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An observed-based control strategy for position-yaw tracking of quadrotors is proposed. From a virtual controller for the position dynamics, attitude and angular velocity references are estimated with the aim of allowing the position-control components to enforce the tracking of a position reference. In addition, no measurement of the linear velocity is assumed, and the measurement of the position signal is noisy, thus, a dynamic observer for the position dynamics is employed. The ellipsoid method is considered to estimate the feedback controller and observer gains, based on an optimization procedure, in order to produce the ultimately boundedness of attitude and position tracking errors inside a compact convex vicinity of the origin, whose Lebesgue measure is minimized via LMIs. The advantages of the proposed scheme are illustrated through numerical simulations that include aerodynamic disturbances and noisy measurements. Finally, an experimental assessment is carried out to illustrate the feasibility and performance of the proposed controller in a real-time application.

Introduction

The quadrotor is a highly maneuverable vehicle that is capable of performing aggressive trajectories. This characteristics make it attractive for many different applications. Unfortunately, the fast dynamics and disturbances make it prone to oscillations, therefore, this small vehicle requires a fast and robust controller. The controller of the full actuated attitude dynamics has to guarantee the stability of the entire system, whilst being fast enough, considering that the position dynamics depend on the attitude [START_REF] Oliva-Palomo | A fractional nonlinear pi-structure control for robust attitude tracking of quadrotors[END_REF][START_REF] Izaguirre-Espinosa | Attitude control of quadrotors based on fractional sliding modes: theory and experiments[END_REF]. For this purpose, several contributions have been reported, some of them using the Euler angles as attitude representation because are more intuitive, but such representation has singularities [START_REF] Bouabdallah | Full control of a quadrotor[END_REF][START_REF] Ferrin | Differential flatness based control of a rotorcraft for aggressive maneuvers[END_REF][START_REF] Cabecinhas | A globally stabilizing path following controller for rotorcraft with wind disturbance rejection[END_REF][START_REF] Mellinger | Trajectory generation and control for precise aggressive maneuvers with quadrotors[END_REF][START_REF] Shao | Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator[END_REF][START_REF] Cai | Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control[END_REF][START_REF] Zhao | Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control[END_REF][START_REF] Wang | Disturbance observer-based adaptive fault-tolerant control for aquadrotor helicopter subject to parametric uncertainties andexternal disturbances[END_REF][START_REF] Cai | Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control[END_REF], which can restrict the attitude space [START_REF] Ferrin | Differential flatness based control of a rotorcraft for aggressive maneuvers[END_REF], discarding the tracking of highly aggressive maneuvers. Additionally, the use of quaternion algebra has been employed for using Euler parameters for attitude representation, avoiding singularities to produce a global controller [START_REF] Tayebi | Attitude stabilization of a vtol quadrotor aircraft[END_REF], even for aggressive maneuvers [START_REF] Wang | Switching control of attitude tracking on a quadrotor uav for large-angle rotational maneuvers[END_REF][START_REF] El-Badawy | Quadcopter aggressive maneuvers along singular configurations: An energy-quaternion based approach[END_REF][START_REF] Hua | Auto-tuning nonlinear pidtype controller for rotorcraft-based aggressive transportation[END_REF]. Taking in to account aerodynamic disturbances, there some control approaches consider sliding mode [START_REF] Zhao | Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control[END_REF][START_REF] Xiong | Position and attitude tracking control for a quadrotor uav[END_REF][START_REF] Zhao | Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control[END_REF] or adaptive [START_REF] Roberts | Adaptive position tracking of vtol uavs[END_REF] controllers, which can induce high frequencies in the controller signals, increasing the oscillation of the system. Recently, a neuroadaptive integral robust controller for visual quadrotor tracking is proposed in [START_REF] Shao | Neuroadaptive integral robust control of visual quadrotor for tracking a moving object[END_REF]. Asymptotic stability of the closed-loop system is guaranteed using Barbalat's lemma, however, conservative bounds of uncertainties are assumed to compute the controller gains and only simulations are provided.

Additionally, given the underactuation of the vehicle, the attitude has to be slaved to the position to allow tracking. How to modify the attitude dynamics makes the position control a nontrivial problem, for which, different strategies have been developed to solve underactuation. One approach is based on a position controller that is accounted for a disturbance to the attitude dynamics [START_REF] Sanchez | Continuous reactive-based positionattitude control of quadrotors[END_REF], which causes the vehicle to tilt to the desired direction in order to track the position reference, however, it has the drawback that the attitude controller is capable to compensate at least a part of the position controller, leading to a large position error. Another method consists in computing the desired attitude reference from the desired position trajectory [START_REF] Mellinger | Trajectory generation and control for precise aggressive maneuvers with quadrotors[END_REF], but in that case, all dynamic parameters have to be known in order to compute an accurate trajectory for the attitude dynamics, and even so, any of the disturbance causes a poor performance. A further more strategy is to compute the desired attitude from the desired acceleration that can be in turns computed from a virtual controller [START_REF] Roberts | Adaptive position tracking of vtol uavs[END_REF], nevertheless, in this method the rotation about the z axis is restrained at 0 in order to allow the tracking, leavening one degree of freedom unused. In addition, a virtual controller (desired force on the vehicle) can be used in order to compute the desired references for the attitude [START_REF] Cabecinhas | A globally stabilizing path following controller for rotorcraft with wind disturbance rejection[END_REF], leaving only the design of a controller that does not induce high frequencies in the system dynamics.

By virtue of the aforementioned discussion, it is evident that the quadrotor needs a robust controller to compensate for dynamic disturbances, whilst avoiding high frequencies and kinematic singularities. Along this direction, the attractive ellipsoid method allows one to design a continuous controller that is robust against a broad class of disturbances and uncertainties, assuring practical stability [START_REF] Poznyak | Attractive Ellipsoids in Robust Control[END_REF]. It is assumed that there is not complete information of the plant, such as the external disturbances, but at least, an upper bound is known. In this methodology, the feedback gains are calculated from an optimization problem, where Linear Matrix inequalities (LMIs) appear, and by solving them numerically, the region at which the tracking errors converge is reduced. The solution of convex inequalities has allowed the development of important contributions to the control of aerial vehicles, such as the computation of observer gains in fault estimation schemes [START_REF] Zhu | Robust fault estimation for a 3-dof helicopter considering actuator saturation[END_REF].

The contribution is then, an observer based on position feedback by using the Ellipsoid Method. The virtual controller is defined in the position dynamics, which represents the desired force in the vehicle for position tracking. From the virtual controller, the attitude references are estimated, which are represented by unit quaternions in order to avoid possible singularities. Additionally, a desired rotation about the z axis is performed while tracking the position. The controller is designed based on the ellipsoid method, assuring a small region at which the errors converge, depending on the solution of LMIs to estimate the optimal gains. The validity of proposed scheme is shown throughout a simulation study, subject to a time-varying wind gust and noisy measurements, and experimental results, which confirm the robustness of the proposed controller to wide range of uncertainties and disturbances. where ξ = [ξ x , ξ y , ξ z ] T ∈ I is the position of the vehicle, e z = [0, 0, 1] T , m ∈ R is the mass, g ∈ R represents the gravitational acceleration magnitude, f d (t) ∈ I denotes the bounded disturbance forces, q = [q 0 , q 1 , q 2 , q 3 ] T ∈ S 3 is the unit quaternion that represents the rotation of the vehicle, whose scalar and vector parts are q 0 ∈ R and q = [q 1 , q 2 , q 3 ] T , respectively, this leads to

Background and Problem statement

m ξ = -T R(q)e z + mge z + f d (t) (1) 
q = 1 2 q ⊗ Ω (2) J Ω = -Ω × JΩ + τ + τ d (t) (3) 
q = [ q 0 q ] = [ cos(θ) λ sin(θ). ] (4) 
The quaternion product ⊗ is given by [START_REF] Kuipers | Quaternions and rotation sequences: a primer with applications to orbits, aerospace and virtual reality[END_REF] p

⊗ q = [ p 0 -p T p I 3×3 p 0 + [p×] ] [ q 0 q ] (5) 
and the conjugate of a quaternion is

q * = [q 0 , -q 1 , -q 2 , -q 3 ] T (6) 
Note that, in the case unit quaternions, q * = q -1 . Ω = [0, Ω T ] T denotes a pure quaternion with scalar part of zero and vector part Ω, where

Ω = [Ω 1 , Ω 2 , Ω 3 ]
T ∈ B defines the angular velocity of the airframe. In addition the rotation matrix R(q) is expresed in terms of the unit quaternion, as is equivalent to

v i = q ⊗ v b ⊗ q * = [ 0 R(q)v b ] , (7) 
where v i and v b are pure quaternions,

v i = [v i1 , v i2 , v i3 ] T ∈ I, v b = [v b1 , v b2 , v b3 ]
T ∈ B, and R(q) is given by

R(q) =   1 -2q 2 2 -2q 2 3 2q1q2 -2q0q3 2q1q3 + 2q0q2 2q1q2 + 2q0q3 1 -2q 2 1 -2q 2 3 2q2q3 -2q0q1 2q1q3 -2q0q2 2q2q3 + 2q0q1 1 -2q 2 1 -2q 2 2   (8) 
J ∈ R 3×3 stands for the constant inertia matrix around the center of mass and is expressed in the body fixed frame B. The matrix [Ω×] ∈ R 3×3 denotes the skew-symmetric matrix of the vector

Ω [Ω×] =   0 -Ω 3 Ω 2 Ω 3 0 -Ω 1 -Ω 2 Ω 1 0   , (9) 
the external bounded torque disturbance is τ d (t), and τ ∈ B is the control torque.

The Class of quasi-Lipschitz Functions

The quadrotor model is nonlinear, then the following definition will be useful in the stability analysis.

Definition 1 [START_REF] Alazki | Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method[END_REF]: A vector function g : R n → R k is said to be from the class C(C, δ 0 , δ 1 ) of quasi-Lipschitz functions if there exists a matrix C ∈ R k×n and nonnegative constants δ 0 and δ 1 such that for any x ∈ R n the following inequality holds:

∥g(x) -Cx∥ 2 ≤ δ 0 + δ 1 ∥x∥ 2 (10) 
This implies that the growth rates of g(x) as ∥x∥ → ∞ are not faster than linear, [START_REF] Poznyak | Attractive Ellipsoids in Robust Control[END_REF]. Notice that if C = 0, δ 0 = 0 and g(0) = 0 the inequality (10) characterizes the Lipschitz continuity property of the function g(x) with the Lipschitz constant L = √ δ 1 .

Attractive Ellipsoids

In order to determine the convergence region and to apply the ellipsoid method, the following definition is needed.

Definition 2 [START_REF] Poznyak | Attractive Ellipsoids in Robust Control[END_REF]: An ellipsoid, represented by ε ⊂ R n with center in x c is given by:

ε = { x ∈ R n | (x -x c ) T P (x -x c ) ≤ 1 } (11) 
is said to be attractive for the trajectories x :

lim sup t→∞ (x -x c ) T P (x -x c ) ≤ 1
where the ellipsoidal matrix P is a symmetric positive definite matrix 0 < P = P T ∈ R n×n ,

Problem formulation

The problem is to design a closed-loop controller allowing robust position tracking for system (3), assuring that the error trajectories are confined to an invariant attractive set. The controller is continuous and independent of model parameters, but its design consider the system model, ensuring robustness to parametric uncertainties, aerodynamical effects and exogenous disturbances. In addition, considering underactuation, the desired attitude consigns that guarantee position tracking are also needed.

Mapping based Position Control for a Quadrotor

The quadrotor is an underactuated vehicle, then, in order to reach a desired position, the vehicle needs to rotate to change the direction of the thrust to generate force components in a desired direction. In consequence, the vehicle gives up some degrees of freedom in the attitude to gain degrees of freedom in position. In this sense, a virtual control u d is defined, where the components of this vector corresponds to the input forces needed to track the desired position. Then, the virtual controller u d corresponds to the desired thrust T d in a desired direction, which is defined by rotation represented by the unit quaternion q d , see Fig. 2, consequently the virtual control can be defined as

u d = -T d R(q d )e z ( 12 
)
Therefore, using (4), ( 8), [START_REF] Tayebi | Attitude stabilization of a vtol quadrotor aircraft[END_REF], and considering that the magnitude of the virtual controller is the desired thrust T d , then the vector that define the desired direction ûd =

u d ∥u d ∥ = -R(q d
)e z and is given by

ûd =   -2q 1d q 3d -2q 0d q 2d -2q 2d q 3d + 2q 0d q 1d -1 + 2q 2 1d + 2q 2 2d   =   ûd1 ûd2 ûd3   (13) 
Now using the unit quaternion restriction q 2 0d + q 2 1d + q 2 2d + q 2 3d = 1 and from [START_REF] Wang | Switching control of attitude tracking on a quadrotor uav for large-angle rotational maneuvers[END_REF], the scalar part of the quaternion, expressed in terms of q 3d and ûd3 , equals to

q 0d = 1 2 √ -2û d3 + 2 -4q 2 3d (14) 
then, from ( 13) and ( 14), the solution for q 1d and q 2d is given by

[ q 1d q 2d ] = 1 2(q 2 0d +q 2 3d ) [ -q 3d q 0d -q 0d -q 3d ] [ ûd1 ûd2 ] =   q 3d ûd 3 -1 -1 2 √ -2 ûd 3 +2-4 q 3d 2 ûd 3 -1 1 2 √ -2 ûd 3 +2-4 q 3d 2 ûd 3 -1 q 3d ûd 3 -1   [ ûd1 ûd2 ] (15) 
The scalar part q 0d and the two components of the vector part q 1d and q 2d are in terms of q 3d and the direction defined by the vector ûd . Given that there is no restriction of which value should be q 3d , let define the final rotation in two steps. First, assuming that the desired rotation axis is in the xy plane, ie q 3d = 0, the desired quaternion equals to

q dxy =       1 2 √ -2û d3 + 2 ûd 2 √ -2û d 3 +2 -û d 1 √ -2û d 3 +2 0       (16) 
After the vehicle is rotated to generate the desired force components, we can perform another rotation of a desired ψ d angle about the z axis on the body of the quadrotor, as can be seen in Fig. 3, this rotation is defined by

q dz =       cos ( ψ d 2 ) 0 0 sin ( ψ d 2 )       , ( 17 
)
This last rotation does not change the direction of the desired force, which implies that the tracking of the position it is not modified. Therefore, the desired quaternion for the attitude is given by the consecutive rotations of q dxy and q dz as follows

q d = q dxy ⊗ q dz =           1 2 √ -2û d3 + 2 cos ( ψ d 2 ) -û d 1 sin ( ψ d 2 ) +û d 2 cos ( ψ d 2 ) √ -2û d 3 +2 -û d 1 cos ( ψ d 2 ) -û d 2 sin ( ψ d 2 ) √ -2û d 3 +2 1 2 √ -2û d3 + 2 sin ( ψ d 2 )           (18) 
Note that in (15) q 1d and q 2d are not well defined if ûd3 = 1, that means that the direction of the desired force is e z . It is assumed that this scenario is highly improbable due to the gravitational force compensation in the control law, which means that the component ûd3 is always pointing upwards or ûd3 < 0. Also, note that the desired quaternion in ( 18) is equivalent to the equations ( 14) and ( 15) using

q 3d = 1 2 √ -2û d3 + 2 sin ( ψ d 2
) . Now, to obtain the desired angular velocity, from (2), there exists a correspondence between the desired quaternion and the desired angular velocity, and its given by

qd = 1 2 q d ⊗ Ω d (19)
then, the desired angular velocity is equal to

Ω d = 2 q * d ⊗ qd (20) 
with the time derivative of (18), ûT d ûd = 1, its derivative ûT d ud = 0, we obtain that ( 20) is a pure quaternion and the angular velocity equals to

Ω d =      -sin(ψ d ) ud 1 +cos(ψ d ) ud 2 + ud 3 ( sin(ψ d )û d 1 -cos(ψ d )û d 2 ) ûd 3 -1 -cos(ψ d ) ud 1 -sin(ψ d ) ud 2 + ud 3 ( cos(ψ d )û d 1 +sin(ψ d )û d 2 ) ûd 3 -1 ψd + ûd 1 ud 2 -ûd 2 ud 1 ûd 3 -1      (21) 
Note that for the computation of the desired angular velocity the time derivative of the virtual position control ud is needed, therefore this controller needs to be at least one time differentiable.

Attitude Control Design

With the purpose of allow to generate the desired input forces defined by the virtual control, an attitude controller has to assure that the systems tracks the desired references computed from the virtual controller. The control has to compensate the disturbances and aerodynamical effects present in the attitude dynamics and the design has to consider the nonlinearities of the model.

In order to design the attitude controller, first let define the attitude and angular velocity errors.

Attitude Error Equations

The rotation error quaternion is defined by

q e ≜ q * d ⊗ q (22)
which represent the rotation difference between the actual and the desired attitude. Now to obtain the relation of the quaternion error and a angular velocity error, we obtain the derivative of ( 22), using ( 2), ( 6), ( 5), ( 19) and ( 22), is equal to

qe = 1 2 q e ⊗ Ω e (23) 
where the error of angular velocity is

Ω e = Ω -R T (q e )Ω d ( 24 
)
The attitude dynamics has 3 degrees of freedom, the same that the unit quaternion has (4 different parameters and one restriction ∥q e ∥ = 1). Assuring the 3 components of the vector part q e → 0 implies that the scalar part q 0e → ±1, then we only need to assure q e → 0 in order to have q → q d . Also, considering small errors, with q 0e ≈ 1, it can be assumed that the scalar part of the quaternion error doesn't change sign, if the initial condition is q 0e (t 0 ) ≈ 1 that means that q e0 ≥ 0 and with the unit quaternion restriction, then

q e0 = √ 1 -q 2 e1 -q 2 e2 -q 2 e3 ( 25 
)
with this the differential equation of the vectorial part of the quaternion is given by

qe = Q(q e )Ω e , Q(q e ) = 1 2 
[ (1 -q T e q e ) 1/2 I 3×3 + [q e ×] ] (26 
) Now the state space can be defined by error variables that must converge to a small invariant set as follows

x a = [ q e Ω e ] , ẋa = B a τ + ζ a (x a , Ω, Ω d , Ωd , t) (27) 
where ζ a (x a , Ω d , Ωd , t) corresponds to the disturbances and non-linearities of the attitude dynamics

ζ(x a , Ω d , Ωd , t) = [ Q(qe)Ωe J -1 (-Ω×JΩ+τ d )-R T e Ωd -R T e Ω d ×Ωe
]

and 27), the quasi-linear model can be represented as

B a = [0 3×3 J -1 T ] T From (
ẋa = A a x a + B a τ + φ a (x a , Ω d , Ωd , t) (28) 
where

φ(x a , Ω, Ω d , Ωd , t) = ζ(x a , Ω, Ω d , Ωd , t)-A a x a , A a = [ -aI 3×3 1 2 I 3×3 0 3×3 0 3×3 ] , with a > 0 ∈ R is a positive scalar.
The form of A a comes from the linearization around the origin of Q(q) and the constant a for and additional parameter for the solution of the ellipsoid method.

Assumptions of the attitude dynamics Assumption 1:

The desired Ω d and Ωd are defined by the user, and are bounded by

∥Ω d ∥ 2 ≤ Ω + d ∥ Ωd ∥ 2 ≤ Ω+ d ( 29 
)
Assumption 2: The norm of the disturbances vector τ d has an upper bound, then there exists a positive constant d + such that

∥τ d ∥ 2 < d + (30)
Assumption 3: The nonlinear term in (3) can be bounded using two constants c 0 ≥ 0 and c 1 > 0 such that

∥J -1 (-Ω × JΩ)∥ 2 ≤ c 0 + c 1 ∥Ω∥ 2 ∀ Ω ∈ R 3 (31)

Bound of the nonlinearities and disturbances

Now with the purpose of proceed to the stability analysis, the bound of φ is needed. With the assumptions 1-3, the norm of φ(x, Ω d , Ωd , t) is calculated as

φ(x a , Ω d , Ωd , t) T φ(x, Ω d , Ωd , t) = φ T 1 φ 1 + φ T 2 φ 2 (32) φ T 1 φ 1 ≤ 3 2 ∥Ω e ∥ 2 + 3a 2 ∥q e ∥ 2 φ T 2 φ 2 ≤ c 3 + 4c 1 ∥Ω∥ 2 + c 4 ∥Ω e ∥ 2 where c 3 = 4c 0 + 4J + d + + 4 Ω+ d y c 4 = 4Ω + d . Then, with b 0 = c 3 + 3a 2 , b 1 = 4c 1 , b 2 = 3 2 + c 4 , the norm of ∥φ∥ 2 is given by ∥φ∥ 2 = b 0 + b 1 ∥Ω∥ 2 + b 2 ∥Ω e ∥ 2 . ( 33 
)
The bound of the nonlinearities and disturbances depends on the angular velocity of the vehicle. In order to express (33) only in terms of the error and desired angular velocity, an extended vector with the system state and the desired error velocity is defined

xa =   q e Ω e R T e Ω d   = [ x a R T e Ω d ] , (34) 
using [START_REF] Alazki | Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method[END_REF] we can calculate the angular velocity of the vehicle Ω = Ω e + R T e Ω d , that can be expressed as:

Ω = G 1 xa , G 1 = [ 0 3×3 I 3×3 I 3×3 ] ,
the norm of the angular velocity ∥Ω∥ 2 can be expressed in terms of the extended error vector (34) as

∥Ω∥ 2 = xT a G T 1 G 1 xa = xT a G 2 xa , G 2 =   0 3×3 0 3×3 0 3×3 0 3×3 I 3×3 I 3×3 0 3×3 I 3×3 I 3×3 ,  
then the norm of ∥φ∥ 2 from (33) can be expressed by

∥φ∥ 2 = b 0 + xT a Gx a , G = [ 03×3 03×3 03×3 03×3 (b1+b2)I3×3 b1I3×3 03×3 b1I3×3 b1I3×3 ] . ( 35 
)
and the state x a can be defined as

x a = H xa , H = [ I 6×6 0 6×3 ] (36)

Attitude Practical Stability

Consider the following control law

τ = Kx a (37) Theorem 1. Suppose that 1.
-The assumptions 1-3 are fulfilled 2.-For the system (27) with (37), for some matrices K and P a = P T a > 0 (solution of the optimization problem (46), when it exists), also some positive constants α a , ε 1 , ε 2 that satisfy the inequality W a (P a , K, α a , ε 1 , ε 2 ) < 0 where

W a =   G a ε 1 G 12 P a ε 1 G T 12 (ε 1 b 1 -ε 2 )I 3×3 0 3×6 P a 0 6×3 -ε 1 I 6×6   (38) G a = (A a + B a K + αa 2 I 6×6 ) T P a + P a (A a + B a K + αa 2 I 6×6 ) + ε 1 G 11 , G 12 = [ 0 3×3 b 1 I 3×3 ] , G 11 = [ 0 3×3 0 3×3 0 3×3 (b 1 + b 2 )I 3×3 ] ,
there exists an energy function V a (P a , x a ) that has a differential inequality defined as

Va ≤ -α a V a (P a , x a ) + β a (39)
where, β a is a positive constant.

Then, there exists an invariant ellipsoid for the closedloop system [START_REF]Optitrack for robotics[END_REF] and (37).

Proof. In order to analyze the behavior for the system, the energy function is proposed:

V a = x T a P a x a , (40) 
Now, adding and subtracting ε 1 ∥φ∥ 2 and αV in the derivative of (40) follows that 35) and (36) in (41) it follows

Va = (A a x a + B a Kx a + φ) T P a x a + x T a P a (A a x a + B a Kx a + φ) ± ε 1 ∥φ∥ 2 ± α a V a (41) Using (
Va ≤ [ xa R T e Ω d φ ] T [ G3 H T Pa PaH -ε1I6×6 ] [ xa R T e Ω d φ
]

+ε 1 b 0 -α a V a ± ε 2 ∥R T e Ω d ∥ 2 ≤ [ xa R T e Ω d φ ] T [ Ga ε1G12 Pa ε1G T 12 (ε1b1-ε2)I3×3 03×6 Pa 06×3 -ε1I6×6 ] [ x R T e Ω d φ
]

+ε 1 b 0 + ε 2 Ω + d -α a V a (42) where G 3 = H T ((A a + B a K + αa 2 I 6×6 ) T P a + P a (A a + B a K + αa 2 I 6×6 ))H + ε 1 G, Then, the equation (41) can be expressed as Va ≤ [ xa φ ] T W a [ xa φ ] -α a V a + β a ( 43 
)
where

β a = ε 1 b 0 + ε 2 Ω + d . Assuring that the matrix W a ≤ 0, the following in- equality is guaranteed Va ≤ -α a V a + β a ( 44 
)
and assures that the stability region is defined by the ellipsoid given by

E a = { x a ∈ R n | x T a P a x a ≤ β a α a } (45) 
Now, the minimization of the stability region can be found using the following optimization problem tr

{ βa αa P -1 a } → min αa,βa,ε1,ε2,K,Pa
subject to the restrictions

α a > 0, ε 1 > 0, ε 2 > 0, 0 < P a , W a = W a (K, P a , α a , ε 1 , ε 2 ) ≤ 0 (46)
which can be solved by using the MATLAB toolboxes Se-DuMi and YALMIP through the Interior Point Method [START_REF] Nesterov | Interior-Point Polynomial Algorithms in Convex Programming[END_REF].

Position Control Design

Now with an attitude control, we proceed to the design of the control law for the position dynamics, and how should be computed the virtual control in order to assure the tracking of the desired position.

Observer equations

A way of estimate the velocity of the vehicle is needed because only position measurement is available. Using a dirty derivative, although easy to implement, increases the noise present in the signals of position. In order to reduce the noise an observer is proposed to estimate the velocity of the vehicle.

A space state of the position is defined as

x ξ = [ x ξ1 x ξ2 ] = [ ξ ξ] (47) 
with the position dynamics

ξ = 1 m (u o + f d (t)), u o = -T R(q)e z + mge z (48)
ẋξ and the output of the system are

ẋξ = A p x ξ + B p u o + B p f d (t), y = Cx ξ + η ( 49 
)
where η ∈ R 3 represents the noise present in the measurements,

A p = [ 0 3×3 I 3×3 0 3×3 0 3×3 ] , B p = [ 0 3×3 1 m I 3×3 ] , C = [ I 3×3 0 3×3 ]
and the observer equation is given by

ẋξ = A p xξ + B p u o + L(y -C xξ ). (50) 
where L ∈ R 6×3 .

Position Error Equations

In order to analyze how the virtual control affects the position stability, let introduce this term in the position dynamics. From (1) adding and substracting the virtual control u d defined in [START_REF] Tayebi | Attitude stabilization of a vtol quadrotor aircraft[END_REF], and T d R(q)e z , the acceleration is given by

m ξ = u d + f d (t) + ζ ξ (T, T d , q, q d ) + mge z ( 51 
)
where

ζ ξ (T, T d , q, q d ) = (-T e R(q) + T d R(q d )(I 3×3 -R(q e )
))e z (52) Note that ζ ξ (T, T d , q, q d ) = 0 if T = T d and q = q d . This means that the term ζ ξ can be seen as a disturbance produced by the difference of the desired and the actual input forces in the position dynamics. Since the desired attitude gives the direction of the input force vector, then the norm of ζ ξ increases as the attitude error grows.

The desired position state is defined by Then, using (47), ( 54) and (51) the error dynamics is expressed as

x d = [ ξ d ξd ] (53 
ẋe = [ ξ -ξd 1 m (u d + f d (t) + mge z + ζ ξ (T, T d , q, q d )) -ξd ]
(55) Given that the gravity, mass and desired acceleration are well known, in the virtual control can be compensated the gravitational force and the desired acceleration, as a result the virtual controller is given by

u d = u p -mge z + m ξd (56)
where u p is the feedback of the system signals. With (56), we can define a state space for the error dynamics as

ẋe = A p x e + B p u p + B p ζ p , ( 57 
)
where

ζ p = [0 1×3 , (f d (t) + ζ ξ (T, T d , q, q d )) T ] T .
Defining the observer feedback controller as

u p = K p xe , (58) 
from ( 49), ( 50) and ( 54), the equation of the observer error is defined by

ẋe = (A p -LC)x e -B p f d (t) + Lη. ( 59 
)
also, using (54) it follows that xe = x e + xe , then from (55), the position error dynamics is expressed as

ẋe = (A p + B p K p )x e + B p K p xe + B p ζ p ( 60 
)
Defining an extended error for the position error variables that we seek to stabilize x p = [x T e , xT e ] T , which time derivative is using (60) and ( 59)

ẋp = Ãx p + B ζp (61) 
where

ζT p = [ζ ξ T f d (t) T η T ] T , Ã = [ Ap + BpKp BpKp 06×6 Ap -LC ] , B = [ Bp Bp 06×3 06×3 -Bp L ]

Assumptions of the Position Dynamics Assumption 4:

The rotor dynamics are fast, meaning that the time delay between the instant that desired thrust (T d ) is commanded and the instant that the actuators actually give that force is considered small enough to be neglected, and it can be assumed that the desired thrust is equal to the system thrust T d = T .

Assumption 5: Part of the disturbances in the acceleration error in (55) are caused by the attitude error represented in the term ζ ξ (T d , q, q d ). That means that the disturbances grows as the attitude error q e increases. Assuming that this term has an upper bound implies that the attitude error vector q e has an upper bound, that indicates that the attitude controller assures that the norm of the vectorial part of the error quaternion ∥q e ∥ ≤ q + e < 1, where q + e is a positive constant.

Assumption 6: The thrusters of the vehicle have an upper limit in the generated force, then there exists a positive constant T + > T .

Assumption 7: The external forces in the position dynamics f d (t) has an upper bound, then, there exists a positive constant f + d such that ∥f d (t)∥ 2 < f + d . Assumption 8: The position noise measurement has a bound, there exists a positive constant η + such that ∥η∥ 2 < η + , where η ∈ R 3 represents the noise present in the measurements.

The disturbance due to the attitude error can be bounded if the assumptions 4-6 are fulfilled as follows:

ζ T ξ ζ ξ = T 2 d ((I 3×3 -R(q e )))e z ) T (I 3×3 -R(q e )))e z ≤ 2T + 2 q + e 2 (62) 

Practical Stability with Observer Feedback

Now we seek that the observer and position error converges to a small enough stable region around the origin.

Theorem 2. Suppose that:

1.-The assumptions 4-7 are fulfilled.

2.-For the system (59) and (60) with (58), for some matrices K p , L and P = P T > 0, also some positive constants α, ε that satisfy the inequality W p (P, K p , L, α, ε) < 0 where

W p = [ P Ã + ÃT P + αP P B BT P -εI 9×9 ] , ( 63 
)
there exists an energy function V (P, x p ) with the following differential equation

V ≤ -αV + β ( 64 
)
where β > 0.

As a result, there exists a stability region around the origin of x e and xe defined by the ellipsoid

E = { x p ∈ R n | x T p P x p ≤ β α } ( 65 
)
Proof. In order to analyze the system, a energy function is proposed

V p = x T p P x p (66)
which derivative, using (62), adding and subtracting αV and ε∥ ζp ∥ 2 , using assumptions 7 and 8 for the bound of the disturbances and noise as ε∥ ζp

∥ 2 ≤ ε∥ζ ξ ∥ 2 +εf + d +εη + , is equal to V = x T p P ẋp + ẋT p P x p ± αV ± ε∥ ζp ∥ 2 ≤ [ x p ζp ] T W p [ x p ζp ] -αV + β ( 67 
)
where β = εT + 2 q + e 2 + εf + d + εn + . As long as it is assured that W p ≤ 0, there exists a stability region around the origin of x e and xe defined by the ellipsoid

E = { x p ∈ R n | x T p P x p ≤ β α } (68)
and the solution to the optimization problem is tr

{ β α P -1 } → min α,β,ε,Kp,Pa subject to the restrictions α > 0, ε > 0, 0 < P, W p = W p (K p , P, α, ε, ) ≤ 0 (69)
As was mentioned in Assumption 5, the disturbances term ζ ξ in the position error dynamics depends on the attitude error q e , meaning that if the attitude controller doesn't assure the tracking of the desired references computed from the virtual controller, the position error will increase. In this sense, the stability of the position dynamics depends on the attitude stability, ie as q e → 0 implies ξ e → 0.

Note that for the derivative of the control ud ( ẋe , ...

ξ d ) = K p ẋe +m ... ξ d = K p ( ẋe -ẋd )+m ... ξ d
, the ẋe can be estimated using (50). Also the term ... ξ d is needed, which implies that the desired position trajectory needs to be at least 4 times differentiable.

Numerical Results

In order to demonstrate the performance of the controller a simulation study subject to a time-varying wind gust and noisy measurements was implemented. The vehicle accomplishes the tracking of a position trajectory while tracking a desired ψ d angle.

Simulator

The simulation was carried out using Matlab ® Simulink ® 9.2. The solver used was Dorman-Price (ode8) with a fixed step of 0.001s. The Fig. 4 shows how the signals were used to calculate the controllers and dynamics of the simulated system. In order to emulate a real scenario, a time-varying wind gust is simulated, where the wind velocity vector is sin 2 (0.1 t) [0.5403, 0.8415, 0] T m/s. Note that the magnitude of such a vector is v(t) = sin 2 (0.1 t) m/s. This wind gust generates state-dependent aerodynamical disturbances in the form of forces and moments that affect both position and orientation dynamics. The aerodynamic coefficients and the equations that describe these effects are [START_REF] Ramirez-Rodriguez | Robust backstepping control based on integral sliding modes for tracking of quadrotors[END_REF]:

f d = 1 2 ρ a v 2 r S R W T d   c L c Y c D   τ d = 1 2 ρ a v 2 r S   b c l c c m b c n  
where the coefficients c and b are the chord and the span of a blade, respectively, c D , c Y , c L , c l , c m and c n are aerodynamical non-dimensional coefficients of drag, sideforce lift, rolling, pitching and yawing moments, respectively.

v r = √ (v sin(α 0 )) 2 + (v cos(α 0 ) + v i ) 2
and ρ a is the air density, α 0 is the freestream angle of attack, v r is the resultant velocity in the propeller slipstream, v i is the induced velocity produced by the rotor,

v i ≈ √ Tm 2ρaAm
, and T m is the thrust of the rotor and A m is the area of the rotor disk. The orthogonal rotation matrix that relates the body fixed frame and the aerodynamic frame is

W d =   c α d c β d s β d s α d c β d -c α d s β d c β d -s α d s β d -s α d 0 c α d  
where c a = cos(a) and s a = sin(a), α d is the angle of attack, α d = arctan The initial conditions of the system are q = [1, 0, 0, 0] T , Ω = [0, 0, 0] T ξ = [0, 0, -1] T , ξ = [0, 0, 0] T and xξ = [0, 0, -1, 0, 0, 0] T . Additionally, white noise is added to the position, attitude quaternion and angular velocity using the white noise block of Matlab ® Simulink, which generates normally distributed random numbers. Each block has different seed and the parameter noise power of 0.1. The values provided by those blocks are then multiplied by 0.0001 in order to obtain values between ±0.003, which correspond approximately to a position error of 3mm, attitude error of 0.4 degrees and angular velocity error of 0.003 rad/s. It is important to point out that a motion capture system Optitrack produces position error less than 0.3mm and rotational error less than 0.05 degrees [START_REF]Optitrack for robotics[END_REF].

( v sin(α0) v cos(α0)+vi
The control parameters are given by: K = [diag [START_REF] Wang | Disturbance observer-based adaptive fault-tolerant control for aquadrotor helicopter subject to parametric uncertainties andexternal disturbances[END_REF][START_REF] Wang | Disturbance observer-based adaptive fault-tolerant control for aquadrotor helicopter subject to parametric uncertainties andexternal disturbances[END_REF][START_REF] Wang | Disturbance observer-based adaptive fault-tolerant control for aquadrotor helicopter subject to parametric uncertainties andexternal disturbances[END_REF], diag(10, 10, 10)], (40,40,40), -diag(80, 80, 80)],

K p = [-diag

L = [I; 100I]

The solution of LMIs from the optimization problem in the attitude dynamics is expressed as: λ(P a ) i ∈ {0.017587, 0.45995}, ε 1 = 0.0041433, ε 2 = 156.0903 and α a = 0.002973; and for the position controller: λ(P ) i ∈ {0.0014673, 0.74522}, ε = 2.8245, α = 1.012.

Task

The smooth desired trajectory, assuring small initial errors for position and attitude, is given by

ξ d =          r (tanh (δt -4) + 1) 2 cos (f t) r (tanh (δt -4) + 1) 2 sin (f t) -z d          (70) 
The function tanh is used to slowly increase the radius of the circle from zero to a desired value r, where its increment depends on δ. This assures small initial errors provided that the initial position of vehicle is in the center of the circle. The trajectory parameters used were δ = 2, r = 1, f = 2 and z d = 1, with ψ = -2 for the desired attitude. The desired trajectory is smooth enough to guarantee existence of ... ξ d , which is a requirement for the solution of underactuation.

In order to calculate the desired trajectories for the attitude controller, the time derivative of the virtual position controller, u d , is required. By using (50), it is computed as

ud = -K p ẋe + m ... ξ d = -K p ( ẋξ -ẋd ) + m ... ξ d
Note also that the term ... ξ d is needed to compute the desired angular velocity in [START_REF] Poznyak | Attractive Ellipsoids in Robust Control[END_REF]. Thus, ... ξ d has to be continuous, which implies that the desired position trajectory needs to be at least 4 times differentiable.

Results

The tracking performance of the system is shown in Fig. 5. In Fig. 6, the 3D trajectory demonstrates how the vehicle begins in the center of the circle and increases the radius of the tracked circle until it reaches target radius of 1. The system follows the desired trajectory with small errors, as can be appreciated in Fig. 7. The position controller is shown in Fig. 8. As seen from this figure, the element u d3 reminds always negative, assuring that there is always a desired attitude at any given time. Fig. 9 shows the successful tracking of the desired attitude, computed from the position controller. However, the noise present in the position control results in a noisy desired attitude trajectory, specially for the desired angular velocity. Even with this noise, the attitude is tracked with small errors, see Fig. 10, and consequently ensures position tracking at the same time. The attitude controller signals are presented in Fig. 11, which has a strong component of noise due to the noise present in the measured and desired signals. Finally, Fig. 12 shows the moment and force aerodynamical disturbances respectively that affect the vehicle. 

Experimental Results

The excellent performance of the control strategy is demonstrated when the aerial vehicle executes a similar trajectory to the one used in the numerical results, (70), a circle trajectory while tracking a desired angle ψ d , using the equations ( 18) and [START_REF] Poznyak | Attractive Ellipsoids in Robust Control[END_REF]. The platform used is an AR Drone 2.0 Edition of Parrot shown in Fig. 13. The platform uses a board with an ARM Cortex A8 1GHz processor with 1GB of RAM and the control algorithm is programmed in C++ code using Codeblocks 13 in a Linux Ubuntu 14.04 environment. The embedded system update the IMU measurements at 200Hz (5ms), as well as control outputs to the rotors, interruptions, data fusion and communication to the ground station. The measurements of the position of the vehicle is performed using an Optitrack system with 24 cameras, that send information to the vehicle up to 100Hz (10ms). The communication to the ground station allows to monitor the system measurements and change parameters in the controller and desired position, while all the data is recorded on board.

The parameters of the desired trajectory (70) are δ = 0.7, r = 1, f = 2, z d = 1.5 and ψd with initial condition ψ d (t 0 ) = 0. Using an approximation of the inertia matrix J = diag(0.002237568, 0.002985236, 0.00480374)

and mass m = 0.43kg for the optimization problem, the solution of the LMIs are for the attitude dynamics : λ(P a ) i ∈ {7.5990e -05, 4.4614e -01}, ε 1 = 0.055195, ε 2 = 2.0784 and α a = 0.00208; and for the position controller: λ(P ) i ∈ {1.6117e -04, 3.2167e + 00}, ε = 1.8468, α = 2.99.

The result of the tracking of the desired position trajectory are shown in Fig. 14. The comparison of the measured and desired position is shown in Fig. 14(a), also, the comparison of the observed and desired velocity is displayed in Fig. 14(b), where it can be easily seen the outstanding tracking of the desired trajectory. Usually, given the underactuation of the quadrotor, the tracking of a circle seams that is out of phase [START_REF] Sanchez | Continuous reactive-based positionattitude control of quadrotors[END_REF], which in this case is not appreciable. It is better seen in Fig. 15 the error xe , which magnitude is never greater than 20cm of the tracking of a 2m diameter circle.

In Fig. 16 the comparative of the two different forms to estimate the velocity of the vehicle is presented, one is a dirty derivative and the other one is using the observer. It is perceptible that the dirty derivative amplifies the noise present in the position measurements, while the observer estimate a more regular signal. This is important given that the desired attitude is computed using the error signals of position and velocity. Using more regular signals of the position and velocity signify more uniform desired trajectories for the orientation, making it easier for the attitude controller to perform the tracking, implying a better behavior in the position. The virtual controller presented in Fig. 17, is used to estimate the desired quaternion. Given that the virtual controller contains noise, the desired quaternion and angular velocity also contains noise. The signals of the real quaternion components q 1 , q 3 and the desired q 1d , q 3d (estimated from the virtual controller) are shown in Fig. 18. The main rotation is in the z axis, as can be seen in Fig. 18(b), the rotation about this axis has the same frequency as the circle, meaning that when the quadrotor finish a circle, a full 360º rotation is also completed. Even with noise present in the desired quaternion, the tracking has good performance, with small error in the attitude, as can be seen in the error quaternion vector from Fig. almost the same value plus some terms that come from the virtual controller as [START_REF] Poznyak | Attractive Ellipsoids in Robust Control[END_REF]. The performance of the attitude controller is presented in Fig. 22. Fig. 23 shows the tracking in 3D space, where can be seen that as the diameter of the circle increases, the altitude error increments as well due to the increment of the inclination of the vehicle. Finally, Fig. 24 exhibits how the vehicle has to tilt in order to follow the desired trajectory, almost like looking to the center of the circle as following the desired rotation about the z axis. This trajectories has frequencies greater than usually used in quadrotors [START_REF] Roberts | Adaptive position tracking of vtol uavs[END_REF][START_REF] Cabecinhas | A globally stabilizing path following controller for rotorcraft with wind disturbance rejection[END_REF][START_REF] Cao | Inner-outer loop control for quadrotor uavs with input and state constraints[END_REF], also, for more aggressive trajectories the Euler angles may present singularities that jeopardize the integrity of the vehicle. The video of the experiments can be seen in https://www.youtube.com/watch?v=1ZWpgedxMos.

Implementation considerations

The design of the control is done without considering the latencies present in the vehicle, it is only assumed that the sampling rate is fast enough to be considered continuous. The vehicle has a sampling rate of 5ms for the attitude signals, which is small enough to have a response considered continuous. However solution of the optimization problem could lead to high gains that would induce higher frequencies than the maximum frequency response of the system leading to instability. Also, a more aggressive trajectory in position implies a more aggressive trajectory in orientation, then, the invariant set for the attitude system could grow, leading to a increase in the disturbance in position due to orientation error and therefore a greater error in position.

Given the small errors requirement for the small error initial condition, the vehicle needs to start near from the desired trajectory, or even in the desired trajectory. If the vehicle needs to reach a specific point, the desired path has to be designed in order that gently leads from the starting point(where the vehicle begins) to the end point(the desired position). 

Conclusions

A continuous position control for a quadrotor using observer feedback was proposed. The ellipsoid method forced the error to a small enough region around the origin, which allowed the system to track the desired position, even for highly aggressive maneuvers. The solution of underactuation provided the attitude desired references, needed by the attitude controller for the purpose of tracking the position trajectory, through a unit quaternion in order to avoid the singularities. The only restriction on the proposed scheme is that the desired force never points downwards, which implies that there is no error in the x and y directions and the desired point in z is far beneath the ve- hicle, a highly improbable scenario. Finally, the proposed approach allows the tracking in 4 Dof, in this case the 3 Dof of position and the yaw angle.

2. 1 .

 1 Quadrotor Dynamic Model Let I = {e x , e y , e z } be the earth fixed frame, and B = { e b x , e b y , e b z } the body fixed frame, whose origin coincides with the center of mass, see Fig. 1. The orientation of the rigid body is given by an orthogonal rotation matrix R ∈ SO(3) : I → B. The Newton-Euler equations of motion representing the position and orientation dynamics of the quadrotor are
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 1 Figure 1: Inertial and body frames in the vehicle.

Figure 2 :

 2 Figure 2: The attitude is "sacrificed" in order to control the position.

Figure 3 :

 3 Figure 3: The final rotation about the z axis does not change the direction of the original desired force.

)

  Now the error for the position and observer dynamics are defined as xe = xξ -x d estimated position error xe = xξ -x ξ observed position error x e = x ξ -x d real position error (54)

Figure 4 :

 4 Figure 4: Block diagram of the control algorithm.

)

  and β d is the sideslip angle. The coefficients values used are ρ a = 1.19 kg/m 3 , β d = 0, c l = 0.15, c m = 0.25, c n = 0.8, c L = 0, c Y = 0.2, c D = 0.1, S = 0.5 m 2 , b = 0.05 m, c = 0.02 m. J = diag(0.1241, 0.1241, 0.2483) kg m 2 /rad and mass m = 2kg.
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 56 Figure 5: Position and velocity signals in the numerical results.
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 7 Figure 7: Position error in the numerical results.
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 8 Figure 8: Position control signals in the numerical results.
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 9 Figure 9: Attitude signals in the numerical results.
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 10 Figure 10: Attitude error signals in the numerical results.
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 11 Figure 11: Orientation control signals in the numerical results.
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 12 Figure 12: Torque and force disturbances in the numerical results.
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 13 Figure 13: Platform used for the experimental validation: Parrot AR Drone 2.0.
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 1415 Figure 14: Position and observer signals in the experimental validation.

Figure 16 :Figure 17 :

 1617 Figure 16: Comparison between dirty derivative and observer for the velocity estimation in the experimental validation.
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 1819 Figure 18: Attitude in the experiments.
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 20 Figure 20: Angular velocity in the experiments.
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 21 Figure 21: Angular velocity error in the experiments.
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 222324 Figure 22: Attitude control signals during the experiment.
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