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Abstract

Substructuring methods are a very common and efficient way to solve complex vibroacous-

tic problems. The Condensed Transfer Function (CTF) approach is a substructuring method

based on the concept of subsystem condensed transfer functions (corresponding to admittances

or impedances) that allows assembling acoustical or mechanical subsystems coupled along lines or

surfaces. For certain practical applications, it may be more efficient to subtract or to decouple a

subsystem to a global system rather than assembling different subsystems. In this paper, a reverse

formulation of the CTF method is proposed. This formulation allows us to predict the behavior of

a subsystem that is part of a larger system, from the knowledge of the condensed transfer functions

(CTFs) of the global system and of the residual subsystem that must be removed. For purposes

of validation, the scattering problem of a rigid sphere in an infinite water domain impacted by an

acoustic plane wave is considered. Comparisons with theoretical calculations are used to validate

the formulation proposed and permit studying its accuracy for two types of condensation functions

defining the CTFs.
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Nomenclature

a Radius of the sphere, defined in table 1

c0 Sound speed, defined in table 1

d Size of the patch, appearing in Eq. (31)

Hp{Q pM,M 1q Transfer function between the volume velocity flow of a monopole source at point

M 1 and the pressure at point M , defined in section 3.2

h
p1q
n Spherical Hankel function of the first kind, appearing in Eq. (A.1a)

h
p2q
n Spherical Hankel function of the second kind, appearing in Eq. (A.1a)

I Identity matrix, appearing in Eq. (16)

i Imaginary unit, appearing in Eq. (32)

jn Spherical Bessel function of the first kind, appearing in Eq. (34)

k0 Wavenumber, appearing in Eq. (32)

Lp Sound pressure level, defined in Eq. (37)

N Number of condensation functions, defined in section 4.2.1

NL Maximal degree of the associated Legendre polynomial, defined in section 4.2.1

pαpxq Pressure at the junction of subsystem α, defined in Eq. (1)

P iα Condensed pressure at the junction of subsystem α associated with the condensation func-

tion ϕi, appearing in Eq. (1)

p0 Reference pressure, defined in section 4.4.2

Pmn pcos θq Associated Legendre polynomial, appearing in Eq. (25)

P̃Mα Condensed blocked pressure vector of subsystem α induced by a unit volume velocity located

at point M , defined in section 3.2
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P δα Condensed pressure vector of subsystem α with a prescribed velocity jump, appearing in

Eq. (19)

Pi Incident pressure of the plane wave, appearing in Eq. (33)

pMi Incident pressure of the spherical source at point M , appearing in Eq. (B.1)

Pnpcos θq Legendre polynomial, appearing in Eq. (34)

Pα Condensed pressure vector of subsystem α, defined in section 2

PMα Condensed pressure vector of subsystem α induced by a unit volume velocity located at

point M , defined in section 3.2

ps8 Scattered pressure by the rigid sphere, defined in Eq. (35)

˜̄pα Blocked pressure at the junction of uncoupled subsystem α, defined in section 2

P̃ iα Condensed blocked pressure at the junction of subsystem α associated with the condensation

function ϕi, defined in Eq. (4)

P̃α Condensed blocked pressure vector of subsystem α, defined in section 2

QpMq Volume velocity flow of a monopole source at point M , defined in section 3.2

R Radial distance to origin, shown on figure 4

uαpxq Normal velocity at the junction of subsystem α, defined in Eq. (1)

U iα Condensed normal velocity at the junction of subsystem α associated with the condensation

function ϕi, appearing in Eq. (1)

δU i1�2 Condensed normal velocity jump at the junction of subsystem 1 � 2 associated with the

condensation function ϕi, appearing in Eq. (17)

δU Condensed normal velocity jump vector, defined in Eq. (18)

Uδα Condensed normal velocity vector of subsystem α with a prescribed velocity jump, appearing

in Eq. (19)

Uα Condensed normal velocity vector of subsystem α, defined in section 2
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yn Spherical Bessel function of the second kind, appearing in Eq. (A.1b)

Zα Condensed impedance matrix of subsystem α, defined in section 2

ZiαpMαq Point condensed impedance vector of subsystem α at point Mα associated with the con-

densation function ϕi, defined in section 2

ZαpMαq Point condensed impedance vector of subsystem α at point Mα, defined in section 2

Zijα Condensed transfer function of subsystem α between ϕi and ϕj , defined in Eq. (2)

δij Kronecker symbol, appearing in Eq. (28)

εin,m Evaluation factor associated with the condensation function ϕi, defined in Eq. (A.10)

η Loss factor, defined in table 1

κm Even factor, defined in Eq. (B.3)

λ Wavelength, appearing in Eq. (30)

ϕi Condensation function, defined in section 2

φ Azimuthal angle, shown on figure 4

ψm,n Spherical harmonics, defined in Eq. (25)

ρ Density, defined in table 1

θ Polar angle, shown on figure 4

ω Angular frequency, appearing in section 4.4.1

Ω Surface junction between the subsystems, defined in figure 2

Ωi Surface of the patch, defined in section 4.2.2
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1. Introduction

Substructuring methods in vibroacoustics have been widely investigated in recent decades to

overcome the computational limitations of numerical methods. In particular, substructuring meth-

ods based on admittance and impedance concepts are a powerful tool for studying the vibroacoustic

behavior of complex structures that can be partitioned into several substructures. Initially derived

from electrical concepts by Firestone [1], they were then developed by Rubin [2] and O’Hara [3] and

consist in the coupling of subsystems for which the characteristics are determined by different means

(analytically, numerically or experimentally). Petersson and Plunt [4, 5] introduced the concept of

effective mobilities for multi-point coupled structures to determine the sound power transmitted to

a structure. The admittance method was then extended to structural-acoustic systems with weak

coupling by Kim and Brennan [6].

Later on, Ouisse et al. [7] developed the Patch Transfer Function (PTF) method to couple

subsystems along surfaces. The method is adapted for linear acoustics and linear vibro-acoustics

problems. The coupling surfaces between the subsystems can either appear at a junction between

a vibrating structure and an acoustic domain, or between two acoustic domains. The first step of

the method consists in dividing the coupling surfaces into elementary surfaces called patches using

a wavelength-based criterion while in the second step each subsystem is studied independently to

build a set of transfer functions defined by using mean values on the patches; hence the term Patch

Transfer Functions. For structural subsystems, the PTFs correspond to admittances (displacement

over force) whereas for subsystems consisting of an acoustic domain, they correspond to impedances

(pressure over velocity). Then, the PTFs are assembled by using the superposition principle for the

linear passive system along with the continuity relations, leading to the fast resolution of the coupled

problem. This method has shown to be of great interest for estimating the noise radiated outside a

vehicle [7, 8], predicting transmission loss through double panels filled with porogranular materials

[9, 10], modeling the effect of micro-perforated panels in a complex vibroacoustic environment

[11, 12] and for acoustic silencing in a flow duct [13]. The PTF method was also used in inverse

methods to identify and characterize vibrating sources [14–16]

The convergence of the approach was improved by Aucejo et al. [17], particularly for strong

coupling, by introducing residual mode shapes. Maxit et al. [18] proposed a way to reduce the

number of patches by partitioning the subsystems outside the acoustic near field of the structures,

and applied the method to sound transmission through ballast compartments in a submarine. As

5



a generalization of the PTF method to vibroacoustic partitioning along lines or surfaces, Meyer

et al. developed the Condensed Transfer Function (CTF) method [19]. The displacements and

forces at the junctions of the subsystems are decomposed into a set of orthonormal functions called

condensation functions. The unknowns of these decompositions are estimated using the condensed

transfer functions (CTFs) defined for each uncoupled subsystem using a scalar product and the

condensation functions. As for the PTFs, the CTFs are assembled by using the superposition

principle for the linear passive system to ensure displacement continuity and force equilibrium

at the junctions. The PTF approach can be seen as a particular case of the CTF approach,

where the condensation functions correspond to 2D gate functions. Meyer et al. [19] studied the

influence of three different kinds of condensation function (gate functions, complex exponential

functions and Chebyshev polynomials) on the numerical convergence of the method. Criteria of

convergence were defined for these different types of condensation functions and it was shown that

they present similar performances. The approach was applied to study the acoustic radiation of

stiffened cylindrical shells with non-axisymmetric internal frames [20]. Two types of condensation

function were used: complex exponentials were used for coupling between cylindrical shell and ring

stiffeners whereas gate functions were used for coupling with non-axisymmetric internal frames.

Later, an optimal piecewise convergence criterion was established by Hu et al. [21] when considering

complex exponential functions as condensation functions to couple plate-cavity systems in the mid-

frequency range. The criterion was also applied to strong coupling modeling before being validated

experimentally [22].

Although the coupling of subsystems has been widely investigated, it can sometimes be useful

to decouple subsystems. For instance this can be illustrated by the case shown in figure 1 in which

the effect of a void cavity (i.e. a default) in a multilayered cylinder is modeled. Analytical models of

multilayered cylinders exist in the literature (see references [23–27]) but only numerical methods like

FEM can be used to model a multilayered cylinder with a void cavity, leading to very considerable

computation times. To tackle this issue, we aim at developing a subtractive method that could

be used in this illustrative example to subtract from the analytical multilayered cylinder model a

numerical model of the part of the multilayered cylinder corresponding to the geometry of the void

cavity (see figure 1).

As far as the authors know, such a general subtractive approach has not yet been developed.

Nonetheless, some authors have already proposed several developments of decoupling approaches
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Figure 1: Subtractive modeling on a cylindrical shell with void.

to address particular cases. Indeed, Soedel and Soedel [28] proposed a reverse formulation of the

receptance method, where the receptance is defined as the ratio of a deflection response at a point to

a harmonic force or a moment input at a point, to remove a spring from an automobile suspension

system. This approach using point receptances was extended to line receptances by Huang and Ting

[29] to deduce the frequencies and mode shapes of an annular plate from the study of a circular plate

and a smaller deducted circular plate. Several similar studies of the reverse receptance approach

(RRA) were conducted [30, 31] and concluded that the efficiency of the method is directly linked

to the size of the deducted subsystem (the void in figure 1), compared to the size of the initial

system (the fully coated multilayered cylinder in figure 1). A higher ratio between the size of the

deducted subsystem and the size of the initial system will lead to greater errors. In these previous

studies, the reverse approaches were developed for specific dedicated cases. Moreover, they were

generally focused on the estimation of the receptance of the decoupled subsystems and not on

the prediction of the subsystem’s response to external excitations. D’Ambrosio and Fregolent [32]

also explored decoupling procedures by estimating the dynamic behavior, in terms of Frequency

Response Functions (FRFs), from the knowledge of the FRFs of the larger system and the physical

model of the second subsystem. This study highlighted ill-conditioning at the neighbourhood of

certain natural frequencies of the known subsystems, leading to great sensitivity to measurement

errors. To tackle this issue, the definition of the interface between the subsystems was extended

by taking into account some internal DoFs of the residual subsystem in [33], or by using a dual

formulation of the problem in [34]. This method has proved to be efficient in the updating of the

FRF during machining removing, with predictions 20 times faster than full order finite element

models in [35]. We can emphasize that the subsystems in these papers ([32–35]) are represented by

discrete models (based on FRF), and the coupling interfaces are then generally reduced to points.
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Furthermore, they focus on the vibratory aspect and are oriented for experimental applications.

Compared to these studies, we propose in the present paper a formalism based on continuous,

mechanical or acoustic, subsystems exhibiting continuous (lines or surfaces) coupling interfaces.

The expected applications mainly concern numerical simulations in vibroacoustics.

The goal of the present paper is therefore to generalize this principle of reverse approach to more

general cases than those studied in the past. This generalization is achieved thanks to the concept of

CTFs which have shown their ability to deal with various situations. The reverse formulation of the

CTF approach proposed in this paper is not limited to the evaluation of the CTFs of the decoupled

subsystems, and can be applied to various problems, either vibratory, acoustical, or vibroacoustical.

The developments are carried out to predict the response at any point of the decoupled subsystems

excited by an external source. For the purposes of validation, the approach proposed is compared

with a reference calculation on an academic test case consisting of the scattering of an acoustic plane

wave by a rigid sphere in an infinite water medium. This test case has been chosen because it has

been deeply studied in the past (see for instance in [36–38]) and constitutes a reference for the study

of the acoustic scattering by naval structures. Moreover, in the future, it could be easily upgraded

to study the scattering of spheres coated by a soft rubber material [39, 40]. This method could also

be applied to the practical case illustrated on figure 1 consisting in the modeling of a multi-layered

cylinder with a void cavity. Starting from an analytical model of the multilayered cylinder and

the finite element model of the part to be subtracted (i.e. the part of the material constituting

the multilayered coating), the reverse CTF method could be used to predict the behaviour of the

multilayered cylinder with the void cavity. For the case of the scattering of a plane wave by a rigid

sphere, the reverse CTF approach consists in subtracting a sphere of water (having the geometry

of the rigid sphere) from the infinite water medium. The accuracy of the method is then studied

with two types of condensation function. The paper is organized as follow:

� In Section 2, the principle of the direct CTF approach is recalled in the case of acoustic

problems. Descriptions of the approach for the cases of vibroacoustic problems or purely

mechanical problems can be found in the litterature [19, 21];

� The reversed CTF formulation is then proposed in Section 3. The principle is described in

Section 3.1 whereas the different needed quantities to apply it are described in the following

sub-sections;
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� In Section 4, a numerical validation of the test case with the two types of condensation

functions is proposed, before concluding in Section 5;

� The main text is completed by two appendices presenting the calculation of the CTFs and

the condensed blocked pressures related to the test case of Section 4.

2. Principle of the direct CTF method for acoustic problems

Subsystem 1 Subsystem 2 Subsystem 1+2

Ω ΩΩ

(S) (S)

M1 M2

x

Figure 2: Principle of the direct CTF method.

In this section, the principles of the CTF approach for an acoustic problem are recalled (see the

references of Meyer [19] and Hu [21] for details and for vibroacoustic and mechanical problems). Let

us consider two acoustical domains coupled along a surface Ω, where x is a point on Ω, and excited

by an acoustic source (S) applied on subsystem 1, as shown in figure 2. The contacts are assumed

to be perfect and without friction loss, and the responses are calculated in harmonic regime. A

set of N orthonormal functions defined on Ω, called the condensation functions, is considered:

tϕiu1¤i¤N . It is assumed that for each subsystem α, the pressures pα and the normal velocities uα

(where the outer-pointing normal is defined as positive) at the junction can be approximated as a

linear combination of the condensation functions:

pαpxq �
Ņ

i�1

P iαϕ
ipxq and uαpxq �

Ņ

i�1

U iαϕ
ipxq @x P Ω (1)

where P iα and P iα are the unknowns. To estimate them, it is necessary to define for each

uncoupled subsystem α P t1, 2u, the condensed transfer function between ϕi and ϕj by applying a

prescribed velocity uα � ϕj on Ω:
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Zijα � xp̄α, ϕiy
xuα, ϕjy � xp̄α, ϕiy (2)

with p̄α the resulting pressure at the junction Ω when the subsystem is excited by uα � ϕj and

x
, 
y the scalar product defined on the surface Ω by:

xf, gy �
¼
Ω

fpxqg�pxqdx (3)

where * denotes the complex conjugate. Moreover, the condensed blocked pressure of each

uncoupled subsystem α is defined by:

P̃ iα � x ˜̄pα, ϕ
iy (4)

where ˜̄pα is the pressure at the junction of the uncoupled subsystem α when only external

loading is applied. Assuming there is no external load applied on subsystem 2, P̃ i2 � 0,@i P J0, NK.

In the following, the condensed impedance matrix of subsystem α will be refered as Zα, where

the coefficient of the ith row and jth column corresponds to Zijα . Similarly, Uα, Pα and P̃α will

denote the condensed velocity vector, the condensed pressure vector, and the condensed blocked

pressure vector associated with subsystem α, respectively.

An external load (S) and a prescribed velocity u1 on Ω are applied on subsystem 1, whereas only

a prescribed velocity u2 on Ω is applied on subsystem 2. In response to these prescribed velocities

and the external load, the superposition principle for linear passive systems [20] gives us expressions

relating to the condensed velocities and pressure vectors:

$&
% P1 � P̃1 �Z1U1

P2 � Z2U2

(5)

The velocity continuity and force equilibrium at the junction yields (taking into account the

definition of the normals)

$&
% p1pxq � p2pxq

u1pxq � u2pxq � 0
, @x P Ω (6)

By injecting Eq. (1) in Eq. (6) and projecting the results on the condensation functions, one

obtains:
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$&
% P1 � P2

U1 �U2 � 0
(7)

In the following, when the two subsystems are coupled, P1�2 denotes the condensed pressure

vector whereas U1�2 denotes the condensed velocity vector. By convention, U1�2 � U1 � �U2

and P1�2 � P1 � P2. By combining Eq. (5) and Eq. (7), the coupling velocities U1�2 between

the two subsystems can be deduced:

pZ1 �Z2qU1�2 � �P̃1 (8)

Once the coupling velocities have been calculated, the response at given points M1 (in subsystem

1) and M2 (in subsystem 2) can be deduced:

#
p1�2pM1q � p̃1pM1q �Z1pM1qU1�2

p1�2pM2q � �Z2pM2qU1�2

(9a)

(9b)

ZαpMαq is the vector of the point condensed impedance and should be distinguished from the

condensed impedance matrix Zα. The ith component of this vector, ZiαpMαq, is defined as the

pressure at point Mα when a normal velocity corresponding to the condensation function ϕi is

prescribed on Ω.

3. Reverse CTF method

3.1. Principle

In this section, we develop the subtractive approach consisting in reversing the CTF approach.

The behavior of the complete system 1+2 as well as that of subsystem 2 are assumed as known,

and the aim of this development is to deduce the behavior of subsystem 1, as shown in figure

3. In Eq. (9a), p̃1pM1q represents the pressure at point M1 when subsystem 1 is uncoupled from

subsystem 2. It is thus the quantity of interest for the present study. We can write:

p̃1pM1q � p1�2pM1q �Z1pM1qU1�2 (10)

The coupling velocities U1�2 at the junction can be retrieved using Eq. (5) combined with the

pressure continuity and velocity equilibrium of Eq. (7):
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Ω ΩΩ

(S) (S)

M1

Subsystem 1+2 Subsystem 2 Subsystem 1

Figure 3: Principle of the reverse CTF method.

U1�2 � �Z2
�1P1�2 (11)

Finally, the pressure at a given point M1 of uncoupled subsystem 1 can be rewritten as:

p̃1pM1q � p1�2pM1q �Z1pM1qZ2
�1P1�2 (12)

As the behavior of subsystem 2 and of the global system 1+2 are assumed as known, p1�2pM1q,
Z2 and P1�2 are therefore known quantities. In order to evaluate p̃1pM1q, the next subsections

focus on determining Z1pM1q as well as Z1, the condensed impedance of subsystem 1.

3.2. Calculation of the point condensed impedance using a reciprocity principle

We now focus on the calculation of the impedance Z1pMq, with M being a given point located

in the acoustic domain associated with subsystem 1. We recall that the ith component of this

vector, Zi1pMq, corresponds to the pressure at point M when a prescribed velocity corresponding

to the condensation function ϕi is imposed on the coupling surface. It can be expressed as:

Zi1pMq �
¼
Ω

Hp{Q
�
M,M 1�ϕi �M 1�dM 1 (13)

where Hp{Q pM,M 1q � ppMq
QpM 1q is the transfer function corresponding to the ratio between the

pressure at point M and the volume velocity flow of the monopole source at point M 1. In Eq. (13),

ϕi pM 1q dM 1 is the product between normal velocity ϕi pM 1q and elementary surface dM 1, and

corresponds to a volume velocity flow. Hence, Hp{Q pM,M 1qϕi pM 1qdM 1 represents the pressure at
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point M induced by a monopole source of volume velocity ϕi pM 1qdM 1 and of elementary surface

dM 1. The sum of these contributions over the surface Ω corresponds to the quantity Zi1pMq.
On the other hand, the reciprocity principle states that the response of a linear system to a

time-harmonic disturbance that is applied at some point by an external agent is invariant with

respect to exchange of points of input and observed response [41, 42]. In this case, it means that

the pressure radiated at point M when it is excited by a monopole source of unit volume velocity

at point M 1 equals the pressure radiated at point M 1 when it is excited by a monopole source of

unit volume velocity at point M :

Hp{Q
�
M,M 1� � Hp{Q

�
M 1,M

�
(14)

Hence, Eq. (13) can be rewritten:

Zi1pMq �
¼
Ω

Hp{Q
�
M 1,M

�
ϕi
�
M 1�dM 1 (15)

A new interpretation of Zi1pMq can be given from Eq. (15). It corresponds to the pressure on

the coupling surface projected on the condensation function ϕi, induced by a monopole source of

unit volume velocity situated on point M . From this interpretation, Z1pMq is therefore the vector

of the blocked pressure on the coupling surface when the excitation is a monopole source of unit

volume velocity: Z1pMq � P̃M1 . The exponent M is introduced in the notation to specify that the

excitation considered is a unitary monopole located at point M .

This quantity, P̃M1 , can be estimated from the knowledge of the pressure induced by the

monopole source on the global system 1+2. Let us assume that we know PM1�2, the vector of

the condensed pressure induced by the monopole source of unit volume velocity and located at the

point M in the global system 1+2.

Eq. (5) and Eq. (7) related to the CTF approach can still be applied for the present case. From

these equations, P̃M1 can be expressed as

P̃M1 � �
I �Z1Z2

�1
�
PM1�2 (16)

where I is the identity matrix.

At this stage, Z1 is still unknown. We will see in the next subsection how to estimate it from

the condensed impedance matrix of subsystem 2, Z2, and of the global system, Z1�2.
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3.3. Calculation of the condensed impedance of subsystem 1

Our aim in this subsection is to derive the condensed impedance matrix of subsystem 1, Z1,

from those of subsystem 2 and the global system 1+2, respectively Z2 and Z1�2.

The condensed impedances of subsystems 1 and 2 were previously defined by Eq. (2). Let us

now define the condensed transfer function of the global system 1+2 between ϕi and ϕj by applying

a prescribed velocity jump at the junction Ω corresponding to the condensation function ϕj :

Zij1�2 �
P i1�2

δU j1�2

�
@
p̄1�2, ϕ

i
D

xϕj , ϕjy � @
p̄1�2, ϕ

i
D

(17)

where p̄1�2 corresponds to the pressure at junction Ω resulting from the prescribed velocity

jump, δU j1�2 � ϕj .

The condensed velocity jump vector at the junction associated with the prescribed velocity jump

corresponding to the condensation function ϕj is given by:

δU �

�
����������������

0
...

0

1

0
...

0

�
����������������

, (18)

where the position of 1 corresponds to the jth component. Eq. (5) and Eq. (7) related to the

CTF approach can still be applied for this case, but as there is no external excitation in subsystem

1, and the prescribed velocity jump is applied at the junction, they are slightly modified:

$''''''&
''''''%

P δ1 � Z1U
δ
1

P δ2 � Z2U
δ
2

P δ1�2 � P δ1 � P δ2
δU � Uδ1 �Uδ2

(19)

One has to keep in mind that the outer-pointing normal is defined as positive, thus explaining

the last equation in the system of Eq. (19). The exponent δ is introduced to signify that the vectors
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of the condensed pressure and normal velocity result from the prescribed velocity jump defined by

Eq. (18). From Eq. (19), we can deduce:

P δ1�2 � Z1 pZ1 �Z2q�1
Z2δU (20)

Since a velocity jump at the junction Ω corresponding to the condensation function ϕj is pre-

scribed at the junction, this condensed pressure vector gives us the jth column of the condensed

impedance of the global system, Z1�2. We can then easily deduce the following relation:

Z1�2 � Z1 pZ1 �Z2q�1
Z2 (21)

By inverting the previous equation, we finally obtain:

Z1 � Z2 pZ2 �Z1�2q�1
Z1�2 (22)

3.4. Synthesis of the reverse CTF principle

In the previous sections, all the quantities needed for the application of the reverse CTF method

were obtained from information concerning subsystem 2 and the global system 1+2. Finally, putting

all this information together will allow us to estimate the pressure at a given point of the uncoupled

subsystem 1.

The expression of the vector of the point condensed impedance, corresponding to the blocked

pressure induced by a unitary monopole can be obtained by injecting the result of Eq. (22) into

Eq. (16):

Z1pM1q � P̃M1
1 �

�
I �Z2 pZ2 �Z1�2q�1

Z1�2Z2
�1
	
PM1

1�2 (23)

Ultimately, the pressure at point M1 of the uncoupled subsystem 1 given by Eq. (12) can be

rewritten as:

p̃1pM1q � p1�2pM1q �
�
I �Z2 pZ2 �Z1�2q�1

Z1�2Z2
�1
	
PM1

1�2Z2
�1P1�2 (24)

This final expression constitutes the main theoretical result of the present paper. It permits

estimating the response at any point of subsystem 1 from the knowledge of quantities related to

subsystem 2 and to the global system 1+2.

15



4. Numerical validation of the proposed reverse CTF approach

4.1. Test case definition

To validate and evaluate the accuracy of the reverse CTF method proposed in the previous

section and based on Eqs. (22) and (24), we are going to compare the results obtained with the

reverse CTF method to the reference results for an academic test case. The latter consists in the

scattering problem of a rigid sphere in an infinite water domain, impacted by an acoustic plane

wave. The choice of this test case was motivated by the fact that it constitutes a common and a

reference case in the literature to study the acoustic scattering by an immersed object and that the

principle of the proposed apporach is general and can be applied to various cases. Furthermore, the

reference calculation, developped in [36] and based on the expansion of a plane wave in spherical

harmonics, is an analytical solution easy to implement and gives accurate results with reasonable

calculation costs. Moreover, for the ”direct CTF” apporach, the coupling between the model of a

water sphere and the model of a rigid sphere immersed in water can be qualified of strong coupling.

Indeed, the behaviour of these subsystems when they are coupled together (corresponding to the

model of an infinite water medium) is significantly different from those when they are uncoupled.

Considering this case allows us to evaluate the ability of the ”reverse CTF” apporach to decouple

subsystems that are strongly coupled. As illustrated in figure 4, the reverse CTF approach will

deal with this problem by removing a water sphere (i.e. the subsystem 2) from an infinite water

domain (i.e. the global system 1+2). An infinite water domain with a rigid sphere will then be

obtained (i.e. subsystem 1). In other words, from the condensed transfer functions of the infinite

water domain and of the water sphere, we will deduce the acoustic scattering of the rigid sphere

using subtractive modeling. The characteristics of the infinite domain and the sphere are given in

table 1. The origin of the coordinates is taken at the center of the sphere, and the calculations will

be conducted in the spherical coordinate system shown in figure 4.

For the purposes of comparison, a theoretical reference calculation is performed by developing

the incident plane wave and the scattered pressure field in spherical harmonics, and by writing that

the normal velocity at the surface of the sphere is null [36]. Harmonic responses are calculated from

frequencies between 100 Hz and 1000 Hz, with a step of 1 Hz. This frequency range was considered

to obtain the first two resonant frequencies of the water sphere (i.e. 497 Hz and 798 Hz) and its

first anti-resonant frequency (i.e. 750 Hz). The limitation of the reference results is related to the
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Figure 4: Illustration of the reverse CTF method principle applied to the scattering of a rigid sphere.

Parameter Notation Value Unit

Radius a 1 m

Density ρ 1000 kg.m-3

Sound speed c0 1500 m.s-1

Loss factor η 0 -

Table 1: Material characteristics and dimensions.

number of spherical harmonics considered in the calculation. After a trial and error test, it has

been concluded that the calculations have converged in the frequency band of interest when N � 40

harmonics.

It is reminded here that the objective of this study is to validate from a practical point of view

the subtractive modeling approach developped in section 3, and to study the influence of several

parameters, as the type and the number of condensation functions. At this stage of the development

of the proposed approach, it is then more relevant to focus on the validity and convergence of the

approach rather than its computational performances compared to alternative ones. This is why

the reference calculation of this application test is an analytical one and that there is no emphasis

on the computational time of the proposed approach in this paper.

To apply the reverse CTF approach, in accordance with the theoretical backgrounds of sec-

tion 3, the condensed impedances defined by Eq. (2) for subsystem 2 and Eq. (17) for the global

system should be calculated. These quantities are related to the set of condensation functions,

tϕiu1¤i¤N . Two types of condensation function are considered and presented in the next section

before analyzing the results of the reverse CTF approach.
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4.2. Two types of condensation functions

4.2.1. Weighted spherical harmonics

As developed in Appendix A, the pressure field in the infinite domain and in the sphere can be

described as an infinite sum of so called spherical harmonics. Hence, for the condensed impedances,

using spherical harmonics as condensation functions will result in a greatly simplified expression.

The spherical harmonics are defined in spherical coordinates as:

ψn,m pθ, φq �
d

2n� 1

4π

pn�mq!
pn�mq!P

m
n pcos θqeimφ, n P J0, NLK, m P J�n, nK (25)

where Pmn is the associated Legendre polynomial and NL is the maximal degree of the associated

Legendre polynomial. The condensation function ϕi associated with the spherical harmonic ψn,m

and called the weighted spherical harmonic is then defined at the surface of the sphere of radius a

by:

ϕi � 1

a
ψn,m, i P J1, NK, n P J0, NLK, m P J�n, nK (26)

The number of condensation functions N is directly linked to the maximal degree of the asso-

ciated Legendre polynomial NL by the following relation:

N � pNL � 1q2 (27)

As an illustration, examples of spherical harmonics on the surface of the sphere are presented in

figure 5. The condensation functions associated with the spherical harmonics form an orthonormal

set for the scalar product in spherical coordinates at the surface of the sphere:

@
ϕi, ϕj

D � » 2π

0

» π{2
�π{2

ϕiϕj�a2 sin θ dθ dφ � δij , (28)

with δij being the Kronecker symbol, and * denoting the complex conjugate.

Applying the reverse CTF approach using spherical harmonics as condensation functions will

result in considering condensed impedance matrices that are diagonal, as a result of the orthonormal

properties of the spherical harmonics. This means that the contributions of the different condensa-

tion functions (i.e. the spherical harmonics) will be independent from one another. This constitutes

a particular case but it can be useful for analyzing the results.
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(a) (b)

Figure 5: Examples of spherical harmonic functions. (a) ψ2,1 (b) ψ3,0

4.2.2. 2D gate functions

The second condensation functions investigated are the 2D gate functions ϕi, i P J1, NK. They

are defined depending on their surface Ωs as follows:

ϕipθs, φsq �

$'''&
'''%

1?
Ωs

if

$&
% θi�1 ¤ θs   θi

φi�1 ¤ φs   φi

0 elsewhere

(29)

It can be easily verified that the condensation functions defined by Eq. (29) are orthonormal

with the scalar product defined in Eq. (28). The four angles θi�1, θi, φi�1, φi that appear in this

expression are defined in figure 6a. They parametrize the corners of the patch i that can be linked

to the ith 2D gate function. The coupling surface Ω is then divided into N patches defining the N

gate functions as condensation functions (CFs)(see figure 6b). The impedance between CF i and

CF j corresponds to the mean pressure on the patch i when a unit prescribed normal velocity is

imposed on patch j. Contrary to the spherical harmonics as CFs, the gate functions as CFs lead

to non-diagonal condensed impedance matrices. In terms of matrix resolution, the latter case is

more general than the former one. We also emphasize that the CTF approach considering this type

of condensation function corresponds to the PTF approach described in the literature. Applying

the reverse CTF approach in this case can therefore be considered as applying the reverse PTF

approach.

19



(a) (b)

Figure 6: (a) Definition of a patch related to a 2D gate functions. (b) Definition of the patches over the sphere

surface.

4.2.3. Calculation of the condensed transfer functions and convergence criteria

To apply the reverse CTF approach, the condensed impedances of the water sphere Z2 and

the infinite water medium Z1�2 must be calculated. Moreover, to assess the accuracy of the

method for evaluating the condensed impedances of the water sphere Z1 using Eq. (22), it is

necessary to calculate Z1 directly to obtain a comparison point. The analytical calculations of these

condensed impedances for both subsystems and for the global system are developed in Appendix A

for the two types of condensation function. These calculations are based on a spherical harmonics

decomposition of the pressure field in the water medium.

The number of condensation functions considered and thus of condensed impedances, plays a

key role in the convergence of the CTF method [19, 21, 22]. According to the previous studies

on the CTF method, a criterion equivalent to the Nyquist-Shannon sampling theorem assuming at

least two points per wavelength to sample a signal should be applied. As the problem considered is

purely acoustical, acoustic wavelength at the highest frequency of interest (i.e. 1000 Hz), λmin � 1.5

m should be considered for the criterion. For the weighted spherical harmonics as CFs, the maximal

degree of the Legendre polynomial NL related to Eq. (26) should respect the criterion [19]:

NL ¥ 2πa

λmin
(30)

In the present case, this criterion yields NL � 5, giving us a number of CFs equal to N � 36
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(following Eq. (27)). For the 2D gate functions as CFs, the size d of the patches should be smaller

than half the smallest wavelength:

d   λmin

2
(31)

In order to be compliant with this criterion, the sphere is divided into 58 patches, with 12

patches on the principal circumference. The patches considered in the following calculations are

those displayed in figure 6b). It can be seen that the patches on the top and the bottom of the sphere

take the shape of triangles instead of trapezoids for the other patches, and that the nodes between

two consecutive patches are not necessarily coincident. However, these geometrical particularities

concerning the patches do not have any influence on the results of the PTF method [18]. It can

be noticed that the number of CFs considered with the weighted spherical harmonics is lower than

that considered with the 2D gate functions. This is due to the fact that the size of some patches is

well below the criterion [18], because of geometrical constraints.

According to the calculation of the condensed impedances for the 2D gate functions as CFs in

Appendix A, their expressions (see Eq. (A.14), Eq. (A.18) and Eq. (A.22)) depend on an infinite

sum of spherical harmonics. In practice, these series must be truncated to a finite value N2D
L ,

corresponding to the maximal degree of the associated Legendre polynomials of the spherical har-

monics decomposition of the pressure fields. The value of N2D
L influences the convergence and the

cost of the calculation of the condensed impedances. After trial and error tests, it was found that

using N2D
L =50 is a good compromise in order to converge correctly without being too numerically

heavy. We underline here that this parameter is related to the method of evaluating the condensed

impedances and does not directly concern the convergence of the CTF or reverse CTF approaches

characterized by the criteria [19].

4.3. Decoupling for the condensed impedances

4.3.1. Results

As a first validation, the condensed impedances of subsystem 1, Z1, obtained from Z2, Z1�2

and the decoupling formula of Eq. (22), are compared to the results of the analytical expression

of Z1 given in Eq. (A.21) for the weighted spherical harmonics, and Eq. (A.22) for the 2D gate

functions.
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(a) (b)

Figure 7: Comparison between the condensed impedances computed analytically (i.e. reference) and with the reversed

CTF approach. (a) Weighted spherical harmonics. (b) 2D gate functions.

The comparison is proposed in figure 7. The comparison for 3 weighted spherical harmonics

as CFs (respectively the couples pn,mq � p0, 0q, pn,mq � p1, 0q, pn,mq � p2, 0q) are plotted in

figure 7a). A perfect match can be seen between the reverse CTF approach and the reference

calculation, except for a single frequency at 750 Hz for the first spherical harmonic. The reasons

for this discrepancy at this particular frequency will be studied in the next section.

Concerning the comparison for 2D gate functions as CFs, figure 7b) shows the results for 3

different condensed transfer functions (TFs) in order to sweep different possibilities:

� the first TF is a direct impedance on a trapezoid patch : the excitation patch and the

observation patch are the same.

� the second TF is a crossed impedance between two trapezoid patches that are widely separated

one from another.

� the third TF is a crossed impedance between a trapezoid patch and a triangular patch that

are close to each other.

As with the weighted spherical harmonics, the comparison between the reference curves and the

reverse CTF curves show a quasi-perfect match, except for the second transfer function for which

an error appears at 750 Hz (as in figure 7a for the weighted spherical harmonics as CFs).

In the following subsection, the numerical sensitivity of the method will be investigated to

identify the possible sources of this error at 750 Hz.
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4.3.2. Analysis of numerical sensitivity

The application of Eq. (22) related to the reverse CTF method involves the inversion of the

subtraction of the impedance matrices, Z2�Z1�2. This inversion can imply numerical instabilities.

The sensitivity of the matrix inversion to the numerical errors can be characterized by the condition

number. Particularly high values indicate that the problem is ill-conditioned and sensitive to

numerical errors.

In figure 8, the condition numbers of the impedance matrix of subsystem 2 and subsystem

1+2, as well as their differences, are plotted as a function of frequency for the weighted spherical

harmonics. As the condensed impedance matrices are diagonal in this case, the condition number

corresponds to the ratio between the largest value on the diagonal and the smallest one. It appears

that for each of the matrices investigated, the problem is particularly ill-conditioned at 750 Hz,

which was the critical frequency identified in the previous subsection. It can also be noted that for

Z2 and Z2�Z1�2, two other frequencies show high condition numbers, around 500 Hz and 800 Hz.

These two particular frequencies correspond to the resonant frequencies of the water sphere. As

these frequencies are clearly identified and no significant error can be observed at these frequencies

in the figure, they will not be investigated.
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Figure 8: Condition number of the condensed impedances: case of the weighted spherical harmonics as CFs.

As the problem encountered in figure 7a) appears only on the condensed impedance associated

with the first spherical harmonic, the first condensed impedances of subsystems 2 and 1+2 are
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shown in figure 9. It can be seen that for both systems, an anti-resonant phenomenon appears at

750 Hz (i.e. the impedances tend toward zero). Looking at Eq. (A.17) and Eq. (A.13) reveals that

this anti-resonant phenomenon is due to the first spherical Bessel function of the first kind that

cancels at this frequency. In addition, since the two condensed impedances have the same value

at this frequency, the subtraction of the two matrices that appear in Eq. (22) is also null. This

explains the particularly high value of the condition number and the numerical errors observed

previously. The same analysis was carried out with the 2D gate functions as CFs. The condition

number also presents significant values for the two resonance frequencies of the water sphere and

a very high value at 750 Hz, identified as a non-resonant frequency of the water sphere. Since the

analysis leads to the same conclusions as for the weighted spherical harmonics, the results are not

plotted here.

Figure 9: Comparison of the 1st condensed impedance of subsystems 2 and 1+2 (weighted spherical harmonics as

CFs).

As stated in table 1, the previous calculations were performed considering a null damping loss

factor for the fluid domain that constitutes the theoretical case. We observed that the absence of

damping in the model leads to the high numerical instabilities encountered, especially around the

anti-resonant frequency. In practice, acoustic waves are slightly attenuated during their propagation

due to dissipative effects (viscosity and thermal conductivity). In order to consider this physical

phenomenon and to evaluate the impact of the damping on the numerical sensitivity of the method,
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slight damping is introduced in the model through a complex acoustic wavenumber:

k�0 � k0p1 � iηq (32)

where i is the complex number i2 � �1.

In the following part of the study, the damping loss factor of the water is set to η � 0.001.

The condition numbers related to the impedance matrices were recalculated by considering this

slight damping and are shown in figure 10. It is noteworthy that the values were greatly reduced in

general and for the critical frequencies in particular, compared to the case without damping. The

inverted matrix Z2 � Z1�2 is still ill-conditioned at the anti-resonant frequency, but to a much

smaller extent.
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Figure 10: Condition number of the condensed impedances with a slight damping (weighted spherical harmonics as

CFs).

As the condition number was significantly reduced by adding damping in the model, we can

expect to obtain accurate results with the reversed CTF approach over the whole frequency range

of interest. This is verified in figure 11. The errors observed in figure 7 for the case without

damping are not observed for the case with slight damping. This result is valid for the two types

of condensation function considered in this paper.

It can be concluded from this study that the decoupling formula in Eq. (22) is validated nu-

merically for the practical case including a slight damping in the water medium (i.e. for the
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(a) (b)

Figure 11: Comparison between the condensed impedances computed analytically (i.e. reference) and with the

reversed CTF approach. Case with a slight damping in the model. (a) Weighted spherical harmonics. (b) 2D gate

functions.

non-conservative system). The dissipative effect allows to avoid the numerical errors at the anti-

resonant frequency of the water sphere that were observed for the case without damping (i.e. the

conservative system).

4.4. Decoupling for the pressure at a given point into the fluid domain

Now, let us focus on assessing the reverse CTF approach to predict the pressure at a given

point using the formula in Eq. (24). To do that, we consider the scattering problem of a plane

wave impacting a rigid sphere. This case was intensively studied in litterature [36]. In the following

section, the principle of this calculation used as reference will be recalled before comparing its

results with the reverse CTF approach.

4.4.1. Theoretical calculation

In spherical coordinates, the pressure field of a plane wave of angular frequency ω travelling in

the direction (θ � π, φ � 0) can be defined by:

pipR, θq � Pie
ik0R cos θ (33)

with Pi being the amplitude of the plane wave, and k0 the acoustic wavenumber in the fluid

domain. The expression in Eq. (33) can be expanded in spherical harmonics using Legendre poly-

nomials:
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pipR, θq � Pi
¸
n�0

p2n� 1q inPn pcos θq jn pk0Rq (34)

with Pn pcos θq the Legendre polynomial, and jn the spherical Bessel function of the first kind.

Considering the solutions in the spherical coordinates of the homogeneous Helmholtz equation

and the homogeneous Euler equation at the surface of the sphere, we can calculate the pressure

scattered by the rigid sphere of radius a [36]:

ps8pR, θq � �Pi
¸
n�0

p2n� 1q inPn pcos θq j
1
n pk0aq
h1n pk0aqhn pk0Rq (35)

where hn is the spherical Hankel function of the first kind, and j1n and h1n are the derivatives

of the spherical Bessel function of the first kind and the spherical Hankel function of the first kind

with respect to their argument, respectively. The total pressure field in the medium is thus the

addition of the incident and the scattered pressures ptot � pi � ps8 which gives:

ptotpR, θq � Pi

40̧

n�0

p2n� 1q inPn pcos θq
�
jnpk0Rq � j1npk0aqhnpk0Rq

h1npk0aq
�

(36)

4.4.2. Comparison

To apply the decoupling formula in Eq. (24) to predict the pressure at any point M1 in the fluid

domain, we must still evaluate P1�2, the condensed pressure vector induced by the acoustic plane

wave and PM1
1�2, the condensed pressure vector induced by a monopole source located at point M1

and of unit volume velocity. The details of the calculations are given in Appendix B. First, the

decoupling formula in Eq. (24) is tested using the weighted spherical harmonics as condensation

functions, by evaluating the pressure at a given point of the domain over the frequency range of

interest. This calculation is also a means of evaluating the criterion proposed in Eq. (30), related to

the maximal degree of the associated Legendre polynomial NL. The results are presented in figure

12 for 4 different points, to account for different possibilities regarding the angle and the distance

to the surface of the sphere. The quantity plotted here is the sound pressure level (SPL), in dB,

the reference sound pressure being p0 � 1 µPa:

Lp � 20 log

�
p

p0



(37)
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For each point, the reverse CTF method is applied with 3 different values of NL to evaluate the

convergence of the method regarding the criterion defined. In section 4.2.3, the criterion in Eq. (30)

yielded NL � 5, corresponding to N � 36 condensation functions. The results are also presented

for NL � 3 and NL � 7, corresponding to N � 16 and N � 64 condensation functions, respectively.

Both calculations were carried out considering a damping loss factor, η � 0.001.

(a) (b)

(c) (d)

Figure 12: Pressure scattered by the rigid sphere - Comparison between the theoretical results and the reversed CTF

results for 4 different points with the weighted spherical harmonics as CFs. (a) r � 1.5 m, θ � 180�; (b) r � 1.3 m,

θ � 103�; (c) r � 1 m, θ � 30�; (d) r � 1.5 m, θ � 0�.

The results displayed in figure 12 show that the convergence criterion proposed in Eq. (30) is

verified, because the evolution of the pressure for each evaluated point is described correctly, with

errors that never exceed 1 dB. The results with NL � 3 clearly show that taking fewer condensation

functions than the criterion defined leads to large errors, while the results with NL � 7 are very

accurate, but required an increase in computation time. Finally, we can conclude that the results

obtained with NL � 5 are very satisfactory, both in terms of accuracy and computation time, and

the criterion in Eq. (30) is validated from a practical point of view.

In the following, the calculation of the scattered pressure in the domain is carried out using the
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2D gate functions as condensation functions, using the definition of the patches at the surface of

the sphere presented in figure 6b. The results obtained with the method proposed (i.e. Eq. (24))

can be compared to the theoretical results given by Eq. (36). The map of the sound pressure level

(in dB ref 1 µPa according to equation 37) around the sphere is presented in figure 13 for the 2

calculations and for 3 different frequencies:

� f1=497 Hz corresponds to the first resonant frequency of the water sphere.

� f2=750 Hz corresponds to an anti-resonant frequency.

� f3=1000 Hz corresponds to the highest calculated frequency.

The latter allows us to verify if the method converges correctly when the criterion is applied

whereas the first two correspond to the critical frequencies already evoked in the previous section.

For all the graphs, the plane wave is travelling towards the positive x direction and reaches the

sphere at x � �1. The graphs on the left hand side show the results of the theoretical calculation (i.e.

Eq. (36)), while the figures on the right hand side show the results of the decoupling calculation (i.e.

Eq. (24)). As for the weighted spherical harmonics, both calculations were carried out considering

a damping loss factor η � 0.001.

All the graphs display a similar global behavior, with a maximum pressure around the point of

impact of the plane wave with the sphere (i.e. px, yq � p�1, 0q while the minimum pressures are

located in the shadow zone of the sphere (around θ � π{6) and in a zone before the point of impact

(between x � �1.2 and x � �2) where destructive interferences seem to appear.

The comparison shows a very good agreement between the two calculations. Minor errors occur

in the shadow zone of the sphere, and several numerical discontinuities occur at the maximum

frequency, but the errors never exceed 1 dB. One has to be aware that the different fields of

interest in this study (acoustic pressure, acoustic velocity) exhibit continuous properties. However,

as described in Eq. (1), these fields are approximated on the basis of the condensation functions

which, in the present case, are discontinuous (following the definition of the patches in Eq. (29)).

Hence, the decomposition of continuous fields on the basis of discontinuous functions leads to slightly

rougher approximations than the decomposition on the weighted spherical harmonics displayed on

figure 12, thus explaining the numerical discontinuities occuring at the maximum frequency. These

discontinuities are thus not related to the number of condensation functions nor the convergence
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Pressure scattered by the rigid sphere (SPL in dB ref 1 µPa) - Comparison between the theoretical results

(a,c,e) and the reversed CTF results using 2D gate functions as CFs (b,d,f) for 3 frequencies: (a,b), 497 Hz; (c,d),

750 Hz; (e,f), 1000 Hz.
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criterion proposed in Eq. (31). Finally, we can affirm that these results are very satisfactory and

thus we can conclude on the validity of the proposed developments.

5. Conclusion

In the present paper, the principle of a subtractive modeling technique that can be used to

decouple a subsystem from a global system was established. This approach can be used to modify

or perturbate an existing model (for instance an analytical model), and is based on a reverse formu-

lation of the Condensed Transfer Function method usually used to predict the behavior of coupled

subsystems from transfer functions defined for each subsystem. Eqs. (22) and (24) constitute the

fundaments of the proposed approach. The approach is versatile and can be applied not only to

acoustic problems, but also to vibrational or vibroacoustic problems as the direct CTF approach

has already shown its ability in dealing with such problems [20, 21, 43].

The formulation was validated numerically in the case of a rigid sphere immersed in water and

impacted by a plane wave. Using acoustic models of the infinite water medium and of the water

filled sphere, the proposed approach allowed predicting the behavior of the rigid sphere immersed

in water. Comparisons of the results with theoretical calculations led to the numerical validation of

the approach for two types of condensation functions, namely weighted spherical harmonics and 2D

gate functions. For the case without damping, it was observed that numerical instabilities occur for

frequencies around the anti-resonance of the water sphere. However, these instabilities disappear

as soon as slight damping is introduced in the model, as it occurs in real situation due to viscosity

and thermal conductivity.
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Appendix A. Calculation of the condensed transfer functions

Appendix A.1. Condensed impedances of the global system 1+2

In order to calculate the condensed impedances of the infinite water domain 1+2 (see figure

4), and in accordance with its definition in Eq. (17), a normal velocity jump ϕi is imposed on the

spherical surface Ω. The resulting pressure on the surface is estimated using a spherical harmonics

decomposition [44], considering two domains: D�, the volume outside the surface of the sphere of

radius a, and D�, the volume inside the surface of the sphere. It is written:

p�pR, θ, φq �
�8̧

n�0

ņ

m��n
ψn,m pθ, φq

�
A�n,mh

p1q
n pk0Rq �B�

n,mh
p2q
n pk0Rq

�
, for R ¥ a (A.1a)

p�pR, θ, φq �
�8̧

n�0

ņ

m��n
ψn,m pθ, φq �A�n,mjnpk0Rq �B�

n,mynpk0Rq
�
, for 0 ¥ a ¥ R (A.1b)

where h
p1q
n and h

p2q
n are the spherical Hankel functions of the first and second kind, respectively,

and jn and yn are the spherical Bessel functions of the first and second kind, respectively. k0 is the

acoustic wavenumber and ψn,m pθ, φq are the spherical harmonics defined in Eq. (25).

Applying the boundary conditions at infinity (divergent waves) and at the center of the sphere

(convergent waves) to the properties of the spherical Hankel and Bessel functions yields:

$&
% B�

n,m � 0

B�
n,m � 0

(A.2)

The pressure fields in the domains D� and D� are thus:

p�pR, θ, φq �
�8̧

n�0

ņ

m��n
ψn,m pθ, φqA�n,mhp1qn pk0Rq, for R ¥ a (A.3a)

p�pR, θ, φq �
�8̧

n�0

ņ

m��n
ψn,m pθ, φqA�n,mjnpk0Rq, for 0 ¥ a ¥ R (A.3b)

A velocity jump δu is imposed on the surface of the sphere, such that the impedance is given by

Z � p{δu. The pressure continuity and velocity equilibrium conditions at the surface of the sphere

(i.e. R � a) are then written:
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$&
% p�pa, θ, φq � p�pa, θ, φq

δu � u�pa, θ, φq � u�pa, θ, φq
(A.4)

The second equation of A.4 takes into account the orientation of the normals, as in the section

3.3, with the normal pointing in the outer-direction of the considered domain. The pressure and

the radial velocity are linked by the Euler relation:

un � � 1

iωρ

Bp
Br (A.5)

With the orientation of the normals previously defined, we can write:

$&
% u�pa, θ, φq � �un

u�pa, θ, φq � un
(A.6)

Furthermore, the spherical Hankel and Bessel functions can be derived with respect to their

argument according to the following relation:

Bfn
Bx pxq � n

x
fnpxq � fn�1pxq (A.7)

In the following, and in order to clarify the equations, the spherical Hankel function of the first

kind h
p1q
n is noted hn. Combining Eq. (A.3a) and Eq. (A.3b) with the relations in Eq. (A.4) and

Eq. (A.5) yields:

�8̧

n�0

ņ

m��n
ψn,m pθ, φqA�n,mhnpk0aq �

�8̧

n�0

ņ

m��n
ψn,m pθ, φqA�n,mjnpk0aq (A.8a)

δu � k0

iωρ

�8̧

n�0

ņ

m��n
ψn,m pθ, φq �A�n,mh1npk0aq �A�n,mj

1
npk0aq

�
(A.8b)

Using the orthonormal properties of the spherical harmonics (see Eq. (28)), we can multiply

Eq. (A.8a) and Eq. (A.8b) by ψν,µ and integrate them on the surface of the sphere to eliminate the

sums:

$&
% A�n,mhnpk0aq � A�n,mjnpk0aq´

Ω
δu � ψ�ν,µpθ, φqa2 sin θdθdφ � k0a

2

iωρ

�
A�n,mh

1
npk0aq �A�n,mj

1
npk0aq

� (A.9)
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where * denotes the complex conjugate. In order to calculate the condensed impedances, the

velocity jump must correspond to a condensation function ϕi, which are either weighted spherical

harmonics or 2D gate functions, which means:

¼
Ω

δu � ψ�n,mpθ, φqa2 sin θdθdφ �
¼
Ω

ϕi � ψ�n,mpθ, φqa2 sin θdθdφ � εin,mpaq (A.10)

The evaluation of the factor εin,m, which depends on the the radius a of the sphere, will be

evaluated for each type of CF. Eq. (A.9) now becomes:

$&
% A�n,mhnpk0aq � A�n,mjnpk0aq

εin,mpaq � k0a
2

iωρ

�
A�n,mh

1
npk0aq �A�n,mj

1
npk0aq

� (A.11)

The resolution of this system of equations enables us to obtain the pressure at the surface of

the sphere for the infinite domain:

ppa, θ, φq � ωρk0

�8̧

n�0

ņ

m��n
ψn,m pθ, φq jnpk0aqhnpk0aqεin,mpaq (A.12)

For each CF, the pressure must be projected on the CF ϕj to obtain the condensed impedance,

according to Eq. (17). For the weighted spherical harmonics, it yields:

Zij1�2 �
$&
% ωρk0a

2jipk0aqhipk0aq if i � j

0 elsewhere
(A.13)

The form of this expression is explained by the orthonormal properties of the spherical harmon-

ics, thus resulting in a diagonal condensed impedance matrix. As for the 2D gate functions, the

condensed impedances of the global system 1+2 is given by:

Zij1�2 � ωρk0 �
�8̧

n�0

ņ

m��n
jnpk0aqhnpk0aqεin,mpaqεj�n,mpaq (A.14)

Appendix A.2. Condensed impedances of the subsystem 2

In order to calculate the condensed impedances of the water sphere and in accordance with its

definition in Eq. (2), a normal velocity is imposed on the spherical surface Ω (where the positive

outer-pointing normal points towards the exterior of the sphere), corresponding to a condensation

function: u � ϕi. The calculation process to estimate the resulting pressure is therefore similar to
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that carried out in the previous section, except that the calculation is performed only inside the

sphere. The pressure inside the sphere is given by Eq. (A.1b), whereas the Euler equation on the

surface Ω yields (taking into account the orientation of the outer-pointing normal):

ϕi � � 1

iωρ

Bp
Br (A.15)

The pressure at the surface Ω of the sphere is easily derived:

ppa, θ, φq � � iωρ

k0a2

�8̧

n�0

ņ

m��n
ψn,m pθ, φq jnpk0aq

j1npk0aqε
i
n,mpaq (A.16)

As with the previous section, and following the definition of the condensed impedances of Eq. (2),

the condensed impedances at the surface of the sphere for the weighted spherical harmonics are

given by:

Zij2 �
$&
% � iωρ

k0

jipk0aq
j1ipk0aq if i � j

0 elsewhere
(A.17)

As for the 2D gate functions, the condensed impedances are:

Zij2 � � iωρ

k0a2

�8̧

n�0

ņ

m��n

jnpk0aq
j1npk0aqε

i
n,mpaqεj�n,mpaq (A.18)

Appendix A.3. Condensed impedances of the subsystem 1

The analytical condensed impedances of the infinite fluid domain bounded by the spherical

surface Ω (subsystem 1 on figure 4) are calculated to validate and evaluate the ability of the reverse

CTF method. As defined in Eq. (2), a normal velocity is imposed on the surface Ω (where the

positive outer-pointing normal now points towards the center of the sphere), corresponding to a

condensation function: u � ϕi. The pressure inside the water domain bounded by the surface Ω is

described by Eq. (A.1a), whereas the Euler equation on the surface Ω yields (taking into account

the orientation of the outer-pointing normal):

ϕi � 1

iωρ

Bp
Br (A.19)

Again, we derive the pressure at the surface Ω of the sphere:
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ppa, θ, φq � iωρ

k0a2

�8̧

n�0

ņ

m��n
ψn,m pθ, φq hnpk0aq

h1npk0aqε
i
n,mpaq (A.20)

As with the previous sections, and following the definition of the condensed impedances of

Eq. (2), the condensed impedances at the surface of the sphere for the weighted spherical harmonics

are given by:

Zij1 �
$&
%

iωρ
k0

hipk0aq
h1

ipk0aq if i � j

0 elsewhere
(A.21)

As for the 2D gate functions, the condensed impedances are:

Zij1 � iωρ

k0a2

�8̧

n�0

ņ

m��n

hnpk0aq
h1npk0aqε

i
n,mpaqεj�n,mpaq (A.22)

Appendix B. Calculation of the condensed pressures

Appendix B.1. Condensed pressure induced by a unit monopole

In order to calculate PM1
1�2, the condensed pressure vector induced by a monopole of unit volume

velocity located at point M1 into the infinite water domain 1+2, the expression of the free-space

Green’s function is expanded in spherical harmonics [36]. The acoustic field pressure at any point

MpR, θ, φq due to a spherical source located at point M1pR1, θ1, φ1q is given by:

pM1
i � iωρ

eik0|M�M1|

4π|M �M1| (B.1)

where | 
 | represents the Euclidean norm.

Expanding this expression in spherical harmonics, the pressure induced by the monopole can be

rewritten:

pM1
i � ωρk0

4π

�8̧

n�0

ņ

m�0

κm
pn�mq!
pn�mq! p2n� 1q cos pmpφ� φ1qq

�Pmn pcos θqPmn pcos θ1q jnpk0Rqhnpk0R1q
(B.2)

where
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κm �
$&
% 1 if m � 0

2 if m � 0
(B.3)

According to the definition of the condensed pressure, the pressure at the surface of the sphere

(i.e. R � a) is projected on the condensation functions according to the scalar product in spherical

coordinates defined in Eq. (28). For the weighted spherical harmonics as condensation functions,

the ith component of PM1
1�2 is given by:

PM1
1�2,i � xpi, ψν,µy � ωρk0

p4πq3{2
�8̧

n�0

ņ

m�0

κm
pn�mq!
pn�mq! p2n� 1q

d
p2ν � 1q � pν � µq!

pν � µq!

�Pmn pcos θ1q jnpk0aqhnpk0R1q

�
¼
Ω

cos pmpφ� φ1qq e�iµφPmn pcos θqPµν pcos θq a sin θ dθ dφ

(B.4)

where ψν,µ corresponds to the ith condensation function, as defined in Eq. (26).

For the 2D gate functions as condensation function, the ith component of PM1
1�2 is given by:

PM1
1�2,i �

A
pM1
inc, ϕ

i
E
� ωρk0

4π

�8̧

n�0

ņ

m�0

κm
pn�mq!
pn�mq! p2n� 1qPmn pcos θ1q jnpk0aqhnpk0R1q

� 1?
Ωi

¼
Ωi

cos pmpφ� φ1qqPmn pcos θq a2 sin θ dθ dφ

(B.5)

where Ωi is the area of the patch associated with the condensation function ϕi, according to the

definition of the condensation function in Eq. (29).

The integrals that appear in these expressions are solved numerically by separating the inte-

grals. The integration over φ can be solved analytically, while the integration over θ is evaluated

numerically using a global adaptative quadrature and default error tolerances.

Appendix B.2. Condensed pressure induced by a plane wave

In order to calculate P1�2, the condensed pressure induced by an acoustic plane wave in the

infinite water domain 1+2, we consider the expression of the pressure induced by the plane wave

expanded in spherical harmonics given in Eq. (34). Then, using the definition of the scalar product

37



in spherical coordinates of Eq. (28), we project it on the condensation functions. Considering the

weighted spherical harmonics as condensation functions, the ith component of the vector P1�2 is

given by:

P1�2,i � xpi, ψν,µy � Pi

�8̧

n�0

p2n� 1q injn pk0aq
d

2ν � 1

4π
� pν � µq!
pν � µq!

�
¼
Ω

Pn pcos θqPµν pcos θq e�iµφa sin θ dθ dφ

(B.6)

where ψν,µ corresponds to the ith condensation function, as defined in Eq. (26).

For the 2D gate functions as condensation functions, the ith component of PM1
1�2 is given by:

P1�2,i �
@
pi, ϕ

i
D � Pi

�8̧

n�0

p2n� 1q injn pk0aq 1?
Ωi

¼
Ωi

Pn pcos θq a2 sin θ dθ dφ (B.7)

where Ωi is the area of the patch associated with the condensation function ϕi, according to the

definition of the condensation function in Eq. (29).
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Curie, 2017.

42

https://doi.org/10.1115/1.4036124
https://doi.org/10.1121/1.3559689
https://doi.org/10.1121/1.4961200
https://doi.org/10.1121/1.4961200
https://doi.org/10.1016/j.wavemoti.2016.10.006
https://doi.org/10.1016/j.apacoust.2018.09.003
https://doi.org/10.1016/j.apacoust.2018.09.003
https://doi.org/10.1134/1.1560385
https://doi.org/10.1121/1.4985126
https://doi.org/10.1121/1.4962235

	Introduction
	Principle of the direct CTF method for acoustic problems
	Reverse CTF method
	Principle
	Calculation of the point condensed impedance using a reciprocity principle
	Calculation of the condensed impedance of subsystem 1
	Synthesis of the reverse CTF principle

	Numerical validation of the proposed reverse CTF approach
	Test case definition
	Two types of condensation functions
	Weighted spherical harmonics
	2D gate functions
	Calculation of the condensed transfer functions and convergence criteria

	Decoupling for the condensed impedances
	Results
	Analysis of numerical sensitivity

	Decoupling for the pressure at a given point into the fluid domain
	Theoretical calculation
	Comparison


	Conclusion
	Calculation of the condensed transfer functions
	Condensed impedances of the global system 1+2
	Condensed impedances of the subsystem 2
	Condensed impedances of the subsystem 1

	Calculation of the condensed pressures
	Condensed pressure induced by a unit monopole
	Condensed pressure induced by a plane wave


