect to the x1-axis, and since h(x1) =
x1 tanα for all x1 ≥ L cosα, together with xn1 → +∞ as n → +∞, the definition of ψn
and the previous inequality then yield (3.13)-(3.14), with xn2 replaced by h(xn1 ), for all n large
enough. Since u∞(x1 + xn1 , x2 + h(xn1 ), 0, · · · , 0) → Ũ(x1, x2, 0, · · · , 0) = U(x1, x2) uniformly
in K (because K × {0}N−2 ⊂ Ω− yn for all n large enough), and since f is of class C1(R), one
gets that ∫

H

|∇ψ|2 − f ′(U)ψ2 ≥ 0.

As a consequence, the C2(R2) function U is a stable solution of ∆U +f(U) = 0 in R2 such that
0 ≤ U ≤ 1 in R2. Proposition 3.4 then implies that either U ≡ 0 in R2 or U ≡ 1 in R2, that is,
either Ũ ≡ 0 or Ũ ≡ 1 in RN . Hence, either u∞(xn)→ 0 or u∞(xn)→ 1, up to extraction of a
subsequence.

As a conclusion, for any sequence (xn)n∈N in Ω such that xn1 → +∞ as n → +∞, one
has, up to extraction of a subsequence, either u∞(xn) → 0 or u∞(xn) → 1 as n → +∞.
As already emphasized, this leads to the desired conclusion, and the proof of Theorem 1.3 is
thereby complete.

4 Transition fronts and long-time behavior of the level sets:
proofs of Theorems 1.6 and 1.7

This section is devoted to the proofs of Theorems 1.6 and 1.7. For any given R > 0 and
α ∈ [0, π/2), we especially show that the solution 0 < u < 1 of (1.1) emanating from the planar
front φ(x1 − ct) in the sense of (1.9) is a transition front connecting 1 and 0, and we show
further more precise estimates on the position of the level sets at large time in case of complete
propagation. But we start in the next subsection with the, immediate, proof of Theorem 1.7.
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4.1 Proof of Theorem 1.7

We here assume that u is blocked, in the sense of (1.15). Since u(t, x) − φ(x1 − ct) → 0
as t→ −∞ uniformly in x ∈ Ω, and since φ(−∞) = 1 and φ(+∞) = 0, one infers that

sup
t≤−A, x∈Ω, x1−ct≤−A

|u(t, x)− 1| → 0 and sup
t≤−A, x∈Ω, x1−ct≥A

u(t, x)→ 0 as A→ +∞.

Furthermore, from (3.11), one knows that, for every τ ∈ R, u(t, x)→ 1 as x1 → −∞, uniformly
with respect to t ≥ τ . Since 0 < u(t, x) < u∞(x) for all (t, x) ∈ R × Ω and u∞(x) → 0
as x1 → +∞, there also holds

u(t, x)→ 0 as x1 → +∞, uniformly in t ≥ τ ,

for every τ ∈ R. All these properties, owing to the definition (1.7)-(1.8) of Ω, imply that u is
a transition front connecting 1 and 0, with the sets Ω±t and Γt given for instance by (1.24). In
particular, u does not have any global mean speed in the sense of Definition 1.1 (but one can
still say that it has a “past” speed equal to c, and a “future” speed equal to 0, following the
terminology used in [30]).

4.2 Proof of Theorem 1.6

We here assume that α > 0 and the solution u of (1.1) with past condition (1.9) propagates
completely, namely u(t, ·) → 1 as t → +∞ locally uniformly in Ω. We will prove, thanks to
a comparison argument, that the level sets of u can be sandwiched between two expanding
spherical surfaces at large time in Ω+, and that u is a transition front with sets Γt and Ω±t
defined by (1.20)-(1.21). Moreover, we show that along each level set the function u converges
locally to the planar traveling front at large time, in which a Liouville type theorem of Berestycki
and the first author in [5] for entire solutions of the bistable equation plays an essential role.

Large time estimates of u for x ∈ Ω+ with |x| large

We aim at proving the key Lemma 4.1 below, which gives refined bounds, for large t and
for x ∈ Ω+ with large norm |x|, of the solution u of (1.1) satisfying the complete propagation
condition (1.16). This lemma is based on the construction, inspired by Fife and McLeod [21]
and Uchiyama [38], of suitable sub- and supersolutions. For this purpose, let us first define a
function ϑ in [0,+∞) by

ϑ(t) =
2 (ln(t+ 1))3/2

3
.

Notice that

ϑ(t) ≥ 0 and 0 ≤ ϑ′(t) =

√
ln(t+ 1)

t+ 1
< 1 for all t ≥ 0, (4.1)

and ∫ +∞

0

e−rϑ(t)dt < +∞ for all r > 0.

We also recall that L > 0 is given in (1.8).
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Lemma 4.1. There exist τ > 0, τ1 ∈ R, τ2 ∈ R, z1 ∈ R, z2 ∈ R, δ > 0 and µ > 0 such that

u(t, x) ≤ φ
(
|x| − c(t− τ1 + τ) +

N − 1

c
ln(t− τ1 + τ) + z1

)
+ δe−δϑ(t−τ1) + δe−µ(|x|−L)

for all t ≥ τ1 and x ∈ Ω+ with |x| ≥ L,
(4.2)

and

u(t, x) ≥ φ
(
|x| − c(t− τ2 + τ) +

N − 1

c
ln(t− τ2 + τ) + z2

)
− δe−δϑ(t−τ2) − δe−µ(|x|−L)

for all t ≥ τ2 and x ∈ Ω+ with |x| ≥ L.
(4.3)

Proof. Step 1: choice of some parameters. Choose first µ > 0 and then δ ∈ (0, 1/2) such that

0 < µ <

√
min

( |f ′(0)|
2

,
|f ′(1)|

2

)
, (4.4)

and

0 < δ < min
(µc

2
,
µ∗
2
,
µ∗

2
,
µ2

2

)
, f ′ ≤ f ′(0)

2
in [0, 3δ], f ′ ≤ f ′(1)

2
in [1− 3δ, 1], (4.5)

with µ∗ > 0 and µ∗ > 0 as in (1.5). From (1.4)-(1.6), there are C > 0 and K > 0 such that

φ ≥ 1−δ in (−∞,−C], φ ≤ δ in [C,+∞), |φ′(z)| ≤ K min
(
eµ∗z/2, e−µ

∗z/2
)
for all z ∈ R. (4.6)

Since φ′ is continuous and negative in R, there exists a constant κ > 0 such that

φ′ ≤ −κ in [−C,C]. (4.7)

We then choose σ > 0 such that
max
[0,1]
|f ′|+ µ2 ≤ κσ. (4.8)

Let then τ0 > 0 be such that

N − 1

c
ln t ≤ c

2
t for all t ≥ τ0, (4.9)

and η > 0 such that

e−µ∗η/2 ≤ L

cτ0

. (4.10)

From (4.5), there exist some constants M1,M2 ≥ C such that

max
((N − 1)Ke−µ∗(M1+ϑ(t))/2

cτ0

,
(N − 1)Ke−µ

∗(M2+ϑ(t))/2

L

)
≤ δ2e−δϑ(t) for all t ≥ 0 (4.11)

Now define

ω =

∫ +∞

0

σδ(e−δϑ(s) + e−δs) ds ∈ (0,+∞),

and
M = max

(
M1 + ω + 1 + η,M2 + ω + 1

)
> 0 and B = 2C + ω + 1 > 0.
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For every τ ≥ τ0, (4.9) implies that c(t+ τ)− ((N − 1)/c) ln(t+ τ) +L+B−C+M +ϑ(t) ≥ L
for all t ≥ 0, hence the function Λ defined in [0,+∞) by

Λ(t) = sup∣∣|x|−c(t+τ)+((N−1)/c) ln(t+τ)−L−B+C

∣∣≤M+ϑ(t)

x∈Ω+, |x|≥L

∣∣∣∣N − 1

|x|
− N − 1

c(t+ τ)

∣∣∣∣ ≥ 0 (4.12)

is well defined, nonnegative and continuous in [0,+∞). Furthermore, it is easy to see that it is
integrable over [0,+∞), and that

lim
τ→+∞

∫ +∞

0

Λ(t) dt = 0.

Let us then fix τ ≥ max(τ0, L/c) large enough so that
∫ +∞

0
Λ(t) dt < 1 and let us introduce a

nonnegative function % defined in [0,+∞) by

%(t) =

∫ t

0

(
Λ(s) + σδ(e−δϑ(s) + e−δs)

)
ds ≥ 0. (4.13)

One then has 0 < %(+∞) < 1 + ω. Hence,

M ≥ max
(
M1 + %(+∞) + η,M2 + %(+∞)

)
≥ C + %(+∞) and B ≥ 2C + %(+∞)

and, from (4.10)-(4.11) and the inequality cτ ≥ L, there holds

max
((N−1)Ke−µ∗(M+ϑ(t)−%(+∞))/2

L
,
(N−1)Ke−µ

∗(M+ϑ(t)−%(+∞))/2

cτ

)
≤δ2e−δϑ(t) for all t≥0. (4.14)

For notational convenience, let us finally define, for s ≥ 0 and x ∈ Ω+ with |x| ≥ L,

A(s, x) =
N − 1

|x|
− N − 1

c(s+ τ)

and
ζ(s, x) = |x| − c(s+ τ) +

N − 1

c
ln(s+ τ)− L−B + C.

Step 2: proof of (4.2). Since u(t, x) − φ(x1 − ct) → 0 as t → −∞ uniformly in Ω, and
since φ(+∞) = 0, there exists τ1 < 0 such that φ(−cτ1) ≤ δ/2 and

u(τ1, x) ≤ φ(x1 − cτ1) +
δ

2
≤ φ(−cτ1) +

δ

2
≤ δ (4.15)

for all x ∈ Ω+. For t ≥ τ1 and x ∈ Ω+ with |x| ≥ L, let us set

u(t, x) = min
(
φ(ξ(t, x)) + δe−δϑ(t−τ1) + δe−µ(|x|−L), 1

)
,

where

ξ(t, x) = ζ(t−τ1, x)−%(t−τ1) = |x|−c(t−τ1 +τ)+
N − 1

c
ln(t−τ1 +τ)−L−B+C−%(t−τ1).
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Let us now check that u(t, x) is a supersolution of the problem satisfied by u(t, x) for t ≥ τ1

and x ∈ Ω+ with |x| ≥ L.
We first verify the initial and boundary conditions. On the one hand, at time t = τ1,

from (4.15) it follows that u(τ1, x) ≥ δ ≥ u(τ1, x) for all x ∈ Ω+ with |x| ≥ L. On the other
hand, for t ≥ τ1 and for all x ∈ Ω+ with |x| = L, one infers from (4.9), (4.13) and the choice
of B = 2C + ω + 1 ≥ 2C, that ξ(t, x) ≤ −B + C ≤ −C, hence (4.6) gives φ(ξ(t, x)) ≥ 1 − δ,
which yields u(t, x) ≥ min(1− δ + δe−δϑ(t−τ1) + δ, 1) = 1 > u(t, x). Lastly, owing to (1.7)-(1.8),
one has ν(x) · ∇u(t, x) = 0 for every t ≥ τ1 and x ∈ ∂Ω+ such that |x| > L and u(t, x) < 1,
since ν(x) · x/|x| = 0 at any such x.

Next, let us check that

Lu(t, x) = ut(t, x)−∆u(t, x)− f(u(t, x)) ≥ 0

for all t ≥ τ1 and x ∈ Ω+ such that |x| ≥ L and u(t, x) < 1. After a straightforward computa-
tion, we get, for such a (t, x),

Lu(t, x) = f(φ(ξ(t, x)))− f(u(t, x))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) −

(
%′(t− τ1) +

N − 1

|x|
− N − 1

c(t− τ1 + τ)︸ ︷︷ ︸
=A(t−τ1,x)≥−N−1

cτ
≥−N−1

cτ0

)
φ′(ξ(t, x)).

Three cases can occur, namely: either ζ(t−τ1, x) < −M−ϑ(t−τ1), or ζ(t−τ1, x) > M+ϑ(t−τ1),
or |ζ(t− τ1, x)| ≤M + ϑ(t− τ1).

Consider firstly the case

ζ(t− τ1, x) < −M − ϑ(t− τ1).

One then has ξ(t, x) ≤ ζ(t − τ1, x) < −M − ϑ(t − τ1) < −M1 − ϑ(t − τ1) ≤ −C, hence
1 > φ(ξ(t, x)) ≥ 1 − δ and u(t, x) ≥ 1 − δ (remember also that (t, x) is assumed to be such
that 1 > u(t, x)). By (4.5) one gets that

f(φ(ξ(t, x)))− f(u(t, x)) ≥ −f
′(1)

2
(δe−δϑ(t−τ1) + δe−µ(|x|−L)).

Notice also from (4.6) that 0 < −φ′(ξ(t, x)) ≤ Keµ∗ξ(t,x)/2 ≤ Keµ∗(−M1−ϑ(t−τ1))/2, which yields

−A(t− τ1, x)φ′(ξ(t, x)) ≥ −N − 1

cτ0

Keµ∗(−M1−ϑ(t−τ1))/2 ≥ −δ2e−δϑ(t−τ1)

thanks to (4.11). Hence, it follows from (4.1), (4.4)-(4.5), (4.13), as well as the negativity of φ′
and f ′(1), that

Lu(t, x) ≥ − f ′(1)

2
(δe−δϑ(t−τ1) + δe−µ(|x|−L))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) − %′(t− τ1)φ′(ξ(t, x))− δ2e−δϑ(t−τ1)

≥
(
− f ′(1)

2
− δϑ′(t− τ1)− δ

)
δe−δϑ(t−τ1) +

(
− f ′(1)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

31



Consider secondly the case

ζ(t− τ1, x) > M + ϑ(t− τ1).

One then has ξ(t, x) > M+ϑ(t−τ1)−%(+∞) ≥ C, hence 0 < φ(ξ(t, x)) ≤ δ and 0 < u(t, x) ≤ 3δ.
From (4.5) one gets that f(φ(ξ(t, x))) − f(u(t, x)) ≥ −(f ′(0)/2)(δe−δϑ(t−τ1) +δe−µ(|x|−L)). By
noticing that 0 < −φ′(ξ(t, x)) ≤ Ke−µ

∗ξ(t,x)/2 ≤ Ke−µ
∗(M+ϑ(t−τ1)−%(+∞))/2 from (4.6), one gets

that
−A(t− τ1)φ′(ξ(t, x)) ≥ −N − 1

cτ
Ke−µ

∗(M+ϑ(t−τ1)−%(+∞))/2 ≥ −δ2e−δϑ(t−τ1),

from (4.14). It then follows from (4.1), (4.4)-(4.5), (4.13), as well as the negativity of φ′
and f ′(0), that

Lu(t, x) ≥ − f ′(0)

2
(δe−δϑ(t−τ1) + δe−µ(|x|−L))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) − %′(t− τ1)φ′(ξ(t, x))− δ2e−δϑ(t−τ1)

≥
(
− f ′(0)

2
− δϑ′(t− τ1)− δ

)
δe−δϑ(t−τ1) +

(
− f ′(0)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

Lastly, we consider the case

|ζ(t− τ1, x)| ≤M + ϑ(t− τ1).

One observes from the definitions of Λ and % in (4.12)-(4.13) that, in this range, there holds

%′(t− τ1) + A(t− τ1, x) ≥ σδ
(
e−δϑ(t−τ1) + e−δ(t−τ1)

)
> 0. (4.16)

Three subcases may then occur. If −C ≤ ξ(t, x) ≤ C, then −φ′(ξ(t, x)) ≥ κ > 0 by (4.7)
and f(φ(ξ(t, x))) − f(u(t, x)) ≥ −

(
max[0,1] |f ′|

)
(δe−δϑ(t−τ1) + δe−µ(|x|−L)). Moreover, from the

expression of ξ(t, x) and (4.9), one obtains

|x|−L ≥ c(t−τ1+τ)−N − 1

c
ln(t−τ1+τ)+B−2C ≥ c

2
(t−τ1+τ)+B−2C >

c

2
(t−τ1)+B−2C.

This reveals that e−µ(|x|−L) ≤ e−µ(c(t−τ1)/2+B−2C). Therefore, since B > 2C, and by virtue
of (4.1), (4.5), (4.7)-(4.8) and (4.16), one gets that

Lu(t, x) ≥ −
(

max
[0,1]
|f ′|
)

(δe−δϑ(t−τ1) + δe−µ(|x|−L))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) + κσδ(e−δϑ(t−τ1) + e−δ(t−τ1))

≥
(
−max

[0,1]
|f ′| − δϑ′(t− τ1) + κσ

)
δe−δϑ(t−τ1) + κσδe−δ(t−τ1)

−
(

max
[0,1]
|f ′|+ µ2

)
δe−µ(c(t−τ1)/2+B−2C)

≥
[
κσ −

(
max
[0,1]
|f ′|+ µ2

)
e−µ(B−2C)

]
δe−µc(t−τ1)/2 ≥ 0.
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If ξ(t, x) ≥ C, one has 0 < φ(ξ(t, x)) ≤ δ and then 0 < u(t, x) ≤ 3δ. Due to (4.1), (4.4)-(4.5),
as well as (4.16), an analogous argument as above leads to

Lu(t, x) ≥
(
− f ′(0)

2
− δϑ′(t− τ1)

)
δe−δϑ(t−τ1) +

(
− f ′(0)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

If ξ(t, x) ≤ −C, it follows that 1 > φ(ξ(t, x)) ≥ 1− δ and then u(t, x) ≥ 1− δ (remember also
that (t, x) is assumed to be such that 1 > u(t, x)). Finally, one infers from (4.1), (4.4)-(4.5) as
well as (4.16) that

Lu(t, x) ≥
(
− f ′(1)

2
− δϑ′(t− τ1)

)
δe−δϑ(t−τ1) +

(
− f ′(1)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

As a consequence, we conclude that Lu(t, x) = ut(t, x) − ∆u(t, x) − f(u(t, x)) ≥ 0 for
all t ≥ τ1 and x ∈ Ω+ such that |x| ≥ L and u(t, x) < 1. Since f(1) = 0 and u < 1 in R × Ω,
the maximum principle then implies that

u(t, x) ≤ u(t, x) ≤ φ
(
|x| − c(t− τ1 + τ) +

N − 1

c
ln(t− τ1 + τ)− L−B + C − %(t− τ1)

)
+δe−δϑ(t−τ1) + δe−µ(|x|−L)

for all t ≥ τ1 and x ∈ Ω+ such that |x| ≥ L. Finally, since φ is decreasing, (4.2) holds by
taking z1 = −L−B + C − %(+∞) .

Step 3: proof of (4.3). Since u(t, ·) → 1 as t → +∞ locally uniformly in Ω by the complete
propagation condition (1.16), there exists τ2 > 0 such that

u(t, x) ≥ 1− δ for all t ≥ τ2 and x ∈ Ω+ with L ≤ |x| ≤ L+B + cτ − N − 1

c
ln τ. (4.17)

For t ≥ τ2 and x ∈ Ω+ with |x| ≥ L, let us set

u(t, x) = max
(
φ(ξ(t, x))− δe−δϑ(t−τ2) − δe−µ(|x|−L), 0

)
,

where

ξ(t, x) = ζ(t−τ2, x)+%(t−τ2) = |x|−c(t−τ2 +τ)+
N − 1

c
ln(t−τ2 +τ)−L−B+C+%(t−τ2).

Let us now check that u(t, x) is a subsolution of the problem satisfied by u(t, x) for t ≥ τ2

and x ∈ Ω+ with |x| ≥ L.
Let us first check the initial and boundary conditions. At time t = τ2, on the one hand, it

follows from (4.17) that, for every x ∈ Ω+ with L ≤ |x| ≤ L+B + cτ − ((N − 1)/c) ln τ , there
holds

u(τ2, x) ≥ 1− δ ≥ 1− δ − δe−µ(|x|−L) ≥ u(τ2, x).

On the other hand, for every x ∈ Ω+ such that |x| ≥ L+B + cτ − ((N − 1)/c) ln τ , one has

ξ(τ2, x) = |x| − cτ + ((N − 1)/c) ln τ − L−B + C ≥ C,

and it then follows from (4.6) that u(τ2, x) ≤ max(δ − δ − δe−µ(|x|−L), 0) = 0 < u(τ2, x).
Therefore, u(τ2, x) ≤ u(τ2, x) for all x ∈ Ω+ with |x| ≥ L. Next, for t ≥ τ2 and x ∈ Ω+
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with |x| = L, one has u(t, x) ≤ 1− δe−δϑ(t−τ2) − δ < 1− δ ≤ u(t, x) due to (4.17). Moreover, it
can be easily deduced that ν(x) · ∇u(t, x) = 0 for every t ≥ τ2 and x ∈ ∂Ω+ such that |x| > L
and u(t, x) > 0.

Let us now check that Lu(t, x) = ut(t, x)−∆u(t, x)−f(u(t, x)) ≤ 0 for all t ≥ τ2 and x ∈ Ω+

such that |x| ≥ L and u(t, x) > 0. A straightforward computation shows that, for such a (t, x),

Lu(t, x) = f(φ(ξ(t, x)))− f(u(t, x)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

− N − 1

|x|
µδe−µ(|x|−L) +

(
%′(t− τ2)−

( N − 1

|x|
− N − 1

c(t− τ2 + τ)︸ ︷︷ ︸
=A(t−τ2,x)≤(N−1)/L

))
φ′(ξ(t, x)).

As in Step 2, three cases can occur, namely: either ζ(t−τ2, x) > M+ϑ(t−τ2), or ζ(t−τ2, x) <
−M − ϑ(t− τ2), or |ζ(t− τ2, x)| ≤M + ϑ(t− τ2).

Consider firstly the case
ζ(t− τ2, x) > M + ϑ(t− τ2).

One then has ξ(t, x) ≥ ζ(t−τ2, x)>M+ϑ(t−τ2)>M2+ϑ(t−τ2) ≥ C. Hence, 0 < φ(ξ(t, x)) ≤ δ
and then u(t, x) ≤ δ (remember also that (t, x) is assumed to be such that 0 < u(t, x)). One
deduces from (4.5) that f(φ(ξ(t, x)))−f(u(t, x)) ≤ (f ′(0)/2)(δe−δϑ(t−τ2)+δe−µ(|x|−L)). Moreover,
by virtue of (4.6) and (4.11) one has

−A(t− τ2, x)φ′(ξ(t, x)) ≤ N − 1

L
Ke−µ

∗ξ(t,x)/2 ≤ N − 1

L
Ke−µ

∗(M2+ϑ(t−τ2))/2 ≤ δ2e−δϑ(t−τ2).

Therefore, it follows from (4.1), (4.4)-(4.5), (4.13), as well as the negativity of φ′ and f ′(0),
that

Lu(t, x) ≤ f ′(0)

2
(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

− N − 1

|x|
µδe−µ(|x|−L) + %′(t− τ2)φ′(ξ(t, x)) + δ2e−δϑ(t−τ2)

≤
(f ′(0)

2
+ δϑ′(t− τ2) + δ

)
δe−δϑ(t−τ2) +

(f ′(0)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.

Consider secondly the case

ζ(t− τ2, x) < −M − ϑ(t− τ2).

One then has ξ(t, x) < −M−ϑ(t−τ2)+%(+∞) ≤ −C, which implies 1 > φ(ξ(t, x)) ≥ 1−δ and
then 1 > u(t, x) ≥ 1−3δ. By (4.5) there holds f(φ(ξ(t, x)))−f(u(t, x)) ≤ (f ′(1)/2)(δe−δϑ(t−τ2)+

δe−µ(|x|−L)). One also infers from (4.6) and (4.14) that

−A(t− τ2, x)φ′(ξ(t, x)) ≤ N − 1

L
Keµ∗ξ(t,x)/2 ≤ N − 1

L
Keµ∗(−M−ϑ(t−τ2)+%(+∞))/2 ≤ δ2e−δϑ(t−τ2).

It then follows from (4.1), (4.4)-(4.5), (4.13), as well as the negativity of φ′ and f ′(1), that

Lu(t, x) ≤ f ′(1)

2
(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

−N − 1

|x|
µδe−µ(|x|−L) + %′(t− τ2)φ′(ξ(t, x)) + δ2e−δϑ(t−τ2)

≤
(f ′(1)

2
+ δϑ′(t− τ2) + δ

)
δe−δϑ(t−τ2) +

(f ′(1)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.
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Eventually, let us consider the case that

|ζ(t− τ2, x)| ≤M + ϑ(t− τ2).

One then observes from the definitions of Λ and % in (4.12)-(4.13) that in this range there holds

%′(t− τ2)− A(t− τ2, x) ≥ σδ(e−δϑ(t−τ2) + e−δ(t−τ2)) > 0. (4.18)

Similarly as the preceding step, three subcases may occur. If −C ≤ ξ(t, x) ≤ C, one then has

|x| − L ≥ c(t− τ2 + τ)− N − 1

c
ln(t− τ2 + τ) +B − 2C − %(t− τ2)

≥ c

2
(t− τ2 + τ) +B − 2C − %(+∞) ≥ c

2
(t− τ2) +B − 2C − %(+∞)

thanks to (4.9), whence e−µ(|x|−L) ≤ e−µ(c(t−τ2)/2+B−2C−%(+∞)). Moreover, φ′(ξ(t, x)) ≤ −κ < 0

and f(φ(ξ(t, x))) − f(u(t, x)) ≤
(

max[0,1] |f ′|
)
(δe−δϑ(t−τ2) + δe−µ(|x|−L)). Therefore, since B ≥

2C + %(+∞), one infers from (4.1), (4.5), (4.8) and (4.18) that

Lu(t, x) ≤
(

max
[0,1]
|f ′|
)

(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

− N − 1

|x|
µδe−µ(|x|−L) − κσδ(e−δϑ(t−τ2) + e−δ(t−τ2))

≤
(

max
[0,1]
|f ′|+ δϑ′(t− τ2)− κσ

)
δe−δϑ(t−τ2) +

(
max
[0,1]
|f ′|+ µ2

)
δe−µ(|x|−L)− κσδe−δ(t−τ2)

≤
(

max
[0,1]
|f ′|+ µ2

)
δe−µ(c(t−τ2)/2+B−2C−%(+∞)) − κσδe−δ(t−τ2)

≤
[(

max
[0,1]
|f ′|+ µ2

)
e−µ(B−2C−%(+∞)) − κσ

]
δe−δ(t−τ2) ≤ 0.

If ξ(t, x) ≥ C, one has 0 < φ(ξ(t, x)) ≤ δ and 0 < u(t, x) ≤ δ. Moreover, one infers
from (4.5) that f(φ(ξ(t, x))) − f(u(t, x)) ≤ (f ′(0)/2)(δe−δϑ(t−τ2) + δe−µ(|x|−L)). Therefore it
follows from (4.1), (4.4)-(4.5) and (4.18), as well as the negativity of φ′ and f ′(0), that

Lu(t, x) ≤ f ′(0)

2
(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

≤
(f ′(0)

2
+ δϑ′(t− τ2)

)
δe−δϑ(t−τ2) +

(f ′(0)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.

If ξ(t, x) ≤ −C, one has 1 > φ(ξ(t, x)) ≥ 1 − δ and then 1 > u(t, x) ≥ 1 − 3δ. By virtue
of (4.1), (4.4)-(4.5) and (4.18), as well as the negativity of φ′ and f ′(1), one gets that

Lu(t, x) ≤
(f ′(1)

2
+ δϑ′(t− τ2)

)
δe−δϑ(t−τ2) +

(f ′(1)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.

Consequently, we conclude that Lu(t, x) = ut(t, x)−∆u(t, x)− f(u(t, x)) ≤ 0 for all t ≥ τ2

and x ∈ Ω+ such that |x| ≥ L and u(t, x) > 0. Since f(0) = 0 and u > 0 in R × Ω, the
maximum principle then implies that

u(t, x) ≥ u(t, x) ≥ φ
(
|x| − c(t− τ2 + τ) +

N − 1

c
ln(t− τ2 + τ)− L−B + C + %(t− τ2)

)
−δe−δϑ(t−τ2) − δe−µ(|x|−L)

for all t ≥ τ2 and x ∈ Ω+ such that |x| ≥ L. Choosing z2 = −L, property (4.3) then follows
from the fact that B ≥ 2C + %(+∞) ≥ C + %(+∞) and the negativity of φ′. The proof of
Lemma 4.1 is thereby complete.
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Proof of Theorem 1.6

Let Ω be a funnel-shaped domain satisfying (1.7)-(1.8) with α > 0, and let u be the solution
of (1.1) with past condition (1.9), given in Proposition 1.2. One assumes that u propagates
completely in the sense of (1.16). First of all, we recall from (3.11) that, for every τ ∈ R,
u(t, x)→ 1 as x1 → −∞ uniformly with respect to t ≥ τ . Together with (1.16), one infers that

inf
Ω−∪{x∈Ω+:|x|≤L}

u(t, ·)→ 1 as t→ +∞.

With Lemma 4.1 and the limits φ(−∞) = 1, φ(+∞) = 0, it follows that, for any λ ∈ (0, 1),
there is r0 > 0 such that the upper level set Uλ(t) defined in (1.19) satisfies (1.23) for all t large
enough. In other words, the Hausdorff distance between the level set Eλ(t) and the expanding
spherical surface of radius ct− ((N − 1)/c) ln t in Ω+ remains bounded as t→ +∞.

Furthermore, from (2.2), (2.5) and the positivity of u, one gets that, for any η > 0, there
is tη < 0 such that 0 < u(t, ·) ≤ η in Ω+ for all t ≤ tη. In particular, by choosing any η
small enough so that f < 0 in (0, η], it then easily follows from the maximum principle and
parabolic estimates that u(t, x) → 0 as x1 → +∞, uniformly with respect to t ≤ tη, and then
also locally uniformly in t ∈ R again from parabolic estimates. Since u(t, x)→ 1 as x1 → −∞
(at least) locally uniformly in t ∈ R by (3.11), and since (1.9) and (1.23) hold, it is elementary
to check that u is a transition front in the sense of Definition 1.1 with sets Γt and Ω±t defined
by (1.20)-(1.21). Moreover, u then has a global mean speed equal to c.

To complete the proof of Theorem 1.6, it remains to show that u converges locally uniformly
along any of its level sets to planar front profiles as t → +∞. To do so, let τ > 0, τ1 ∈ R,
τ2 ∈ R, z1 ∈ R, z2 ∈ R, δ > 0 and µ > 0 be as in Lemma 4.1. For t ≥ max{τ1, τ2} and x ∈ Ω+

with |x| ≥ L, there holds

φ
(
|x| − c(t− τ2 + τ) +

N − 1

c
ln(t− τ2 + τ) + z2

)
− δe−δϑ(t−τ2) − δe−µ(|x|−L)

≤ u(t, x) ≤ φ
(
|x|−c(t−τ1+τ) +

N−1

c
ln(t−τ1+τ)+z1

)
+δe−δϑ(t−τ1)+δe−µ(|x|−L).

(4.19)
Consider now any λ ∈ (0, 1), any sequence (tn)n∈N such that tn → +∞ as n → +∞, and any
sequence (xn)n∈N in Ω such that u(tn, xn) = λ. From the properties of the previous paragraphs,
one infers that xn ∈ Ω+ for all n large enough, and |xn| → +∞ as n → +∞. Therefore, up
to extraction of a subsequence, two cases can occur: either d(xn, ∂Ω) → +∞ as n → +∞,
or supn∈N d(xn, ∂Ω) < +∞.

Case 1: d(xn, ∂Ω) → +∞ as n → +∞. Up to extraction of a subsequence, there is a unit
vector e such that xn/|xn| → e as n→ +∞. From standard parabolic estimates, the functions

un(t, x) = u(t+ tn, x+ xn)

converge in C1,2
(t,x);loc(R× RN), up to extraction of a subsequence, to a solution u∞ of

(u∞)t = ∆u∞ + f(u∞) in R× RN ,
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satisfying u∞(0, 0) = λ. It also follows from (4.19) that, for every (t, x) ∈ R× RN , one has

φ
(
|x+ xn| − c(t+ tn − τ2 + τ) +

N − 1

c
ln(t+ tn − τ2 + τ) + z2

)
−δe−δϑ(t+tn−τ2) − δe−µ(|x+xn|−L)

≤ un(t, x)

≤ φ
(
|x+ xn| − c(t+ tn − τ1 + τ) +

N − 1

c
ln(t+ tn − τ1 + τ) + z1

)
+δe−δϑ(t+tn−τ1) + δe−µ(|x+xn|−L)

(4.20)

for all n large enough. Since un(0, 0) = λ ∈ (0, 1) for all n ∈ N, one gets that, for every
t0 ∈ R, the sequence (|xn| − c(tn + t0) + ((N − 1)/c) ln(tn + t0))n∈N is bounded. Moreover,
since ln(t + tn + t0) − ln(tn + t0) → 0 as n → +∞ for every (t0, t) ∈ R2, and since |x + xn| =
|xn|+ x · xn/|xn|+ o(1) = |xn|+ x · e+ o(1) as n→ +∞ for every x ∈ RN , the passage to the
limit as n → +∞ in (4.20) yields the existence of some real numbers A and B such that, for
all (t, x) ∈ R× RN ,

φ(x · e− ct+ A) ≤ u∞(t, x) ≤ φ(x · e− ct+B).

One concludes from [5, Theorem 3.1] and the property u∞(0, 0) = λ, that

u∞(t, x) = φ(x · e− ct+ φ−1(λ)) for all (t, x) ∈ R× RN .

Consequently,

u(t+ tn, x+ xn)− φ(x · e− ct+ φ−1(λ))→ 0 in C1,2
(t,x);loc(R× RN) as n→ +∞.

The previous limit, together with standard parabolic estimates and the compactness of the unit
sphere of RN , yields the desired conclusion (1.22).

Case 2: supn∈N d(xn, ∂Ω) < +∞. Up to extraction of a subsequence, one has xn/|xn| → e
as n → +∞, where e = (e1, e

′) is a unit vector such that e1 > 0 and |e′| = e1 tanα. From
standard parabolic estimates, there are then an open half-space H of RN such that e is parallel
to ∂H and a C1,2

(t,x)(R×H) solution u∞ of{
(u∞)t = ∆u∞ + f(u∞) in R×H,
ν · ∇u∞ = 0 on R× ∂H,

(4.21)

such that, up to extraction of a subsequence, ‖u(·+ tn, ·+ xn)− u∞‖C1,2
(t,x)

(K ∩ (R×(Ω−xn))) → 0 as

n→ +∞ for every compact set K ⊂ R×H. Following an analogous analysis as the preceding
case, it comes that

φ(x · e− ct+ A) ≤ u∞(t, x) ≤ φ(x · e− ct+B) for all (t, x) ∈ R×H, (4.22)

for some real numbers A and B. Let us now call R the orthogonal reflection of RN with respect
to the hyperplane ∂H, and let us define

v∞(t, x) =

{
u∞(t, x) if (t, x) ∈ R×H,
u∞(t,Rx) if (t, x) ∈ R× (RN \H),
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Thanks to the Neumann boundary conditions satisfied by u∞ on R × ∂H, the function v∞ is
then a C1,2

(t,x)(R × RN) solution of the equation (v∞)t = ∆v∞ + f(v∞) in R × RN . Since e is
parallel to ∂H, one also gets from (4.22) that φ(x · e − ct + A) ≤ v∞(t, x) ≤ φ(x · e − ct + B)
for all (t, x) ∈ R×RN . It follows as in the previous case that v∞(t, x) = φ(x · e− ct+ φ−1(λ))
for all (t, x) ∈ R× RN , that is,

u∞(t, x) = φ(x · e− ct+ φ−1(λ)) for all (t, x) ∈ R×H,

which yields the desired conclusion. The proof of Theorem 1.6 is thereby complete. 2

5 Sufficient conditions on (R,α) for complete propagation
or for blocking

In this section, we show Theorems 1.8 and 1.9, which provide sufficient conditions on the
parameters (R,α) such that the solutions u of (1.1) and (1.9) given in Proposition 1.2 propagate
completely or are blocked.

5.1 Complete propagation for R ≥ R0 and α ∈ (0, π/2): proof of Theo-
rem 1.8

Consider any α ∈ (0, π/2), and assume that R ≥ R0, where R0 is given in Lemma 3.1. Re-
member that the limit 0 < u∞(x) ≤ 1 of u(t, x) as t → +∞ solves (1.17) and u∞(x) → 1 as
x1 → −∞. It then follows from Lemmas 3.1 and 3.3, with x0 = (−A, 0, · · · , 0) and A > 0 large
enough, that u∞ ≡ 1 in Ω, that is, u propagates completely. 2

5.2 Blocking for R� 1 and α not too small: proof of Theorem 1.9

This subsection is devoted to the proof of Theorem 1.9. Throughout this subsection, we assume
that N ≥ 3, and we are given

α∗ ∈
(

0,
π

2

)
and L∗ > 0.

We will consider domains Ω satisfying (1.7)-(1.8) whose left parts Ω− = {x ∈ Ω : x1 ≤ 0} have
cross sections of small radius R, whereas the angles α of the right parts Ω+ = {x ∈ Ω : x1 > 0}
are not too small, namely

α∗ ≤ α <
π

2
.

We also always assume that
0 < R < L ≤ L∗

in (1.7)-(1.8). We then aim at establishing the existence of a non-constant supersolution
of (1.17) that will block the propagation of the solution u of (1.1) satisfying the past con-
dition (1.9). More precisely, we will prove that, when the measure |{x ∈ Ω : −1 < x1 < 0}|
is sufficiently small (that is, when R > 0 is small enough), then there exists a supersolution u
of (1.17) such that u(x) = 1 for all x ∈ Ω with x1 ≤ −1 and u(x)→ 0 as x1 → +∞. The proof
is based on the construction of solutions of reduced problems in truncated domains, which is
itself based on variational arguments as in [3, 7].
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Some notations

To apply this scheme, let us first list the definitions of some sets that will be used in the sequel:

Ω−R,1 = {x ∈ Ω : −1 < x1 ≤ 0},
Γ−R,1 = {x ∈ Ω : x1 = −1},
Ω′R,α = {x ∈ Ω : x1 > −1},
Ω′R,α,r = Ω−R,1 ∪

{
x ∈ Ω+ : |x| < r

}
for r ≥ L∗,

C+
α,r =

{
x ∈ Ω+ : |x′| < x1 tanα, |x| < r

}
for r ≥ L∗,

Γ+
α,r =

{
x ∈ Ω+ : |x| = r

}
for r ≥ L∗.

(5.1)

Notice that Ω−R,1 and Γ−R,1 are actually independent of α, and that C+
α,r (a conical sector) and Γ+

α,r

are independent of R and L with 0 < R < L ≤ L∗ in (1.7)-(1.8).

Figure 5: Illustration of some domains that will be used in the proof of Theorem 1.9.

We will consider a reduced elliptic problem in Ω′R,α:
∆w + f(w) = 0 in Ω′R,α,

ν · ∇w = 0 on ∂Ω′R,α\Γ−R,1,
w = 1 on Γ−R,1,

w(x)→ 0 as |x| → +∞ in Ω′R,α.

(5.2)

We shall prove the existence of a positive C2(Ω′R,α) solution w of (5.2). Such a solution w,
extended by 1 in Ω\Ω′R,α, will give rise to a supersolution u of (1.17) which will block the
propagation of the solution u of (1.1) with past condition (1.9).

For this purpose, we first consider the corresponding truncated problem in the domain Ω′R,α,r
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(for r ≥ L∗), and show that the elliptic problem
∆wr + f(wr) = 0 in Ω′R,α,r,

ν · ∇wr = 0 on ∂Ω′R,α,r\(Γ−R,1 ∪ Γ+
α,r),

wr = 1 on Γ−R,1,

wr = 0 on Γ+
α,r,

(5.3)

admits a C2(Ω′R,α,r) solution wr such that 0 < wr < 1 in Ω′R,α,r\(Γ
−
R,1 ∪ Γ+

α,r). Then, we will
prove that wr → w as r → +∞ locally uniformly in Ω′R,α, with w satisfying (5.2).

Truncated problem (5.3) in Ω′R,α,r

For any bounded measurable subset D of RN , let us define the functional

H1(D) 3 w 7→ JD(w) =

∫
D

|∇w|2

2
+ F (w), 5

where F (t) =
∫ 1

t
f(s)ds. From (1.2)-(1.3) and the affine extension of f outside the interval [0, 1],

there exists κ > 0 such that

0 ≤ κ(t− 1)2 ≤ F (t) ≤ 1 + t2

κ
(5.4)

for all t ∈ R (hence, JD is well defined in H1(D) for every bounded measurable subset D of RN).
For r ≥ L∗, and 0 < R < L ≤ L∗ and α∗ ≤ α < π/2 in (1.7)-(1.8), define now

HR,α,r =
{
w ∈ H1(Ω′R,α,r) : w = 1 on Γ−R,1 and w = 0 on Γ+

α,r

}
, (5.5)

where the equalities on Γ−R,1 and Γ+
α,r are understood in the sense of trace. We aim at finding

a local minimizer of JΩ′R,α,r
belonging to HR,α,r. That will lead to the existence of a solution

to (5.3).
We start with the following result on the functional JC+

α,r
, where the conical sectors C+

α,r are
defined in (5.1) (we recall that these sets C+

α,r are independent of R and L).

Lemma 5.1. The function 0 is a strict local minimum of JC+
α,r

in the space H1(C+
α,r) and, more

precisely, there exist σ > 0 and δ > 0 such that, for all α ∈ [α∗, π/2), r ≥ L∗, and w ∈ H1(C+
α,r)

with ‖w‖H1(C+
α,r)
≤ δ, there holds

JC+
α,r

(w) ≥ JC+
α,r

(0) + σ‖w‖2
H1(C+

α,r)
.

Proof. Throughout the proof, α ∈ [α∗, π/2) and r ≥ L∗ are arbitrary. First observe, from
the Taylor expansion and the affine expansion of f outside [0, 1], that there exist a continuous
bounded function η : R→ R such that η(0) = 0 and

F (t) = F (0) + F ′(0)t+
F ′′(0)

2
t2 + η(t) t2 = F (0)− f ′(0)

2
t2 + η(t) t2

5We equip H1(D) with the norm ‖w‖H1(D) =
√
‖ |∇w| ‖2L2(D) + ‖w‖2L2(D).
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for all t ∈ R. Therefore, by setting

σ = min
(1

6
,
−f ′(0)

6

)
> 0,

we have

JC+
α,r

(w)− JC+
α,r

(0) =

∫
C+
α,r

|∇w|2

2
− f ′(0)

2
w2 + η(w)w2 ≥ 3σ‖w‖2

H1(C+
α,r)
−
∫
C+
α,r

|η(w)|w2 (5.6)

for all w ∈ H1(C+
α,r).

Define
p∗ =

2N

N − 2
∈ (2,+∞).

From Sobolev embedding theorem and the uniform (with respect to α ∈ [α∗, π/2)) Lipschitz
continuity of the conical sectors C+

α,L∗
, there is a positive constant C (depending on α∗, L∗

and N , but independent of α ∈ [α∗, π/2) and r ≥ L∗) such that

‖v‖Lp∗ (C+
α,L∗ ) ≤ C‖v‖H1(C+

α,L∗ )

for all α ∈ [α∗, π/2) and v ∈ H1(C+
α,L∗

).6 On the other hand, since the function η is continuous,
bounded and vanishes at 0, there is a positive constant C ′ (independent of α and r) such that

|η(t)| ≤ σ + C ′|t|p∗−2

for all t ∈ R. Hence, for all α ∈ [α∗, π/2), r ≥ L∗ and w ∈ H1(C+
α,r), there holds, with

v = w(r · /L∗) ∈ H1(C+
α,L∗

),∫
C+
α,r

|η(w)|w2 ≤ σ

∫
C+
α,r

w2 + C ′
∫
C+
α,r

|w|p∗

≤ σ‖w‖2
H1(C+

α,r)
+
C ′rN

LN∗
‖v‖p

∗

Lp∗ (C+
α,L∗ )

≤ σ‖w‖2
H1(C+

α,r)
+
C ′Cp∗rN

LN∗
‖v‖p

∗

H1(C+
α,L∗ )

= σ‖w‖2
H1(C+

α,r)
+
C ′Cp∗rN

LN∗

(∫
C+
α,r

LN−2
∗
rN−2

|∇w|2 +

∫
C+
α,r

LN∗
rN

w2
)p∗/2

≤ σ‖w‖2
H1(C+

α,r)
+ C ′Cp∗

(L∗
r

)(N−2)p∗/2−N
‖w‖p

∗

H1(C+
α,r)

= σ‖w‖2
H1(C+

α,r)
+ C ′Cp∗‖w‖p

∗

H1(C+
α,r)
.

Together with (5.6), one gets that

JC+
α,r

(w)− JC+
α,r

(0) ≥ 2σ‖w‖2
H1(C+

α,r)
− C ′Cp∗‖w‖p

∗

H1(C+
α,r)
≥ σ‖w‖2

H1(C+
α,r)

for all α ∈ [α∗, π/2), r ≥ L∗ and w ∈ H1(C+
α,r) such that

‖w‖H1(C+
α,r)
≤ δ :=

( σ

C ′Cp∗

)1/(p∗−2)

.

Since the positive constants σ and δ do not depend on α ∈ [α∗, π/2) and r ≥ L∗, the proof of
Lemma 5.1 is thereby complete.

6We here use the assumption N ≥ 3. In dimension N = 2, the sets H1(C+
α,L∗

) are not embedded into
L∞(C+

α,L∗
), and the following arguments would not work as such in dimension N = 2.
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Next, let us focus on the domain Ω′R,α,r, with 0 < R < L ≤ L∗, α ∈ [α∗, π/2), and r ≥ L∗.
We define the following function w0 in Ω′R,α,r by:

w0(x) =

{
−x1 if x ∈ Ω′R,α,r with x1 ≤ 0,

0 if x ∈ Ω′R,α,r with x1 > 0.

It is immediate to see that w0 ∈ HR,α,r, with HR,α,r defined in (5.5).

Lemma 5.2. Let δ > 0 be as in Lemma 5.1. Then there exist R∗ ∈ (0, L∗) and γ > 0 such
that, for every funnel-shaped domain Ω satisfying (1.7)-(1.8) with α ∈ [α∗, π/2), 0 < R ≤ R∗
and 0 < R < L ≤ L∗, for every r ≥ L∗, and for every w ∈ HR,α,r with ‖w − w0‖H1(Ω′R,α,r)

= δ,
there holds

JΩ′R,α,r
(w) ≥ JΩ′R,α,r

(w0) + γ.

Proof. Let δ > 0 and σ > 0 be as in Lemma 5.1. Throughout the proof, α ∈ [α∗, π/2) and
r ≥ L∗ are arbitrary. We consider funnel-shaped domains Ω satisfying (1.7)-(1.8), with a
parameter R satisfying 0 < R < L ≤ L∗, and some further restrictions on R will appear later.
Consider any w ∈ HR,α,r with

‖w − w0‖H1(Ω′R,α,r)
= δ.

In order to estimate JΩ′R,α,r
(w) − JΩ′R,α,r

(w0), we decompose the integrals over two disjoint
subsets of Ω′R,α,r, namely Ω−R,1 ∪ S

+
R,α and C+

α,r, with

S+
R,α = Ω′R,α,r\

(
Ω−R,1 ∪C

+
α,r) =

{
(x1, x

′) ∈ RN : 0<x1<L cosα, x1 tanα ≤ |x′| < h(x1)
}
, (5.7)

where the function h is as in (1.7)-(1.8) (notice that S+
R,α depends on Ω but not on r, since

L ≤ L∗ ≤ r). One has

JΩ′R,α,r
(w)− JΩ′R,α,r

(w0) = JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0) + JC+
α,r

(w)− JC+
α,r

(w0).

Since ‖w‖H1(C+
α,r)

= ‖w − w0‖H1(C+
α,r)
≤ ‖w − w0‖H1(Ω′R,α,r)

= δ, Lemma 5.1 yields

JC+
α,r

(w)− JC+
α,r

(w0) = JC+
α,r

(w)− JC+
α,r

(0) ≥ σ‖w‖2
H1(C+

α,r)
= σ‖w − w0‖2

H1(C+
α,r)
,

hence

JΩ′R,α,r
(w)− JΩ′R,α,r

(w0) ≥ JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0) + σ‖w − w0‖2
H1(C+

α,r)
. (5.8)

Let us now estimate JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0). On the one hand, with

ρ := min
(1

2
, κ
)
> 0

and κ > 0 as in (5.4), there holds

JΩ−R,1∪S
+
R,α

(w) =

∫
Ω−R,1∪S

+
R,α

|∇(w − 1)|2

2
+ F (w) ≥

∫
Ω−R,1∪S

+
R,α

|∇(w − 1)|2

2
+ κ (w − 1)2

≥ ρ‖w − 1‖2
H1(Ω−R,1∪S

+
R,α)

.

(5.9)
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On the other hand,

JΩ−R,1∪S
+
R,α

(w0) =
(∫

Ω−R,1

|∇w0|2

2
+ F (w0)

)
+ F (0) |S+

R,α|

≤
(1

2
+ max

[0,1]
F
)
|Ω−R,1|+ F (0) |S+

R,α| =
(1

2
+ F (θ)

)
ωN−1R

N−1 + F (0) |S+
R,α|,

where ωN−1 denotes the (N − 1)-dimensional Lebesgue measure of the unit Euclidean ball
in RN−1. Since 0 < R < L ≤ L∗ and h satisfies (1.7)-(1.8), one has 0 ≤ h(x1) − x1 tanα ≤
h(0) = R for all x1 ∈ [0, L cosα], hence

|S+
R,α| =

∫ L cosα

0

ωN−1

(
h(x1)N−1 − (x1 tanα)N−1

)
dx1

≤
∫ L cosα

0

ωN−1

(
(x1 tanα +R)N−1 − (x1 tanα)N−1

)
dx1

=
ωN−1

N tanα

(
(L sinα +R)N −RN − (L sinα)N

)
≤ ωN−1 cotα∗(L∗ sinα + L∗)

N−1R ≤ ωN−12N−1LN−1
∗ R cotα∗.

Therefore,

JΩ−R,1∪S
+
R,α

(w0) ≤
(1

2
+ F (θ)

)
ωN−1R

N−1 + F (0)ωN−12N−1LN−1
∗ R cotα∗

and, together with (5.9),

JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0)

≥ ρ‖w − 1‖2
H1(Ω−R,1∪S

+
R,α)
−
(1

2
+ F (θ)

)
ωN−1R

N−1 − F (0)ωN−12N−1LN−1
∗ R cotα∗

≥ ρ

2
‖w − w0‖2

H1(Ω−R,1∪S
+
R,α)
− ρ‖w0 − 1‖2

H1(Ω−R,1∪S
+
R,α)
−
(1

2
+F (θ)

)
ωN−1R

N−1

−F (0)ωN−12N−1LN−1
∗ R cotα∗

≥ ρ

2
‖w−w0‖2

H1(Ω−R,1∪S
+
R,α)
−
(4ρ

3
+

1

2
+F (θ)

)
ωN−1R

N−1−(ρ+F (0))ωN−12N−1LN−1
∗ R cotα∗.

Putting the previous inequality into (5.8), one gets that

JΩ′R,α,r
(w)− JΩ′R,α,r

(w0)

≥ β‖w − w0‖2
H1(Ω′R,α,r)

−
(4ρ

3
+

1

2
+F (θ)

)
ωN−1R

N−1 − (ρ+F (0))ωN−12N−1LN−1
∗ R cotα∗

= βδ2 −
(4ρ

3
+

1

2
+ F (θ)

)
ωN−1R

N−1 − (ρ+ F (0))ωN−12N−1LN−1
∗ R cotα∗

with β := min(σ, ρ/2) > 0.
Finally, since the positive constants β, δ, ρ are independent of α, R, L and r with α ∈

[α∗, π/2) and 0 < R < L ≤ L∗ ≤ r, there are then some positive real numbers R∗ ∈ (0, L∗)
and γ > 0 such that JΩ′R,α,r

(w) − JΩ′R,α,r
(w0) ≥ γ for all α ∈ [α∗, π/2), 0 < R ≤ R∗, 0 < R <

L ≤ L∗ ≤ r and w ∈ HR,α,r with ‖w − w0‖H1(Ω′R,α,r)
= δ. The proof of Lemma 5.2 is thereby

complete.
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End of the proof of Theorem 1.9

Let δ > 0, R∗ ∈ (0, L∗) and γ > 0 be as in Lemma 5.2. Let us then fix any funnel-shaped
domain Ω satisfying (1.7)-(1.8) with α ∈ [α∗, π/2), 0 < R ≤ R∗ and 0 < R < L ≤ L∗, and let
us show that the solution u of (1.1) with the past condition (1.9), given in Proposition 1.2, is
blocked in the sense of (1.15).

First of all, from Lemma 5.2, for any r ≥ L∗, the nonnegative functional JΩ′R,α,r
admits a

local minimizer wr in HR,α,r satisfying ‖wr−w0‖H1(Ω′R,α,r)
< δ. This function wr is then a weak

solution of the elliptic problem (5.3) and, since f > 0 in (−∞, 0) and f < 0 in (1,+∞), one
has 0 ≤ wr ≤ 1 almost everywhere in Ω′R,α,r and standard elliptic estimates imply that wr is a
classical C2(Ω′R,α,r) solution of (5.3), with 0 < wr < 1 in Ω′R,α,r \ (Γ−R,1 ∪ Γ+

α,r) (notice that Γ−R,1
and Γ+

α,r meet ∂Ω orthogonally).
Remembering the definition of Ω′R,α in (5.1), it follows from standard elliptic estimates that

there is a sequence (rn)n∈N diverging to +∞ such that the functions wrn converge in C2
loc(Ω

′
R,α)

to a C2(Ω′R,α) function w solving
∆w + f(w) = 0 in Ω′R,α,

ν · ∇w = 0 on ∂Ω′R,α\Γ−R,1,
w = 1 on Γ−R,1,

(5.10)

and 0 < w ≤ 1 in Ω′R,α from the strong maximum principle. Furthermore, for any bounded
measurable set D ⊂ Ω+, one has, for all n large enough, D ⊂ Ω′R,α,rn and ‖wrn‖L2(D) =
‖wrn −w0‖L2(D) ≤ ‖wrn −w0‖H1(Ω′R,α,rn ) < δ. Hence, ‖w‖L2(D) ≤ δ, and, since δ is independent
of D, one gets that ‖w‖L2(Ω+) ≤ δ by the monotone convergence theorem. Since |∇w| is
bounded from standard elliptic estimates, one infers that w(x) → 0 as |x| → +∞ in Ω′R,α. In
other words, w solves (5.2).

We now extend w in Ω\Ω′R,α by 1, namely we define

u(x) =

{
w(x) if x ∈ Ω′R,α,

1, if x ∈ Ω\Ω′R,α.

Since f(1) = 0 and 0 < w ≤ 1 is a classical solution of (5.2) in Ω′R,α, the function u is a
supersolution of (1.1). Finally, from the construction of u in the proof of Proposition 1.2, and
in particular from (2.1), (2.3) and the fact that w−(t, ·)→ 0 as t→ −∞ locally uniformly in Ω,
one has

un(−n, ·) ≤ u in Ω

for all n large enough, hence un(t, ·) ≤ u in Ω for all t ≥ −n and all n large enough, by the
maximum principle. As a consequence, u(t, ·) ≤ u in Ω for all t ∈ R, and the large time limit u∞
of u(t, ·) satisfies 0 < u∞ ≤ u in Ω. Thus, 0 < u∞ ≤ w in Ω′R,α and u∞(x) → 0 as x1 → +∞
in Ω. The proof of Theorem 1.9 is thereby complete.
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6 The set of (R,α) with complete propagation property is
open in (0,+∞)× (0, π/2): proof of Theorem 1.10

This section is devoted to the proof of Theorem 1.10. The main strategy is to argue by way of
contradiction and make use of Corollary 2.1 and Lemma 3.3. So, let (R,α) ∈ (0,+∞)×(0, π/2)
be such that the solution u of (1.1) with past condition (1.9) propagates completely in the sense
of (1.16), and let us assume that there is a sequence (Rn, αn)n∈N in (0,+∞)×(0, π/2) converging
to (R,α), such that the solutions un of (1.1) (in R × ΩRn,αn) with past conditions (1.9) do
not propagate completely. From the dichotomy result of Theorem 1.3, this means that each
solution un is blocked, that is, there is a C2(ΩRn,αn) solution 0 < u∞,n < 1 of (1.17) in ΩRn,αn

such that un(t, x)→ u∞,n(x) in C2
loc(ΩRn,αn) as t→ +∞ and

u∞,n(x)→ 0 as x1 → +∞ with x ∈ ΩRn,αn .

On the other hand, by assumption of the theorem, the functions hn involved in the defini-
tions (1.7)-(1.8) of the sets ΩRn,αn converge (in C2,β

loc (R)) to the function h involved in the
definition of the set ΩR,α. In particular, since α > 0, there is a point x0 ∈ RN (independent
of n ∈ N) such that BR0(x0) ⊂ ΩR,α and BR0(x0) ⊂ ΩRn,αn for all n ∈ N, where R0 > 0 is given
as in Lemma 3.1. It then follows from Lemmas 3.1 and 3.3 (the latter applied in ΩRn,αn) that,
for each n ∈ N,

min
BR0

(x0)
u∞,n < max

BR0

ψ = ψ(0) < 1,

where the C2(BR0) function ψ is as in Lemma 3.1. From standard elliptic estimates, there is
a C2(ΩR,α) solution 0 ≤ U ≤ 1 of (1.17) in ΩR,α such that, up to extraction of a subsequence,
‖u∞,n − U‖C2(K∩ΩRn,αn ) → 0 as n → +∞ for every compact set K ⊂ ΩR,α. In particular, one
has

min
BR0

(x0)
U ≤ ψ(0) < 1. (6.1)

Finally, remember that the functions u∞,n(x) converge to 1 as x1 → −∞ with x ∈ ΩRn,αn ,
uniformly with respect to n ∈ N, from property (2.6) in the construction of the solutions u
in Section 2. Therefore, U(x) → 1 as x1 → −∞ with x ∈ ΩR,α. Corollary 2.1 then implies
that the solution u of (1.1) in R × ΩR,α with past condition (1.9) satisfies u(t, x) ≤ U(x) for
all (t, x) ∈ R × ΩR,α. The condition (6.1) then means that u does not propagate completely,
which is a contradiction. The proof of Theorem 1.10 is thereby complete. 2
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