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Flatness of Musculoskeletal Systems Under Functional Electrical Stimulation
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Functional Electrical Stimulation (FES) is an effective technique for movement rehabilitation after spinal cord injury (SCI). One of the main issues of this technique is the choice of appropriate FES patterns for movement controlling which ensure efficiency and less muscular fatigue. To reach those objectives, the knowledge of the muscle behavior under FES is mandatory. Therefore, a physiologically-based model is commonly used. Existing musculoskeletal models are often complex and highly non-linear, thus the model-based FES patterns synthesis and control still remains complex and challenging process. On other hand, the system flatness has been proved to be an efficient method for nonlinear system control, however it never has been explored for musculoskeletal systems.

The aim of this work is to explore the flatness property of musculoskeletal systems under FES in dynamic condition for movement control purposes. For this study, the knee joint controlled by electrically stimulated quadriceps muscle was used.

Results highlights that the two-inputs musculoskeletal system is flat, where two flat outputs were found. It also shows that the single-input musculoskeletal system is not flat. These results are crucial for flatness-based control of musculoskeletal systems since the most used musculoskeletal models in literature deal with only a single input.

INTRODUCTION

Under spinal cord injury, the natural control of limbs declines and becomes impossible. It leads to total or partial paralysis, represented by a paraplegia or a tetraplegia. Functional Electrical Stimulation (FES) is proving to be a very promising solution to ensure movement rehabilitation of the paralyzed limbs by contracting skeletal muscles [START_REF] Guiraud | An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up[END_REF][START_REF] Kralj | On necessary and sufficient conditions for differential flatness Applicable Algebra in Engineering[END_REF]. In addition, FES improves paralyzed limbs health by maintaining a muscular activity. Also it reduces side effects of limbs paralysis such as atrophy, eschar and cardiovascular problems [START_REF] Howlett | Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis Archives of physical medicine and rehabilitation[END_REF][START_REF] Kralj | On necessary and sufficient conditions for differential flatness Applicable Algebra in Engineering[END_REF]. However, many problems limits the success of this artificial activation such as the rapid change of muscle fibers properties and the lack of muscle behavior knowledge. In these conditions, the choice of FES pattern is often chosen empirically without using any musculoskeletal model, which leads to a early muscular fatigue. Therefore, an accurate modeling of the muscle-limb dynamics is needed. Furthermore, it gives insight into the natural control of musculoskeletal system. A wide variety of muscle models were proposed and used in literature which differ in the intended application such as the mathematical complexity and the level of physiological structures by taking into account the biological behavior. However, two main muscle models were commonly used, highlighting either a macroscopic representation of muscle and its behavior [START_REF] Hill | The heat of shortening and the dynamic constants of muscle[END_REF] or a microscopic muscle behavior, which is based on Huxley's sliding filament theory of muscle fibers [START_REF] Huxley | Muscle structure and theories of contraction[END_REF]. In [START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF], authors worked on modeling of the skeletal muscle system under FES by proposing an original multi-scale model that combines the macroscopic [START_REF] Hill | The heat of shortening and the dynamic constants of muscle[END_REF] and the microscopic [START_REF] Huxley | Muscle structure and theories of contraction[END_REF] dynamic behavior of the muscle. In this work, the authors identified experimentally the model parameters in isometric mode on animals with parameters estimation techniques such as the Levenberg-Marquardt and the Extended Kalman Filter. Based on the identified model, the next step consists in searching the strategy to generate the adequate FES patterns that restore the movement of the paralyzed limb. Based on this original model [START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF], several works used it and focused on generating an appropriate FES patterns which allows to restore some basic functions. In [START_REF] Mohammed | Toward lower limbs movement restoration with input -output feedback linearization and model predictive control through functional electrical stimulation[END_REF], authors generated stimulation patterns that synthesized movement by using both static and dynamic approaches of antagonist muscles. They applied an input-output linearization and a predictive control strategy on this nonlinear musculoskeletal model. To achieve the same goal, a high order sliding mode was also applied in [START_REF] Mohammed | Robust control law strategy based on high order sliding mode: towards a muscle control in[END_REF].

In [START_REF] Benoussaad | Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury[END_REF] authors achieved a parameter identification of this musculoskeletal model on real spinal cord injured patients and in [START_REF] Benoussaad | Synthesis of optimal electrical stimulation patterns for functional motion restoration: applied to spinal cord-injured patients[END_REF], they used the identified model to generate optimal FES patterns which synthesizes a desired movement of the paralyzed leg.

In all these previous works, FES patterns were generated offline or the control were applied in simulation. For online FES generation and closed loop control, authors in [START_REF] Li | Real-time closed-loop fes control of muscle activation with evoked emg feedback in[END_REF] used a simpler model for a real-time FES control in only isometric condition (fixed knee-joint angle) based on an electromyography (EMG) feedback [START_REF] Li | Real-time estimation of fes-induced joint torque with evoked emg[END_REF]. The authors applied the model-based predictive control strategy and the results showed a promising control performances in a very specific conditions. In all these previous works, none explored the musculoskeletal system by keeping its nonlinear property and its physiological complexity in dynamic condition for an online control context. Furthermore, flatness-based control strategy proved to be an efficient solution for a nonlinear systems control [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]. However, as far as we know, this method has not be explored in musculoskeletal system. Note that the main obstacle to overcome is to prove the flatness, or not, of the considered system.

In the present work, we used the musculoskeletal model introduced in [START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF] in dynamic condition, toward an online FES patterns generation and closed loop control of paralyzed limbs. Therefore, the main objective of this study is to explore the flatness property of the musculoskeletal system for a purpose of flatness-based control application. For that, we focus in the current work on the model of knee joint actuated by quadriceps muscle, which model is a combination of both macroscopic and microscopic properties [START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF].

Thus, in the next section, the whole musculoskeletal model of knee-quadriceps will be introduced and then some physiologically-based assumptions, to reduce the model complexity, are presented and discussed. in Section (2.2), an overview of flatness is presented, with a short reminder of systems flatness property and its advantage in nonlinear system control. In Section (3.1), we explore the flatness properties of musculoskeletal systems by considering both models, with one and with two inputs. Once flatness is proved, in Section (3.2), we introduce the application of a reference trajectory motion planning (open-loop control) using flatness properties and current work results are summarized and discussed in Section (4). Finally, conclusions and perspectives of this work are presented in Section (5).

METHODS

Musculoskeletal system modeling

In the musculoskeletal model of FES-controlled knee joint, we can distinguish two parts: the FES-activated muscle model which apply a force (and then a torque) on the second part of the model which is the knee joint biomechanical model. In this section, the two parts of the model are detailed separately and the whole musculoskeletal system, with some simplifying assumptions on the model, are presented at the end of the section.

Model of muscle under FES

The muscle model under FES used here [START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF] is based on the integration of the Huxley's microscopic model [START_REF] Huxley | Muscle structure and theories of contraction[END_REF] in the Hill's macroscopic model [START_REF] Hill | The heat of shortening and the dynamic constants of muscle[END_REF]. The first model is based on the physiology of the muscle and the sliding filament theory, which describes the relative sliding of two sets of filaments (actin and myosin), whereas the second model is based on the mechanical properties of the muscle and its different functional descriptions.

The model of electrically stimulated muscle acting on skeletal is illustrated by Figure 1. It is well known that electrical stimulation is a pulse train characterized by a pulse width (P W ), an amplitude (I) and a frequency (f ). In this muscle model, Activation model generates two inputs α and u ch , considered as the input of our system (Fig. 1-Top), where α is the fibers recruitment rate that depends on both P W and I, while u ch is the chemical control that depends on f . The muscle dynamical model is represented with the well-known Hill three elements model (Fig. 1-Bottom), where inputs (α, u ch ) control the contractile element (CE) that generates the muscle force output (F ). This force applied on the joint, makes change on muscular length and then on CE length (L c ).

[Fig. 1 

about here.]

At the level of contractile element, the dynamics is described by the following set of equations [START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF]:

           KC = s 0 αK 0 -s u K C + s v q s 0 αF 0 K C -s u F C K C 1 + pK C -s v qF C u ch - s v aK C 1 + pK C -s v qF C εc ḞC = s 0 αF 0 -s u F C 1 + pK C -s v qF C u ch + bK C -s v aF C 1 + pK C -s v qF C εc
(1) Where the state vector is X T = K C F C , with K c and F c represent, respectively, the stiffness and the force of the CE. The control input is U T = α u ch . In this study, we considered these control inputs, since relationships between them and the FES patterns are static and can be solved furthermore. s u and s v are two discontinuous Sign function depending on u ch and εc , such as: s u = sign(u ch ) and s v = sign( εc ), where ε c = (L c -L c0 )/L c0 is the contractile element deformation and L c0 is the CE length at the rest condition. Based on the mechanical description of the muscle (Fig. 1-Bottom), this CE deformation can be defined as follows [START_REF] Mohammed | Closed loop nonlinear model predictive control applied on paralyzed muscles to restore lower limbs functions in[END_REF]:

ε c = L 0 L c0 ε - F c K s L c0 (2) 
Where ε represents the deformation at the whole muscle level, such as:

ε = L -L 0 L 0 (3) 
With L is the muscle length and L 0 its rest condition length. F 0 and K 0 are maximal force and stiffness of contractile element at its current length. These variables are governed by a so-called force-length relationship (F l c ) as follows [START_REF] Hatze | Myocybernetic control models of skeletal muscle: characteristics and applications Studia mathematica University of South Africa[END_REF][START_REF] Riener | Patient-driven control of fes-supported standing up: a simulation study[END_REF]:

F 0 (ε c ) = F m F l c (ε c ) and K 0 (ε c ) = K m F l c (ε c )
, where constants F m and K m are maximal force and stiffness at optimal muscle length, and the force-length relationship (F l c ) is the one introduced in [START_REF] Hatze | Myocybernetic control models of skeletal muscle: characteristics and applications Studia mathematica University of South Africa[END_REF][START_REF] Riener | Patient-driven control of fes-supported standing up: a simulation study[END_REF]:

F l c (ε c ) = exp - ε c b 2 ( 4 
)
Where b is called shape parameter, which describes the filaments overlapping level in sarcomeres.

In order to have a compact presentation of Eq.( 1), an intermediate parameters a, b, p, q and s 0 were defined as follows:

a = L 0 L c0 ; b = L 0 ; p = 1 K s ; q = 1 L c0 K s ; s 0 = 1 + s u 2 
Main muscle model parameters with their physiological signification are summarized in Table [START_REF] Abdallah | Ltv controller flatness-based design for mimo systems[END_REF].

Knee joint biomechanical model

The knee joint biomechanical model, considered in this study, consists of two segments representing respectively the shank and the leg (thigh+foot) connected to each other by one degree of freedom joint (knee). The thigh is supposed fixed, which represents a patient in sitting position, while the shank is free to move around the knee joint (Fig. 2). We consider here the FES-based activation of only quadriceps muscle, while other muscles around the knee are considered as having a passive effects [START_REF] Benoussaad | Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury[END_REF]. Therefore, the quadriceps muscle achieves the knee extension while the flexion is made by the leg gravity.

[Fig. 2 about here.]

Based on the pulley model of knee joint, active muscular torques can be easily obtained from the quadriceps forces (F q ) through a constant moment arm r 1 (Fig. 2). θ is the knee joint angle around the rotation center o (θ = 0 • corresponds to full extension of the knee and θ = 90 • represents the rest position). T g = m g d cos(θ) is the gravity torque of the leg around the knee. Based on this model, the quadriceps muscle length can be expressed as a function of knee joint angle θ:

L(θ) = L ext + r 1 θ (5) 
where L ext is the muscle length at the leg full extension (i.e., θ = 0 • ). The leg motion is governed by a nonlinear second order equation, where the highly nonlinear elastic torque is neglected in the movement range of the knee extension explored here [26]. This equation is then given by:

J θ = mgd cos θ -r 1 F q -F v θ (6) 
Parameters of this model are summarized (with muscle parameters) in Table 1.

[Table 1 about here.]

Assumptions and model reduction complexity

The musculoskeletal system dynamic (1) is highly complex and nonlinear. For this first study of flatness on the musculoskeletal system, we made here some physiologically based assumptions to reduce the muscle model complexity and explore the flatness in some specific conditions. These assumptions were based on ones used in [START_REF] Mohammed | Toward lower limbs movement restoration with input -output feedback linearization and model predictive control through functional electrical stimulation[END_REF], as summarized and detailed bellow:

1. The stiffness of the series element (SE), which represents the tendon, is higher than the stiffness of the contractile element as long as the musculoskeletal system work in dynamic condition (non isometric). Thus, in Eq.( 2), the term

1 L c0 K s F c is
neglected and the deformation of the whole muscle is almost due to the deformation of the contractile element. This assumption is physiologically justified by the fact that at peak active muscular force, the relative deformation of tendon (called tendon slack length) is about 3.3% w.r.t its initial length, when the muscle length can have a deformation of about 50% [START_REF] Zajac | Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[END_REF]. 2. Muscle contractions are concentric, i.e. the active muscle is shortening. Consequently, we have:

s v = sign( εc ) = -1
3. According to the model improvement introduced in [START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF], the chemical control function u ch is positive in all conditions (activation and relaxation phases of contractile element). Therefore, we obtain:

s u = 1, s 0 = 1 2.1.4 Quadriceps-leg Muscloskeletal Model
In the current work, we are in the context of non-isolated muscle, i.e. the muscle is a part of a whole musculoskeletal system. In this case, the parallel element (PE) effect (Fig. 1-Bottom) is considered at the knee joint level, as all passive muscles around the joint [START_REF] Benoussaad | Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury[END_REF]. Therefore, the quadriceps muscle force (F q ), applied to move the leg, becomes equal to the force generated by the contractile element F c :

F q = F c
Similarly, based on previous assumptions about the high level of the series element stiffness (K s ) compared to the contractile element stiffness (K c ), we can also conclude that the quadriceps muscle stiffness (K q ) is mainly due to CE stiffness:

K q = K c
By combining models at muscle and knee joint levels, the relative deformation of the quadriceps muscle and its derivative can be obtained from Eq.( 3) and Eq.( 5) as:

ε(θ) = r 1 L 0 θ, ε( θ) = r 1 L 0 θ (7) 
From Eq.( 2), ( 7) and assumptions above-mentioned ( §2.1.3), we can obtain the relative deformation of muscle contractile element and its derivative as a function of the joint states:

ε c (θ) = r 1 L c0 θ, εc (θ) = r 1 L c0 θ (8) 
On other hand, since F 0 and K 0 are dependent of muscle length, thorough a force-length relationship, it is a function of knee joint angle θ. We can then write: F 0 (θ) and K 0 (θ). The quadriceps-leg musculoskeletal model is a combination of the previously detailed muscle model ( §2.1.1) and the current biomechanical knee joint model ( §2.1.2). Thus, by defining the state vector X T = K q F q θ θ = x 1 x 2 x 3 x 4 and the control input U T = α u ch , we obtain the following state space system equations from Eqs. ( 1), ( 6) and ( 8):

                   ẋ1 = αK0(x3) -x1 -q αF0(x3)x1 -x2x1 1 + px1 + qx2 u ch + ax1 1 + px1 + qx2 r1 Lc0 x4 ẋ2 = αF0(x3) -x2 1 + px1 + qx2 u ch + bx1 + ax2 1 + px1 + qx2 r1 Lc0 x4 ẋ3 = x4 ẋ4 = 1 J (mgd cos(x3) -r1x2 -Fvx4) (9) 
From this set of equations, we can notice that the term 1 + px 1 + qx 2 does not vanish since parameters p, q and states x 1 , x 2 are all positive based on their physical meanings.

For a easier use of the model further, we define new parameters as:

c 1 = r 1 L c0 ; c 2 = - r 1 J ; c 3 = mgd J ; c 4 = - F v J and two new inputs as: v = α u ch u = u ch (10) 
Then, the model can be written as:

                 ẋ1 = K0(x3) -q F0(x3)x1 1 + px1 + qx2 v -x1 -q x2x1 1 + px1 + qx2 u + ac1x1x4 1 + px1 + qx2 ẋ2 = F0(x3) 1 + px1 + qx2 v - x2 1 + px1 + qx2 u + (bx1 + ax2)c1x4 1 + px1 + qx2 ẋ3 = x4 ẋ4 = c2 x2 + c3 cos(x3) + c4 x4 (11)
2.2 Brief overview on Flatness

Definition

Since the introduction of differential flat systems theory and the flatness-based control, proposed by Fliess and al. [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], several efficient solutions for advanced control and state estimation problems were developed and provided. In this section, a brief description of flatness theory is presented.

Definition 1 Let's consider a nonlinear system of the form

ẋ = f (x, u), x ∈ R n , u ∈ R m (12) 
It is differentially flat if and only if there exists a set of variables z(t) ∈ R m of the form:

z = h(x, u, u, • • • , u (α) ) (13 
) such that there exist:

x = A(z, ż, • • • , z (β) ) (14) u = B(z, ż, • • • , z (β+1) ) ( 15 
)
where α and β are integers. The set of variables z are the flat outputs of the system, called also the endogenous variables. It makes possible to parameterize any variable of the system (components of the system, states, inputs and the outputs). We can notice that the components of z must be differentially independent [START_REF] Abdallah | Ltv controller flatness-based design for mimo systems[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF].

The real output of the process can be written:

y = g(x, u) (16) 
Thus, from Eqs.( 14) and ( 15), the real output y is written as a function of the flat output z and its derivatives as:

y = C(z, ż, • • • , z (β+1) ) (17) 
We point out a few important details:

-The dimension of the flat outputs is equal to the system input dimension.

-There is an infinity of flat outputs. In other words, the set of found flat outputs is not unique. -We can often find flat outputs that have a physical meaning.

Flatness-based control

The objective of the flatness-based control is to obtain the asymptotic tracking of a reference trajectory and this is ensured through the following steps [START_REF] Rotella | Control and trajectory tracking by flatness of a time-variant stator flux motor in: Control Applications[END_REF] :

-Motion planning (open loop): by imposing desired trajectories on flat outputs, we can obtain exactly and explicitly the necessary control to generate them, without any integration of differential equations. These desired trajectories z d must be (β + 1)-times continuously differentiable. -Motion tracking (closed loop): For a desired trajectories tracking, the control v is defined as follows:

v = z (β+1) d - β i=0 k i (z (i) -z (i) d ) (18) 
with a good choice of the k i , namely the polynomial k(p) = p l+1 + β i=0 k i p i , where k i p i is Hurwitz; The trajectory can be stabilized and errors go asymptotically to zero. The complete control is then written as follows :

u = B(z, • • • , z (β) , v) (19) 
This relation leads to the asymptotic tracking of desired trajectories.

Notice that the information needed by this control can be obtained through observers [START_REF] Rotella | Polynomial controller design based on flatness[END_REF] with a major advantage, compared to other nonlinear control strategies, related to the fact that it overcomes problems of a non stable zeros dynamics [START_REF] Isidori | Nonlinear Control Systems 3rd[END_REF], [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF]. Moreover, the relationship of Eq.( 17) leads to get the output trajectory from the desired flat output trajectory z d . Notice that if this output trajectory is not admissible, the key is then to design a piecewise trajectory where some conditions for smoothness are verified on the cutting points. However, this relationship (Eq.( 17)) is still remain valid between these points.

The power of flatness is that it does not transform a nonlinear system into a linear one. On one hand, when system is flat, it is an indication that its nonlinear structure is well characterized and it can be exploitable in designing control algorithms for trajectory generation and stabilization. On the other hand, flatness represents, in a way, a proper geometric notion of linearity even when the system is nonlinear in any chosen coordinates [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]. Finally, the principle of flatness can be extended to distributed parameters systems with boundary control and is useful even for controlling linear systems.

As mentioned before, the application of flatness-based control requires to find the flat output of the system. However, when no flat output can be found, it doesn't mean that the system is not flat. Furthermore, to demonstrate that a given system is not flat, the ruled-manifold criterion can be applied, as detailed in the next section.

The ruled manifold criterion

This criterion represents only a necessary condition of flatness. It means when the system is flat, it does satisfy the criterion. Therefore, the negation of the criterion highlights the not flatness of the system [START_REF] Sira-Ramirez | Differentially flat systems New York[END_REF][START_REF] Martin | Flat systems in[END_REF]. To introduce the ruled manifold criterion, let's consider the nonlinear system of the form:

ẋ = f (x, u); x ∈ R n , u ∈ R m (20)
for which the elimination of the control input leads to a system of (n-m) relations:

F (x, ẋ) = 0 (21) 
If this system is flat, then we can show that [START_REF] Martin | Flat systems in[END_REF]:

∀(λ, µ) ∈ R 2n , such that F (λ, µ) = 0 ( 22 
)
there exists v ∈ R n , v = 0, such that:

∀e ∈ R, F (λ, µ + ev) = 0 ( 23 
)
This result shows the fact that the subvariety F (λ, µ) = 0 is regulated with respect to the second parameter. By taking the negation of this mathematical statement, we obtain that if this subvariety is not regulated then the system is not flat, which is stated in the form of the following criterion.

Theoreme 1 If:

(∀(λ, µ) ∈ R 2n , F (λ, µ) = 0, ∀e ∈ R, F (λ, µ + ev) = 0) =⇒ v = 0 ( 24 
)
Then the system is not flat.

Therefore, this criterion can not be used to prove the flatness of a given system, but its no flatness.

RESULTS

Flatness of musculoskeletal systems

As mentioned before, the system flatness proof requires to find the system flat outputs. One intuitive way consists on exploring flat output candidates and prove (or not) that they are flat outputs. However, if no flat output is found, it doesn't mean that the system is not flat. In this case, the ruled manifold criterion, defined in 2.2.3, is another approach that explore the system flatness property by using a necessary condition of flatness.

In order to study the flatness of the musculoskeletal system, we consider first our model (Eqs.11) with a single input and then with both controlled inputs.

Model with a single input

Since in many existing FES-based rehabilitation strategies, model with a single input is commonly used, let's explore in this section the flatness of the current model with only one output. From the previously detailed model (Eqs.11) and based on previous assumptions ( §2.1.3), we consider the model with only one control input U = [v], while the second input u is regarded as a constant. This means that in the FES input, the frequency is fixed and not modulated during movement control. The system state vector is still the same defined before, i.e. X T = x 1 x 2 x 3 x 4 = K q F q θ θ .

After exploring few intuitive flat output candidates, we couldn't prove the existence of flat output. However, it doesn't prove that the system is not flat. Therefore, instead of proving the flatness of this one-input model, we will explore its no-flatness through the ruled manifold criterion. The ruled manifold criterion was applied on one-input model as detailed in Appendix (A). Therefore, the statement of Eq.( 24) is demonstrated, which highlights the no flatness of the one-input musculoskeletal model.

Model with two inputs

Since the one-input musculoskeletal model is proved to be not flat, let's consider the original musculoskeletal two-inputs model (Eqs.( 11))

For a easier further manipulation, two first equations can be presented as:

ẋ1 ẋ2 = ac1x1x4 (1+px1+qx2) (bx1+ax2)c1x4 1+px1+qx2 f (x) + K0(x3) -q F0(x3)x1 1+px1+qx2 -x1 -q x2x1 1+px1+qx2 F0(x3) 1+px1+qx2 - x2 1+px1+qx2 G(x)
v u [START_REF] Sira-Ramirez | Differentially flat systems New York[END_REF] and two last equations as:

ẋ3 = x 4 ẋ4 = c 2 x 2 + c 3 cos(x 3 ) + c 4 x 4 (26a) (26b)
Since in this system dim(U ) = 2, therefore, the model admits two flat output candidates z 1 z 2 (i.e., dim(z) = 2). Let's consider following flat output candidates:

(z 1 , z 2 ) = (x 1 , x 3 ) = (K q , θ) (27) 
Notice immediately that these outputs have a physical interpretation: z 1 is the muscle stiffness and z 2 is the knee joint angle.

Using the flatness property proof described above ( §2.2.1), let's explore these chosen candidates are flat outputs. For that, we try to express each state and control input as a function of flat outputs and their derivatives.

-Equation (26a) leads to write:

x 4 = ż2 (28) 
-From equation (26b) and by replacing x 3 and x 4 by chosen flat output candidates we get: z2 = c 2 x 2 + c 3 cos(z 2 ) + c 4 ż2 which leads to :

x 2 = 1 c 2 (-c 3 cos(z 2 ) -c 4 ż2 + z2 ) (29) 
We can see that each state was expressed as a function of flat outputs candidates. Afterwards, we have to do the same for control inputs, by expressing each input as a function of flat outputs, by solving Eq.( 25). The condition to do it, is that the matrix G(x) is invertible. Then, let's study this condition through the determinant of G(x):

det G(x) = K 0 (x 3 ) -q F 0 (x 3 )x 1 1+px 1 +qx 2 -x 1 -q x 2 x 1 1+px 1 +qx 2 F 0 (x 3 ) 1+px 1 +qx 2 - x 2 1+px 1 +qx 2 = F 0 (x 3 )x 1 -K 0 (x 3 )x 2 1 + px 1 + qx 2 (30) 
If by controlling the trajectories of x 1 and x 2 , we ensure that the condition F 0 (x 3 )x 1 = K 0 (x 3 )x 2 is satisfied, thus the matrix G(x) is invertible and the solution of Eq.( 25) leads to express input controls as follows:

v u = G -1 (x) ẋ1 ẋ2 -f (x) = 1+px1+qx2 F0(x3)x1-K0(x3)x2 - x2 1+px1+qx2 x1 -q x2x1 1+px1+qx2 -F0(x3) 1+px1+qx2 K0(x3) -q F0(x3)x1 1+px1+qx2 ẋ1 -ac1x1x4 1+px1+qx2 ẋ2 -(bx1+ax2)c1x4 1+px1+qx2 (31) 
Where, based on Eqs.( 27), (29), we have:

   ẋ1 = ż1 ẋ2 = 1 c 2 (c 3 ż2 sin(z 2 ) -c 4 z2 + ... z 2 ) ( 32 
)
we can see in equation ( 31) that all inputs of musculoskeletal system are expressed as function of states and their derivatives ẋ1 , ẋ2 . On other hands, all these states and their derivatives are expressed as function of chosen flat outputs and their derivatives. Therefore, inputs are function of chosen flat outputs and their derivatives as well. Therefore, we proved that the two-inputs system is flat since we expressed all its variables (states and inputs) as a function of both flat output (z 1 , z 2 ) and their derivatives, and we obtained thus functions h, A and B of equations ( 13), ( 14), [START_REF] Li | Real-time estimation of fes-induced joint torque with evoked emg[END_REF]. As mentioned before ( §2.2.2), the flatness properties of system serves to apply a flatness-based control, which can be done in open-loop (motion planning) or closed-loop (motion tracking). The purpose of this article is mainly to explore the flatness properties of musculoskeletal systems, however the motion planing principle and its application are explored and detailed in next section, while the closed loop control is planned in further works.

motion planning

Flatness-based open-loop control

To show the main features of system flatness property, we focus first on the motion planning of of system flat outputs. Since the musculoskeletal system with two inputs is proved to be flat, by defining a desired trajectory of flat output, we obtain exactly and explicitly the necessary control for it, as mentioned in §(2.2.2). The choice of these trajectories can be a problem if the flat outputs have no physical meaning. In our case, both flat outputs have physical meaning, however, the definition of some trajectories (such as a stiffness) can be an issue if we don't have any measurement of it in practice. To explore the flatness advantage in controlling the musculoskeletal system, we have to define desired trajectories (and their derivatives) of both flat outputs:

z d (t) = (z d 1 (t), z d 2 (t)
) and then, the corresponding inputs are obtained as follows (Eq.31):

z d (t) → żd (t) → zd (t) → ... z d (t) v d (t), (u d (t))
Based on equations which relates flat outputs with states, their derivatives and inputs (Eqs.( 31), ( 27), ( 28), ( 29), (32)), the choice of desired trajectories should satisfy following conditions: -z d 1 : 1-time continuously derivable z d 2 : 3-times continuously derivable

Trajectory generation

To satisfy previous derivability conditions, we propose here a polynomial functions as desired trajectories of flat outputs. For simplicity reason, we considered the two polynomial trajectories with the same order, which connect an initial to a final conditions of flat outputs. On other hand, as it is commonly used in robotics and motion planing, we defined a polynomial trajectory of 5 th order as follows [START_REF] Khalil | Chapter 13 -trajectory generation[END_REF].

z d = z i d + (z f d -z i d )r(t) r(t) = a 3 t T 3 + a 4 t T 4 + a 5 t T 5 ( 33 
)
With t is the time variable (0 ≤ t ≤ T ) and T is the whole movement duration. z d , z i d and z f d are respectively the flat desired trajectory, its initial and its final values. The parameters (a 3 , a 4 , a 5 ) are determined by considering the boundary conditions. These conditions are initial and final states of desired flat trajectory, which are defined for each of both flat outputs. To set parameters (a 3 , a 4 , a 5 ) for each polynomial desired trajectory, we defined first and second derivatives of flat desired outputs, at the start and end of movement, as follows:

żi d = żf d = [0, 0] T zi d = zf d = [0, 0]
T We can thus obtain the function r of Eq.(33) as follows [START_REF] Khalil | Chapter 13 -trajectory generation[END_REF]:

r(t) = 10 t T 3 -15 t T 4 + 6 t T 5 (34) 

Open-loop control application

The open-loop flatness based control is described by the following scheme:
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As we can see in figure 3, from chosen initial and final flat outputs and according to Eq.(33), trajectories (z d 1 , z d 2 ) and their obtained derivative are generated for the whole movement. Then, an open-loop controller, based on Eq.(31), generates inputs (v d , u d ) throughout the movement, which are needed to track desired trajectories. These inputs are then applied directly on musculoskeletal system. In simulation, the obtained output trajectories are (z s 1 , z s 2 ). In ideal case of system (model in simulation) the obtained (z s 1 , z s 2 ) fit perfectly with the desired flat outputs trajectories (z d 1 , z d 2 ). However, in a real system with modeling errors and external perturbation, a deviation should exist between desired and real flat outputs. In this case, a closed loop flatness-based control is needed ( §2.2.2).

[Fig. 4 

DISCUSSION

Since the flatness of the two-input musculoskeletal depends on the inversion of G(x) matrix (Eq.( 31)) and the condition F 0 (x 3 )x 1 = K 0 (x 3 )x 2 , the choice of desired flat output trajectories should satisfy that condition throughout the whole movement. Since we proved the flatness and established a relationship between flat outputs and system states (Eq.( 15), ( 14)), we can thus control any state and make it flowing a predefined trajectory.

Control inputs, obtained thanks to system flatness property and applied in open loop control strategy, generates a flat outputs that matches perfectly with a desired flat trajectories in ideal case, with a perfect model (simulation). However, in a real case, there should be a deviation, related to model and parameters errors and perturbation, which define limits and drawbacks of open-loop control. In this case, the motion tracking which corresponds to a flatness-based closed-loop control is required ( §2.2.2). Test and comparison in simulation of open-loop and closedloop control will be explored in further works.

In the current work, chosen flat outputs corresponds to a meaningful states, such as knee joint angle and muscle stiffness. In this case, defining initial and final values of these flat outputs were intuitive and presents an obvious link with system states and outputs. However, in general case, it is initial and final values of states (X) and inputs (U ) which should be given, and then initial and final values of flat outputs can be obtained using Eq.( 13). Therefore, a trajectory of flat output can be generated and used to control the system.

Since the mostly used musculoskeletal models have only one input, or the second input is ignored and fixed to a constant value, results of our study are crucial and establish that for these type of model, the flatness-based control can not be applied. In addition, these results are very interesting since the flatnessbased control is comparable with the natural muscular control which, deal with two inputs: recruitment rate (spatial summation) and chemical control (temporal summation) [START_REF] Benoussaad | Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury[END_REF][START_REF] El Makssoud | Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions[END_REF].

As specified in overview of flatness ( §2.2), the flatness of a system and particularly a nonlinear system offers several advantage for controlling it. Indeed, one of the most important issues in FES-based rehabilitation is to synthesize and control FES patterns to generate a desired movement. In most of previous works, nonlinear optimization have been applied to inverse numerically the musculoskeletal model [START_REF] Benoussaad | Synthesis of optimal electrical stimulation patterns for functional motion restoration: applied to spinal cord-injured patients[END_REF] with some drawback related to calculation time consuming and local minimum issues of optimization. Therefore, the application of flatness property leads to an analytic inversion of model without linearizing it.

In the current work, we focus on proving flatness of musculoskeletal system to use for control through inputs α and u ch (Eq.( 10)). However, these inputs are not the ones used in practice since we applied a stimulation patterns, which frequency influences u ch and amplitude/pulse width influences α. As mentioned before ( §2.1.1), the amplitude/pulse width can be deduced from recruitment rate α thanks to a recruitment function [START_REF] Benoussaad | Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury[END_REF], however it seems more complex to get directly the stimulation frequency from the chemical control u ch since the estimated one, using the flatness-based control, have not been constrained in terms of signal form. This relationship and impact of u ch signal form constraints will be explored in future works.

Since we demonstrated the flatness of a given system, there is an infinity of flat outputs. The choice of flat outputs for the two-input musculoskeletal system was made intuitively, however we demonstrated that they satisfy the output flatness criteria. More generally, the construction procedure of flat outputs is divided into two steps. The first step consist on the construction of an implicit model. The second step is to express certain variables algebraically in function of other variables and their derivatives. To go further, readers can see [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]14], which we will explore in future works for a general flat output construction of musculoskeletal systems. In the current work, we made some assumptions based on a specific case, where quadriceps is always shortening during contraction without any co-contraction phenomena. A more general cases should be considered in future works.

CONCLUSION

In this study, the flatness of electrically stimulated musculoskeletal system were explored for the first time, as far as we know. This flatness property is a first step for flatness-based control of such a nonlinear system, which is an important issue in FES-based rehabilitation. As it is known in previous works about flatness, this property is very crucial to control a nonlinear system without linearizing it nor using an optimization procedure which presents some known drawback. Indeed, this property allows to generate required inputs simply by defining a desired flat outputs trajectories. For the current study, a multi-scale muscular model with two inputs (recruitment rate and chemical control), based on combination of macroscopic Hill's model and microscopic Huxley's muscle fibers model. The muscloskeletal model use for the study is a knee joint actuated by a quadriceps muscle in sitting position. In the current work, we demonstrated that the musculo-skeletal model with only one input is not flat, while we proved that the two-inputs musculoskeletal model is flat since we found one set of two flat outputs. This is an important results since most of musculoskeletal models under FES consider only one controlled input while the natural muscular control deal with two inputs, which represents spatial and temporal summation of muscle fibers. The flatnessbased open-loop control principle is presented, which can be enough for a model as close as possible with real system. Simulation test of flatness-based open-loop and closed loop control is planned in future works

A Ruled Manifold criterion of one-input musculoskeletal model

Considering only one input (α) and u ch as a constant, we can define the input (Eq.( 10)):

v = αu ch and parameters, uc = u ch ; c 1 = r 1 L c0 ; c 2 = - r 1 J ; c 3 = mgd J ; c 4 = - Fv J
Therefore, the one-input musculoskeletal model can described by equations (Eqs.( 11)), by considering uc as a constant:

                             ẋ1 = K 0 (x 3 ) -q F 0 (x 3 )x 1 1 + px 1 + qx 2 v -x 1 -q x 2 x 1 1 + px 1 + qx 2 uc + ac 1 x 1 x 4 (1 + px 1 + qx 2 ) ẋ2 = F 0 (x 3 ) 1 + px 1 + qx 2 v - x 2 1 + px 1 + qx 2 uc + (bx 1 + ax 2 )c 1 x 4 1 + px 1 + qx 2 ẋ3 = x 4 ẋ4 = c 2 x 2 + c 3 cos(x 3 ) + c 4 x 4 (35a) (35b) (35c) (35d) (35e) 
The first stage of ruled manifold criterion consists in expressing the implicit form (Eq. 21) of the model by eliminating the input control v from Eqs. (35b) and (35c). Let's extract the input v from Eq.(35c) as follows:

(

1 + px 1 + qx 2 ) ẋ2 = F 0 (x 3 ) v -x 2 uc + (bx 1 + ax 2 ) c 1 x 4 (36) ⇔ v = (1+px 1 +qx 2 ) ẋ2 +x 2 uc-(bx 1 +ax 2 ) c 1 x 4 F 0 (x 3 ) (37) 
From Eq.(35b) we get:

(1 + px 1 + qx 2 ) ẋ1 = ac 1 x 1 x 4 -(x 1 (1 + px 1 + qx 2 ) + qx 2 x 1 ) uc + (K 0 (x 3 )(1 + px 1 + qx 2 ) -qF 0 (x 3 )x 1 ) v (38) 
Then, by replacing v in this equation we obtain an equation without control input:

(1 + px 1 + qx 2 ) F 0 (x 3 ) ẋ1 = aF 0 (x 3 )c 1 x 1 x 4 -(x 1 (1 + px 1 + qx 2 ) + qx 2 x 1 ) F 0 (x 3 )uc + (K 0 (x 3 )(1 + px 1 + qx 2 ) -qF 0 (x 3 )x 1 ) ((1 + px 1 + qx 2 ) ẋ2 + x 2 uc -(bx 1 + ax 2 )c 1 x 4 )
Based on this input elimination and Eqs.(35d), (35e), we define the implicit form of the oneinput model as F (x, ẋ) = 0:

             (1 + px 1 + qx 2 ) F 0 (x 3 ) ẋ1 + (x 1 (1 + px 1 + qx 2 ) + qx 2 x 1 ) F 0 (x 3 )uc -(K 0 (x 3 )(1 + px 1 + qx 2 ) -qF 0 (x 3 )x 1 ) ((1 + px 1 + qx 2 ) ẋ2 + x 2 uc -(bx 1 + ax 2 ) c 1 x 4 ) -aF 0 (x 3 )c 1 x 1 x 4 = 0 ẋ3 -x 4 = 0 ẋ4 + c 2 x 2 + c 3 cos(x 3 ) + c 4 x 4 = 0 (39) 
Let's then explore a necessary condition of flatness by using the negation of ruled manifold criterion (Eq.( 24)). Then we have:

∀(λ, µ) ∈ R 2n
where λ = (λ 1 , λ 2 , λ 3 , λ 4 ) and µ = (µ 1 , µ 2 , µ 3 , µ 4 ). Considering, from the implicit form of the model (Eqs.(39)), the following set of equation, which corresponds to F (λ, µ) = 0: Thus, for all λ 1 , λ 2 , λ 3 , λ 4 , the only possible values of w that satisfy this last statement are (w 1 , w 2 , w 3 , w 4 ) = (0, 0, 0, 0). Since w = (w 1 , w 2 , w 3 , w 4 ) are proved to be equal to zero in order to respect the ruled manifold criterion negation (Eq.( 24)), the musculoskeletal system with a single input is thus proved to be not flat. 

             (1 + pλ 1 + qλ 2 ) F 0 (λ 3 )µ 1 + (λ 1 (1 + pλ 1 + qλ 2 ) + qλ 2 λ 1 )F 0 (λ 3 )uc -(K 0 (λ 3 )(1 + pλ 1 + qλ 2 ) -qF 0 (λ 3 )λ 1 ) ((1 + pλ 1 + qλ 2 ) µ 2 + λ 2 uc -(bλ 1 + aλ 2 ) c 1 λ 4 ) -aF 0 (λ 3 )c 1 λ 1 λ 4 = 0 µ 3 -λ 4 = 0 µ 4 + c 2 λ 2 + c 3 cos(λ 3 ) + c 4 λ 4 = 0 (40) Then, ∀e ∈ R, let's consider the statement F (λ, µ + ew) = 0, where w = (w 1 , w 2 , w 3 , w 4 ). ⇒              (1 + pλ 1 + qλ 2 ) F 0 (λ 3 )(µ 1 + ew 1 ) + (λ 1 (1 + pλ 1 + qλ 2 ) + qλ 2 λ 1 )F 0 (λ 3 )uc -(K 0 (λ 3 )(1 + pλ 1 + qλ 2 ) -qF 0 (λ 3 )λ 1 ) ((1 + pλ 1 + qλ 2 ) (

  about here.] [Fig. 5 about here.]

µ 2 +( 1 + 3 )w 1 = ew 2 (+qλ 2 = ew 2 K(λ 1 , λ 2 )

 21322212 ew 2 ) + λ 2 uc -(bλ 1 + aλ 2 ) c 1 λ 4 ) -aF 0 (λ 3 )c 1 λ 1 λ 4 = 0 µ 3 + ew 3 -λ 4 = 0 µ 4 + ew 4 + c 2 λ 2 + c 3 cos(λ 3 ) + c 4 λ 4 = 0(41) By taking into account that F (λ, µ) = 0 (Eq.40), we obtain:pλ 1 + qλ 2 ) F 0 (λ 3 )ew 1 -(K 0 (λ 3 )(1 + pλ 1 + qλ 2 ) -qF 0 (λ 3 )λ 1 )(1 + pλ 1 + qλ 2 ) ew 2 = 0 ew 3 = 0 ew 4 K 0 (λ 3 )(1+pλ 1 +qλ 2 )-qF 0 (λ 3 )λ 1 )(1+pλ 1 +qλ 2 ) 1+pλ 1
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 123 Fig. 1 Electrically stimulated muscle Model. Top: Overview of muscle model. The stimulated muscle applies a force (F ) on the skeletal system. The joint position has a feedback on the muscle length and then on the contractile element length Lc; Bottom: Focus on muscle dynamical model. It is based on Hill three elements model and includes the contractile element CE, controlled by the recruitment rate α and the chemical control u ch , the serial element SE (with a stiffness Ks) and the parallel element PE;
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