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Supplementary Materials for “An Efficient
Forecasting Approach to Reduce Boundary

Effects in Real-Time Time-Frequency Analysis”
Adrien Meynard, Hau-Tieng Wu

I. PROOF OF THEOREM 1
A. Preliminaries

1) Notations: Consider z ∈ RN the deterministic signal defined in (11) and denote by zk ∈ RM the subsignal such
that

zk[m] = z[N − K−M + k + m] , ∀m ∈ {0, . . . , M− 1} , k ∈ {0, . . . , K} .

Define Z ∈ RM×K and Z′ ∈ RM×K, the matrices such that

Z ∆
=
(
z0 · · · zK−1

)
,

Z′ ∆
=
(
z1 · · · zK

)
.

Let D ∈ RM×M be the matrix defined by D[m, m′] = δm+1,m′ . Recall the model (13). Based on the definition of
matrices X and Y, we have:

1
K

XXT =
1
K

ZZT + σ2I︸ ︷︷ ︸
∆
=S(0)

+E(0) (26)

1
K

YXT =
1
K

Z′ZT + σ2D︸ ︷︷ ︸
∆
=S(1)

+E(1) , (27)

where E(a) ∆
= σE(a)

1 + σ2E(a)
2 ,

E(a)
1 [m, m′] =

1
K

K−1

∑
k=0

z[N0 + m + a + k]w[N0 + m′ + k] + w[N0 + m + a + k]z[N0 + m′ + k] ,

and

E(a)
2 [m, m′] =

1
K

K−1

∑
k=0

w[N0 + m + a + k]w[N0 + m′ + k]− δ(m+a)m′ ,

with a ∈ {0, 1}. We call E(0) and E(1) error matrices because:

E{E(0)} = E{E(0)
1 } = E{E(0)

2 } = 0

E{E(1)} = E{E(1)
1 } = E{E(1)

2 } = 0 .

Thus, the random matrix Ã, defined in equation (8), is expressed in function of the above-defined matrices as:

Ã =
(

S(1) + E(1)
) (

S(0) + E(0)
)−1

.

Define A0 the deterministic matrix such that

A0
∆
= S(1)S(0)

−1

. (28)
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We denote by α
(`)
0 the last row of A`

0. As a result, for ` ∈ N∗, the error vector h(`) defined by h(`) ∆
= α(`) − α

(`)
0

satisfy the equation

h(`) = eT
M

(
Ã` −A`

0

)
= eT

M

((
(S(1) + E(1))(S(0) + E(0))

−1
)`
−A`

0

)
. (29)

The randomness of h(`) completely comes from the error matrices. Besides, notice that the first M− 1 rows in
E(1) equal to the last M− 1 rows of E(0). We gather all sources of randomness into a vector g ∈ RM(M+1), defined
as

g = vec
([

E(0)

eT
ME(1)

])
, (30)

where ”vec” denotes the vectorization operator, that concatenates the columns of a given matrix on top of one
another. Then, we can write h(`) as h(`) = f (`)(g) where f (`) is a deterministic function such that:

f (`) : RM(M+1) → RM

g 7→ h(`) . (31)

In the following paragraph, we provide some useful lemmas to prove Theorem 1.
2) Lemmas:

Lemma 1 (Expressions of A0 and S(0)−1
). Let S(0) be the M × M matrix defined in (26). Let A0 the M × M matrix

defined in (28). Assume the deterministic signal z takes the form (11), and the observed noisy signal takes the form (13). Then,
the inverse of the matrix S(0) is given by

S(0)
−1

[m, m′] =
1
σ2 δm,m′ −

2
Mσ2

J

∑
j=1

1

1 + 4σ2

MΩ2
j

cos
(

2πpj
m−m′

M

)
, (32)

and the matrix A0 is given by

A0[m, m′] = δm+1,m′ +
2
M

J

∑
j=1

1

1 + 4σ2

MΩ2
j

cos
(

2πpj
m′

M

)
δm+1,M . (33)

Let ‖ · ‖max denote the maximum norm of a matrix, i.e. ‖M‖max = maxn,n′ |M[n, n′]|. Then,∥∥∥∥S(0)
−1
∥∥∥∥

max
≤ 1

σ2

(
1 +

2J
M

)
, (34)

‖A0‖max ≤ max
(

1,
2J
M

)
. (35)

Proof. It follows from the signal model (11) that the matrices S(0) and S(1) take the following form:

S(a)[m, m′] = σ2δ(m+a) ,m′ +
J

∑
j,j′=1

ΩjΩj′

K

K−1

∑
k=0

cos
(

2π
f j

fs
(N0 + m + a + k) + ϕj

)
cos

(
2π

f j′

fs
(N0 + m′ + k) + ϕj′

)

= σ2δ(m+a) ,m′ +
J

∑
j=1

Ω2
j

2K

K−1

∑
k=0

cos
(

2π
f j

fs
(m + a−m′)

)
+ cos

(
2π

f j

fs
(2k + m + a + m′ + 2N0)

)

= σ2δ(m+a) ,m′ +
J

∑
j=1

(
Ω2

j

2
cos

(
2π

f j

fs
(m + a−m′)

)
+

Ω2
j

2K

K−1

∑
k=0

cos
(

2π
f j

fs
(2k + m + a + m′ + 2N0)

)
︸ ︷︷ ︸

=0 because
f j
fs
=

p′j
K

)

= σ2δ(m+a) ,m′ +
J

∑
j=1

Ω2
j

2
cos

(
2π

f j

fs
(m + a−m′)

)
. (36)

Thus, S(0) is a circulant matrix, and is therefore diagonalizable in the Fourier basis:

S(0) = UΛ(0)U∗ ,
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where U[m, m′] = 1√
M

e−2iπmm′/M and Λ(0) = diag(λ(0)
0 , . . . , λ

(0)
M−1) with

λ
(0)
m = σ2 +

J

∑
j=1

Ω2
j

2

M−1

∑
q=0

cos
(

2π
f j

fs
q
)

e−2iπqm/M

= σ2 +
M
4

J

∑
j=1

Ω2
j (δm,pj + δm,M−pj) .

Therefore,

S(0)
−1

= UΛ(0)
−1

U∗ ,

which leads to

S(0)
−1

[m, m′] =
1
σ2 δm,m′ −

2
Mσ2

J

∑
j=1

1

1 + 4σ2

MΩ2
j

cos
(

2πpj
m−m′

M

)
. (37)

Directly, we have: ∣∣∣∣S(0)
−1

[m, m′]
∣∣∣∣ = 1

σ2

∣∣∣∣∣∣∣δm,m′ −
2
M

J

∑
j=1

1

1 + 4σ2

MΩ2
j

cos
(

2πpj
m−m′

M

)∣∣∣∣∣∣∣
≤ 1

σ2

1 +
2
M

J

∑
j=1

1

1 + 4σ2

MΩ2
j

 ≤ 1
σ2

(
1 +

2J
M

)
.

Thus, ∥∥∥∥S(0)
−1
∥∥∥∥

max
≤ 1

σ2

(
1 +

2J
M

)
.

Furthermore, combining equations (36) and (37), we have

A0[m, m′] =
M−1

∑
q=0

S(1)[m, q]S(0)
−1

[q, m′]

= δm+1,m′ +
2
M

J

∑
j=1

1

1 + 4σ2

MΩ2
j

cos
(

2πpj
m′

M

)
δm+1,M .

Directly, we have:

∣∣A0[m, m′]
∣∣ ≤


1 if m < M− 1 ,
2
M ∑J

j=1
1

1 + 4σ2

MΩ2
j

if m = M− 1 .

Thus,

‖A0‖max ≤ max
(

1,
2J
M

)
.

Lemma 2 (Moments of g). Let g ∈ RM(M+1) be the random vector defined in (30). Assume the deterministic signal z
takes the form (11), and the observed noisy signal takes the form (13). Then, as K → ∞, the second-order moments of g are
bounded as follows:∣∣E{g[r]g[r′]}∣∣ ≤ 1

K

(
C2

zσ2 + 2σ4
)
+ o

(
1
K

)
, ∀(r, r′) ∈ {0, . . . , M(M + 1)− 1}2 , (38)

where Cz
∆
= 2

(
∑J

j=1 Ωj

)
. Besides, higher-order moments of g behave as o

(
1
K

)
.
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Proof. In the following, for all r ∈ {0, . . . , M(M + 1)− 1}, we denote g[r] = σg1[r] + σ2g2[r], where

g1[r] = E(ar)
1 [mr, m′r] =

1
K

K−1

∑
k=0

zk[mr + ar]wk[m′r] + wk[mr + ar]zk[m′r] ,

g2[r] = E(ar)
2 [mr, m′r] =

1
K

K−1

∑
k=0

wk[mr + ar]wk[m′r]− δmr+ar , m′r ,

and mr, m′r, ar are the corresponding coordinates of the matrices associated with r through the vectorization opera-
tion (30). Thus, order-two moments of this random vector is split as follows:

E{g[r]g[r′]} = σ2E{g1[r]g1[r′]}+ σ3E{g1[r]g2[r′]}+ σ3E{g2[r]g1[r′]}+ σ4E{g1[r]g1[r′]} . (39)

By definition of the signal z (see equation (11)), we have |z[n]| ≤ ∑J
j=1 Ωj, for all n ∈ N. Thus, by a direct bound,

we have∣∣E{g1[r]g1[r′]}
∣∣ = ∣∣∣∣ 1

K2 E

{ K−1

∑
k,k′=0

zk[mr + ar]zk′ [mr′ + ar′ ]wk[m′r]wk′ [m
′
r′ ] + zk[m′r]zk′ [mr′ + ar′ ]wk[mr + ar]wk′ [m

′
r′ ]

+ zk[mr + ar]zk′ [m
′
r′ ]wk[m′r]wk′ [mr′ + ar′ ] + zk[m′r]zk′ [m

′
r′ ]wk[mr + ar]wk′ [mr′ + ar′ ]

}∣∣∣∣
≤ 1

K2

(
J

∑
j=1

Ωj

)2 K−1

∑
k,k′=0

∣∣E {wk[m′r]wk′ [m
′
r′ ]
}∣∣+ ∣∣E {wk[mr + ar]wk′ [m

′
r′ ]
}∣∣

+
∣∣E {wk[m′r]wk′ [mr′ + ar′ ]

}∣∣+ |E {wk[mr + ar]wk′ [mr′ + ar′ ]}| (40)

Besides, since w is a white noise,

1
K2

K−1

∑
k,k′=0

∣∣E {wk[m′r]wk′ [m
′
r′ ]
}∣∣ = 1

K2

K−1

∑
k,k′=0

δk+m′r , k′+m′
r′

=
1

K2

(
K−

∣∣m′r −m′r′
∣∣) .

Moreover, 0 ≤
∣∣m′r −m′r′

∣∣ ≤ M− 1. Thus,

1
K
− M− 1

K2 ≤ 1
K2

K−1

∑
k,k′=0

∣∣E {wk[m′r]wk′ [m
′
r′ ]
}∣∣ ≤ 1

K
.

Therefore,

1
K2

K−1

∑
k,k′=0

∣∣E {wk[m′r]wk′ [m
′
r′ ]
}∣∣ = 1

K
+ o

(
1
K

)
.

Similar calculations lead to the same results for the other three terms making up the sum (40). Therefore, we have:

∣∣E{g1[r]g1[r′]}
∣∣ ≤ ( J

∑
j=1

Ωj

)2 (
4
K
+ o

(
1
K

))

≤ C2
z

K
+ o

(
1
K

)
. (41)

Besides, since odd-order moments of a zero-mean multivariate Gaussian random vector are zero, we have:

E{g1[r]g2[r′]} =
1

K2

K−1

∑
k,k′=0

zk[mr + ar]E
{

wk[m′r]wk′ [mr′ + ar′ ]wk′ [m
′
r′ ]
}
+ zk[m′r]E

{
wk[mr + ar]wk′ [mr′ + ar′ ]wk′ [m

′
r′ ]
}

− δmr′+ar′ ,m
′
r′

E{g1[r]}

= 0 . (42)

Similarly,
E{g2[r]g1[r′]} = 0 . (43)
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Besides, by a direct calculation, we have:

E{g2[r]g2[r′]} =
1

K2

K−1

∑
k,k′=0

E
{

wk[mr + ar]wk[m′r]wk′ [mr′ + ar′ ]wk′ [m
′
r′ ]
}
− δmr+ar ,m′r

1
K

K−1

∑
k′=0

E
{

wk′ [mr′ + ar′ ]wk′ [m
′
r′ ]
}

− δmr′+ar′ ,m
′
r′

1
K

K−1

∑
k=0

E
{

wk[m′r]wk′ [m
′
r′ ]
}
+ δmr+ar ,m′r δmr′+ar′ ,m

′
r′

=
1

K2

K−1

∑
k,k′=0

E
{

wk[mr + ar]wk[m′r]wk′ [mr′ + ar′ ]wk′ [m
′
r′ ]
}
− δmr+ar ,m′r δmr′+ar′ ,m

′
r′

(44)

Moreover, using the results of the Isserlis’ theorem [1] to express fourth-order moments of a Gaussian random
vector as a function of its second-order moments, we expand sum (44) as follows:

E{g2[r]g2[r′]} =
1

K2

K−1

∑
k,k′=0

E
{

wk[mr + ar]wk[m′r]
}

E
{

wk′ [mr′ + ar′ ]wk′ [m
′
r′ ]
}
− δmr+ar ,m′r δmr′+ar′ ,m

′
r′

+
1

K2

K−1

∑
k,k′=0

E {wk[mr + ar]wk′ [mr′ + ar′ ]}E
{

wk[m′r]wk′ [m
′
r′ ]
}

+
1

K2

K−1

∑
k,k′=0

E
{

wk[mr + ar]wk′ [m
′
r′ ]
}

E
{

wk[m′r]wk′ [mr′ + ar′ ]
}

=
1

K2

K−1

∑
k,k′=0

δk+mr+ar ,k′+mr′+ar′
δk+m′r,k′+m′

r′
+ δk+mr+ar ,k′+m′

r′
δk+m′r ,k′+mr′+ar′

=
1

K2

(
δm′r−m′

r′ ,mr+ar−mr′−ar′
(K− |m′r −m′r′ |) + δmr+ar−m′

r′ ,m
′
r−mr′−ar′

(K− |mr + ar −m′r′ |)
)

=
1
K

(
δm′r−m′

r′ ,mr+ar−mr′−ar′
+ δm′r+m′

r′ ,mr+ar+mr′+ar′

)
+ o

(
1
K

)
.

Therefore, ∣∣E{g2[r]g2[r′]}
∣∣ ≤ 2

K
+ o

(
1
K

)
. (45)

Thus, combining results (41), (42), (43) and (45) into expression (39) gives the following bound:∣∣E{g[r]g[r′]}∣∣ ≤ 1
K

(
C2

zσ2 + 2σ4
)
+ o

(
1
K

)
.

Concerning higher-order moments, let T ≥ 3 denote the order of the moment defined by E{∏T
θ=1 g[rθ ]}. Thus,

E

{
T

∏
θ=1

g[rθ ]

}
= E

{
T

∏
θ=1

(
σg1[rθ ] + σ2g2[rθ ]

)}

=
1

KT E

{
T

∏
θ=1

(
K−1

∑
k=0

ρθ,k

(
w[k + m′rθ

], w[k + mrθ
+ arθ

]
))}

=
1

KT

K−1

∑
k1=0
· · ·

K−1

∑
kT=0

E

{
T

∏
θ=1

ρθ,kθ

(
w[kθ + m′rθ

], w[kθ + mrθ
+ arθ

]
)}

, (46)

where
ρθ,k(u, v) = σzk[mrθ

+ arθ
]u + σzk[m′rθ

]v + σ2uv− δmrθ
+arθ

, m′rθ
.

Thus, ∣∣∣∣∣E
{

T

∏
θ=1

g[rθ ]

}∣∣∣∣∣ ≤ νK

KT CT ,

where

CT = max
(k1,...,kT)

∣∣∣∣∣E
{

T

∏
θ=1

ρθ,kθ
(w[kθ + m′rθ

], w[kθ + mrθ
+ arθ

])

}∣∣∣∣∣ ,

and νK is the number of nonzero terms in the sum (46). Note that CT is independent of K (but depends on z and
σ). The behavior of the order T moment in function of K is therefore only determined by the ratio

νK

KT .



6

Let us bound νK. Fix k1. For each of the other indexes of summation kθ (θ ∈ {2, . . . , T}), there are four values that
make ρθ,kθ

(w[kθ + m′rθ
], w[kθ + mrθ

+ arθ
]) not independent of ρ1,k1(w[k1 + m′r1

], w[k1 + mr1 + ar1 ]). Indeed, since w
is a white noise these quantities are independent except when kθ is such that:

kθ = k1 + m′r1
−m′rθ

kθ = k1 + mr1 + ar1 −m′rθ

kθ = k1 + m′r1
−mrθ

− arθ

kθ = k1 + mr1 + ar1 −mrθ
− arθ

.

Consequently, for each value of k1 there exist at least (K− 4)T−1 combinations of (k2, . . . , kT) where we have

E

{
T

∏
θ=1

ρθ,kθ
(w[kθ + m′rθ

], w[kθ + mrθ
+ arθ

])

}
= E

{
ρ1,k1(w[k1 + m′r1

], w[k1 + mr1 + ar1 ])
}

×E

{
T

∏
θ=2

ρθ,kθ
(w[kθ + m′rθ

], w[kθ + mrθ
+ arθ

])

}
= 0 ,

because E
{

ρ1,k1(w[k1 + m′r1
], w[k1 + mr1 + ar1 ])

}
= 0. Therefore, at least K(K − 4)T−1 of the sum (46) are zero.

Because T ≥ 3, we develop similar arguments on k2 and k3 to determine other cases where this correlation term
vanishes. We subtract these cases to KT , the total number of combinations of (k1, . . . , kT) to obtain the following
maximum bound on the number of nonzero terms in the sum (46):

νK ≤ KT − 3K(K− 4)T−1 + 3K(K− 4)(K− 8)T−2 − K(K− 4)(K− 8)(K− 12)T−3 .

Thus,∣∣∣∣∣E
{

T

∏
θ=1

g[rθ ]

}∣∣∣∣∣ ≤ CT
KT − 3K(K− 4)T−1 + 3K(K− 4)(K− 8)T−2 − K(K− 4)(K− 8)(K− 12)T−3

KT

≤ CT

(
1− 3

(
1− 4

K

)T−1
+ 3

(
1− 4

K

)(
1− 8

K

)T−2
−
(

1− 4
K

)(
1− 8

K

)(
1− 12

K

)T−3
)

≤ CT

(
1− 3 +

12(T − 1)
K

+ 3− 12
K
− 24(T − 2)

K
− 1 +

4
K
+

8
K
+

12(T − 3)
K

+ o
(

1
K

))
≤ CT o

(
1
K

)
.

Therefore, ∣∣∣∣∣E
{

T

∏
θ=1

g[rθ ]

}∣∣∣∣∣ = o
(

1
K

)
, ∀T ≥ 3 .

Lemma 3 (Bounds on the derivatives of f (`) at the origin). Let f (`) : RM(M+1) → RM denote the multivariate function
defined in (31). Assume the deterministic signal z takes the form (11), and the observed noisy signal takes the form (13). Then,
the first-order derivatives of f (`) at the origin are bounded as follows:∣∣∣∣∣∣ ∂ f (`)m

∂g[r]

∣∣∣∣∣
g=0

∣∣∣∣∣∣ ≤ d1,z,M,`

σ2 , ∀m ∈ {0, . . . , M− 1} , r ∈ {0, . . . , M(M + 1)− 1} , (47)

where

d1,z,M,`
∆
= (2 + (`− 2)M) M`−1

(
max

(
1,

2J
M

))`−1 (
1 + max

(
1,

2J
M

))(
1 +

2J
M

)
.

Besides, the second-order derivatives of f (`) at the origin are bounded as follows:∣∣∣∣∣∣ ∂2 f (`)m
∂g[r]∂g[r′]

∣∣∣∣∣
g=0

∣∣∣∣∣∣ ≤ d2,z,M,`

σ4 , ∀m ∈ {0, . . . , M− 1} , (r, r′) ∈ {0, . . . , M(M + 1)− 1}2 , (48)

where

d2,z,M,`
∆
=

(
1 +

2J
M

)2 (
max

(
1,

2J
M

))`−2 (
1 + max

(
1,

2J
M

))(
d2,M,` + (d2,M,` + 2d′2,M,`)max

(
1,

2J
M

))
,
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and d2,M,` and d′2,M,` are only depending on M and `.

Proof. Concerning the first-order derivative, from (29), we have:

∂ f (`)

∂g[r]
= eT

M
∂Ã`

∂g[r]

=
`−1

∑
λ=0

eT
MÃλ ∂Ã

∂g[r]
Ã`−1−λ .

Thus,
∂ f (`)

∂g[r]

∣∣∣∣∣
g=0

=
`−1

∑
λ=0

eT
MAλ

0
∂Ã

∂g[r]

∣∣∣∣
g=0

A`−1−λ
0 . (49)

Furthermore,

∂Ã
∂g[r]

=
∂E(1)

∂g[r]

(
S(0) + E(0)

)−1
+
(

S(1) + E(1)
) ∂

(
S(0) + E(0)

)−1

∂g[r]

=


Jmr ,m′r

(
S(0) + E(0)

)−1
if ar = 1,(

(1− δmr ,0)Jmr−1,m′r +
(

S(1) + E(1)
) (

S(0) + E(0)
)−1

Jmr ,m′r

)(
S(0) + E(0)

)−1
else,

where Jmr ,m′r ∈ RM×M is the matrix such that Jmr ,m′r [m, m′] ∆
= δm,mr δm′ ,m′r . Thus,

∂Ã
∂g[r]

∣∣∣∣
g=0

=

 Jmr ,m′r S(0)−1
if ar = 1,(

(1− δmr ,0)Jmr−1,m′r + A0Jmr ,m′r

)
S(0)−1

else.

Then, ∥∥∥∥∥ ∂Ã
∂g[r]

∣∣∣∣
g=0

∥∥∥∥∥
max

≤ (1 + ‖A0‖max)
∥∥∥S(0)−1∥∥∥

max
.

Given bounds (35) and (34), we have that:∥∥∥∥∥ ∂Ã
∂g[r]

∣∣∣∣
g=0

∥∥∥∥∥
max

≤
(

1 + max
(

1,
2J
M

))(
1 +

2J
M

)
1
σ2 . (50)

Besides given expression (49), for all r ∈ {0, . . . , M(M + 1)− 1}, we have:∣∣∣∣∣∣ ∂ f (`)m
∂g[r]

∣∣∣∣∣
g=0

∣∣∣∣∣∣ ≤ 2M‖A`−1
0 ‖max

∥∥∥∥∥ ∂Ã
∂g[r]

∣∣∣∣
g=0

∥∥∥∥∥
max

+ M2
`−2

∑
λ=1
‖Aλ

0 ‖max

∥∥∥∥∥ ∂Ã
∂g[r]

∣∣∣∣
g=0

∥∥∥∥∥
max

‖A`−1−λ
0 ‖max

≤ (2 + (`− 2)M) M`−1‖A0‖`−1
max

∥∥∥∥∥ ∂Ã
∂g[r]

∣∣∣∣
g=0

∥∥∥∥∥
max

.

Therefore, given bounds (35) and (50), we have:∣∣∣∣∣∣ ∂ f (`)m
∂g[r]

∣∣∣∣∣
g=0

∣∣∣∣∣∣ ≤ d1,z,M,`

σ2 .

Concerning the second-order derivative, we have:

∂2 f (`)

∂g[r]∂g[r′]
=

`−1

∑
λ=0

eT
M

∂Ãλ

∂g[r′]
∂Ã

∂g[r]
Ã`−1−λ + eT

MÃλ ∂2Ã
∂g[r]∂g[r′]

Ã`−1−λ + eT
MÃλ ∂Ã

∂g[r]
∂Ã`−1−λ

∂g[r′]

=
`−1

∑
λ=1

λ−1

∑
p=0

eT
MÃp ∂Ã

∂g[r′]
Ãλ−1−p ∂Ã

∂g[r]
Ã`−1−λ +

`−1

∑
λ=0

eT
MÃl ∂2Ã

∂g[r]∂g[r′]
Ã`−1−λ

+
`−2

∑
λ=0

`−λ−2

∑
p=0

eT
MÃλ ∂Ã

∂g[r]
Ãp ∂Ã

∂g[r′]
Ã`−λ−2−p .
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Thus,

∂2 f (`)

∂g[r]∂g[r′]

∣∣∣∣∣
g=0

=
`−1

∑
λ=1

λ−1

∑
p=0

eT
MAp

0
∂Ã

∂g[r′]

∣∣∣∣
g=0

Aλ−1−p
0

∂Ã
∂g[r]

∣∣∣∣
g=0

A`−1−λ
0

+
`−1

∑
λ=0

eT
MAλ

0
∂2Ã

∂g[r]∂g[r′]

∣∣∣∣
g=0

A`−1−λ
0 +

`−2

∑
λ=0

`−2−λ

∑
p=0

eT
MAλ

0
∂Ã

∂g[r]

∣∣∣∣
g=0

Ap
0

∂Ã
∂g[r′]

∣∣∣∣
g=0

A`−λ−2−p
0 . (51)

Besides, the second-order derivative of the matrix Ã is given by

∂2Ã
∂g[r]∂g[r′]

=



0 if ar = 1 and a′r = 1,

Jmr ,m′r

(
S(0) + E(0)

)−1
Jmr′ ,m

′
r′

(
S(0) + E(0)

)−1
if ar = 1 and a′r = 0,

Jm′r ,m′
r′

(
S(0) + E(0)

)−1
Jmr ,m′r

(
S(0) + E(0)

)−1
if ar = 0 and a′r = 1,(

(1− δmr ,0)Jmr−1,m′r +
(

S(1) + E(1)
) (

S(0) + E(0)
)−1

Jmr ,m′r

)
×
(

S(0) + E(0)
)−1

Jmr′ ,m
′
r′

(
S(0) + E(0)

)−1

+

(
(1− δmr′ ,0)Jmr′−1,m′

r′
+
(

S(1) + E(1)
) (

S(0) + E(0)
)−1

Jmr′ ,m
′
r′

)
×
(

S(0) + E(0)
)−1

Jmr ,m′r

(
S(0) + E(0)

)−1
else.

Thus, the second-order derivative of the matrix Ã at the origin is such that

∂2Ã
∂g[r]∂g[r′]

∣∣∣∣
g=0

=



0 if ar = 1 and ar′ = 1,

Jmr ,m′r S(0)−1
Jmr′ ,m

′
r′

S(0)−1
if ar = 1 and ar′ = 0,

Jmr′ ,m
′
r′

S(0)−1
Jmr ,m′r S(0)−1

if ar = 0 and ar′ = 1,(
(1− δmr ,0)Jmr−1,m′r + A0Jmr ,m′r

)
S(0)−1

Jmr′ ,m
′
r′

S(0)−1

+
(
(1− δmr′ ,0)Jmr′−1,m′

r′
+ A0Jmr′ ,m

′
r′

)
S(0)−1

Jmr ,m′r S(0)−1
else.

Then, ∥∥∥∥∥ ∂2Ã
∂g[r]∂g[r′]

∣∣∣∣
g=0

∥∥∥∥∥
max

≤


∥∥∥S(0)−1

∥∥∥2

max
if ar = 1 or ar′ = 1 ,

2 (1 + ‖A0‖max)
∥∥∥S(0)−1

∥∥∥2

max
else

≤ 2
(

1 + max
(

1,
2J
M

))(
1 +

2J
M

)2 1
σ4 . (52)

Returning to equation (51), for all r, r′ ∈ {0, . . . , M(M + 1)− 1} and m ∈ {0, . . . , M− 1}, we have:∣∣∣∣∣∣ ∂2 f (`)m
∂g[r]∂g[r′]

∣∣∣∣∣
g=0

∣∣∣∣∣∣ ≤ d2,M,`‖A0‖`−2
max

∥∥∥∥ ∂Ã
∂g[r]

∥∥∥∥
max

∥∥∥∥ ∂Ã
∂g[r′]

∥∥∥∥
max

+ d′2,M,`‖A0‖`−1
max

∥∥∥∥ ∂2Ã
∂g[r]g[r′]

∥∥∥∥
max

,

where d2,M,` and d′2,M,` are only depending on M and `. Besides, given results (28), (50) and (52), we have:∣∣∣∣∣∣ ∂2 f (`)m
∂g[r]∂g[r′]

∣∣∣∣∣
g=0

∣∣∣∣∣∣ ≤ d2,z,M,`

σ4 .

B. Expression of the Bias µ.
By definition of the measurement noise, µ[n] = 0 when n ∈ I. Outside the measurement interval I, denote by `

the index such that n = N − 1 + `. Then, given that h(`) = α(`) − α
(`)
0 , we deduce from expression (16) that

µ[n] = E{α(`)}zK + σE{α(`)wK} − z[n]

= α
(`)
0 zK + E{h(`)}zK + σE{h(`)wK} − z[N − 1 + `]

∆
= ε1[`] + ε2[`] + ε3[`] , (53)
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where

ε1[`] = α
(`)
0 zK − z[N − 1 + `] , (54)

ε2[`] = E{h(`)}zK , (55)

ε3[`] = σE{h(`)wK} . (56)

Let us first determine an upper bound on |ε1[n]|. Since α
(1)
0 is the last row of A0, we deduce from the expres-

sion (33) of A0 that

α
(1)
0 [m] =

2
M

J

∑
j=1

1

1 + 4σ2

MΩ2
j

cos
(

2πpj
m
M

)
. (57)

Besides, from equation (33), we also have

A0zK =


z[N −M + 1]

...
z[N − 1]
α
(1)
0 zK

 .

The upward-shift property is thus successively inducted when ` increases; that is,

A`
0zK =



z[N −M + `]
...

z[N − 1]
α
(1)
0 zK

...
α
(`)
0 zK


.

Then, α
(`)
0 , the last row of A`

0 follows the following recurrence relation:

α
(`)
0 zK = α

(1)
0 Ã`−1

0 zK

=
M−`
∑

m=0
α
(1)
0 [m]z[N −M + `+ m− 1] +

M−1

∑
m=M−`+1

α
(1)
0 [m]α

(m−M+`)
0 zK .

Hence,

ε1[`] = α
(`)
0 zK − z[N − 1 + `]

=
M

∑
m=0

α
(1)
0 [m]z[N −M + `+ m− 1]− z[N − 1 + `] +

M−1

∑
m=M−`+1

α
(1)
0 [m]

(
α
(m−M+`)
0 zK − z[N −M + `+ m− 1]

)
=

M

∑
m=0

α
(1)
0 [m]z[N −M + `+ m− 1]− z[N − 1 + `] +

M−1

∑
m=M−`+1

α
(1)
0 [m]ε1[m−M + `] .

Besides, equation (57) gives

M

∑
m=0

α
(1)
0 [m]z[N −M + `+ m− 1] =

J

∑
j,j′=1

Ωj′
2
M

1

1 + 4σ2

MΩ2
j

M−1

∑
m=0

cos
(

2πpj
m
M

)
cos

(
2πpj′

N + m
M

+ ϕj′

)
︸ ︷︷ ︸

=δj,j′
M
2 cos(2πpj

N
M +ϕj)

=
J

∑
j=1

Ωj
1

1 + 4σ2

MΩ2
j

cos
(

2πpj
N
M

+ ϕj

)
.
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Thus:

|ε1[`]| =

∣∣∣∣∣∣∣
J

∑
j=1

Ωj

 1

1 + 4σ2

MΩ2
j

− 1

 cos
(

2πpj
N
M

+ ϕj

)
+

M−1

∑
m=M−`+1

α
(1)
0 [m]ε1[m−M + `]

∣∣∣∣∣∣∣
≤

J

∑
j=1

Ωj

∣∣∣∣∣∣∣
1

1 + 4σ2

MΩ2
j

− 1

∣∣∣∣∣∣∣+
2J
M

`−1

∑
λ=1
|ε1[λ]|

≤ 4σ2

M

J

∑
j=1

1
Ωj

+
2J
M

`−1

∑
λ=1
|ε1[λ]| . (58)

Then, by induction from the inequality (58), we have

|ε1[`]| ≤
4σ2

M

(
1 +

2J
M

)`−1 J

∑
j=1

1
Ωj

∆
= c(1) σ2 , (59)

where c(1) =
4
M

(
1 + 2J

M

)`−1
∑J

j=1
1

Ωj
. Note that c(1) is not depending on σ or K.

Let us now determine an upper bound on |ε2[`]|. Since E{g[r]} = 0 and moments of order 3 and higher behave

as o
(

1
K

)
, a second-order Taylor expansion of h(`) gives

E{h(`)[m]} = 1
2

M(M+1)−1

∑
r,r′=0

∂2 f (`)m
∂g[r]∂g[r′]

∣∣∣∣∣
g=0

E{g[r]g[r′]}+ o
(

1
K

)
. (60)

Thus, given the bounds (38) on |E{g[r]g[r′]}| and (48) on the second derivative of f (`)m , we have:

|ε2[`]| ≤ Cz
M3(M + 1)2

4

∥∥∥∥∥∥ ∂2 f (`)

∂g[r]∂g[r′]

∣∣∣∣∣
g=0

∥∥∥∥∥∥
max

1
K

(
C2

zσ2 + 2σ4
)
+ o

(
1
K

)

≤ 1
K

(
c(2)1 +

c(2)2
σ2

)
+ o

(
1
K

)
, (61)

where

c(2)1
∆
=

M3(M + 1)2

2
Czd2,z,M,` ,

c(2)2
∆
=

M3(M + 1)2

4
C3

zd2,z,M,` .

Let us now determine an upper bound on |ε3[`]|. A second-order Taylor expansion of h(`) gives

E{h(`)wK} =
M−1

∑
m=0

M(M+1)−1

∑
r=0

∂ f (`)m
∂g[r]

∣∣∣∣∣
g=0

E{g[r]wK[m]}+ o
(

1
K

)
(62)

Indeed, the third-order moments E{g[r]g[r′]wK[m]}, behave as o
(

1
K

)
. Besides,

E{g[r]wK[m]} = σE{g1[r]wK[m]}+ σ2E{g2[r]wK[m]} . (63)

Then,

|E{g1[r]wK[m]}| = 1
K

∣∣∣∣∣K−1

∑
k=0

zk[mr + ar]E
{

wk[m′r]wK[m]
}
+ zk[m′r]E {wk[mr + ar]wK[m]}

∣∣∣∣∣
≤ 2

K

(
J

∑
j=1

Ωj

)
=

Cz

K
. (64)
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E{g2[r]wK[m]} = 1
K

K−1

∑
k,=0

E
{

wk[mr + ar]wk[m′r]wK[m]
}
− δmr+ar ,m′r E {wK[m]}

= 0 . (65)

Thus, combining results (64) and (65) into expression (63) gives the following bound:

|E{g[r]wK[m]}| ≤ Cz
σ

K
. (66)

Thus, given the bound (47) on the first derivative of f (`)m , and from (62) we have:

|ε3[`]| ≤ σM2(M + 1)
d1,z,M,`

σ2 Cz
σ

K
∆
=

c(3)

K
, (67)

where c(3) ∆
= M2(M + 1)d1,z,M,`Cz.

Thus, combining bounds (59) on ε1, (61) on ε2 and (67) on ε3 gives the following bound of the bias:

|µ[n]| ≤ c(1)σ2 +
1
K

(
c(2)2
σ2 + c(2)1 + c(3)

)
+ o

(
1
K

)
. (68)

C. Expression of the Covariance γ.

Outside the measurement interval I, denote by ` the index such that n = N − 1 + `. Then, given that h(`) =

α(`) − α
(`)
0 , we have

γ[n, n] =
(

α
(`)
0 zK

)2
+ 2

(
α
(`)
0 zK

)
E
{

h(`)
}

zK + E

{(
h(`)zK

)2
}
+ 2σα

(`)
0 E{wKh(`)}zK + 2σα

(`)
0 zKE{h(`)wK}

+ 2σE{h(`)wKh(`)}zK + σ2
∥∥∥α

(`)
0

∥∥∥2
+ σ2E

{(
h(`)wK

)2
}
+ 2σ2α

(`)
0 E{wKh(`)wK} − z[n]2 − 2z[n]µ[n]− µ[n]2

= σ2
∥∥∥α

(`)
0

∥∥∥2
−
(

z[n]− α
(`)
0 zK + z[n]

)2
+ E

{(
h(`)zK

)2
}
+ 2σα

(`)
0 E{wKh(`)}zK + 2σE{h(`)wKh(`)}zK

+ σ2E

{(
h(`)wK

)2
}
+ 2σ2α

(`)
0 E{wKh(`)wK}

∆
= η1[n] + η2[n] + η3[n] + η4[n] + η5[n] + η6[n] + η7[n] ,

where

η1[n] = σ2
∥∥∥α

(`)
0

∥∥∥2
, η2[n] = −

(
z[n]− α

(`)
0 zK + z[n]

)2
, η3[n] = E

{(
h(`)zK

)2
}

,

η4[n] = 2σα
(`)
0 E{wKh(`)}zK , η5[n] = σE{h(`)wKh(`)}zK , η6[n] = σ2E

{(
h(`)wK

)2
}

,

η7[n] = 2σ2α
(`)
0 E{wKh(`)wK} .

Let us now determine an upper bound on each of these terms.
First, since ‖α(`)

0 ‖2 ≤ M‖A`
0‖2

max, we have:

η1[n] ≤ σ2M
∥∥∥A`

0

∥∥∥2

max

≤ σ2M` ‖A0‖2`
max

≤ σ2M` max

(
1,
(

2J
M

)2`
)

. (69)

Second, by definition of ε2 and ε3 (see expressions (55) and (56)), η2 takes the following form:

η2[n] = (ε2[n] + ε3[n])
2 = o

(
1
K

)
. (70)
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Third, second-order Taylor expansions of h(`) give:

η3[n] ≤
C2

z
4

M−1

∑
m,m′=0

∣∣∣E{h(`)[m]h(`)[m′]
}∣∣∣

≤ C2
z

4

M(M+1)−1

∑
r,r′=0

∣∣∣∣∣∣∣
∂ f (`)m
∂g[r]

∣∣∣∣∣
g=0

∂ f (`)m′

∂g[r′]

∣∣∣∣∣∣
g=0

E{g[r]g[r′]}

∣∣∣∣∣∣∣+ o
(

1
K

)

≤ C2
z M2(M + 1)2

4

d2
1,z,M,`

σ4
1
K

(
C2

zσ2 + 2σ4
)
+ o

(
1
K

)
≤

C2
z M2(M + 1)2d2

1,z,M,`

4K

(
C2

z
σ2 + 2

)
+ o

(
1
K

)
. (71)

Fourth,

|η4[n]| ≤ σCz

∥∥∥A`
0

∥∥∥
max

M−1

∑
m,m′=0

∣∣∣E{h(`)[m]wK[m′]}
∣∣∣

But, ∣∣∣E{h(`)[m]wK[m′]}
∣∣∣ ≤ M(M+1)−1

∑
r=0

∣∣∣∣∣∣ ∂ f (`)m
∂g[r]

∣∣∣∣∣
g=0

∣∣∣∣∣∣ ∣∣E{g[r]wK[m′]}
∣∣+ o

(
1
K

)

≤ M(M + 1)
d1,z,M,`

σ2 Cz
σ

K
+ o

(
1
K

)
(72)

Thus,

|η4[n]| ≤ M`(M + 1)C2
zd1,z,M,`

(
max

(
1,

2J
M

))` 1
K
+ o

(
1
K

)
. (73)

Fifth and sixth, second-order Taylor expansions of h(`) give

η5[n] = o
(

1
K

)
, (74)

η6[n] = o
(

1
K

)
. (75)

Seventh,

|η7[n]| ≤ 2σ2
∥∥∥A`

0

∥∥∥
max

M−1

∑
m,m′=0

∣∣∣E{h(`)[m]wK[m]wK[m′]}
∣∣∣

≤ 2σ2
∥∥∥A`

0

∥∥∥
max

M−1

∑
m,m′=0

M(M+1)−1

∑
r=0

∣∣∣∣∣∣ ∂ f (`)m
∂g[r]

∣∣∣∣∣
g=0

∣∣∣∣∣∣
∣∣∣E{g(`)[r]wK[m]wK[m′]}

∣∣∣+ o
(

1
K

)
.

But,

E{g(`)[r]wK[m]wK[m′]} = σE{g(`)
1 [r]wK[m]wK[m′]}+ σ2E{g(`)

2 [r]wK[m]wK[m′]} .

As before, since E{g(`)
1 [r]wK[m]wK[m′]} is a third-order moment of a multivariate zero-mean Gaussian vector, it

vanishes. And,∣∣∣E{g(`)
2 [r]wK[m]wK[m′]}

∣∣∣ = 1
K

∣∣∣∣∣K−1

∑
k=0

E
{

wk[mr + ar]wk[m′r]wK[m]wK[m′]
}
− δmr+ar ,m′r E

{
wK[m]wK[m′]

}∣∣∣∣∣
=

1
K

∣∣∣∣∣K−1

∑
k=0

δk+mr+ar ,K+mδk+m′r ,K+m′ + δk+mr+ar ,K+m′δk+m′r ,K+m

∣∣∣∣∣
≤ 2

K
.
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Thus,

|η7[n]| ≤ 2σ2
∥∥∥A`

0

∥∥∥
max

M3(M + 1)
d1,z,M,`

σ2
2σ2

K
+ o

(
1
K

)
≤ 4M`+2(M + 1)d1,z,M,`

(
max

(
1,

2J
M

))` σ2

K
+ o

(
1
K

)
. (76)

To conclude, we combine the expressions (69), (70), (71), (73), (74), (75), and (76) to determine an upper bound
on the variance γ[n, n]. It follows:

γ[n, n] ≤ c(n)0 σ2 +
1
K

(
c(n)1
σ2 + c(n)2 + c(n)3 σ2

)
+ o

(
1
K

)
,

where

c(n)0 = M` max

(
1,
(

2J
M

)2`
)

c(n)1 =
1
4

C4
z M2(M + 1)2d2

1,z,M,`

c(n)2 =
1
2

C2
z M2(M + 1)2d2

1,z,M,` + M`(M + 1)C2
zd1,z,M,`

(
max

(
1,

2J
M

))`

c(n)3 = 4M`+2(M + 1)d1,z,M,`

(
max

(
1,

2J
M

))`

.

a) If n′ ≥ N: When n ≥ N and n′ ≥ N, applying the Cauchy-Schwarz inequality, we obtain the following
bound on the covariance γ[n, n]:∣∣γ[n, n′]

∣∣ ≤ √γ[n, n]γ[n′, n′]

≤
√

c(n)0 c(n
′)

0 σ2

√√√√1 +
1

Kσ2

(
1

c(n)0

(
c(n)1
σ2 + c(n)2 + c(n)3 σ2

)
+

1

c(n
′)

0

(
c(n
′)

1
σ2 + c(n

′)
2 + c(n

′)
3 σ2

))
+ o

(
1
K

)
.

A first-order Taylor expansion of this bound as K → ∞ gives

≤
√

c(n)0 c(n
′)

0 σ2 +
1

2K


√√√√ c(n

′)
0

c(n)0

(
c(n)1
σ2 + c(n)2 + c(n)3 σ2

)
+

√√√√ c(n)0

c(n
′)

0

(
c(n
′)

1
σ2 + c(n

′)
2 + c(n

′)
3 σ2

)+ o
(

1
K

)

≤ c(n,n′)
0 σ2 +

1
K

(
c(n,n′)

1
σ2 + c(n,n′)

2 + c(n,n′)
3 σ2

)
+ o

(
1
K

)
,

where

c(n,n′)
0 =

√
c(n)0 c(n

′)
0 ,

c(n,n′)
p =

1
2

c(n)p

√√√√ c(n
′)

0

c(n)0

+ c(n
′)

p

√√√√ c(n)0

c(n
′)

0

 , ∀p ∈ {1, 2, 3} .

b) If n′ ∈ I: When n ≥ N and n′ ∈ I, equation (17) shows us that:

γ[n, n′] = σE{w[n′]h(`)}zK + σ2E{w[n′]α(`)
0 wK}+ σ2E{w[n′]h(`)wK}

∆
= β1[n, n′] + β2[n, n′] + β3[n, n′] ,

where

β1[n, n′] = σE{w[n′]h(`)}zK ,

β2[n, n′] = σ2E{w[n′]α(`)
0 wK} ,

β3[n, n′] = σ2E{w[n′]h(`)wK} .
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Besides, thanks to the bound (72) we have:∣∣β1[n, n′]
∣∣ ≤ σ

Cz

2

M−1

∑
m=0

∣∣∣E{w[n′]h(`)[m]}
∣∣∣

≤ σ
Cz

2
M2(M + 1)

d1,z,M,`

σ2 Cz
σ

K
+ o

(
1
K

)
≤ M2(M + 1)

C2
zd1,z,M,`

2
1
K
+ o

(
1
K

)
. (77)

Besides, ∣∣β2[n, n′]
∣∣ ≤ σ2

∥∥∥A`
0

∥∥∥
max

M−1

∑
m=0

∣∣E{w[n′]wK[m]}
∣∣

≤ σ2
∥∥∥A`

0

∥∥∥
max

≤ σ2M`−1
(

max
(

1,
2J
M

))`

. (78)

Besides, identically to the bound (76) on η7, we obtain∣∣β3[n, n′]
∣∣ ≤ σ2

M−1

∑
m=0

∣∣∣E{w[n′]h(`)[m]wK[m]}
∣∣∣

≤ σ2M3(M + 1)
d1,z,M,`

σ2
4σ2

K
+ o

(
1
K

)
≤ M3(M + 1)d1,z,M,`

4σ2

K
+ o

(
1
K

)
. (79)

Finally, we combine expressions (77), (78), and (79) to determine an upper bound on the variance γ[n, n′]. It follows:∣∣γ[n, n′]
∣∣ ≤ b(n,n′)

0 σ2 +
1
K

(
b(n,n′)

1 + b(n)2 σ2
)
+ o

(
1
K

)
,

where

b(n,n′)
0 = M`−1

(
max

(
1,

2J
M

))`

b(n,n′)
1 = M2(M + 1)

C2
zd1,z,M,`

2
b(n,n′)

2 = 4M3(M + 1)d1,z,M,` .

II. APPLICATION TO AN ELECTROCARDIOGRAM

We provide here an additional implementation of BoundEffRed, applied to an electrocardiogram (ECG) dataset.
The dataset is constructed from a 500-second-long ECG, sampled at fs = 200 Hz, cut into 10 segments of 50 seconds
each. Fig. 10 depicts the right boundary of one of these subsignals, together with the 6-second extensions estimated
by SigExt (first panel), or EDMD (second panel), GPR (third panel), or TBATS (fourth panel). These extensions are
superimposed to the ground-truth extension, plotted in red. The sharp and spiky ECG patterns make the AHM
model too simplistic to describe this type of signal. Consequently, the forecast produced by SigExt is moderately
satisfactory. Note that TBATS is the only one that seems to accurately capture the locations of QRS complexes after
37 seconds. We will explore this long-term prediction capability in the future work.

Table IV contains the median performance index D of the boundary-free TF representations, over the N subsignals
evaluated, according to the extension method. As a result of the fair quality of the forecasts, the reduction of
boundary effects is less significant than for PPG signal. Nevertheles, the results show that BoundEffRed has the
same efficiency when the SigExt extension, the EDMD extension or the GPR extension is chosen. Indeed, t-tests
performed under the null hypothesis that the mean are equals, with a 5% significance level, show no statistical
significant difference between SigExt and EDMD or GPR, regardless of the representation considered. This justifies
the choice of SigExt for real-time implementation.
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Fig. 10. Extended ECG (blue) obtained by the SigExt forecasting (first panel), the EDMD forecasting (second panel), the GPR forecasting (third
panel), and the TBATS forecasting (fourth panel), superimposed with the ground truth signal (dashed red).

TABLE IV
ECG: PERFORMANCE OF THE BOUNDARY-FREE TF REPRESENTATIONS ACCORDING TO THE EXTENSION METHOD

Extension
method

Median performance index D
STFT SST ConceFT RS

SigExt 0.584 0.630 0.462 0.642
Symmetric 1.199 1.354 1.427 0.943

EDMD 0.538 0.558 0.496 0.714
GPR 0.639 0.588 0.485 0.616

III. APPLICATION TO A MULTICOMPONENT CARDIAC SIGNAL

We consider a cardiac signal, namely a photoplethysmogram (PPG) recording, sampled at 300 Hz. In addition to
the cardiac cycle measurement, this signal contains a slow varying component, which is the respiratory component,
known as respiration induced intensity variation (RIIV) [2]. The top of Fig. 11 displays an excerpt of the signal along
with a 3-second-long extension obtained by the SigExt forecasting. The lower part of Fig. 11 shows the respiratory
signal recording the concentration of CO2. This signal was recorded simultaneously with the PPG signal, and
visually highlights the low-frequency respiratory component contained in the PPG signal. Indeed, the intervals
where the concentration of CO2 drops—highlighted by the bluish areas—coincide with the decreases in the PPG
signal. Note also that the forecasting breaks the waveform of the oscillations because of its inability to forecast
the high-frequency harmonics contained in the signal. Nevertheless, as long as the low-frequency harmonics of the
components contained in the signal are preserved, the forecasting is sufficient to reduce boundary effects in the
low-frequency TF domain.

The ordinary and boundary-free SSTs of this signal are displayed in Fig. 12. These TF analyses brings out both
components—the fundamental frequency of the cardiac component, the most energetic one, indicated by the blue
arrows, is located around 1.3 Hz, while the respiratory component, less visible, indicated by the green arrows, is
located around 0.2 Hz and its multiples. Clearly, near the boundaries, BoundEffRed helps improve the quality of
the TF representation. Besides, the performance index of this representation takes the value D = 0.491. This means
that BoundEffRed has reduced the right-side boundary effects by about 51% with respect to the ordinary SST. This
shows the ability of our algorithm to work on signals containing several nonstationary components.
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Fig. 11. PPG signal (top, yellow), and the associated SigExt extension (blue). The simultaneously recorded concentration of CO2 is below. The
bluish areas show the synchrony between the drops in CO2 concentration and the decreases in the PPG signal.
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Fig. 12. Ordinary SST (left) and boundary-free SST (right) of the PPG signal. The window length for the SSTs is 18 seconds. The green arrows
indicate the instantaneous frequency of the respiratory component. The blue arrows, on the other hand, indicate the instantaneous frequency
of the blood pressure component. The red dashed boxes highlight the areas where boundary effects may appear.


