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redundancy scheduling

Daniel Brosch ∗ Monique Laurent † Andries Steenkamp ‡

September 11, 2020

Abstract

We investigate two classes of multivariate polynomials with vari-
ables indexed by the edges of a uniform hypergraph and coefficients de-
pending on certain patterns of union of edges. These polynomials arise
naturally to model job-occupancy in some queuing problems with re-
dundancy scheduling policy. The question, posed by Cardinaels, Borst
and van Leeuwaarden (arXiv:2005.14566, 2020), is to decide whether
their global minimum over the standard simplex is attained at the uni-
form probability distribution. By exploiting symmetry properties of
these polynomials we can give a positive answer for the first class and
partial results for the second one, where we in fact show a stronger
convexity property of these polynomials over the simplex.

1 Introduction

We consider the minimization of a class of polynomials over the standard
simplex. These polynomials have their variables labelled by the edges of a
complete uniform hypergraph and their coefficients are defined in terms of
some cardinality patterns of unions of edges. They arise naturally within
the modelling of job-occupancy in some queuing problems with redundancy
scheduling policies [3]. The question is whether these polynomials attain
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their minimum value at the barycenter of the standard simplex, which corre-
sponds to showing optimality of the uniform distribution for the underlying
queuing problem. This paper is devoted to this question.

We now introduce the classes of polynomials of interest. Given integers
n,L ≥ 2 we set V = [n] = {1, . . . , n} and E = {e ⊆ V : |e| = L}, so that
(V,E) can be seen as the complete L-uniform hypergraph on n elements.
We set m := |E| =

(n
L

)
, where we omit the explicit dependence on n,L to

simplify notation, and we let

∆m =
{
x = (xe)e∈E ∈ R

m : x ≥ 0,
∑

e∈E

xe = 1
}

denote the standard simplex in R
m. The elements of ∆m correspond to

probability vectors on m items and the barycenter x∗ = 1
m (1, . . . , 1) of ∆m

corresponds to the uniform probability vector.
Given an integer d ≥ 2 we consider the following m-variate polynomial

in the variables x = (xe : e ∈ E), which is a main player in the paper:

pd(x) =
∑

(e1,...,ed)∈Ed

1

|e1 ∪ . . . ∪ ed|
xe1 · · · xed . (1)

So pd is homogeneous with degree d. We are interested in the following
optimization problem

p∗d := min
x∈∆m

pd(x),

asking to minimize the polynomial pd over the simplex ∆m. Our main
objective is to show that the global minimum is attained at the uniform
probability vector x∗. The following is the main result of the paper.

Theorem 1. The global minimum of the polynomial pd from (1) over the
standard simplex ∆m is attained at the barycenter x∗ = 1

m (1, . . . , 1) of ∆m.

There is a second related class of polynomials of interest

fd(x) =
∑

(e1,...,ed)∈Ed

d∏

i=1

xei
|e1 ∪ . . . ∪ ei|

, (2)

also homogeneous with degree d. Note that for d = 1 both polynomials
coincide: p1 = f1 and, for d = 2, we have f2 = 1

Lp2. Here too the question
is whether the minimum of fd over the standard simplex ∆m is attained at
the uniform probability vector x∗.
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Question 1. Given integers n, d, L ≥ 2 is it true that the polynomial fd(x)
in (2) attains its minimum over ∆m at the barycenter x∗ of ∆m?

As noted above the answer is positive for d = 2 and n,L ≥ 2. As a
further partial result we give a positive answer for the case of degree d = 3
and edge size L = 2.

Theorem 2. For d = 3 and L = 2 the global minimum of the polynomial
fd from (2) over the standard simplex ∆m is attained at the barycenter
x∗ = 1

m(1, . . . , 1) of ∆m.

As we will mention in the next section the above question about the
polynomials fd, posed by the authors of [3] (in the case L = 2), is motivated
by its relevance to a problem in queueing theory. The polynomials fd can
be seen as a variant of the polynomials pd and as mentioned above both
classes coincide (up to scaling) for degree d = 2. For the polynomials pd
we can give a full answer and show that they indeed attain their minimum
at the barycenter of ∆m. The analysis of the polynomials fd is technically
much more involved and we have only partial results so far. In both cases
the key ingredient is showing that the polynomials are convex, i.e., that
they have positive semidefinite Hessians. It turns out that the Hessian of
the polynomial pd enters in some way as a component of the Hessian of
the polynomial fd. So this forms a natural motivation for the study of the
polynomials pd, though they form a natural class of symmetric polynomials
that are interesting for their own sake.

Exploiting symmetry plays a central role in our proofs. Indeed the key
idea is to show that the polynomials are convex, which, combined with their
symmetry properties, implies that the global minimum is attained at the
barycenter of the simplex. For this we show that their Hessian matrices
are positive semidefinite at each point of the simplex, which we do through
exploiting again their symmetry structure and links to Terwilliger algebras.

Symmetry is a widely used ingredient in optimization, in particular in
semidefinite optimization and algebraic questions involving polynomials. We
mention a few landmark examples as background information. Symmetry
can indeed be used to formulate equivalent, more compact reformulations for
semidefinite programs. The underlying mathematical fact is Wedderburn-
Artin theory, which shows that matrix ∗-algebras can be block-diagonalized
(see Theorem 3 below). An early well-known example is the linear pro-
gramming reformulation from [18] for the Lovász theta number of Hamming
graphs, showing the link to the Delsarte bound and Bose-Mesner algebras of
Hamming schemes [5, 6]. Symmetry is used more generally to give tractable
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reformulations for the semidefinite bounds arising from the next levels of
Lasserre’s hierarchy in [19] (which gives the explicit block-diagonalization
for the Terwilliger algebra of Hamming schemes, see Theorem 4 below) and,
e.g., in [9], [10], [11], [12]. For more examples and a broad exposition about
the use of symmetry in semidefinite programming we refer, e.g., to [1, 4] and
further references therein. Symmetry is also a crucial ingredient in the study
of algebraic questions about polynomials, like representations in terms of
sums of squares, and in polynomial optimization. We refer to [8] for a broad
exposition and, e.g., to [17] (for compact reformulations of Lasserre relax-
ations of symmetric polynomial optimization problems), [16] (for methods
to reduce the number of variables in programs involving symmetric polyno-
mials), and the recent works [13, 14] (which consider symmetric polynomials
with variables indexed by the k-subsets hypercube (as in our case) and un-
cover links with the theory of flag algebras by Razborov [15]).

Example 1. As an illustration let us consider the polynomial pd for edge
size L = 2. For d = 1, we have p1(x) = 1

2

∑
e∈E xe. For d = 2 we have

p2(x) =
1

2

∑

e∈E

x2e +
1

3

∑

(e1,e2)∈E2:
|e1∪e2|=3

xe1xe2 +
1

4

∑

(e1,e2)∈E2:
|e1∪e2|=4

xe1xe2 .

Using the notation pd(x) =
∑

e=(e1,...,ed)∈Ed cexe1 · · · xed from relation (8)
below for the polynomial pd, we show in Figure 1 the three possible patterns
for pairs of edges e = (e1, e2) and the corresponding coefficients ce.

ce = 1
2

ce = 1
3

ce = 1
4

Figure 1: The three patterns of pairs of edges in case (d = 2, L = 2)

In the same way, for d ≥ 3, pd(x) =
∑2d

k=2
1
k qd,k(x), where the sum-

mand qd,k(x) is a summation over all d-tuples of edges with a given pattern,
depending on the cardinality of their union:

qd,k(x) =
∑

(e1,...,ed)∈Ed:

|e1∪...∪ed|=k

xe1 · · · xed .

For the case d = 3 we need to consider the values k = 2, 3, 4, 5, 6; as an
illustration we show in Figure 2 all the possible patterns of triplets of edges
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e = (e1, e2, e3) and the corresponding coefficients ce that contribute to the
summands q3,k.

ce = 1
2

ce = 1
3

ce = 1
3

ce = 1
4

ce = 1
4

ce = 1
4

ce = 1
5

ce = 1
6

Figure 2: The eight patterns of triplets of edges in case (d = 3, L = 2)

Organization of the paper. In the rest of this section we first indicate
in Section 1.1 how the polynomials fd naturally arise within a problem of
queuing theory with redundancy scheduling policies. After that we present
in Section 1.2 the main ideas of the proofs, which highly rely on exploiting
symmetry properties of the polynomials. This involves in particular using
the Terwilliger algebra of the binary Hamming cube, so we include some
preliminaries about these Terwilliger algebras in Section 1.3.

In Section 2 we give the full proof for Theorem 1 showing that the
polynomials pd attain their global minimum at the barycenter of the simplex
and, in Section 3, we investigate the second class of polynomials fd. We prove
several properties of these polynomials, which we use to show Theorem 2.
We also present a range of values of (n, d, L) for which the polynomials fd
are indeed convex and thus Question 1 has a positive answer.

Some notation. Throughout we let I, J denote the identity matrix and the
all-ones matrix, whose size should be clear from the context. When we want
to specify the size we let In (resp., Jn) denote the n×n identity matrix (resp.,
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all-ones matrix) and, given two integers n,m ≥ 1, Jm,n denotes the m×n all-
ones matrix. For a symmetric matrix A the notation A � 0 means that A is
positive semidefinite. Given two matrices A,B ∈ R

n×n we let A ◦B ∈ R
n×n

denote their Hadamard product, with entries (A◦B)ij = AijBij for i, j ∈ [n].
It is known that A � 0 and B � 0 implies A ◦B � 0.

For a sequence α ∈ N
n we set |α| =

∑n
i=1 αi and, for an integer d ∈ N,

we set N
n
d = {α ∈ N

n : |α| = d}. Given a vector x ∈ R
n and α ∈ N

n we set
xα = xα1

1 · · · xαn
n . Throughout we let u1, . . . , um denote the standard basis

of Rm, where all entries of ui are 0 except its i-th entry which is equal to 1.
We let Sym(n) denote the set of permutations of the set V = [n].

1.1 Motivation

Our motivation for the study of the polynomials pd and fd comes from their
relevance to a problem in queueing theory. The question whether they attain
their minimum at the uniform probability distribution was posed to us by
the authors of [3], who use a positive answer to this question to establish a
result about the asymptotic behaviour of the job occupancy in a parallel-
servers system with redundancy scheduling in the light-traffic regime. In
what follows we will give only a high level sketch of this connection and we
refer to the paper [3] for a detailed exposition. We also refer to [3] for an
extended review of the relevant literature.

A crucial mechanism that has been considered to improve the perfor-
mance of parallel-servers systems in queueing theory is redundancy schedul-
ing. The key feature of this policy is that several replicas are created for
each arriving job, which are then assigned to distinct servers (and then, as
soon as the first of these replicas completes (or enters) service on a server
the remaining ones are stopped). The underlying idea is that sending repli-
cas of the same job to several servers will increase the chance of having
shorter queueing times. This however must be weighted against the risk of
wastage of capacity. An important question is thus to assess the impact of
redundancy scheduling policies. While most papers in the literature of re-
dundant scheduling assume that the set of servers to which the replicas are
sent is selected uniformly at random, the paper [3] considers the case when
the set of servers is selected according to a given probability distribution
and it investigates what is the impact of this probability distribution on the
performance of the system. It is shown there that while the impact remains
relatively limited in the heavy-traffic regime, the system occupancy is much
more sensitive to the selected probability distribution in the light-traffic
regime.
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We will now only introduce a few elements of the model considered in [3],
so that we can make the link to the polynomials studied in this paper. We
keep our presentation high level and refer to [3] for details. The setting is as
follows. There are n parallel servers, with average speed µ. Jobs arrive as
a Poisson process of rate nλ for some λ > 0. When a job arrives, L replicas
of it are created that are sent - with probability xe - to a subset e ⊆ [n]
of L servers. Here, L ≥ 2 is an integer and x = (xe)e∈E is a probability
distribution on the set E = {e ⊆ [n] : |e| = L} of possible collections of L
servers. As noted in [3] this can be seen as selecting an edge e ∈ E with
probability xe in the uniform hypergraph (V = [n], E) (with edge size L).

An important performance parameter is the system occupancy at time
t, which is represented by a vector (e1, ..., eM ) ∈ EM , where M = M(t) is
the total number of jobs present in the system and ei ∈ E is the collection
of servers to which the replicas of the i-th longest job in the system have
been assigned. Under suitable stability conditions and assuming each server
has the same speed µ and service requirements of the jobs are independent
and exponentially distributed with unit mean, the stationary distribution of
the occupancy of this edge selection is given by

π(e1, . . . , eM ) = C

M∏

i=1

nλxei
µ|e1 ∪ . . . ∪ ei|

for some constant C > 0 ([7], see relation (3) in [3]). Following [3], let
Qλ(x) be a random variable with the stationary distribution of the system
occupancy when the edge selection is given by the probability vector x =
(xe)e∈E. It then follows that, for any integer d ≥ 1, the probability that d
jobs are present in the system is given by

P{Qλ(x) = d} =
∑

(e1,...,ed)∈Ed

π(e1, . . . , ed).

Hence, P{Qλ(x) = 0} = C and

P{Qλ(x) = d} = P{Qλ(x) = 0}
(nλ

µ

)d ∑

(e1,...,ed)∈Ed

d∏

i=1

xei
|e1 ∪ . . . ∪ ei|

.

(See relation (11) in [3]). Therefore, P{Qλ(x) = d} is the polynomial fd(x)
(up to a scalar multiple). In [3] the light-traffic regime is considered, i.e.,
when λ ↓ 0, in the case L = 2. By doing a Taylor expansion one can see
that

P{Qλ(x) = 0} = 1 + o(1), P{Qλ(x) ≥ d} =
(nλ
µ

)d
fd(x) + o(λd)
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(see relation (13) in [3]). Therefore, with x∗ = (1, . . . , 1)/|E| denoting the
uniform probability vector, we have

lim
λ↓0

P{Qλ(x∗) ≥ d}

P{Qλ(x) ≥ d}
= lim

λ↓0

fd(x∗) + o(1)

fd(x) + o(1)
.

Hence, if the polynomial fd attains its minimum at the uniform distribution
x∗, then one has

lim
λ↓0

P{Qλ(x∗) ≥ d}

P{Qλ(x) ≥ d}
≤ 1.

This indicates that in the light-traffic regime the system occupancy is min-
imized when selecting uniformely at random the assignments to the servers
of the job replicas. This thus motivates Question 1 of showing that the poly-
nomial fd attains its minimum over the probability simplex at the uniform
point x∗.

1.2 Sketch of proof

Here we give a sketch of proof for our main results. We start with indicating
the main steps for proving Theorem 1, dealing with the class of polynomials
pd and after that we briefly indicate how to deal with the polynomials fd.

A first easy observation is that in order to show that the polynomial
pd attains its minimum at the barycenter of the standard simplex ∆m it
suffices to show that pd is convex over ∆m. This follows from a symmetry
argument, namely we exploit the fact that the polynomial pd is invariant
under the permutations of the edge set E that are induced by permutations
of [n].

Lemma 1. Assume the polynomial pd is convex on the simplex ∆m. Then
the point x∗ = (1/m)(1, . . . , 1) ∈ ∆m is a global minimizer of pd over ∆m.

Proof. The key fact we use is that the polynomial pd enjoys some symmetry
property; namely, for any tuple (e1, . . . , ed) ∈ Ed, the coefficient of the
monomial xe1 · · · xed in pd is 1/|e1 ∪ . . . ∪ ed|, which depends only on the
cardinality of the set e1 ∪ . . . ∪ ed. Recall that E = {e ⊆ V = [n] : |e| =
L}. Any permutation σ ∈ Sym(n) of [n] induces a permutation of E (still
denoted σ) by setting σ(e) = {jσ(1), . . . , jσ(L)} for e = {j1, . . . , jL} ∈ E. In
turn, σ acts on ∆m by setting σ(x) = (xσ(e))e∈∆m for x = (xe)e∈E ∈ ∆m.
We now observe that pd is invariant under this action of permutations σ ∈
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Sym(n). Indeed, for any σ ∈ Sym(n), we have

σ(pd)(x) = pd(σ(x)) =
∑

(e1,...,ed)∈Ed
1

|e1∪...∪ed|
xσ(e1) · · · xσ(ed)

=
∑

(f1,...,fd)∈Ed
1

|σ−1(f1)∪...∪σ−1(fd)|
xf1 · · · xfd

=
∑

(f1,...,fd)∈Ed
1

|f1∪...∪fd|
xf1 · · · xfd

= pd(x).

Let x ∈ ∆m be a global minimizer of pd. For any permutation σ ∈ Sym(n)
the permuted point σ(x) belongs to ∆m and pd(x) = pd(σ(x)) holds. Hence,
for the full symmetrization of x,

x∗ :=
1

n!

∑

σ∈Sym(n)

σ(x),

we have x∗ ∈ ∆m and

pd(x∗) ≤
1

n!

∑

σ∈Sym(n)

pd(σ(x)) = pd(x),

where the inequality holds since pd is convex over ∆m. This shows that x∗

is again a global minimizer of pd in ∆m. It suffices now to observe that, by
construction, x∗ = (1/m)(1, . . . , 1).

Therefore we are left with the task of showing that the polynomial pd is
convex over the simplex ∆m or, equivalently, that its Hessan matrix

H(pd)(x) = (∂2pd(x)/∂xe∂xf )e,f∈E

is positive semidefinite over ∆m. This forms the core technical part of the
proof. Here is a rough sketch of our proof technique.

A first step is to express the Hessian matrix as a matrix polynomial,
involving a collection of matrices Mγ ; see Lemma 4. The next step is to
show that each of the matrices Mγ appearing in this decomposition of the
Hessian is positive semidefinite. For this, we reduce to the task of showing
that a certain set of well-structured matrices are positive semidefinite, see
Lemmas 5 and 6. This last task is done by showing that these matrices lie
in the Terwilliger algebra of the Hamming cube, which enables us to exploit
its explicitly known block-diagonalization. The proof is then concluded by
using an integral representation argument, see Section 2.3.

The treatment for the polynomials fd has the same starting point: the
polynomial fd is invariant under any permutation of the edge set E induced
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by permutations of [n] and thus it suffices to show that fd is convex in
order to conclude that it attains its global minimum at the barycenter of
the simplex (i.e., the analogue of Lemma 1 holds for fd). After that we
again express the Hessian matrix H(fd) as a matrix polynomial, involving a
collection of marices Qγ ; see Lemma 9. Hence here too the task boils down
to showing that each of these matrices Qγ is positive semidefinite. This task
turns out to be considerably more difficult than for the matrices Mγ which
occurred in the analysis of the polynomial pd. As a first step toward the
analysis of the matrices Qγ we give a recursive reformulation for them, which
also makes apparent how the matrices Mγ enter their definition (namely as
a factor of a Hadamard product definition of Qγ); see Lemma 12. Based on
this we can show that the matrices Qγ are indeed positive semidefinite in
the case d = 3 and L = 2, thus showing Theorem 2; see Section 3.2.

1.3 Preliminaries on the Terwilliger algebra

As mentioned above we need to exploit the symmetry structure of the poly-
nomial pd in order to show that its Hessian matrix is positive semidefinite.
A crucial ingredient will be that the Hessiam matrix can be decomposed into
matrices that (after some reduction steps) all lie in the Terwiliger algebra
of the binary Hamming cube. We begin with introducing the definition of
the Terwiliger algebra An of the binary Hamming cube on n elements.

Definition 1 (Terwilliger algebra of the binary Hamming cube). Let
Pn denote the collection of all subsets of the set V = [n]. For every triple of
nonnegative integers i, j, t we define the 2n× 2n matrix Dt

i,j , indexed by Pn,
with entries

(
Dt

i,j

)
S,T

=

{
1 if |S| = i, |T | = j, |S ∩ T | = t,

0 else
.

for sets S, T ∈ Pn. Then the Terwilliger algebra of the binary Hamming
cube, denoted by An, is defined as the (real) span of all these matrices:

An =
{ ∑

i,j,t≥0

xti,jD
t
i,j : xti,j ∈ R

}
.

It is easy to see that An is a matrix ∗-algebra, i.e., An is closed under
taking linear combinations, matrix multiplications and transposition. One
way to see this is by realizing that the matrices Dt

i,j are exactly the indicator
matrices of the orbits of pairs in Pn × Pn under the element-wise action of
the symmetric group Sym(n).
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All matrix ∗-algebras can be block-diagonalized by Artin-Wedderburn
theory (see [20], see also [2] for a proof).

Theorem 3 (Artin-Wedderburn). Let A be a matrix ∗-algebra. Then there
exist nonnegative integers d and m1, . . . ,md and a ∗-algebra isomorphism

ϕ : A →
d⊕

k=1

C
mk×mk .

The important property here is that ϕ is an algebra isomorphism. Hence
we know that this isomorphism maintains positive semidefiniteness: for any
matrix A ∈ A, we have A � 0 ⇐⇒ ϕ(A) � 0. Moreover, the matrix ϕ(A) is
block-diagonal, with d diagnal blocks of sizes m1, . . . ,md. This is a crucial
property which can be exploited in order to get a more efficient way of
encoding positive semidefiniteness of matrices in A.

The explicit block-diagonalization of the Terwilliger algebra An was
given by Schrijver [19].

Theorem 4 (Schrijver [19]). The Terwiliger algebra An can be block-diagonalized
into ⌊n2 ⌋+ 1 blocks, of sizes mk = n−2k+ 1 for k = 0, . . . , ⌊n2 ⌋. The algebra
isomorphism ϕ sends the matrix

A =
n∑

i,j,t=0

xti,jD
t
i,j

to the block-matrix ϕ(A) = ⊕
⌈n/2⌉
k=0 Bk, where the matrix Bk ∈ R

mk×mk is
given by

Bk :=

((
n− 2k

i− k

)− 1
2
(
n− 2k

j − k

)− 1
2 ∑

t

βt
i,j,kx

t
i,j

)n−k

i,j=k

(3)

for k = 0, 1, . . . , ⌊n2 ⌋. Here, for any nonnegative integers i, j, t, k, we set

βt
i,j,k :=

n∑

u=0

(−1)u−t

(
u

t

)(
n− 2k

n− k − u

)(
n− k − u

i− u

)(
n− k − u

j − u

)
. (4)

In particular we have

n∑

i,j,t=0

xti,jD
t
i,j � 0 ⇐⇒ Bk � 0 for k = 0, 1, . . . , ⌊

n

2
⌋. (5)
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2 Proof of Theorem 1

In this section we give the proof of Theorem 1. As a warm-up we start with
the special case when the degree is d = 2 and the edge size is L = 2, where
we can easily show that the polynomial p2 is convex.

After that we proceed to the general case. We follow the steps as sketched
above: first we express the Hessian matrix of pd as a matrix polynomial and
we indicate some reductions that lead to the task of showing that a set
of well-structured matrices are positive semidefinite. After that we show
the positive semidefiniteness of these matrices by exploiting a link to the
Terwilliger algebra of the Boolean Hamming cube.

2.1 The case d = 2 and L = 2

Here we consider the polynomial

p2(x) =
∑

e,f∈E

1

|e ∪ f |
xexf ,

where E = {e ⊆ [n] : |e| = 2}. We show that the polynomial p2 is convex
over the standard simplex or, equivalently, that its Hessian matrix is positive
semidefinite over ∆m. Here, the Hessian matrix of p2 is the matrix indexed
by E, renamed M , with entries

Me,f =
1

|e ∪ f |
for e, f ∈ E. (6)

Consider the matrices A2, A3, A4 indexed by E, with entries

(As)e,f = 1 if |e ∪ f | = s, (As)e,f = 0 otherwise, for s = 2, 3, 4.

Then, we have A2 = I and A2 + A3 + A4 = J . Clearly we can express the
matrix M as a linear combination of these matrices:

M =
1

2
I +

1

3
A3 +

1

4
A4 =

1

4
I +

1

12
A3 +

1

4
J =

1

12
I +

1

4
J +

1

12
(A3 + 2I). (7)

We can now conclude that M � 0 (and thus the polynomial p2 is convex)
in view of the next lemma, which claims that A3 + 2I � 0.

Lemma 2. Consider the
(n
2

)
× n matrix Γn, with entries (Γn)e,i = |e ∩ {i}|

for e ∈ E and i ∈ [n]. Then A3 + 2I = ΓnΓT
n � 0.

Proof. Direct verification.
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Note that the matrices A2 = I,A3, A4 generate the Bose-Mesner algebra
of the Johnson scheme Jn

2 , with length n and weight 2, and thus the matrix
M belongs to this Bose-Mesner algebra (see [6] for details on the Johnson
scheme). For arbitrary degree d ≥ 3 and edge size L = 2 one could proceed
to show that the Hessian matrix of pd is convex by using a similar symmetry
reduction based on the Bose-Mesner algebra of the Johnson scheme Jp

2 for
suitable values of p. However, for general edge size L ≥ 3 we will need to
use a richer algebra, namely the Terwilliger algebra of the Hamming cube.
Hence we will treat in the rest of the section the general case d ≥ 2 and
L ≥ 2.

2.2 Computing the Hessian matrix of pd

In this section we indicate how to compute the Hessian matrix of the poly-
nomial

pd(x) =
∑

(e1,...,ed)∈Ed

c(e1,...,ed)xe1 · · · xed , (8)

where we set

c(e1,...,ed) =
1

|e1 ∪ . . . ∪ ed|
for e1, . . . , ed ∈ E (9)

and as before E = {e ⊆ V = [n] : |e| = L} with L ≥ 2. We begin with
getting the explicit coefficients of the polynomial pd expressed in the stan-
dard monomial basis. The basic fact we will now use is that the parameter
c(e1,...,ed) depends only on the set of distinct indices ei that are present in

the tuple (e1, . . . , ed) ∈ Ed and not on their multiplicities.
To formalize this, recall m = |E| and label the edges as e1, . . . , em so that

E = {e1, . . . , em}. For a d-tuple e := (ei1 , . . . , eid) ∈ Ed with i1, . . . , id ∈ [m],
define the sequence α(e) ∈ N

m, where, for ℓ ∈ [m], α(e)ℓ is the number of
indices among i1, . . . , id that are equal to ℓ. Then we have:

xei1 · · · xeid = xα(e)1e1 · · · xα(e)mem = xα(e)

and |α(e)| = d so that α(e) ∈ N
m
d . This justifies the following definition.

For α ∈ N
m
d , consider a d-tuple e ∈ Ed such that α(e) = α and define

ĉα := ce. (10)

In this way we get ĉ = (ĉα)α∈Nm
d

corresponding to the vector c = (ce)e∈Ed in
(9). As an example, for d = n = m = 3, if α = (1, 0, 2) then ĉα = c(e1,e3,e3) =

1
|e1∪e3|

. And, also for α = (2, 0, 1), we have ĉα = c(e1,e1,e3) = 1
|e1∪e3|

.

We can now reformulate the polynomial pd in the (usual) monomial basis.

13



Lemma 3. The polynomial pd from (8) can be reformulated as follows:

pd(x) =
∑

α∈Nm
d

ĉα
d!

α!
xα, (11)

setting α! = α1! · · ·αm! and where ĉα is as defined in (10).

Proof. Using the definition of the coefficients ĉα, we can rewrite pd as

pd(x) =
∑

α∈Nm
d

( ∑

e∈Ed:α(e)=α

ce

)
xα =

∑

α∈Nm
d

( ∑

e∈Ed:α(e)=α

ĉα

)
xα,

which is equal to
∑

α∈Nm
d
ĉα

d!
α!x

α. Here, for this last equality, we use the

monomial theorem, which claims

(
m∑

i=1

xi

)d

=
∑

α∈Nm
d

d!

α!
xα,

or, equivalently, that the number of d-tuples e ∈ Ed for which α(e) = α is
equal to d!/α!.

We now proceed to compute the Hessian matrix of pd.

Lemma 4. The Hessian of the polynomial pd is the matrix

H(pd)(x) =
( ∂2pd(x)

∂xei∂xej

)m
i,j=1

=
∑

γ∈Nm
d−2

d!

γ!
xγMγ ,

where we set
Mγ = (ĉγ+ui+uj

)mi,j=1 (12)

and the vectors u1, . . . , um ∈ R
m form the standard basis of Rm.

Proof. The partial derivatives of pd are

∂pd(x)

∂xei
=

∑

α∈Nm
d
:αi≥1

d!

(α− ui)!
ĉαx

α−ui =
∑

β∈Nm
d−1

d!

β!
ĉβ+ui

xβ .

Similarly we see that

∂2p(x)

∂xej∂xei
=

∑

β∈Nm
d−1:βj≥1

d!

(β − uj)!
ĉβ+ui

xβ−uj =
∑

γ∈Nm
d−2

ĉγ+ui+uj

d!

γ!
xγ .

This concludes the proof.
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Hence, if we can show that the matrices Mγ in (12) are all positive
semidefinite then it follows directly that the Hessian matrix of pd is positive
semidefinite on the standard simplex.

We next observe how to further simplify the matrices Mγ . For γ ∈ N
m,

define its support as the set Sγ = {e ∈ E : γe ≥ 1} and let

Wγ =
⋃

e∈Sγ

e

denote the subset of elements of V = [n] that are covered by some edge in
Sγ . Then, for any i, j ∈ [m], the support of γ+ui +uj is the set Sγ ∪{ei, ej}
and we have

ĉγ+ui+uj
=

1

|Wγ ∪ ei ∪ ej |
.

Hence the matrix Mγ depends only on the set Wγ (and not on the specific
choice of γ). This justifies defining the matrices

MW =
( 1

|W ∪ e ∪ f |

)
e,f∈E

(13)

for any set W ⊆ V = [n]. Summarizing, we have shown:

Lemma 5. Assume that the matrices MW from (13) are positive semidefi-
nite for all W ⊆ V with |W | ≥ L (if d ≥ 3) and |W | ≤ L(d− 2). Then the
polynomial pd is convex over the standard simplex.

If d = 2 then there is only one matrix to check, namely the matrix M∅

(for W = ∅). Note that the matrix M∅ coincides with the matrix in (6), so we
already know it is positive semidefinite when L = 2. However, if d ≥ 3, then
one needs to check all the matrices of the form MW in (13). Now comes the
last reduction, useful to link these matrices MW to the Terwiliger algebra,
which consists in removing duplicate rows and columns. Set p := |W | and
U := V \W , so that |U | = n− p. In addition let

F := {e ⊆ U : |e| ≤ L} (14)

denote the collection of subsets of U with size at most L. Now we consider
the matrix Mp, which is indexed by F , with entries

(Mp)e,f =
1

p + |e ∪ f |
for e, f ∈ F. (15)

Note that for p = 0 the matrix M0 coincides with the matrix M∅ in (13)
(and with the matrix in (6)). The next lemma links the matrices MW and
Mp.
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Lemma 6. Let L ≥ 2 and d ≥ 2. Consider the matrces MW in (13) and
Mp in (15). The following assertions are equivalent:

(i) MW � 0 for all W = e1 ∪ . . . ∪ ed−2 with e1, . . . ed−2 ∈ E.

(ii) Mp � 0 for all p ≤ L(d− 2) such that p ≥ L if d ≥ 3.

Proof. Let W = e1 ∪ . . . ∪ ed−2, where e1, . . . , ed−2 ∈ E. Consider the
partition of the set E into E = ∪L

i=0Ei, where Ei = {e ∈ E : |e \W | = i}.
With respect to this partition of its index set, the matrix MW has the
following block-form:

MW =




M0,0
W M0,1

W · · · M0,L
W

M1,0
W M1,1

W · · · M1,L
W

...
...

. . .
...

ML,0
W ML,1

W · · · ML,L
W




,

where the block M i,j
W has its rows indexed by Ei and its columns by Ej .

Note that, if two edges e, e′ ∈ E satisfy e \W = e′ \W , then the two rows
of MW indexed by e and e′ coincide: for any f ∈ E we have

(M i,j
W )e,f =

1

|W | + |(e ∪ f) \W |
=

1

|W | + |(e′ ∪ f) \W |
= (M i,j

W )e′,f .

In fact, after removing these duplicate rows (and columns) and keeping only
one copy for each subset of U = V \W , we obtain the matrix




M0,0
p M0,1

p · · · M0,L
p

M1,0
p M1,1

p · · · M1,L
p

...
...

. . .
...

ML,0
p ML,1

p · · · ML,L
p




,

which coincides with the matrix Mp in (15). Indeed, the above matrix
is indexed by the set F in (14) and its block-form is with respect to the
partition F = ∪L

i=0Fi, where Fi = {e ⊆ U : |e| = i}. So the block M i,j
p has

its rows indexed by Fi, its columns indexed by Fj , and its entries are

(M i,j
p )e,f =

1

p + |e ∪ f |
=

1

p + i + j − |e ∩ f |
for e ∈ Fi, f ∈ Fj . (16)

As the matrices Mp arise from MW by removing its duplicates rows and
columns it is clear that the matrices MW are positive semidefinite if and
only if the same holds for the matrices Mp. This concludes the proof.
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2.3 The general case d ≥ 2 and L ≥ 2

In Section 1.3 we gave preliminary results on the Terwilliger algebra, which
we will now use to prove that the matrices Mp in (15) are positive semidef-
inite. Fix 0 ≤ p ≤ n and consider the matrix Mp in (15) (with blocks as in
(16)). We start with observing that Mp belongs to the Terwilliger algebra
An−p. This is clear since relation (16) provides the explicit correspondence

between the blocks M i,j
p of Mp and the generating matrices Dt

i,j of the al-
gebra An−p:

Mp =

L∑

i=0

L∑

j=0

min{i,j}∑

t=0

1

p + i + j − t
Dt

i,j =

L∑

i=0

L∑

j=0

min{i,j}∑

t=0

xti,jD
t
i,j ,

after setting

xti,j =
1

p + i + j − t
. (17)

Let Bk be the corresponding matrices from (18). Then, in view of Theo-
rem 4, we know that Mp � 0 if and only if Bk � 0 for all 0 ≤ k ≤ ⌈n/2⌉.

In what follows p, k are fixed integers. We now proceed to show that
Bk � 0.

To simplify the notation we introduce the following parameters

a(i) :=

(
n− p− 2k

i− k

)− 1
2

, b(u, i) :=

(
n− p− k − u

i− u

)
, c(u) :=

(
n− p− 2k

n− p− k − u

)
.

for any integers i, u. Note that we may omit the obvious bounding conditions
on i and u since the corresponding parameters are zero if these conditions
are not satisfied; for instance, a(i) = 0 if i < k and b(u, i) = 0 if u > i. Then
we have

Bk =


a(i)a(j)

min{i,j}∑

t=0

βt
i,j,kx

t
i,j




n−p−k

i,j=k

(18)

and

βt
i,j,k :=

n−p∑

u=0

(−1)u−t

(
u

t

)
c(u)b(u, i)b(u, j). (19)

We now give an integral reformulation for the entries of the matrix Bk from
(18). It is based on the fact that

1

i
=

∫ 1

0
zi−1dz for any integer i ≥ 1, (20)
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which permits to give an integral reformulation for the scalars xti,j in (17).
This simple but powerful fact will be very useful to show Bk � 0.

Lemma 7. We have

min{i,j}∑

t=0

βt
i,j,kx

t
i,j =

min{i,j}∑

u=0

c(u)b(u, i)b(u, j)

∫ 1

0
g(u, z)zi+jdz,

where we define the function g(u, z) = zp−1(1−z
z )u for z ∈ (0, 1].

Proof. First we use the expressions of βt
i,j,k in (19) and of xti,j in (17) and

we exchange the summations in t and u to obtain

min{i,j}∑

t=0

βt
i,j,kx

t
i,j =

min{i,j}∑

u=0

(
u∑

t=0

1

p + i + j − t
(−1)u−t

(
u

t

))
c(u)b(u, i)b(u, j).

(21)
Now we use (20), which gives the following integral representation

1

p + i + j − t
=

∫ 1

0
zp+i+j−t−1dz.

Using this integral representation (and the binomial theorem for the equality
marked (*) below) we can reformulate the inner summation appearing in
(21) as follows:

u∑

t=0

1

p + i + j − t
(−1)u−t

(
u

t

)
=

u∑

t=0

(−1)u−t

(
u

t

)∫ 1

0
zp+i+j−t−1dz

=

∫ 1

0
zp+i+j−1(−1)u

(
u∑

t=0

(
−

1

z

)t(u
t

))
dz

(∗)
=

∫ 1

0
zp+i+j−1(−1)u

(
1 −

1

z

)u

dz

=

∫ 1

0
zp+i+j−1(−1)u

(
z − 1

z

)u

dz

=

∫ 1

0
zp−1

(
1 − z

z

)u

zi+jdz.

This concludes the proof.

We can now proceed to show that the matrices Bk in (18) are positive
semidefinite.
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Lemma 8. We have Bk � 0.

Proof. We use Lemma 7 to reformulate the matrix Bk. First, note that in
the result of Lemma 7, since b(u, i)b(u, j) = 0 if u > min{i, j}, we may
replace the summation on u from 0 ≤ u ≤ min{i, j} to 0 ≤ u ≤ n− p. This
implies:

Bk =
(
a(i)a(j)

n−p∑

t=0

βt
i,j,kx

t
i,j

)n−p−k

i,j=k

=

∫ 1

0

( n−p∑

u=0

g(u, z)c(u) (zia(i)b(u, i))︸ ︷︷ ︸
=:h(u,z,i)

(zja(j)b(u, j))︸ ︷︷ ︸
=:h(u,z,j)

)n−p−k

i,j=k
dz

=

n−p∑

u=0

∫ 1

0
g(u, z)c(u)

(
h(u, z, i)h(u, z, j)

)n−p−k

i,j=k︸ ︷︷ ︸
=:H(u,z,k)

dz

=
∑

u≥0

∫ 1

0
g(u, z)c(u)︸ ︷︷ ︸

≥0

H(u, z, k)︸ ︷︷ ︸
�0

dz � 0.

Here we used the fact that, for any u ∈ [0, n − p], the function g(u, z) is
nonnegative on (0, 1] and that the matrix H(u, z, k) is positive semidefinite
for any z ∈ [0, 1] since it is the outerproduct of the vector h(u, z, i) with
itself.

Therefore we have shown that the matrices Bk are positive semidefinite
and thus the following result.

Corollary 1. The matrices Mp from (15) are positive semidefinite for all
0 ≤ p ≤ n.

In view of Lemmas 5 and 6 we can conclude that the polynomial pd is
convex on ∆m, which concludes the proof of Theorem 1.

3 Investigating the polynomials fd

Here we consider the second class of polynomials fd from (2), namely

fd(x) =
∑

(e1,...,ed)∈Ed

d∏

i=1

xei
|e1 ∪ . . . ∪ ei|

.
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We address Question 1, which asks whether fd attains its minimum value
on the simplex ∆m at the barycenter of ∆m. Here too this question has
a positive answer if one can show that fd is convex over ∆m. This follows
since the analogue of Lemma 1 extends easily for the polynomial fd. We
conjecture that convexity holds in general.

Conjecture 1. For any integers n,L, d ≥ 2 the polynomial fd is convex
over the simplex ∆m.

For degree d = 2, we have f2 = 1
Lp2 and thus we know from Theorem 1

that f2 is convex. We will prove in Section 3.2 that Conjecture 1 holds for
degree d = 3 and edge size L = 2 and, in Section 3.3 and Appendix A,
we will give a range of values for (n,L, d) that were numerically tested and
support Conjecture 1.

In what follows we begin in Section 3.1 with giving a polynomial matrix
decomposition for the Hessian of fd and then a recursive reformulation for
it, making also apparent some links to the Hessian of pd. From this we see
that convexity of fd follows if we can show that a family of well-structured
matrices Qγ are positive semidefinite (see Lemmas 9 and 12). We can com-
plete this task in the case d = 3 and L = 2 (see Section 3.2). However,
understanding the general case is technically involved and would require
developing new tools for exploiting the symmetry structure present in the
matrices Qγ (which is now not captured by the Terwilliger algebra). This
goes beyond the scope of this paper and we leave it for further research.

3.1 Computing the Hessian of fd

We begin with expressing the polynomial fd in the standard monomial basis:

fd(x) =
∑

α∈Nm
d

xα
∑

e=(e1,...,ed)∈E
d

α(e)=α

d∏

i=1

1

|e1 ∪ . . . ∪ ei|
=
∑

α∈Nm
d

bαx
α, (22)

where we set

bα =
∑

e=(e1,...,ed)∈E
d

α(e)=α

d∏

i=1

1

|e1 ∪ . . . ∪ ei|
. (23)

Next we compute the Hessian of fd and we give a matrix polynomial refor-
mulation for it.
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Lemma 9. The Hessian of the polynomial fd is given by

∂2f(x)

∂xei∂xej
=

{ ∑
γ∈Nm

d−2
(γi + 1)(γj + 1)xγbγ+ui+uj

if i 6= j
∑

γ∈Nm
d−2

(γi + 1)(γi + 2)xγbγ+2ui
if i = j

where as before u1, . . . , um form the standard basis of Rm. In other words,

H(fd)(x) =
∑

γ∈Nm
d−2

xγQγ ,

where we define the symmetric m×m matrix Qγ with entries

(Qγ)ij = (γi + 1)(γj + 1)bγ+ui+uj
if i 6= j, (Qγ)ii = (γi + 1)(γi + 2)bγ+2ui

(24)
for i, j ∈ [m] and γ ∈ N

m
d−2. Hence, H(fd) � 0 if Qγ � 0 for all γ ∈ N

m
d−2.

Proof. Direct verification.

We now give a recursive reformulation for the coefficients of the polyno-
mial fd and for its Hessian matrix, that may possibly be helpful for a proof
by induction. Recall the definition of the coefficients bα of fd in (23). Fix
α ∈ N

m
d . There are d!

α! distinct tuples e such that α(e) = α. For any such se-
quence e = (ei1 , . . . , eid) with i1, . . . , id ∈ [m], α = α(e) means that, for any
ℓ ∈ [m], αℓ is the number of occurrences of ℓ within the multiset {i1, . . . , id};
so αℓ ≥ 1 if ℓ ∈ {i1, . . . , id} and αℓ = 0 if ℓ 6∈ {i1, . . . , id}. For instance, for
e = (e1, e2, e3, e2, e1), d = 5, m = 4, we have (i1, . . . , i5) = (1, 2, 3, 2, 1) and
α(e) = (2, 2, 1, 0).

To reformulate bα we exploit the fact that bα enjoys some invariance
property under permutations of [d], namely

bα =
∑

e=(ei1 ,...,eid)∈E
d:

α(e)=α

d∏

k=1

1

|ei1 ∪ . . . ∪ eik |
(25)

=
1

d!

∑

σ∈Sym(d)

∑

e=(ei1 ,...,eid)∈E
d:

α(e)=α

d∏

k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|
(26)

=
1

d!

∑

e=(ei1 ,...,eid)∈E
d

α(e)=α

∑

σ∈Sym(d)

d∏

k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|
︸ ︷︷ ︸

=:S

. (27)
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Observe that the inner summation S in (27) does not depend on the choice of
the sequence e such that α(e) = α; thus we may consider it fixed, denoted as
(ei1 , . . . , eid). Since there are d!

α! possible choices for selecting this sequence,
using relation (27) we can reformulate bα as follows:

bα =
1

d!

d!

α!

∑

σ∈Sym(d)

d∏

k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|
=

1

α!

∑

σ∈Sym(d)

d∏

k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|
.

Next we pull out the factor 1
|ei1∪...∪eid |

= ĉα which occurs for k = d and get

bα =
ĉα
α!

d∑

r=1

∑

σ∈Sym(d):σ(d)=r

d−1∏

k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|

=
ĉα
α!

d∑

r=1

bα−uir
(α− uir)!

= ĉα

d∑

r=1

bα−uir

αir

(∗)
= ĉα

∑

k∈[m]:αk≥1

bα−uk
.

Here, in the last equality marked (*), we use the fact that αk of the elements
in the multiset {i1, . . . , id} are equal to k. Summarizing we have shown:

Lemma 10. For any α ∈ N
m
d we have

bα = ĉα
∑

k∈[m]:αk≥1

bα−uk
.

We now proceed to give a recursive reformulation for the matrices Qγ in
(24). First we reformulate them using the scaled parameters

b̂α := α! bα, (28)

which satisfy the recursive relation:

b̂α = ĉα
∑

k:αk≥1

αk b̂α−uk
. (29)

Indeed, by Lemma 10 we have

b̂α = α! bα = α! ĉα
∑

k:αk≥1

bα−uk
= α! ĉα

∑

k:αk≥1

b̂α−uk

α− uk!
= ĉα

∑

k:αk≥1

αkb̂α−uk
.
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Lemma 11. For any γ ∈ N
m
d−2 we have Qγ = 1

γ! (̂bγ+ui+uj
)mi,j=1.

Proof. Direct verification: for i 6= j we have (Qγ)ij = (γi+1)(γj+1)bγ+ui+uj
=

b̂γ+ui+uj
(γi + 1)(γj + 1)/(γ + ui + uj)! = bγ+ui+uj

/γ! and, for i = j, we

have (Qγ)ii = (γi + 1)(γi + 2)bγ+2ui
= b̂γ+2ui

(γi + 1)(γi + 2)/(γ + 2ui)! =

b̂γ+2ui
/γ!.

Lemma 12. For d ≥ 3 and γ ∈ N
m
d−2 we have

Qγ = (ĉγ+ui+uj
)mi,j=1︸ ︷︷ ︸

Mγ

◦
( ∑

k∈[m]:γk≥1

Qγ−uk
+

1

γ!
(̂bγ+ui

+ b̂γ+uj
)mi,j=1

︸ ︷︷ ︸
=:Rγ

)

= Mγ ◦
( ∑

k∈[m]:γk≥1

Qγ−uk
+ Rγ

)
,

where the matrices Mγ were introduced in (12).

Proof. Combining Lemmas 10 and 12 we obtain

(Qγ)ij =
1

γ!
b̂γ+ui+uj

=
1

γ!
ĉγ+ui+uj

∑

k:(γ+ui+uj)k≥1

b̂γ+ui+uj−uk
(γ + ui + uj)k

=
1

γ!
ĉγ+ui+uj

( ∑

k 6=i,j:γk≥1

b̂γ+ui+uj−uk
γk + b̂γ+uj

(γi + 1) + b̂γ+uj
(γi + 1)

)

=
1

γ!
ĉγ+ui+uj

( ∑

k:γk≥1

b̂γ−uk+ui+uj
γk + b̂γ+ui

+ b̂γ+uj

)

= ĉγ+ui+uj

( ∑

k:γk≥1

b̂γ−uk+ui+uj

(γ − uk)!
+

1

γ!
(̂bγ+ui

+ b̂γ+uj
)
)

= ĉγ+ui+uj

( ∑

k:γk≥1

(Qγ−uk
)ij +

1

γ!
(̂bγ+ui

+ b̂γ+uj
)
)
,

which shows the claim.

3.2 The polynomial fd in the case d = 3, L = 2

Here we show that the polynomial fd is convex in the case d = 3 and
L = 2. In view of Lemma 9 it suffices to show that the matrix Qγ is positive
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semidefinite for any γ ∈ N
m
1 . Up to symmetry it suffices to show that Mγ � 0

for γ = u1. In view of Lemma 12 we have

Qu1 = (ĉu1+ui+uj
)mi,j=1︸ ︷︷ ︸

=Mu1

◦(Q0 + (̂bu1+ui
+ b̂u1+uj

)mi,j=1︸ ︷︷ ︸
=Ru1

).

where Mu1 = M2 is as defined in relation (15). We have seen in the previous
section that the matrix Mu1 is positive semidefinite (see Corollary 1). Hence
it suffices now to show that Q0 + Ru1 � 0. By definition, the entries of Q0

(case γ = 0) are

(Q0)ii = 2b2ui
=

2

L
, (Q0)ij = bui+uj

=
2

|ei ∪ ej |
for i 6= j ∈ [m].

Moreover, b̂2u1 = 2b2u1 = 2
L and b̂u1+ui

= bu1+ui
= 2

|e1∪ei|
for i ≥ 2. Using

this we obtain that

Q0 + Ru1 = 2 ·
( 1

|e1 ∪ ej |
+

1

|ei ∪ ej |
+

1

|e1 ∪ ei|

)m
i,j=1

=: 2B,

where we define the matrix B as

B :=
( 1

|e ∪ f |
+

1

|e1 ∪ e|
+

1

|e1 ∪ f |

)
e,f∈E

. (30)

The main result of this section is the next lemma, which implies that the
polynomial f3 is convex for L = 2 and thus settles Conjecture 1 for the case
d = 3, L = 2.

Lemma 13. Assume L = 2. The matrix B in (30) is positive semidefinite.

Before proceeding to the proof, let us make a few observations. Note
that B can be decomposed as B = M0 +R, where M0 = M∅ has been shown
earlier to be positive semidefinite (recall Corollary 1, or note that M0 is
the matrix M from (6) as we are in the case L = 2). On the other hand,
the matrix R is not positive semidefinite. In fact, R has rank 2 and it has
a negative eigenvalue. One can infer from the results in Section 2.1 that
λmin(M0) = 1/12, while one can check that λmin(R) < −1/12 = −0.0833...
when n ≥ 6 (see Table 1). Hence in general one cannot argue that B � 0
by simply looking at the smallest eigenvalues of its summands M0 and R.

In the rest of the section we prove Lemma 13. To fix ideas let e be the
edge e1 = {1, 2} and to simplify notation set p = n − 2 and q =

(n−2
2

)
.

Then the index set of B can be partitioned into {e1} ∪ I1 ∪ I2 ∪ I0, setting
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Ik = {{k, i} : 3 ≤ i ≤ n} for k = 1, 2, and I0 = {{i, j} : 3 ≤ i < j ≤ n}. So
|I1| = |I2| = p and |I0| = q. With respect to this partition one can verify
that the matrix B has the following block-form:

B =

e1 I1 I2 I0





e1
3
2

7
6J1,p

7
6J1,p J1,q

I1
7
6Jp,1 Jp +

1
6Ip

11
12Jp +

1
12Ip

5
6Jp,q +

1
12Γ

T

I2
7
6Jp,1

11
12Jp +

1
12Ip Jp +

1
6Ip

5
6Jp,q +

1
12Γ

T

I0 Jq,1
5
6Jq,p +

1
12Γ

5
6Jq,p +

1
12Γ M + 1

2Jq

.

Here the matrix M is the matrix from (6) (replacing n by p = n− 2), i.e.,

M =
1

12
Iq +

1

4
Jq +

1

12
ΓΓT ,

where Γ = Γp is the
(
p
2

)
× p matrix from Lemma 2, whose (f, i)th entry is

|{i} ∩ f |.
We now proceed to show that the matrix B is positive semidefinite.

Note that its lower right diagonal block indexed by the set I0 is positive
semidefinite (since M � 0). Our strategy is now to ‘eliminate’ the borders
indexed by the sets {e1}, I1 and I2 successively, one by one, by taking Schur
complements, until reaching a final matrix whose positive semidefiniteness
can be seen directly. To do the Schur complement operations we will need
to invert matrices of the form aI + bJ . The next lemma indicates how to do
that, its proof is straightforward and thus omitted.

Lemma 14. For a, b ∈ R such that a + pb 6= 0, the matrix aIp + bJp is
nonsingular with inverse

(aIp + bJp)−1 =
1

a

(
Ip −

b

pb + a

)
Jp.

Step 1: We take a first Schur complement with respect to the upper left
corner of B (indexed by e1) and call B̃1 the resulting matrix, which reads
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





Jp + 1
6Ip

11
12Jp + 1

12Ip
5
6Jp,q + 1

12ΓT

11
12Jp + 1

12Ip Jp + 1
6Ip

5
6Jp,q + 1

12ΓT

5
6Jq,p + 1

12Γ 5
6Jq,p + 1

12Γ 1
12Iq + 1

12ΓΓT + 3
4Jq

−
2

3




7
6Jp,1

7
6Jp,1

Jq,1



(

7
6J1,p

7
6J1,p J1,q

)

=







5
54Jp + 1

6Ip
1

108Jp + 1
12Ip

1
18Jp,q + 1

12ΓT

1
108Jp + 1

12Ip
5
54Jp + 1

6Ip
1
18Jp,q + 1

12ΓT

1
18Jq,p + 1

12Γ 1
18Jq,p + 1

12Γ 1
12Iq + 1

12ΓΓT + 1
12Jq

.

Setting B1 = 6B̃1, we obtain B � 0 ⇐⇒ B̃1 � 0 ⇐⇒ B1 � 0, where

B1 =







5
9Jp + Ip

1
18Jp + 1

2Ip
1
3Jp,q + 1

2ΓT

1
18Jp + 1

2Ip
5
9Jp + Ip

1
3Jp,q + 1

2ΓT

1
3Jq,p + 1

2Γ 1
3Jq,p + 1

2Γ 1
2Iq + 1

2ΓΓT + 1
2Jq

.

Step 2: We now take the Schur complement with respect to the upper left
corner of B1 (indexed by I1), where we use Lemma 14 to invert it:

(Ip + 5/9Jp)−1 = Ip − 5/(5p + 9)Jp.

After taking this Schur complement the resulting matrix B̃2 reads:

B̃2 =

( )
5
9Jp + Iq

1
3Jp,q + 1

2ΓT

1
3Jq,p + 1

2Γ 1
2Iq + 1

2ΓΓT + 1
2Jq

−




1
18Jp + 1

2Ip

1
3Jq,p + 1

2Γ



(
Ip −

5

(5p + 9)
Jp

)(
1
18Jp + 1

2Ip
1
3Jp,q + 1

2ΓT

)

=

( )
3
4Ip + 11p+23

4(5p+9)Jp
1
4ΓT + 3p+7

2(5p+9)Jp,q

1
4Γ + 3p+7

2(5p+9)Jq,p
1
2Iq + 1

4ΓΓT + 3p+7
2(5p+9)Jq

.
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Setting B2 = 4B̃2 we obtain B � 0 ⇐⇒ B1 � 0 ⇐⇒ B2 � 0, where

B2 =

( )
3Ip + 11p+23

5p+9 Jp ΓT + 2(3p+7)
5p+9 Jp,q

Γ + 2(3p+7)
5p+9 Jq,p 2Iq + ΓΓT + 2(3p+7)

5p+9 Jq
.

Step 3: Inverting the top left block of B2 via Lemma 14 gives

(
3Ip +

11p + 23

5p + 9
Jp

)−1
=

1

3
Ip −

(11p + 23)

3(11p2 + 38p + 27)
Jp.

Taking the third and final Schur complement with respect to this block in

B2 we get the matrix

B3 := 2Iq + ΓΓT +
2(3p + 7)

5p + 9
Jq

−
(

ΓT +
2(3p + 7)

5p + 9
Jq,p

)(1

3
Ip −

(11p + 23)

3(11p2 + 38p + 27)
Jp

)(
ΓT +

2(3p + 7)

5p + 9
Jp,q

)

= 2Iq +
2

3
ΓΓT +

2(9p + 25)

3(11p + 27)
Jq.

It is now clear that B3 � 0. In turn, this implies that B2 � 0 and thus
B � 0, which concludes the proof of Lemma 13.

3.3 Some numerical justification for convexity of fd

We have carried out some numerical experiments for a range of values of
d, L, n and verified that the matrices Qγ are positive semidefinite for all
γ ∈ N

n
d−2 in these cases. Hence for these values the polynomial fd is convex

and Conjecture 1 holds. Recall from Lemma 12 that the matrix Qγ can be
decomposed as

Qγ = Mγ ◦
( ∑

k∈[m]:γk≥1

Qγ−uk

︸ ︷︷ ︸
=:Bγ

+Rγ

)
= Mγ ◦ (Bγ + Rγ).

By the results in Section 2 we already know that the matrix Mγ is
positive semidefinite. Hence it now suffices to show that the matrix Bγ +Rγ

is positive semidefinite for each γ ∈ N
n
d−2. In Tables 1-10 in Appendix A

we provide information about the minimum eigenvalues of the matrices Qγ ,
Bγ and Rγ for different values of n, d and L. In each case we consider
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the possible different cases for selecting γ ∈ N
n
d−2 up to symmetry; the

different instances of γ are indicated in the column labeled γ. For instance,
for d = 3, L = 2 there is only one possibility, say γ = u1 corresponding to
edge e1 = {1, 2} (see Table 1). For d = 4, L = 2 there are three possibilities:
γ = 2e1 with e1 = {1, 2}, γ = u1 + u2 with e1 = {1, 2} and e2 = {1, 3}, and
γ = u1 + u2 with e1 = {1, 2} and e2 = {3, 4} (see Table 2).

In all cases we find that Qγ is positive semidefinite (in fact, positive
definite). As mentioned above for the case d = 3, we see that in general this
cannot be deduced by considering its summands separately, since Rγ has a
negative smallest eigenvalue and λmin(Bγ) + λmin(Rγ) < 0 from a certain n
(which depends on d and L). In addition we observe that λmin(Bγ) stays
constant from a certain n while λmin(Rγ) keeps decreasing.
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A. Shceller-Wolf. Queueing with redundant requests: Exact analysis.
Queueing Systems, 83(3–4):227–259, 2016.

[8] K. Gatermann and P.A. Parrilo. Symmetry groups, semidefinite pro-
grams, and sums of squares. Journal of Pure and Applied Algebra,
192(1-3):9–128, 2004.

[9] D. Gijswijt, A. Schrijver, and H. Tanaka. New upper bounds for nonbi-
nary codes based on the Terwilliger algebra and semidefinite program-
ming. Journal of Comb. Theory, Series A, 113(8):1719–1731, 2008.

[10] D. Gijswijt, H.D. Mittelmann, and A. Schrijver. Semidefinite code
bounds based on quadruple distances. IEEE Transactions on Infor-
mation Theory, 58:2697–2705, 2012.

[11] M. Laurent. Strengthened semidefinite programming bounds for codes.
Mathematical Programming, 109(2-3):239–261, 2007.

[12] B. Litjens, S. Polak, and A. Schrijver. Semidefinite bounds for non-
binary codes based on quadruples. Codes, Designs and Cryptography,
84:87–100, 2017.

[13] A. Raymond, J. Saunderson, M. Singh, and R. Thomas. Symmetric
sums of squares over k-subset hypercubes. Mathematical Programming
Series A, 167(2):315–354, 2018.

[14] A. Raymond, M. Singh, and R. Thomas. Symmetry in Turán sums
of squares polynomials from flag algebras. Algebraic Combinatorics,
1(2):249-274, 2018.

[15] A. Razborov, Flag algebras. Journal of Symbolic Logic, 72:1239–1282,
2007.

[16] C. Riener. On the degree and half degree principle for symmetric poly-
nomials. Journal of Pure and Applied Algebra, 216(4):850–856, 2012.

29



[17] C. Riener, T. Theobald, L. Jansson Andrén, and J.B. Lasserre. Exploit-
ing symmetry in SDP-relaxations for polynomial optimization. Mathe-
matics of Operations Research, 38(1):122–141, 2013.

[18] A. Schrijver. A comparison of the Delsarte and Lovász bounds. IEEE
Transactions on Information Theory, 25:425–429, 1979.

[19] A. Schrijver. New code upper bounds from the Terwilliger algebra and
semidefinite programming. IEEE Transactions on Information Theory,
51:2859–2866, 2005.

[20] J.H.M. Wedderburn. Lectures on matrices. Dover Publications Inc.,
New York, 1964.

30



A Numerical results for the polynomials fd

We group here Tables 1-10 which show the eigenvalues of the matrices Qγ ,
Bγ and Rγ for small values of n, d, L.

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

3 2 3 [[1, 2]] 0.0556 0.1667 -0.0236
3 2 4 [[1, 2]] 0.0347 0.0833 -0.0478
3 2 5 [[1, 2]] 0.0347 0.0833 -0.0729
3 2 6 [[1, 2]] 0.0347 0.0833 -0.0987
3 2 7 [[1, 2]] 0.0347 0.0833 -0.1249
3 2 8 [[1, 2]] 0.0347 0.0833 -0.1514

Table 1: Case d = 3, L = 2

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

4 2 3 [[1, 2], [1, 2]] 0.0185 0.0556 -0.0415
4 2 4 [[1, 2], [1, 2]] 0.0133 0.0347 -0.0805
4 2 5 [[1, 2], [1, 2]] 0.0133 0.0347 -0.1189
4 2 6 [[1, 2], [1, 2]] 0.0133 0.0347 -0.1572

4 2 3 [[1, 3], [1, 2]] 0.0593 0.1778 -0.0028
4 2 4 [[1, 3], [1, 2]] 0.0238 0.0802 -0.0478
4 2 5 [[1, 3], [1, 2]] 0.0214 0.0743 -0.092
4 2 6 [[1, 3], [1, 2]] 0.0214 0.0741 -0.1359
4 2 7 [[1, 3], [1, 2]] 0.0214 0.074 -0.1798

4 2 4 [[3, 4], [1, 2]] 0.0174 0.0694 -0.0012
4 2 5 [[3, 4], [1, 2]] 0.0174 0.0694 -0.029
4 2 6 [[3, 4], [1, 2]] 0.0174 0.0694 -0.0565
4 2 7 [[3, 4], [1, 2]] 0.0174 0.0694 -0.084
4 2 8 [[3, 4], [1, 2]] 0.0174 0.0694 -0.1115
4 2 9 [[3, 4], [1, 2]] 0.0174 0.0694 -0.139

Table 2: Case d = 4, L = 2
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

5 2 3 [[1, 2], [1, 2], [1, 2]] 0.0062 0.0185 -0.0425
5 2 4 [[1, 2], [1, 2], [1, 2]] 0.0049 0.0133 -0.0804
5 2 5 [[1, 2], [1, 2], [1, 2]] 0.0049 0.0133 -0.1163

5 2 3 [[1, 3], [1, 2], [1, 2]] 0.0298 0.0894 -0.0062
5 2 4 [[1, 3], [1, 2], [1, 2]] 0.0111 0.0396 -0.0605
5 2 5 [[1, 3], [1, 2], [1, 2]] 0.0098 0.0358 -0.112
5 2 6 [[1, 3], [1, 2], [1, 2]] 0.0098 0.0358 -0.162

5 2 4 [[3, 4], [1, 2], [1, 2]] 0.0077 0.0307 -0.0085
5 2 5 [[3, 4], [1, 2], [1, 2]] 0.0072 0.0307 -0.038
5 2 6 [[3, 4], [1, 2], [1, 2]] 0.0067 0.0307 -0.0667
5 2 7 [[3, 4], [1, 2], [1, 2]] 0.0067 0.0307 -0.0948

5 2 4 [[1, 4], [1, 3], [1, 2]] 0.0263 0.1052 -0.009
5 2 5 [[1, 4], [1, 3], [1, 2]] 0.0162 0.0716 -0.0681
5 2 6 [[1, 4], [1, 3], [1, 2]] 0.0151 0.0676 -0.1255
5 2 7 [[1, 4], [1, 3], [1, 2]] 0.015 0.0675 -0.1819
5 2 8 [[1, 4], [1, 3], [1, 2]] 0.015 0.0675 -0.2374

5 2 4 [[2, 4], [1, 3], [1, 2]] 0.0188 0.0753 -0.0063
5 2 5 [[2, 4], [1, 3], [1, 2]] 0.0151 0.0678 -0.0613
5 2 6 [[2, 4], [1, 3], [1, 2]] 0.0139 0.0635 -0.1147
5 2 7 [[2, 4], [1, 3], [1, 2]] 0.0139 0.0635 -0.167
5 2 8 [[2, 4], [1, 3], [1, 2]] 0.0139 0.0635 -0.2186

5 2 5 [[2, 3], [1, 5], [1, 4]] 0.0114 0.0571 -0.0053
5 2 6 [[2, 3], [1, 5], [1, 4]] 0.0113 0.0569 -0.0395
5 2 7 [[2, 3], [1, 5], [1, 4]] 0.0107 0.0569 -0.0731
5 2 8 [[2, 3], [1, 5], [1, 4]] 0.0107 0.0569 -0.1062
5 2 9 [[2, 3], [1, 5], [1, 4]] 0.0107 0.0569 -0.1391

5 2 3 [[2, 3], [1, 3], [1, 2]] 0.0926 0.2778 -0.0
5 2 4 [[2, 3], [1, 3], [1, 2]] 0.0237 0.085 -0.0967
5 2 5 [[2, 3], [1, 3], [1, 2]] 0.0212 0.0764 -0.1882
5 2 6 [[2, 3], [1, 3], [1, 2]] 0.0212 0.0764 -0.2766

5 2 6 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0011
5 2 7 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0233
5 2 8 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0452
5 2 9 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.067
5 2 10 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0885
5 2 11 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.11

Table 3: Case d = 5, L = 2
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

6 2 3 [[1, 2], [1, 2], [1, 2], [1, 2]] 0.0021 0.0062 -0.0349
6 2 4 [[1, 2], [1, 2], [1, 2], [1, 2]] 0.0017 0.0049 -0.0652
6 2 5 [[1, 2], [1, 2], [1, 2], [1, 2]] 0.0017 0.0049 -0.0931

6 2 3 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.0124 0.0371 -0.0094
6 2 4 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.0044 0.0165 -0.0579
6 2 5 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.004 0.0148 -0.1029
6 2 6 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.004 0.0148 -0.1457

6 2 3 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0261 0.0785 -0.0016
6 2 4 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0064 0.0237 -0.0626
6 2 5 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0057 0.0211 -0.1193
6 2 6 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0057 0.0211 -0.1732

6 2 4 [[3, 4], [1, 2], [1, 2], [1, 2]] 0.0031 0.0125 -0.0141
6 2 5 [[3, 4], [1, 2], [1, 2], [1, 2]] 0.0026 0.0124 -0.0384
6 2 6 [[3, 4], [1, 2], [1, 2], [1, 2]] 0.0024 0.0115 -0.0616

6 2 4 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0038 0.0153 -0.0007
6 2 5 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0036 0.0153 -0.0255
6 2 6 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0033 0.0153 -0.0492
6 2 7 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0033 0.0153 -0.0721

6 2 4 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0147 0.0589 -0.0142
6 2 5 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0084 0.0386 -0.0771
6 2 6 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0078 0.036 -0.1372
6 2 7 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0078 0.036 -0.1952

6 2 4 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0129 0.0514 -0.0151
6 2 5 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0079 0.037 -0.0766
6 2 6 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0073 0.0344 -0.1352
6 2 7 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0073 0.0344 -0.1919

6 2 4 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0102 0.0407 -0.0089
6 2 5 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0074 0.0343 -0.064
6 2 6 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0068 0.0318 -0.1167
6 2 7 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0068 0.0318 -0.1675

6 2 5 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0059 0.0294 -0.0148
6 2 6 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0052 0.0293 -0.0485
6 2 7 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0049 0.0278 -0.0813
6 2 8 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0049 0.0278 -0.1132

6 2 5 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0053 0.0266 -0.0055
6 2 6 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0047 0.0259 -0.0344
6 2 7 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0044 0.0249 -0.0623
6 2 8 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0044 0.0249 -0.0897
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6 2 3 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0525 0.1574 -0.0017
6 2 4 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0125 0.0467 -0.1176
6 2 5 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0112 0.0416 -0.2252
6 2 6 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0112 0.0416 -0.3274

6 2 6 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0038 0.023 -0.0086
6 2 7 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0035 0.0229 -0.0278
6 2 8 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0033 0.022 -0.0466
6 2 9 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0033 0.022 -0.065

6 2 5 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0208 0.104 -0.0167
6 2 6 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0121 0.066 -0.0852
6 2 7 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0115 0.063 -0.1515
6 2 8 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0115 0.0629 -0.2164

6 2 5 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0141 0.0706 -0.0132
6 2 6 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0107 0.0592 -0.0743
6 2 7 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0101 0.0562 -0.1336
6 2 8 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0101 0.0562 -0.1915

6 2 6 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0084 0.0505 -0.0119
6 2 7 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0079 0.0503 -0.0503
6 2 8 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0075 0.049 -0.0879
6 2 9 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0075 0.0489 -0.1248

6 2 4 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0246 0.0985 -0.0122
6 2 5 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0162 0.0746 -0.1185
6 2 6 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0151 0.0695 -0.2198
6 2 7 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0151 0.0695 -0.3177

6 2 4 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.0204 0.0815 -0.0003
6 2 5 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.014 0.0644 -0.0946
6 2 6 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.0129 0.0594 -0.1846
6 2 7 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.0129 0.0594 -0.2716

6 2 6 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0077 0.046 -0.005
6 2 7 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0074 0.0456 -0.0392
6 2 8 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0071 0.0456 -0.0727
6 2 9 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0071 0.0456 -0.1055

6 2 5 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.0121 0.0603 -0.0084
6 2 6 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.01 0.055 -0.0643
6 2 7 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.0094 0.0523 -0.1184
6 2 8 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.0094 0.0523 -0.1712

6 2 6 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.0077 0.0461 -0.0096
6 2 7 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.0073 0.0461 -0.0451
6 2 8 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.007 0.0457 -0.0799
6 2 9 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.007 0.0457 -0.114
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6 2 7 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0057 0.0399 -0.0047
6 2 8 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0056 0.0399 -0.0276
6 2 9 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0053 0.0398 -0.0501
6 2 10 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0053 0.0398 -0.0723

6 2 5 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0121 0.0606 -0.0192
6 2 6 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0112 0.0606 -0.0784
6 2 7 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0106 0.0594 -0.1359
6 2 8 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0106 0.0594 -0.1919

6 2 8 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0008
6 2 9 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0161
6 2 10 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0312
6 2 11 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0462

Table 4: Case d = 6, L = 2

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

2 3 3 0.2222 0.0 0.6667
2 3 4 0.0556 0.0 -0.0
2 3 5 0.0222 0.0 -0.0
2 3 6 0.0111 0.0 -0.0

Table 5: Case d = 2, L = 3

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

3 3 3 [[1, 2, 3]] 0.2222 0.2222 0.4444
3 3 4 [[1, 2, 3]] 0.0139 0.0556 -0.0064
3 3 5 [[1, 2, 3]] 0.0053 0.0222 -0.0191
3 3 6 [[1, 2, 3]] 0.0033 0.0111 -0.0382
3 3 7 [[1, 2, 3]] 0.0032 0.0111 -0.064
3 3 8 [[1, 2, 3]] 0.0032 0.0111 -0.0963

Table 6: Case d = 3, L = 3
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

4 3 3 [[1, 2, 3], [1, 2, 3]] 0.1481 0.2222 0.2222
4 3 4 [[1, 2, 3], [1, 2, 3]] 0.0035 0.0139 -0.0081
4 3 5 [[1, 2, 3], [1, 2, 3]] 0.0012 0.0053 -0.0216
4 3 6 [[1, 2, 3], [1, 2, 3]] 0.0009 0.0033 -0.0409
4 3 7 [[1, 2, 3], [1, 2, 3]] 0.0008 0.0032 -0.0659

4 3 4 [[1, 2, 3], [1, 2, 4]] 0.0069 0.0278 -0.0007
4 3 5 [[1, 2, 3], [1, 2, 4]] 0.0023 0.0114 -0.0176
4 3 6 [[1, 2, 3], [1, 2, 4]] 0.0015 0.0067 -0.0424
4 3 7 [[1, 2, 3], [1, 2, 4]] 0.0014 0.0065 -0.0751

4 3 5 [[1, 2, 5], [1, 3, 4]] 0.0025 0.0126 -0.001
4 3 6 [[1, 2, 5], [1, 3, 4]] 0.0013 0.0066 -0.0169
4 3 7 [[1, 2, 5], [1, 3, 4]] 0.0012 0.0063 -0.0386
4 3 8 [[1, 2, 5], [1, 3, 4]] 0.0012 0.0063 -0.0662

4 3 6 [[1, 2, 6], [3, 4, 5]] 0.0011 0.0069 -0.0004
4 3 7 [[1, 2, 6], [3, 4, 5]] 0.001 0.0065 -0.0147
4 3 8 [[1, 2, 6], [3, 4, 5]] 0.001 0.0063 -0.0335
4 3 9 [[1, 2, 6], [3, 4, 5]] 0.001 0.0063 -0.0566

Table 7: Case d = 4, L = 3
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

5 3 3 [[1, 2, 3], [1, 2, 3], [1, 2, 3]] 0.0823 0.1481 0.0988
5 3 4 [[1, 2, 3], [1, 2, 3], [1, 2, 3]] 0.0009 0.0035 -0.0059
5 3 5 [[1, 2, 3], [1, 2, 3], [1, 2, 3]] 0.0003 0.0012 -0.0146
5 3 6 [[1, 2, 3], [1, 2, 3], [1, 2, 3]] 0.0002 0.0009 -0.0262

5 3 4 [[1, 2, 3], [1, 2, 4], [1, 2, 4]] 0.0026 0.0104 -0.0009
5 3 5 [[1, 2, 3], [1, 2, 4], [1, 2, 4]] 0.0007 0.0037 -0.016
5 3 6 [[1, 2, 3], [1, 2, 4], [1, 2, 4]] 0.0005 0.0024 -0.0366
5 3 7 [[1, 2, 3], [1, 2, 4], [1, 2, 4]] 0.0004 0.0022 -0.0626

5 3 5 [[1, 2, 5], [1, 3, 4], [1, 3, 4]] 0.0008 0.0038 -0.0018
5 3 6 [[1, 2, 5], [1, 3, 4], [1, 3, 4]] 0.0004 0.0021 -0.0145
5 3 7 [[1, 2, 5], [1, 3, 4], [1, 3, 4]] 0.0004 0.002 -0.0308
5 3 8 [[1, 2, 5], [1, 3, 4], [1, 3, 4]] 0.0004 0.002 -0.0508

5 3 6 [[1, 2, 6], [3, 4, 5], [3, 4, 5]] 0.0003 0.0021 -0.0027
5 3 7 [[1, 2, 6], [3, 4, 5], [3, 4, 5]] 0.0003 0.0019 -0.0134
5 3 8 [[1, 2, 6], [3, 4, 5], [3, 4, 5]] 0.0003 0.0018 -0.0267

5 3 4 [[1, 2, 3], [1, 2, 4], [1, 3, 4]] 0.0067 0.027 -0.0001
5 3 5 [[1, 2, 3], [1, 2, 4], [1, 3, 4]] 0.0014 0.007 -0.0287
5 3 6 [[1, 2, 3], [1, 2, 4], [1, 3, 4]] 0.001 0.0046 -0.0672
5 3 7 [[1, 2, 3], [1, 2, 4], [1, 3, 4]] 0.0009 0.0043 -0.1159

5 3 5 [[1, 2, 3], [1, 2, 4], [1, 2, 5]] 0.0018 0.0089 -0.0032
5 3 6 [[1, 2, 3], [1, 2, 4], [1, 2, 5]] 0.0009 0.0048 -0.0289
5 3 7 [[1, 2, 3], [1, 2, 4], [1, 2, 5]] 0.0007 0.0042 -0.0622
5 3 8 [[1, 2, 3], [1, 2, 4], [1, 2, 5]] 0.0007 0.0041 -0.103

5 3 5 [[1, 2, 3], [1, 2, 4], [1, 3, 5]] 0.0016 0.008 -0.0023
5 3 6 [[1, 2, 3], [1, 2, 4], [1, 3, 5]] 0.0008 0.0044 -0.0269
5 3 7 [[1, 2, 3], [1, 2, 4], [1, 3, 5]] 0.0007 0.0042 -0.0586
5 3 8 [[1, 2, 3], [1, 2, 4], [1, 3, 5]] 0.0007 0.004 -0.0975

5 3 6 [[1, 2, 3], [1, 2, 4], [1, 5, 6]] 0.0007 0.0042 -0.0033
5 3 7 [[1, 2, 3], [1, 2, 4], [1, 5, 6]] 0.0006 0.0039 -0.0242
5 3 8 [[1, 2, 3], [1, 2, 4], [1, 5, 6]] 0.0006 0.0037 -0.0504
5 3 9 [[1, 2, 3], [1, 2, 4], [1, 5, 6]] 0.0006 0.0037 -0.0818

5 3 5 [[1, 2, 3], [1, 2, 4], [3, 4, 5]] 0.0015 0.0076 -0.0012
5 3 6 [[1, 2, 3], [1, 2, 4], [3, 4, 5]] 0.0007 0.0041 -0.0245
5 3 7 [[1, 2, 3], [1, 2, 4], [3, 4, 5]] 0.0007 0.0038 -0.0545
5 3 8 [[1, 2, 3], [1, 2, 4], [3, 4, 5]] 0.0007 0.0038 -0.0913

5 3 6 [[1, 2, 3], [1, 2, 4], [3, 5, 6]] 0.0007 0.004 -0.0027
5 3 7 [[1, 2, 3], [1, 2, 4], [3, 5, 6]] 0.0006 0.0036 -0.0228
5 3 8 [[1, 2, 3], [1, 2, 4], [3, 5, 6]] 0.0005 0.0035 -0.048
5 3 9 [[1, 2, 3], [1, 2, 4], [3, 5, 6]] 0.0005 0.0035 -0.0781
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5 3 6 [[1, 2, 4], [1, 3, 5], [2, 3, 6]] 0.0007 0.004 -0.0019
5 3 7 [[1, 2, 4], [1, 3, 5], [2, 3, 6]] 0.0006 0.0038 -0.0216
5 3 8 [[1, 2, 4], [1, 3, 5], [2, 3, 6]] 0.0006 0.0036 -0.0462
5 3 9 [[1, 2, 4], [1, 3, 5], [2, 3, 6]] 0.0006 0.0036 -0.0758

5 3 7 [[1, 2, 5], [1, 3, 4], [1, 6, 7]] 0.0005 0.0035 -0.003
5 3 8 [[1, 2, 5], [1, 3, 4], [1, 6, 7]] 0.0005 0.0035 -0.0207
5 3 9 [[1, 2, 5], [1, 3, 4], [1, 6, 7]] 0.0005 0.0035 -0.0423
5 3 10 [[1, 2, 5], [1, 3, 4], [1, 6, 7]] 0.0005 0.0035 -0.0678

5 3 7 [[1, 2, 7], [1, 3, 4], [2, 5, 6]] 0.0005 0.0034 -0.0023
5 3 8 [[1, 2, 7], [1, 3, 4], [2, 5, 6]] 0.0005 0.0034 -0.0192
5 3 9 [[1, 2, 7], [1, 3, 4], [2, 5, 6]] 0.0005 0.0034 -0.0399
5 3 10 [[1, 2, 7], [1, 3, 4], [2, 5, 6]] 0.0005 0.0034 -0.0643

5 3 7 [[1, 2, 3], [1, 2, 4], [5, 6, 7]] 0.0005 0.0037 -0.0033
5 3 8 [[1, 2, 3], [1, 2, 4], [5, 6, 7]] 0.0005 0.0034 -0.0207
5 3 9 [[1, 2, 3], [1, 2, 4], [5, 6, 7]] 0.0004 0.0033 -0.0419
5 3 10 [[1, 2, 3], [1, 2, 4], [5, 6, 7]] 0.0004 0.0033 -0.0669

5 3 8 [[1, 2, 5], [1, 3, 4], [6, 7, 8]] 0.0004 0.0032 -0.0018
5 3 9 [[1, 2, 5], [1, 3, 4], [6, 7, 8]] 0.0004 0.0032 -0.0163
5 3 10 [[1, 2, 5], [1, 3, 4], [6, 7, 8]] 0.0004 0.0032 -0.0336
5 3 11 [[1, 2, 5], [1, 3, 4], [6, 7, 8]] 0.0004 0.0032 -0.0539

5 3 9 [[1, 2, 6], [3, 4, 5], [7, 8, 9]] 0.0003 0.003 -0.0005
5 3 10 [[1, 2, 6], [3, 4, 5], [7, 8, 9]] 0.0003 0.003 -0.0128
5 3 11 [[1, 2, 6], [3, 4, 5], [7, 8, 9]] 0.0003 0.003 -0.0273
5 3 12 [[1, 2, 6], [3, 4, 5], [7, 8, 9]] 0.0003 0.003 -0.044

Table 8: Case d = 5, L = 3

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

3 4 4 [[1, 2, 3, 4]] 0.0938 0.125 0.25
3 4 5 [[1, 2, 3, 4]] 0.005 0.025 -0.0024
3 4 6 [[1, 2, 3, 4]] 0.0014 0.0083 -0.0101
3 4 7 [[1, 2, 3, 4]] 0.0007 0.0036 -0.0256
3 4 8 [[1, 2, 3, 4]] 0.0004 0.0018 -0.0514

Table 9: Case d = 3, L = 4
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

4 4 4 [[1, 2, 3, 4], [1, 2, 3, 4]] 0.0469 0.0938 0.0938
4 4 5 [[1, 2, 3, 4], [1, 2, 3, 4]] 0.001 0.005 -0.0023
4 4 6 [[1, 2, 3, 4], [1, 2, 3, 4]] 0.0002 0.0014 -0.0087
4 4 7 [[1, 2, 3, 4], [1, 2, 3, 4]] 0.0001 0.0007 -0.0207
4 4 8 [[1, 2, 3, 4], [1, 2, 3, 4]] 0.0001 0.0004 -0.0399

4 4 5 [[1, 2, 3, 4], [1, 2, 3, 5]] 0.002 0.01 -0.0002
4 4 6 [[1, 2, 3, 4], [1, 2, 3, 5]] 0.0005 0.003 -0.0081
4 4 7 [[1, 2, 3, 4], [1, 2, 3, 5]] 0.0002 0.0014 -0.0242
4 4 8 [[1, 2, 3, 4], [1, 2, 3, 5]] 0.0001 0.0008 -0.051

4 4 6 [[1, 2, 3, 6], [1, 2, 4, 5]] 0.0005 0.0032 -0.0006
4 4 7 [[1, 2, 3, 6], [1, 2, 4, 5]] 0.0002 0.0014 -0.0109
4 4 8 [[1, 2, 3, 6], [1, 2, 4, 5]] 0.0001 0.0008 -0.0292
4 4 9 [[1, 2, 3, 6], [1, 2, 4, 5]] 0.0001 0.0008 -0.0575

4 4 7 [[1, 2, 3, 7], [1, 4, 5, 6]] 0.0002 0.0016 -0.0007
4 4 8 [[1, 2, 3, 7], [1, 4, 5, 6]] 0.0001 0.0008 -0.0127
4 4 9 [[1, 2, 3, 7], [1, 4, 5, 6]] 0.0001 0.0008 -0.0323
4 4 10 [[1, 2, 3, 7], [1, 4, 5, 6]] 0.0001 0.0008 -0.0612

4 4 8 [[1, 2, 3, 8], [4, 5, 6, 7]] 0.0001 0.0008 -0.0003
4 4 9 [[1, 2, 3, 8], [4, 5, 6, 7]] 0.0001 0.0008 -0.0133
4 4 10 [[1, 2, 3, 8], [4, 5, 6, 7]] 0.0001 0.0008 -0.0335

Table 10: Case d = 4, L = 4
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