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Abstract

An observed-based control strategy for position-yaw tracking of quadrotors is proposed. From a virtual controller for the
position dynamics, attitude and angular velocity references are estimated with the aim of allowing the position-control
components to enforce the tracking of a position reference. In addition, no measurement of the linear velocity is assumed,
and the measurement of the position signal is noisy, thus, a dynamic observer for the position dynamics is employed.
The ellipsoid method is considered to estimate the feedback controller and observer gains, based on an optimization
procedure, in order to produce the ultimately boundedness of attitude and position tracking errors inside a compact
convex vicinity of the origin, whose Lebesgue measure is minimized via LMIs. The advantages of the proposed scheme
are illustrated through numerical simulations that include aerodynamic disturbances and noisy measurements. Finally,
an experimental assessment is carried out to illustrate the feasibility and performance of the proposed controller in a
real-time application.

Keywords: Position Control, Unmanned Aerial Vehicle, Real-time Validation, Quaternion Control.

1. Introduction

The quadrotor is a highly maneuverable vehicle that is
capable of performing aggressive trajectories. This charac-
teristics make it attractive for many different applications.
Unfortunately, the fast dynamics and disturbances make it
prone to oscillations, therefore, this small vehicle requires
a fast and robust controller. The controller of the full ac-
tuated attitude dynamics has to guarantee the stability
of the entire system, whilst being fast enough, consider-
ing that the position dynamics depend on the attitude
[1, 2]. For this purpose, several contributions have been
reported, some of them using the Euler angles as attitude
representation because are more intuitive, but such repre-
sentation has singularities [3, 4, 5, 6, 7, 8, 9, 10, 11], which
can restrict the attitude space [4], discarding the track-
ing of highly aggressive maneuvers. Additionally, the use
of quaternion algebra has been employed for using Euler
parameters for attitude representation, avoiding singulari-
ties to produce a global controller [12], even for aggressive
maneuvers [13, 14, 15]. Taking in to account aerodynamic
disturbances, there some control approaches consider slid-
ing mode [9, 16, 17] or adaptive [18] controllers, which
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can induce high frequencies in the controller signals, in-
creasing the oscillation of the system. Recently, a neu-
roadaptive integral robust controller for visual quadrotor
tracking is proposed in [19]. Asymptotic stability of the
closed-loop system is guaranteed using Barbalat’s lemma,
however, conservative bounds of uncertainties are assumed
to compute the controller gains and only simulations are
provided.

Additionally, given the underactuation of the vehicle,
the attitude has to be slaved to the position to allow track-
ing. How to modify the attitude dynamics makes the po-
sition control a nontrivial problem, for which, different
strategies have been developed to solve underactuation.
One approach is based on a position controller that is ac-
counted for a disturbance to the attitude dynamics [20],
which causes the vehicle to tilt to the desired direction
in order to track the position reference, however, it has
the drawback that the attitude controller is capable to
compensate at least a part of the position controller, lead-
ing to a large position error. Another method consists
in computing the desired attitude reference from the de-
sired position trajectory [6], but in that case, all dynamic
parameters have to be known in order to compute an accu-
rate trajectory for the attitude dynamics, and even so, any
of the disturbance causes a poor performance. A further
more strategy is to compute the desired attitude from the
desired acceleration that can be in turns computed from a
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virtual controller [18], nevertheless, in this method the ro-
tation about the z axis is restrained at 0 in order to allow
the tracking, leavening one degree of freedom unused. In
addition, a virtual controller (desired force on the vehicle)
can be used in order to compute the desired references for
the attitude [5], leaving only the design of a controller that
does not induce high frequencies in the system dynamics.

By virtue of the aforementioned discussion, it is evident
that the quadrotor needs a robust controller to compensate
for dynamic disturbances, whilst avoiding high frequencies
and kinematic singularities. Along this direction, the at-
tractive ellipsoid method allows one to design a continuous
controller that is robust against a broad class of distur-
bances and uncertainties, assuring practical stability [21].
It is assumed that there is not complete information of the
plant, such as the external disturbances, but at least, an
upper bound is known. In this methodology, the feedback
gains are calculated from an optimization problem, where
Linear Matrix inequalities (LMIs) appear, and by solving
them numerically, the region at which the tracking errors
converge is reduced. The solution of convex inequalities
has allowed the development of important contributions
to the control of aerial vehicles, such as the computation
of observer gains in fault estimation schemes [22].

The contribution is then, an observer based on posi-
tion feedback by using the Ellipsoid Method. The virtual
controller is defined in the position dynamics, which repre-
sents the desired force in the vehicle for position tracking.
From the virtual controller, the attitude references are es-
timated, which are represented by unit quaternions in or-
der to avoid possible singularities. Additionally, a desired
rotation about the z axis is performed while tracking the
position. The controller is designed based on the ellipsoid
method, assuring a small region at which the errors con-
verge, depending on the solution of LMIs to estimate the
optimal gains. The validity of proposed scheme is shown
throughout a simulation study, subject to a time-varying
wind gust and noisy measurements, and experimental re-
sults, which confirm the robustness of the proposed con-
troller to wide range of uncertainties and disturbances.

2. Background and Problem statement

2.1. Quadrotor Dynamic Model
Let I = {ex, ey, ez} be the earth fixed frame, and B ={

ebx, e
b
y, e

b
z

}
the body fixed frame, whose origin coincides

with the center of mass, see Fig. 1. The orientation of
the rigid body is given by an orthogonal rotation matrix
R ∈ SO(3) : I → B. The Newton-Euler equations of
motion representing the position and orientation dynamics
of the quadrotor are

mξ̈ = −TR(q)ez +mgez + fd(t) (1)

q̇ =
1

2
q ⊗ Ω (2)

JΩ̇ = −Ω× JΩ+ τ + τd(t) (3)

I

x y 

z 

B
x 

y 

z 

Figure 1: Inertial and body frames in the vehicle.

where ξ = [ξx, ξy, ξz]
T ∈ I is the position of the vehicle,

ez = [0, 0, 1]T, m ∈ R is the mass, g ∈ R represents the
gravitational acceleration magnitude, fd(t) ∈ I denotes
the bounded disturbance forces, q = [q0, q1, q2, q3]

T ∈ S3

is the unit quaternion that represents the rotation of the
vehicle, whose scalar and vector parts are q0 ∈ R and
q = [q1, q2, q3]

T, respectively, this leads to

q =

[
q0
q

]
=

[
cos(θ)
λ sin(θ).

]
(4)

The quaternion product ⊗ is given by [23]

p⊗ q =

[
p0 −pT
p I3×3p0 + [p×]

] [
q0
q

]
(5)

and the conjugate of a quaternion is

q∗ = [q0,−q1,−q2,−q3]T (6)

Note that, in the case unit quaternions, q∗ = q−1. Ω =
[0,ΩT]T denotes a pure quaternion with scalar part of zero
and vector part Ω, where Ω = [Ω1,Ω2,Ω3]

T ∈ B defines the
angular velocity of the airframe. In addition the rotation
matrix R(q) is expresed in terms of the unit quaternion,
as is equivalent to

vi = q ⊗ vb ⊗ q∗ =

[
0

R(q)vb

]
, (7)

where vi and vb are pure quaternions, vi = [vi1, vi2, vi3]
T ∈

I, vb = [vb1, vb2, vb3]
T ∈ B, and R(q) is given by

R(q) =

1− 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 1− 2q21 − 2q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 1− 2q21 − 2q22

 (8)

J ∈ R3×3 stands for the constant inertia matrix around
the center of mass and is expressed in the body fixed frame
B. The matrix [Ω×] ∈ R3×3 denotes the skew-symmetric
matrix of the vector Ω

[Ω×] =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 , (9)

the external bounded torque disturbance is τd(t), and τ ∈
B is the control torque.
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2.2. The Class of quasi-Lipschitz Functions
The quadrotor model is nonlinear, then the following

definition will be useful in the stability analysis.
Definition 1[24]: A vector function g : Rn → Rk is said

to be from the class C(C, δ0, δ1) of quasi-Lipschitz func-
tions if there exists a matrix C ∈ Rk×n and nonnegative
constants δ0 and δ1 such that for any x ∈ Rn the following
inequality holds:

∥g(x)− Cx∥2 ≤ δ0 + δ1∥x∥2 (10)

This implies that the growth rates of g(x) as ∥x∥ → ∞
are not faster than linear, [21]. Notice that if C = 0,
δ0 = 0 and g(0) = 0 the inequality (10) characterizes the
Lipschitz continuity property of the function g(x) with the
Lipschitz constant L =

√
δ1.

2.3. Attractive Ellipsoids
In order to determine the convergence region and to ap-

ply the ellipsoid method, the following definition is needed.
Definition 2 [21]: An ellipsoid, represented by ε ⊂ Rn

with center in xc is given by:

ε =
{
x ∈ Rn| (x− xc)

TP (x− xc) ≤ 1
}

(11)

is said to be attractive for the trajectories x :

lim sup
t→∞

(x− xc)
T
P (x− xc) ≤ 1

where the ellipsoidal matrix P is a symmetric positive def-
inite matrix 0 < P = PT ∈ Rn×n,

2.4. Problem formulation
The problem is to design a closed-loop controller al-

lowing robust position tracking for system (3), assuring
that the error trajectories are confined to an invariant at-
tractive set. The controller is continuous and indepen-
dent of model parameters, but its design consider the sys-
tem model, ensuring robustness to parametric uncertain-
ties, aerodynamical effects and exogenous disturbances. In
addition, considering underactuation, the desired attitude
consigns that guarantee position tracking are also needed.

3. Mapping based Position Control for a Quadro-
tor

The quadrotor is an underactuated vehicle, then, in
order to reach a desired position, the vehicle needs to ro-
tate to change the direction of the thrust to generate force
components in a desired direction. In consequence, the ve-
hicle gives up some degrees of freedom in the attitude to
gain degrees of freedom in position. In this sense, a virtual
control ud is defined, where the components of this vector
corresponds to the input forces needed to track the de-
sired position. Then, the virtual controller ud corresponds
to the desired thrust Td in a desired direction, which is
defined by rotation represented by the unit quaternion qd,

ud Thrust

xy   plane

Desired

Force 

¸

µ

Desired 

rotation axis

d

d

Desired rotation angle

Figure 2: The attitude is “sacrificed” in order to control the position.

see Fig. 2, consequently the virtual control can be defined
as

ud = −TdR(q̄d)ez (12)

Therefore, using (4), (8), (12), and considering that the
magnitude of the virtual controller is the desired thrust
Td, then the vector that define the desired direction ûd =
ud

∥ud∥ = −R(q̄d)ez and is given by

ûd =

−2q1dq3d − 2q0dq2d
−2q2dq3d + 2q0dq1d
−1 + 2q21d + 2q22d

 =

ûd1ûd2
ûd3

 (13)

Now using the unit quaternion restriction q20d + q21d +
q22d + q23d = 1 and from (13), the scalar part of the quater-
nion, expressed in terms of q3d and ûd3 , equals to

q0d =
1

2

√
−2ûd3 + 2− 4q23d (14)

then, from (13) and (14), the solution for q1d and q2d is
given by

[
q1d
q2d

]
= 1

2(q20d+q
2
3d)

[
−q3d q0d
−q0d −q3d

] [
ûd1
ûd2

]

=

 q3d
ûd3

−1
− 1

2

√
−2 ûd3

+2−4 q3d
2

ûd3
−1

1
2

√
−2 ûd3

+2−4 q3d
2

ûd3
−1

q3d
ûd3

−1

[
ûd1
ûd2

]
(15)

The scalar part q0d and the two components of the
vector part q1d and q2d are in terms of q3d and the direction
defined by the vector ûd. Given that there is no restriction
of which value should be q3d, let define the final rotation in
two steps. First, assuming that the desired rotation axis is
in the xy plane, ie q3d = 0, the desired quaternion equals
to

qdxy =


1
2

√
−2ûd3 + 2
ûd2√

−2ûd3+2
−ûd1√
−2ûd3+2

0

 (16)

After the vehicle is rotated to generate the desired force
components, we can perform another rotation of a desired
ψd angle about the z axis on the body of the quadrotor,
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Ãd

ud

R(q      )d

e

Thrust

xy

z
b

Figure 3: The final rotation about the z axis does not change the
direction of the original desired force.

as can be seen in Fig. 3, this rotation is defined by

qdz =


cos

(
ψd
2

)
0
0

sin
(
ψd
2

)
 , (17)

This last rotation does not change the direction of the de-
sired force, which implies that the tracking of the position
it is not modified. Therefore, the desired quaternion for
the attitude is given by the consecutive rotations of qdxy
and qdz as follows

qd = qdxy ⊗ qdz =



1
2

√
−2ûd3 + 2 cos

(
ψd
2

)
−ûd1 sin

(
ψd
2

)
+ûd2 cos

(
ψd
2

)
√

−2ûd3+2

−ûd1 cos
(
ψd
2

)
−ûd2 sin

(
ψd
2

)
√

−2ûd3+2

1
2

√
−2ûd3 + 2 sin

(
ψd
2

)


(18)

Note that in (15) q1d and q2d are not well defined if ûd3 = 1,
that means that the direction of the desired force is ez. It
is assumed that this scenario is highly improbable due to
the gravitational force compensation in the control law,
which means that the component ûd3 is always pointing
upwards or ûd3 < 0. Also, note that the desired quaternion
in (18) is equivalent to the equations (14) and (15) using
q3d =

1
2

√
−2ûd3 + 2 sin

(
ψd
2

)
.

Now, to obtain the desired angular velocity, from (2),
there exists a correspondence between the desired quater-
nion and the desired angular velocity, and its given by

q̇d =
1

2
qd ⊗ Ωd (19)

then, the desired angular velocity is equal to

Ωd = 2 q∗d ⊗ q̇d (20)

with the time derivative of (18), ûTd ûd = 1, its derivative
ûTd

˙̂ud = 0, we obtain that (20) is a pure quaternion and
the angular velocity equals to

Ωd =


− sin(ψd) ˙̂ud1+cos(ψd) ˙̂ud2+

˙̂ud3(sin(ψd)ûd1−cos(ψd)ûd2)
ûd3

−1

− cos(ψd) ˙̂ud1−sin(ψd) ˙̂ud2+
˙̂ud3(cos(ψd)ûd1+sin(ψd)ûd2)

ûd3
−1

ψ̇d+
ûd1

˙̂ud2
−ûd2

˙̂ud1
ûd3

−1


(21)

Note that for the computation of the desired angular
velocity the time derivative of the virtual position control
u̇d is needed, therefore this controller needs to be at least
one time differentiable.

4. Attitude Control Design

With the purpose of allow to generate the desired input
forces defined by the virtual control, an attitude controller
has to assure that the systems tracks the desired refer-
ences computed from the virtual controller. The control
has to compensate the disturbances and aerodynamical ef-
fects present in the attitude dynamics and the design has
to consider the nonlinearities of the model.

In order to design the attitude controller, first let define
the attitude and angular velocity errors.

4.1. Attitude Error Equations
The rotation error quaternion is defined by

qe ≜ q∗d ⊗ q (22)

which represent the rotation difference between the actual
and the desired attitude. Now to obtain the relation of the
quaternion error and a angular velocity error, we obtain
the derivative of (22), using (2), (6), (5), (19) and (22), is
equal to

q̇e =
1

2
qe ⊗ Ωe (23)

where the error of angular velocity is

Ωe = Ω−RT(qe)Ωd (24)

The attitude dynamics has 3 degrees of freedom, the
same that the unit quaternion has (4 different parameters
and one restriction ∥qe∥ = 1). Assuring the 3 components
of the vector part qe → 0 implies that the scalar part q0e →
±1, then we only need to assure qe → 0 in order to have
q → qd. Also, considering small errors, with q0e ≈ 1, it
can be assumed that the scalar part of the quaternion error
doesn’t change sign, if the initial condition is q0e(t0) ≈ 1
that means that qe0 ≥ 0 and with the unit quaternion
restriction, then

qe0 =
√
1− q2e1 − q2e2 − q2e3 (25)

with this the differential equation of the vectorial part of
the quaternion is given by

q̇e = Q̃(qe)Ωe, Q̃(qe) =
1

2

[
(1− qTe qe)

1/2I3×3 + [qe×]
]

(26)
Now the state space can be defined by error variables that
must converge to a small invariant set as follows

xa =

[
qe
Ωe

]
, ẋa = Baτ + ζa(xa,Ω,Ωd, Ω̇d, t) (27)
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where ζa(xa,Ωd, Ω̇d, t) corresponds to the disturbances
and non-linearities of the attitude dynamics

ζ(xa,Ωd, Ω̇d, t) =
[

Q̃(qe)Ωe
J−1(−Ω×JΩ+τd)−RT

eΩ̇d−R
T
eΩd×Ωe

]
and Ba = [03×3 J

−1T]T

From (27), the quasi-linear model can be represented
as

ẋa = Aaxa +Baτ + φa(xa,Ωd, Ω̇d, t) (28)
where φ(xa,Ω,Ωd, Ω̇d, t) = ζ(xa,Ω,Ωd, Ω̇d, t)−Aaxa, Aa =[
−aI3×3

1
2I3×3

03×3 03×3

]
, with a > 0 ∈ R is a positive scalar.

The form of Aa comes from the linearization around the
origin of Q̃(q) and the constant a for and additional pa-
rameter for the solution of the ellipsoid method.

4.2. Assumptions of the attitude dynamics
Assumption 1: The desired Ωd and Ω̇d are defined
by the user, and are bounded by

∥Ωd∥2 ≤ Ω+
d ∥Ω̇d∥2 ≤ Ω̇+

d (29)

Assumption 2: The norm of the disturbances vector
τd has an upper bound, then there exists a positive
constant d+ such that

∥τd∥2 < d+ (30)

Assumption 3: The nonlinear term in (3) can be
bounded using two constants c0 ≥ 0 and c1 > 0
such that

∥J−1(−Ω× JΩ)∥2 ≤ c0 + c1∥Ω∥2 ∀ Ω ∈ R3 (31)

4.3. Bound of the nonlinearities and disturbances
Now with the purpose of proceed to the stability anal-

ysis, the bound of φ is needed. With the assumptions 1-3,
the norm of φ(x,Ωd, Ω̇d, t) is calculated as

φ(xa,Ωd, Ω̇d, t)
Tφ(x,Ωd, Ω̇d, t) = φT

1φ1 + φT
2φ2 (32)

φT
1φ1 ≤ 3

2∥Ωe∥
2 + 3a2∥qe∥2

φT
2φ2 ≤ c3 + 4c1∥Ω∥2 + c4∥Ωe∥2

where c3 = 4c0 + 4J+d+ + 4Ω̇+
d y c4 = 4Ω+

d . Then, with
b0 = c3 + 3a2, b1 = 4c1, b2 = 3

2 + c4, the norm of ∥φ∥2 is
given by

∥φ∥2 = b0 + b1∥Ω∥2 + b2∥Ωe∥2. (33)

The bound of the nonlinearities and disturbances de-
pends on the angular velocity of the vehicle. In order to
express (33) only in terms of the error and desired angular
velocity, an extended vector with the system state and the
desired error velocity is defined

x̃a =

 qe
Ωe

RT
eΩd

 =

[
xa

RT
eΩd

]
, (34)

using (24) we can calculate the angular velocity of the
vehicle Ω = Ωe +RT

eΩd, that can be expressed as:

Ω = G1x̃a, G1 =
[
03×3 I3×3 I3×3

]
,

the norm of the angular velocity ∥Ω∥2 can be expressed in
terms of the extended error vector (34) as

∥Ω∥2 = x̃TaG
T
1G1x̃a = x̃TaG2x̃a, G2 =

03×3 03×3 03×3

03×3 I3×3 I3×3

03×3 I3×3 I3×3,


then the norm of ∥φ∥2 from (33) can be expressed by

∥φ∥2 = b0 + x̃TaGx̃a, G =

[
03×3 03×3 03×3

03×3 (b1+b2)I3×3 b1I3×3

03×3 b1I3×3 b1I3×3

]
. (35)

and the state xa can be defined as

xa = Hx̃a, H =
[
I6×6 06×3

]
(36)

4.4. Attitude Practical Stability
Consider the following control law

τ = Kxa (37)

Theorem 1. Suppose that

1.- The assumptions 1-3 are fulfilled

2.- For the system (27) with (37), for some matrices
K and Pa = PT

a > 0 (solution of the optimiza-
tion problem (46), when it exists), also some pos-
itive constants αa, ε1, ε2 that satisfy the inequality
Wa(Pa,K, αa, ε1, ε2) < 0 where

Wa =

 Ga ε1G12 Pa
ε1G

T
12 (ε1b1 − ε2)I3×3 03×6

Pa 06×3 −ε1I6×6

 (38)

Ga = (Aa +BaK + αa
2 I6×6)

TPa+
Pa(Aa +BaK + αa

2 I6×6) + ε1G11,

G12 =

[
03×3

b1I3×3

]
, G11 =

[
03×3 03×3

03×3 (b1 + b2)I3×3

]
,

there exists an energy function Va(Pa, xa) that has a
differential inequality defined as

V̇a ≤ −αaVa(Pa, xa) + βa (39)

where, βa is a positive constant.

Then, there exists an invariant ellipsoid for the closed-
loop system (27) and (37).

Proof. In order to analyze the behavior for the system, the
energy function is proposed:

Va = xTaPaxa, (40)
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Now, adding and subtracting ε1∥φ∥2 and αV in the deriva-
tive of (40) follows that

V̇a = (Aaxa +BaKxa + φ)TPaxa+
xTaPa(Aaxa +BaKxa + φ)± ε1∥φ∥2 ± αaVa

(41)
Using (35) and (36) in (41) it follows

V̇a ≤
[ xa
RT
eΩd
φ

]T [
G3 HTPa
PaH −ε1I6×6

] [ xa
RT
eΩd
φ

]
+ε1b0 − αaVa ± ε2∥RT

eΩd∥2

≤
[ xa
RT
eΩd
φ

]T [
Ga ε1G12 Pa

ε1G
T
12 (ε1b1−ε2)I3×3 03×6

Pa 06×3 −ε1I6×6

] [ x
RT
eΩd
φ

]
+ε1b0 + ε2Ω

+
d − αaVa

(42)
where G3 = HT((Aa + BaK + αa

2 I6×6)
TPa + Pa(Aa +

BaK + αa
2 I6×6))H + ε1G, Then, the equation (41) can be

expressed as

V̇a ≤
[
x̃a
φ

]T
Wa

[
x̃a
φ

]
− αaVa + βa (43)

where βa = ε1b0 + ε2Ω
+
d .

Assuring that the matrix Wa ≤ 0, the following in-
equality is guaranteed

V̇a ≤ −αaVa + βa (44)

and assures that the stability region is defined by the el-
lipsoid given by

Ea =

{
xa ∈ Rn| xTaPaxa ≤ βa

αa

}
(45)

Now, the minimization of the stability region can be found
using the following optimization problem

tr
{
βa
αa
P−1
a

}
→ min

αa,βa,ε1,ε2,K,Pa

subject to the restrictions
αa > 0, ε1 > 0, ε2 > 0,

0 < Pa, Wa =Wa (K,Pa, αa, ε1, ε2) ≤ 0

(46)

which can be solved by using the MATLAB toolboxes Se-
DuMi and YALMIP through the Interior Point Method
[25].

5. Position Control Design

Now with an attitude control, we proceed to the de-
sign of the control law for the position dynamics, and how
should be computed the virtual control in order to assure
the tracking of the desired position.

5.1. Observer equations
A way of estimate the velocity of the vehicle is needed

because only position measurement is available. Using a
dirty derivative, although easy to implement, increases the
noise present in the signals of position. In order to reduce
the noise an observer is proposed to estimate the velocity
of the vehicle.

A space state of the position is defined as

xξ =

[
xξ1
xξ2

]
=

[
ξ

ξ̇

]
(47)

with the position dynamics

ξ̈ =
1

m
(uo + fd(t)), uo = −TR(q)ez +mgez (48)

ẋξ and the output of the system are

ẋξ = Apxξ +Bpuo +Bpfd(t), y = Cxξ + η (49)

where η ∈ R3 represents the noise present in the measure-
ments,

Ap =

[
03×3 I3×3

03×3 03×3

]
, Bp =

[
03×3
1
mI3×3

]
, C =

[
I3×3 03×3

]
and the observer equation is given by

˙̂xξ = Apx̂ξ +Bpuo + L(y − Cx̂ξ). (50)

where L ∈ R6×3.

5.2. Position Error Equations
In order to analyze how the virtual control affects the

position stability, let introduce this term in the position
dynamics. From (1) adding and substracting the virtual
control ud defined in (12), and TdR(q)ez, the acceleration
is given by

mξ̈ = ud + fd(t) + ζξ(T, Td, q, qd) +mgez (51)

where

ζξ(T, Td, q, qd) = (−TeR(q) + TdR(qd)(I3×3 −R(qe)))ez
(52)

Note that ζξ(T, Td, q, qd) = 0 if T = Td and q = qd. This
means that the term ζξ can be seen as a disturbance pro-
duced by the difference of the desired and the actual input
forces in the position dynamics. Since the desired attitude
gives the direction of the input force vector, then the norm
of ζξ increases as the attitude error grows.

The desired position state is defined by

xd =

[
ξd
ξ̇d

]
(53)

Now the error for the position and observer dynamics
are defined as

x̃e = x̂ξ − xd estimated position error
x̂e = x̂ξ − xξ observed position error
xe = xξ − xd real position error

(54)
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Then, using (47), (54) and (51) the error dynamics is
expressed as

ẋe =

[
ξ̇ − ξ̇d

1
m (ud + fd(t) +mgez + ζξ(T, Td, q, qd))− ξ̈d

]
(55)

Given that the gravity, mass and desired acceleration
are well known, in the virtual control can be compensated
the gravitational force and the desired acceleration, as a
result the virtual controller is given by

ud = up −mgez +mξ̈d (56)

where up is the feedback of the system signals. With (56),
we can define a state space for the error dynamics as

ẋe = Apxe +Bpup +Bpζp, (57)

where ζp = [01×3, (fd(t) + ζξ(T, Td, q, qd))
T]T.

Defining the observer feedback controller as

up = Kpx̃e, (58)

from (49), (50) and (54), the equation of the observer error
is defined by

˙̂xe = (Ap − LC)x̂e −Bpfd(t) + Lη. (59)

also, using (54) it follows that x̃e = xe + x̂e, then from
(55), the position error dynamics is expressed as

ẋe = (Ap +BpKp)xe +BpKpx̂e +Bpζp (60)

Defining an extended error for the position error vari-
ables that we seek to stabilize xp = [xTe , x̂

T
e ]

T, which time
derivative is using (60) and (59)

ẋp = Ãxp + B̃ζ̃p (61)

where ζ̃Tp = [ζξ
T fd(t)

T
ηT]T, Ã =

[
Ap +BpKp BpKp

06×6 Ap − LC

]
,

B̃ =

[
Bp Bp 06×3

06×3 −Bp L

]
5.3. Assumptions of the Position Dynamics

Assumption 4: The rotor dynamics are fast, meaning
that the time delay between the instant that desired
thrust (Td) is commanded and the instant that the
actuators actually give that force is considered small
enough to be neglected, and it can be assumed that
the desired thrust is equal to the system thrust Td =
T .

Assumption 5: Part of the disturbances in the accel-
eration error in (55) are caused by the attitude error
represented in the term ζξ(Td, q, qd). That means
that the disturbances grows as the attitude error qe
increases. Assuming that this term has an upper
bound implies that the attitude error vector qe has
an upper bound, that indicates that the attitude con-
troller assures that the norm of the vectorial part of
the error quaternion ∥qe∥ ≤ q+e < 1, where q+e is a
positive constant.

Assumption 6: The thrusters of the vehicle have an
upper limit in the generated force, then there exists
a positive constant T+ > T .

Assumption 7: The external forces in the position
dynamics fd(t) has an upper bound, then, there ex-
ists a positive constant f+d such that ∥fd(t)∥2 < f+d .

Assumption 8: The position noise measurement has
a bound, there exists a positive constant η+ such
that ∥η∥2 < η+, where η ∈ R3 represents the noise
present in the measurements.

The disturbance due to the attitude error can be
bounded if the assumptions 4-6 are fulfilled as follows:

ζTξ ζξ = T 2
d ((I3×3 −R(qe)))ez)

T
(I3×3−R(qe)))ez ≤ 2T+2

q+e
2

(62)

5.4. Practical Stability with Observer Feedback
Now we seek that the observer and position error con-

verges to a small enough stable region around the origin.

Theorem 2. Suppose that:

1.- The assumptions 4-7 are fulfilled.

2.- For the system (59) and (60) with (58), for some
matrices Kp, L and P = PT > 0, also some
positive constants α, ε that satisfy the inequality
Wp(P,Kp, L, α, ε) < 0 where

Wp =

[
PÃ+ ÃTP + αP PB̃

B̃TP −εI9×9

]
, (63)

there exists an energy function V (P, xp) with the fol-
lowing differential equation

V̇ ≤ −αV + β (64)

where β > 0.

As a result, there exists a stability region around the
origin of xe and x̂e defined by the ellipsoid

E =

{
xp ∈ Rn| xTpPxp ≤

β

α

}
(65)

Proof. In order to analyze the system, a energy function
is proposed

Vp = xTpPxp (66)

which derivative, using (62), adding and subtracting αV
and ε∥ζ̃p∥2, using assumptions 7 and 8 for the bound of
the disturbances and noise as ε∥ζ̃p∥2 ≤ ε∥ζξ∥2+εf+d +εη+,
is equal to

V̇ = xTpPẋp + ẋTpPxp ± αV ± ε∥ζ̃p∥2

≤
[
xp
ζ̃p

]T
Wp

[
xp
ζ̃p

]
− αV + β

(67)
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where β = εT+2
q+e

2
+ εf+d + εn+. As long as it is assured

that Wp ≤ 0, there exists a stability region around the
origin of xe and x̂e defined by the ellipsoid

E =

{
xp ∈ Rn| xTpPxp ≤

β

α

}
(68)

and the solution to the optimization problem is

tr
{
β
αP

−1
}
→ min

α,β,ε,Kp,Pa

subject to the restrictions
α > 0, ε > 0,

0 < P, Wp =Wp (Kp, P, α, ε, ) ≤ 0

(69)

As was mentioned in Assumption 5, the disturbances
term ζξ in the position error dynamics depends on the
attitude error qe, meaning that if the attitude controller
doesn’t assure the tracking of the desired references com-
puted from the virtual controller, the position error will
increase. In this sense, the stability of the position dy-
namics depends on the attitude stability, ie as qe → 0
implies ξe → 0.

Note that for the derivative of the control u̇d( ˙̃xe,
...
ξ d) =

Kp
˙̃xe+m

...
ξ d = Kp( ˙̂xe−ẋd)+m

...
ξ d, the ˙̃xe can be estimated

using (50). Also the term
...
ξ d is needed, which implies that

the desired position trajectory needs to be at least 4 times
differentiable.

6. Numerical Results

In order to demonstrate the performance of the con-
troller a simulation study subject to a time-varying wind
gust and noisy measurements was implemented. The vehi-
cle accomplishes the tracking of a position trajectory while
tracking a desired ψd angle.

6.1. Simulator
The simulation was carried out using Matlab ® Simulink

® 9.2. The solver used was Dorman-Price (ode8) with a
fixed step of 0.001s. The Fig. 4 shows how the signals
were used to calculate the controllers and dynamics of the
simulated system. In order to emulate a real scenario, a

Attitude 
Error Equations

Dynamic 
Model

.

Desired 
Position

++

++-+-

+
-

Desired 
Attitude from

Mapping

Position 
Observer

Position 
Control

.

Attitude Control

Figure 4: Block diagram of the control algorithm.

time-varying wind gust is simulated, where the wind ve-
locity vector is sin2(0.1 t) [0.5403, 0.8415, 0]T m/s. Note
that the magnitude of such a vector is v(t) = sin2(0.1 t)
m/s. This wind gust generates state-dependent aerody-
namical disturbances in the form of forces and moments
that affect both position and orientation dynamics. The
aerodynamic coefficients and the equations that describe
these effects are [26]:

fd =
1

2
ρav

2
r S RW

T
d

cLcY
cD



τd =
1

2
ρav

2
r S

 b clc̄ cm
b cn


where the coefficients c̄ and b are the chord and the span
of a blade, respectively, cD, cY , cL, cl, cm and cn are aero-
dynamical non-dimensional coefficients of drag, sideforce
lift, rolling, pitching and yawing moments, respectively.

vr =
√

(v sin(α0))2 + (v cos(α0) + vi)2

and ρa is the air density, α0 is the freestream angle of
attack, vr is the resultant velocity in the propeller slip-
stream, vi is the induced velocity produced by the rotor,
vi ≈

√
Tm

2ρaAm
, and Tm is the thrust of the rotor and Am

is the area of the rotor disk. The orthogonal rotation ma-
trix that relates the body fixed frame and the aerodynamic
frame is

Wd =

 cαdcβd sβd sαdcβd
−cαdsβd cβd −sαdsβd
−sαd 0 cαd


where ca = cos(a) and sa = sin(a), αd is the angle of
attack, αd = arctan

(
v sin(α0)

v cos(α0)+vi

)
and βd is the sideslip

angle. The coefficients values used are ρa = 1.19 kg/m3,
βd = 0, cl = 0.15, cm = 0.25, cn = 0.8, cL = 0, cY =
0.2, cD = 0.1, S = 0.5m2, b = 0.05m, c̄ = 0.02m. J =
diag(0.1241, 0.1241, 0.2483) kgm2/rad and mass m = 2kg.

The initial conditions of the system are q = [1, 0, 0, 0]T,
Ω = [0, 0, 0]T ξ = [0, 0,−1]T, ξ̇ = [0, 0, 0]T and x̂ξ =
[0, 0,−1, 0, 0, 0]T. Additionally, white noise is added to
the position, attitude quaternion and angular velocity us-
ing the white noise block of Matlab ® Simulink, which gen-
erates normally distributed random numbers. Each block
has different seed and the parameter noise power of 0.1.
The values provided by those blocks are then multiplied
by 0.0001 in order to obtain values between ±0.003, which
correspond approximately to a position error of 3mm, atti-
tude error of 0.4 degrees and angular velocity error of 0.003
rad/s. It is important to point out that a motion capture
system Optitrack produces position error less than 0.3mm
and rotational error less than 0.05 degrees [27].
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The control parameters are given by:

K = [diag(10, 10, 10),diag(10, 10, 10)],

Kp = [−diag(40, 40, 40),−diag(80, 80, 80)],

L = [I; 100I]

The solution of LMIs from the optimization prob-
lem in the attitude dynamics is expressed as: λ(Pa)i ∈
{0.017587, 0.45995}, ε1 = 0.0041433, ε2 = 156.0903 and
αa = 0.002973; and for the position controller: λ(P )i ∈
{0.0014673, 0.74522}, ε = 2.8245, α = 1.012.

6.2. Task
The smooth desired trajectory, assuring small initial

errors for position and attitude, is given by

ξd =



r (tanh (δt− 4) + 1)

2
cos (ft)

r (tanh (δt− 4) + 1)

2
sin (ft)

−zd


(70)

The function tanh is used to slowly increase the radius
of the circle from zero to a desired value r, where its in-
crement depends on δ. This assures small initial errors
provided that the initial position of vehicle is in the center
of the circle. The trajectory parameters used were δ = 2,
r = 1, f = 2 and zd = 1, with ψ̇ = −2 for the desired atti-
tude. The desired trajectory is smooth enough to guaran-
tee existence of

...
ξ d, which is a requirement for the solution

of underactuation.
In order to calculate the desired trajectories for the at-

titude controller, the time derivative of the virtual position
controller, ud, is required. By using (50), it is computed
as

u̇d = −Kp
˙̃xe +m

...
ξ d = −Kp( ˙̂xξ − ẋd) +m

...
ξ d

Note also that the term
...
ξ d is needed to compute the de-

sired angular velocity in (21). Thus,
...
ξ d has to be con-

tinuous, which implies that the desired position trajectory
needs to be at least 4 times differentiable.

6.3. Results
The tracking performance of the system is shown in

Fig. 5. In Fig. 6, the 3D trajectory demonstrates how
the vehicle begins in the center of the circle and increases
the radius of the tracked circle until it reaches the tar-
get radius of 1. The system follows the desired trajectory
with small errors, as can be appreciated in Fig. 7. The
position controller is shown in Fig. 8. As seen from this
figure, the element ud3 reminds always negative, assuring
that there is always a desired attitude at any given time.
Fig. 9 shows the successful tracking of the desired atti-
tude, computed from the position controller. However,
the noise present in the position control results in a noisy
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Figure 5: Position and velocity signals in the numerical results.
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Figure 6: 3D position of the vehicle in the numerical results.

desired attitude trajectory, specially for the desired angu-
lar velocity. Even with this noise, the attitude is tracked
with small errors, see Fig. 10, and consequently ensures
position tracking at the same time. The attitude controller
signals are presented in Fig. 11, which has a strong compo-
nent of noise due to the noise present in the measured and
desired signals. Finally, Fig. 12 shows the moment and
force aerodynamical disturbances respectively that affect
the vehicle.
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Figure 7: Position error in the numerical results.
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Figure 8: Position control signals in the numerical results.

7. Experimental Results

The excellent performance of the control strategy is
demonstrated when the aerial vehicle executes a similar
trajectory to the one used in the numerical results, (70),
a circle trajectory while tracking a desired angle ψd, us-
ing the equations (18) and (21). The platform used is
an AR Drone 2.0 Edition of Parrot shown in Fig. 13.
The platform uses a board with an ARM Cortex A8 1GHz
processor with 1GB of RAM and the control algorithm is
programmed in C++ code using Codeblocks 13 in a Linux
Ubuntu 14.04 environment. The embedded system update
the IMU measurements at 200Hz (5ms), as well as con-
trol outputs to the rotors, interruptions, data fusion and
communication to the ground station. The measurements
of the position of the vehicle is performed using an Op-
titrack system with 24 cameras, that send information to
the vehicle up to 100Hz (10ms). The communication to
the ground station allows to monitor the system measure-
ments and change parameters in the controller and desired
position, while all the data is recorded on board.

The parameters of the desired trajectory (70) are δ =
0.7, r = 1, f = 2, zd = 1.5 and ψ̇d with initial condition
ψd(t0) = 0.
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Figure 9: Attitude signals in the numerical results.

The control parameters used were:

K = [diag(4, 4, 4),diag(0.4, 0.4, 0.3)],

Kp = [diag(0.5, 0.5, 0.7),diag(0.4, 0.4, 0.5)],

L = [20I; 100I]

Using an approximation of the inertia matrix

J = diag(0.002237568, 0.002985236, 0.00480374)

and mass m = 0.43kg for the optimization problem,
the solution of the LMIs are for the attitude dynamics
: λ(Pa)i ∈ {7.5990e− 05, 4.4614e− 01}, ε1 = 0.055195,
ε2 = 2.0784 and αa = 0.00208; and for the position con-
troller: λ(P )i ∈ {1.6117e− 04, 3.2167e+ 00}, ε = 1.8468,
α = 2.99.

The result of the tracking of the desired position tra-
jectory are shown in Fig. 14. The comparison of the mea-
sured and desired position is shown in Fig. 14(a), also,
the comparison of the observed and desired velocity is dis-
played in Fig. 14(b), where it can be easily seen the out-
standing tracking of the desired trajectory. Usually, given
the underactuation of the quadrotor, the tracking of a cir-
cle seams that is out of phase [20], which in this case is not
appreciable. It is better seen in Fig. 15 the error x̃e, which
magnitude is never greater than 20cm of the tracking of a
2m diameter circle.

In Fig. 16 the comparative of the two different forms
to estimate the velocity of the vehicle is presented, one is a
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Figure 10: Attitude error signals in the numerical results.
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Figure 11: Orientation control signals in the numerical results.

dirty derivative and the other one is using the observer. It
is perceptible that the dirty derivative amplifies the noise
present in the position measurements, while the observer
estimate a more regular signal. This is important given
that the desired attitude is computed using the error sig-
nals of position and velocity. Using more regular signals
of the position and velocity signify more uniform desired
trajectories for the orientation, making it easier for the at-
titude controller to perform the tracking, implying a better
behavior in the position.

The virtual controller presented in Fig. 17, is used
to estimate the desired quaternion. Given that the vir-
tual controller contains noise, the desired quaternion and
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Figure 12: Torque and force disturbances in the numerical results.

Figure 13: Platform used for the experimental validation: Parrot AR
Drone 2.0.

angular velocity also contains noise. The signals of the
real quaternion components q1, q3 and the desired q1d, q3d
(estimated from the virtual controller) are shown in Fig.
18. The main rotation is in the z axis, as can be seen
in Fig. 18(b), the rotation about this axis has the same
frequency as the circle, meaning that when the quadrotor
finish a circle, a full 360º rotation is also completed. Even
with noise present in the desired quaternion, the tracking
has good performance, with small error in the attitude,
as can be seen in the error quaternion vector from Fig.
19. The same applies to the angular velocity, shown in
Figs. 20 and 21. Because the derivative of the desired
rotation is ψ̇ = 2, the desired angular velocity Ωdz has
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Figure 14: Position and observer signals in the experimental valida-
tion.
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Figure 15: Observer error in the experimental validation.
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Figure 17: Virtual control signals during the experiment.

almost the same value plus some terms that come from
the virtual controller as (21). The performance of the at-
titude controller is presented in Fig. 22. Fig. 23 shows
the tracking in 3D space, where can be seen that as the
diameter of the circle increases, the altitude error incre-
ments as well due to the increment of the inclination of
the vehicle. Finally, Fig. 24 exhibits how the vehicle has
to tilt in order to follow the desired trajectory, almost like
looking to the center of the circle as following the desired
rotation about the z axis. This trajectories has frequen-
cies greater than usually used in quadrotors [18, 5, 28],
also, for more aggressive trajectories the Euler angles may
present singularities that jeopardize the integrity of the
vehicle. The video of the experiments can be seen in
https://www.youtube.com/watch?v=1ZWpgedxMos.

7.1. Implementation considerations
The design of the control is done without considering

the latencies present in the vehicle, it is only assumed that
the sampling rate is fast enough to be considered contin-
uous. The vehicle has a sampling rate of 5ms for the at-
titude signals, which is small enough to have a response
considered continuous. However solution of the optimiza-
tion problem could lead to high gains that would induce
higher frequencies than the maximum frequency response
of the system leading to instability.

Also, a more aggressive trajectory in position implies a
more aggressive trajectory in orientation, then, the invari-
ant set for the attitude system could grow, leading to a
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Figure 19: Attitude error in the experiments.

increase in the disturbance in position due to orientation
error and therefore a greater error in position.

Given the small errors requirement for the small error
initial condition, the vehicle needs to start near from the
desired trajectory, or even in the desired trajectory. If the
vehicle needs to reach a specific point, the desired path has
to be designed in order that gently leads from the start-
ing point(where the vehicle begins) to the end point(the
desired position).
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Figure 20: Angular velocity in the experiments.
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Figure 21: Angular velocity error in the experiments.

8. Conclusions

A continuous position control for a quadrotor using ob-
server feedback was proposed. The ellipsoid method forced
the error to a small enough region around the origin, which
allowed the system to track the desired position, even for
highly aggressive maneuvers. The solution of underactu-
ation provided the attitude desired references, needed by
the attitude controller for the purpose of tracking the po-
sition trajectory, through a unit quaternion in order to
avoid the singularities. The only restriction on the pro-
posed scheme is that the desired force never points down-
wards, which implies that there is no error in the x and y
directions and the desired point in z is far beneath the ve-
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Figure 24: Different frames of the vehicle while performing the circle
tracking and rotation about the z axis.

hicle, a highly improbable scenario. Finally, the proposed
approach allows the tracking in 4 Dof, in this case the 3
Dof of position and the yaw angle.
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