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I. PROOF OF THEOREM 1
A. Preliminaries

1) Notations: Consider z € RN the deterministic signal defined in (11) and denote by z; € RM the subsignal such
that
zi[m] =zI[IN—-K—M+k+m|, VYme{0,....M—1}, ke {0,...,K}.

Define Z € RM*K and 7’ € RM*K the matrices such that
A
Z=(z0 -+ zx-1),
Z’é (zl ZK) .

Let D € RM*M be the matrix defined by D[m,m'] = 6,1 ,/. Recall the model (13). Based on the definition of
matrices X and Y, we have:

Lyxt = Lzz7 4 21480 (26)
K K b
L)
Yyxt = 1z77 2D B 27)
K K
—_—
Ag)
where E@ £ (TE%'J) + (TzEéﬂ),
1 k=1
E\ [m, m'] = % L ZNo+m+a+kwNo+m'+ k] +w[No+m+a+klz[No+m' +k,
k=0
and
1 K=
Eé“) =% Z [Ng +m +a+ klw[Ng +m’ + k] — O(mtaym'

with a € {0,1}. We call E) and E(Y) error matrices because:
E{E®} = E{E{"} = E{E{"} =0
E{EV} = E{E{"} = E{E{"} = 0.
Thus, the random matrix A, defined in equation (8), is expressed in function of the above-defined matrices as:

A= (5(1) + E(l)) (5(0) + E(O))

Define A( the deterministic matrix such that
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We denote by oc(()) the last row of A§. As a result, for £ € IN*, the error vector h() defined by h(") 20— a(()é)

satisfy the equation
() = f, (A’ - AY)
AN
=el, <((s<l> +E) SO +EO) ) - Aé) . (29)

The randomness of h(*) completely comes from the error matrices. Besides, notice that the first M — 1 rows in
E() equal to the last M — 1 rows of E(°). We gather all sources of randomness into a vector g € RMM+1) defined

as
E©) (30)
= vec ,
5 e&E(l)
where “vec” denotes the vectorization operator, that concatenates the columns of a given matrix on top of one

another. Then, we can write h(*) as h() = £(*)(g) where f() is a deterministic function such that:
f(f) . RM(M+1) N RM
g— h) (31)

In the following paragraph, we provide some useful lemmas to prove Theorem 1.
2) Lemmas:

Lemma 1 (Expressions of Ay and s ) Let S©) be the M x M matrix defined in (26). Let Ay the M x M matrix
defined in (28). Assume the deterministic szgnal z takes the form (11), and the observed noisy signal takes the form (13). Then,
the inverse of the matrix S(0) is given by

-1 1 m—m'
0 n_
SO [m,m] = 2 St — 02 2 Mgz cos (27‘(;7] i ) , (32)

and the matrix Ag is given by

2L 1 m'
AO [m, ml] — 5m+1’ml + M ; ﬁ COSs (27TPJM) 5m+1,M . (33)
= MO?
Let || - ||max denote the maximum norm of a matrix, i.e. ||MHmax = max, , |[M[n,n']|. Then,

1 2]
s© < (1 + > (34)

H max U M

2]
| Aol payx < max 1'M . (35)

Proof. It follows from the signal model (11) that the matrices $(?) and S(V) take the following form:

<27r; (No+m+a+k)+ q)]) cos (27rf

J
s(@ [m, m’] = 025(m+a),m/ + Z (No + m' + k) + Py )

Jij'=1 fs
L Oy &t fi Ji
—‘7‘5(m+a)m’+221< Zcos<27rf (m+a— ’))—l—cos( f(2k+m+a+m +2N0)>
j= S
02 f 02 K-1 fi
= %8 (msa) m/—l-z cos<27'c](m+a—m’)>+] ( dk+mtat+n +2N0)>
fs 2K = fs
:0because% p?;
o5 fi
= 08 (mta), /+Zcos(27rf(m+a m’)) (36)

Thus, S is a circulant matrix, and is therefore diagonalizable in the Fourier basis:

s —uAOyu*,



where U[m, m'] = ﬁe‘zmmm,/M and A0 = diag()\(o) ...,/\5\211) with

Therefore,

which leads to

-1 1 2 Lo m—m'
0 n_ .
SO [m,m'] = ﬁém,m/ v ]; = Ai‘éz cos <2np]M> : (37)
j
Directly, we have:
-1 1 2 —m'
SO [m,m]| = = |6pm — Y cos (27‘(;9 )
’ 2 |Ym,m 402 ]
’ o M = 1+ M[;)]? M
1 2 J 1 1 < 2])
<51+ <5 (1+2
o? M ]; 1+ j\i(gz o2 M
]
Thus, )
st)

1 2]
().

Furthermore, combining equations (36) and (37), we have

max

M-1 -1
Aglm,m'] =Y $W[m, 89 [g,n]

q=0
2 J 1 m’
— 5m+l,m’ + M Z ﬁ COSs (Zﬂp]M) §m+1,M .
/=1 MO?
Directly, we have:
1 if m<M-—1,
' 2 1 .
|A0[mlm]|g lejzlw if m=M-1.
MQ}Z
Thus,
2]
Aol < max (1,57 ) -

Lemma 2 (Moments of g). Let g € RMM*Y) pe the random vector defined in (30). Assume the deterministic signal z
takes the form (11), and the observed noisy signal takes the form (13). Then, as K — oo, the second-order moments of g are
bounded as follows:

[E{g[r]g["']}| < % (c§a2 +2c74) +o (;) , V(7)) e{o,..., M(M+1)—1}?, (38)

where C, 27 (Z}Ll Qj). Besides, higher-order moments of g behave as o <Il<)



Proof. In the following, for all r € {0,..., M(M + 1) — 1}, we denote g[r] = og[r] + c?ga[r], where
K-1
gmzﬁwmw]g zi[my + ar]wim)] + wi[m, + arzim}],
=0
@) K 1
g2[r] = By " [my,my] = — Z Wi [my + arw[m;] — Oy tay, m! +
k70

and m,, m}, a, are the corresponding coordinates of the matrices associated with r through the vectorization opera-
tion (30). Thus, order-two moments of this random vector is split as follows:

E{g[rglr']} = *E{gi[r]g1[r']} + o E{g1[r]ga[r']} + CE{garlgi ']} + *E{g[r]g ]} - (39)

By definition of the signal z (see equation (11)), we have |z[n]| < 2]],:1 Qj, for all n € N. Thus, by a direct bound,
we have

1 K-1
|E{g1[rlg1["']}| = ’KZIE{ Yzl + arlzp [my 4 ap | wimy Wi (] + zi [my] 2 [my 4+ apwimy + ay i ()]
kki=0

+m%+mmemwmmw+m+mmmwmmwwwmmw+mﬂ

2
1 J K-1
ra (ZQ]) Z | {wi[m]wi [m)] }| + |E {wi[m, + arlwy [m],] }|
=1 kK=

+ }]E {wi[mywy [my + ay }| + [E {wy[my + ar]Jwy [m, +a,]}| (40)
Besides, since w is a white noise,
1 k=1
K2 Z |]E {wk wk’ ]H K2 Z (Sk+m§ k’+m
kk'= kk'=
1

Moreover, 0 < |m;, —m!,| < M — 1. Thus,

Therefore,
1 K21 1 1
g2 L [Efwlnwe b} = g+ ()

Similar calculations lead to the same results for the other three terms making up the sum (40). Therefore, we have:
4 1
(o) e (3)

C2 1
< g o <K> ) (41)

Besides, since odd-order moments of a zero-mean multivariate Gaussian random vector are zero, we have:

-1

E{gi[r]g2["']} = K12 ka zy[my + a,JE {wy[myJwi [my + ap|wi [my, ]} + zi [myJE {wi[my + ar]wy [my + apwie[m),] }

- 5mr/ +ar/,m:‘, E{gl [1’] }
=0. (42)

IN

|E{g1[rlg:["']}|

Similarly,
E{g:[rlgi[r']} =0. (43)



Besides, by a direct calculation, we have:
1 K-1 1 K—
E{gz[dgz [1’/]} KZ Z E {Wk my + ar}wk[ ]Wk’ [mr’ + ar’}wk’ [m;/]} 5m,+a,,m, K Z E {Wk’ v+ ar’]wk’[ r’}}
k' =
1 K=
— O my+a,,m, g Z IE {Wk Awie[m } + Oty ay,m),Om My +a,m!,
1

Kz Z E {wk my + ar}wk[ ]Wk’ [mr’ + ar’}wk’ [m;’]} - 5mr+ar,m’,5mrr+a,/,m:, (44)
kk'=

Moreover, using the results of the Isserlis’ theorem [1] to express fourth-order moments of a Gaussian random
vector as a function of its second-order moments, we expand sum (44) as follows:

1 K—1
E{g:[r|g:[']} = X2 2 E {wy[m; + a;Jwi[m] } E {wp [m, + ap]wy[m]} — 5m7+m,m£5mw+ﬂrum;/
kk'=
1 K-1 ,
K2 Z ]E{Wk[mi’—i_ar}wk’[ My + @y }]E{Wk wk’[ ]}
kk'=0
1
+ Z E {w[m, + a,Jwy [m),] } E {wy[m}|w [m, +a.]}
kk'=
1 K-1
KZ Z 5k+mr+ar K +m.+a,. ‘Sk-i-m rk’+m’, + 5k+my+uy,k’+m’ 5k+m§ K +m s +a,
k,k'=0
1

= ﬁ ((Smﬁ—m’r,,m,—a—a,—m,/—a,/ (K - |m/r - m;/|) + (Sm,—i-a,—m’r,,m;—m,/—a,/ (K - |mr +ar— m;/|)>

1 1
- K (5m§*m:,,mr+ar*mrlfa,/ + 51n§+m;,,mr+ur+m,/+u,/) +o <K) :
Therefore,
1
[E{g2[r]g2[r']}] < +O(K) : (45)
Thus, combining results (41), (42), (43) and (45) into expression (39) gives the following bound:
122 4 1
Blellsl)}] < g (G2 +20%) +o (5 ) -

Concerning higher-order moments, let T > 3 denote the order of the moment defined by E{[T}_, g[re]}. Thus,

T T
E {H g[rg]} —E { (Ugl [re] + 0282 [re}) }
0=1 =1

1 T [K-1
fo H Zpek( wlk+ m, NP [k-i—mrg—i—arg])
1 K21 K=
~— KT E 2 E Hp9ke( ko + m; ] wlke +my, +a79]) ’ (46)
=0 k=0
where
0o (1,0) = ozg[my, + ar,Ju + oz [m) Jo + o*uo — Oy -+arg, iy -
Thus,
E II[ [ro] p| < Ke
9:1g 0 S greT
where

Cr= max

(k {HPGkQ k9+m ] [k9+mi’g +a79})}
1/

and vk is the number of nonzero terms in the sum (46). Note that Ct is independent of K (but depends on z and
o). The behavior of the order T moment in function of K is therefore only determined by the ratio %

7




Let us bound vg. Fix ki. For each of the other indexes of summation kg (0 € {2,...,T}), there are four values that
make gk, (W[keo +my, ], wlke + my, + ay,]) not independent of py s, (wlky +mj ], wlky +m,, +ay]). Indeed, since w
is a white noise these quantities are independent except when kg is such that:

/
7o

kg =ki +my, +a,, —m
ko = ki +m, — myy — ay,

ko = ki +my, +ar, —my, —ay, .

k9:k1+m£1—m

/
g
—_— ar

Consequently, for each value of k; there exist at least (K —4)”~1 combinations of (k, ..., k) where we have

{HPGkG wlkg + my ], w [k9+mr9+ar9]} E {01, (Wlky + m, ], wlky + my, +ay,])}

X]E{Hpeke wlko +my, ], w [k9+mr9+a79])} =0,

because E {p1, (wlky + m; |, w(ky +m, +a,])} = 0. Therefore, at least K(K —4)"1 of the sum (46) are zero.
Because T > 3, we develop similar arguments on ky and k3 to determine other cases where this correlation term
vanishes. We subtract these cases to K, the total number of combinations of (k1,...,kr) to obtain the following
maximum bound on the number of nonzero terms in the sum (46):

vk < KT —3K(K—4)T1 +3K(K — 4)(K—8)T2 — K(K — 4)(K — 8)(K —12)T3

Thus,
E{ﬁg[m}} < o, KL=BK(K= 4T+ 3K(K — 4)(K }?H—K(K—4>(K—8)(K—12>T*3
O O [N I [l
<Cr <1—3+12(TK_1)+3—1K2—24(TK_2)_1+1i+1§+m1<_3)+0(11<>>

1
< — .
_CTO(K)

Therefore,

]E{i[lg[rg}}’ :0<11<> , VI>3. 1

Lemma 3 (Bounds on the derivatives of f(*) at the origin). Let () : RMM+1) s RM denote the multivariate function
defined in (31). Assume the deterministic signal z takes the form (11), and the observed noisy signal takes the form (13). Then,
the first-order derivatives of f\) at the origin are bounded as follows:

(0) i
9fm < 2 e {0,...,M~1}, re {0,...,M(M+1) 1}, (47)
ol _, o

(-1
d1zm0 2 2+ (—-2)M) M1 (max (1, i/]1>) (1 -+ max (1, iﬁ)) (1 + ]2\/]I> .

Besides, the second-order derivatives of f\©) at the origin are bounded as follows:

where

P | M (0 M), (1) € {0, MM+ 1) — 12 (18)
ag[f’]ag[r’] g=0 B 0’4 ’ [ 4 4 st !

where

2 2 2 /-2 2 / ’
tacn® (157) (mox (157)) (emas (13)) (s ot 2 ma (1.57) ).



and dy pp 0 and dlz,M,z are only depending on M and £.

Proof. Concerning the first-order derivative, from (29), we have:

af(f) aAf
oglr] Mag[]
<y 0A
= eT A/\ Af*l*/\ )
Eo M og[r]
Thus,
af(é) Y Al 0A (—1-A
Z 0 N1 AO . (49)
gl _, A= og[r] |5
Furthermore,
oA 9EW /o) 0! @ 4 e 0 (S(O) +E(0))_1
i () 0 1 1
o]~ ogr] O TEY) +(SVEY) S
-1
Voo, m, (S<0>+E(0>) A
(1 b+ (594 50) (591 50) 1, 00) (59 50) e

where ;€ RM*XM ig the matrix such that ' [m, m’ e Omm. 0.1, Thus,
My, 1) My, m, M Cm’ my

o 1
oA T, if a,=1
il - .
Iglr] g=0 ((1 - 5m7,0).]mr—1,m{, + Ao]mr,m;) s(0) else.
Then,
0A -1
a8l H < (4 Aolme) O
8l lg=0 max
Given bounds (35) and (34), we have that:
ool = (0 (430)) (1430) 2
<(l4+max (1, — 1+ — - (50)
og[r] g0 .. M M) o
Besides given expression (49), for all » € {0,..., M(M + 1) — 1}, we have:
) (£) B oA oA 1
aﬁfr] < 2M||AG lmax E +M? Z 1A [lmax 38l 1A lmax
& g=0 8l lg=0 max 8" lg=0 max
0A
< (2 + (E - 2) )Mﬁ 1”AOHmax 87[7’]
8l lg=0 max
Therefore, given bounds (35) and (50), we have:
At d1,2,m0
= 2
ag|r] g0 o
Concerning the second-order derivative, we have:
a2f = A)‘ 0A T A, A4 ol A 0A 9Al-1-2
+eyAt ——————A" A
e Z ragh]™ A agp el A o8] ogl]
e BA ~ 0A PA
AA 1-p 94 Ri-1-1 4 V" oT Al Al-1-2
L ,; a0 2 wh SgTTos
(=2 0—A— A
Z Z aA AP 0A Al-A2-p

— = og[r']



Thus,

*f" _ Z Z AL A AM-1-p 9A (—1-A
og[r]oglr]| _ A0 oglr] g0 0 0[]z °
n Z el A) 2A AZ - A—i-[Z:z/ Z Al 0A p O0A (—A—2—p 51)
M0 9gragr'] | 4— A0 dglr] g0 © 98[r" |go
Besides, the second-order derivative of the matrix A is given by
0 if a,=1 and 4, =1,
-1 -1
Vot (SO +E®) 3, (8O +EO) if a,=1 and . =0,
-1 ' -1
Vot (s<0> + E<0>) |- (s<0> + E(O)) if ,=0 and a. =1,
- -1
PA ((1 = 0, 0Tyt + (S +EW) (80 + EO)) Jm,,m;)
dglrlog[r'] 1 =
% (s<0> + E(O)) Ty, (S<0> + E(O))
' -1
+ <(1 - 5m,/,0)]mr/ 1m’ + (S(l) + E(l)) (S(O) + E(O)) er/,m;/)
-1
X (S(O) + E(O)> Yoy (S(O) + E(O)) else.
Thus, the second-order derivative of the matrix A at the origin is such that
0 if a,=1 and a4, =1,
]m,,m; ]m o, s if a4=1 and ay =0,
[a]ZA[ ] = Yonym', S erm’so)_l if a,=0 and ay=1,
oglrloglr'] |, re o
80 ((1 - (SmnO)er—l,mL + AO]m,,m’,) S( Jm m’ S(O)
+ ((1 - 5m,/,0)er/71,m/, + AO]m,;,m’,) S(0>_1er,més(0)_l else.
Then,
’ 2A HS(O ‘ if a,=1 or ay,=1,
7 S max 4 P
9811981 lg=0]| . — | 2/(1 + || A0 lmax) SO else
2] 27\? 1
< — .
2(1+max (LM)) (1+M> o (52)
Returning to equation (51), for all ,#' € {0,..., M(M +1) — 1} and m € {0,..., M — 1}, we have:
Pfi 9A 9A PA
I <dy A 22 s Aol | s ||
salriosl] || = 180 [agp |, 98171 |, o A0lmn | gy,

where dj p1 ¢ and d’2 um ¢ are only depending on M and /. Besides, given results (28), (50) and (52), we have:

P fr < Doz me .
oglrlogll| _, ot

B. Expression of the Bias p.
By definition of the measurement noise, p[n] = 0 when n € I. Outside the measurement interval I, denote by ¢
the index such that # = N — 1 4 £. Then, given that h(*) = a(0) — oc(()é), we deduce from expression (16) that

uln) = B{aD}zg + cE{awy} — z[n]
oz + E{h D} zg + oE{hOwg} — z[N — 1+ ¢]
€1 [5] + e [f] + 63[6] , (53)

=]



where

e|l] = a(()z)szz[N71+€], (54)
e[(] = B{h(D}z, (55)
e3[f] = cB{hOwy} . (56)

Let us first determine an upper bound on |ej[n]|. Since Dt(()l)

sion (33) of A that

is the last row of Ay, we deduce from the expres-

/ m

; 402 cos (27‘(;9] M> ) (57)
MOf

Besides, from equation (33), we also have
z[N — M +1]
Aozg = :
0ZK 2[N 1]
aVz

0 4K

The upward-shift property is thus successively inducted when ¢ increases; that is,

zZ[N - M+ /(]

Alge — z[N —1]
0ZK = a(()l)zK

oc((]@zK

Then, oc(()é), the last row of AE follows the following recurrence relation:

oz = VAL 2
M-/ Mo1
m=0 m=M—{+1

Hence,
e1[0) = alzx —2[N -1+

M—
=Y« plaN-M+e4m—1)—2N-1+0+ Y« (af" Mz —2[N - M+ 0+m 1))
—M—

3
Il
o
3

M M—
= Y aVmz[N-M++m—1—z[N=1++ Y aVimler[m—M+a.
M

m=0 m=M-—
Besides, equation (57) gives

1 M-1

m N+m
— Z cos (ZNPjM) cos (27{;7]7 M + (p]-/>
MQZ m=0

oc zZIN-M+/l+m—1] = O
0

j
jj=1 M1+

() a3 cos(an,M+<p])

N
=) 0O, 402 cos (271ij + qoj) .

=ty

]
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Thus:

/ 1 N M1 (1)
lelld]] = |} O — — 1| cos 27rij+(pj + ) wy [mleg[m— M+
j=1 1+ m=M—{+1
]
] 1 2] (-1
<Y Q| -1 M ) ler[A]]
j=1 I+ 32 A=1
]
<Ay L YY) 8)
S == ).~ 1t 1 .
M j=1 O M=
Then, by induction from the inequality (58), we have
402 2\ 1L 1 A
<= = — 2.Ms2
le1[d]] < i <1+M> ]; a Mo, (59)

-1
where ¢(1) = % (1 + ZM]) Z][:1 Qi Note that c(1) is not depending on ¢ or K.

Let us now determine an upper bound on |e;[¢]]. Since E{g[r]} = 0 and moments of order 3 and higher behave

1
as o (K)’ a second-order Taylor expansion of h(*) gives

MM+1)-1 2 #(0)
B[]} = 5 o [

D

&, dglogl]

B(slrlsl’}} +o (1) - (60

§=0

Thus, given the bounds (38) on |E{g[r|g[*']}| and (48) on the second derivative of f,gf), we have:

M3(M+1)2| a%f® 1/ 55 . 1
< 2z 1
ealf]] < &P savogl| || R (C2o? +20*) +0 <K>
- max
(2)
1 1
<z <c§2> " C(;) o (K) , (61)
where
A M3(M+1)2
ng) = %CZdZ,z,M,Z ,
A M3(M+1)2
ng) = %nglz,M,é :

Let us now determine an upper bound on |e3[/]|. A second-order Taylor expansion of h(*) gives

M1 M(MAD-1 5 ()

]E{h(f)WK} = ZO - ag[r]

Eglriwiln} +o (& ) 62

g=0

Indeed, the third-order moments E{g[r]g[r'|wk[m]}, behave as o (Il<> Besides,

E{g[rlw[m]} = cE{g1[r]w[m]} + c*E{g:[r]wx[m]} . (63)
Then,
1 K-1
[E{gi[Iwilml} = 2 | X zlmr +a,JB {wilmJwi[m]} + 2 [m,]B {wi[m: + Hr]WK[m]}‘
k=0
2 (< C,
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1 k=1
E{galrlwk[m]} = 2 Y B {wi[m, +alwi[mi]wi[m]} =6, o mE {wk[m]}
k=0
=0. (65)
Thus, combining results (64) and (65) into expression (63) gives the following bound:

|E{g[rlwk[m]}| < Cz% : (66)

Thus, given the bound (47) on the first derivative of f,(,f), and from (62) we have:
3)

d o a cl
2 1,2,M,¢ A

where ¢® £ M2(M + 1)dy , y1.,Cs.

Thus, combining bounds (59) on €1, (61) on €; and (67) on €3 gives the following bound of the bias:
2)
1(c 1
1) 2 2 (2) 3
un]] < cWer +K<0'2+C1 +cl )>+0<K) . (68)

C. Expression of the Covariance .

Outside the measurement interval I, denote by ¢ the index such that n = N — 1+ £. Then, given that h(!) =
all) — a(()é), we have

ylnn) = (a((f)z,() ) (ag )zK) E {h“f) } zx +E { (h<f>zK)2} +20a "V E{wxh©}zx + 200" 2k E{h O wy }
+20E{h O wih O}z + 02 | af Hz +02E { (hwwK)z} + 2020V E{wihOwy} — z[n)? — 2z[n)pln] — u[n]?
UZH )H ( aO)ZK—‘rz[ ])2+]E{(h(€)zl<) }+20a0 E{wgh)}zg + 20E{hOwgh¥)}zyx
+ 02K { (hmwK) } + 202 E{wihOw}

2 mn] + yaln] + y3ln) + naln] + nsln] + neln] + y7(n] ,

where
i =0 | bl = = (ali =z <)), bl =B { (h02)°}
paln) = 200 B {wxh©)zg, psln] = CE{hOwih@ )z, neln] = o2 { (h<f>w,<)2} ,

ny7n] = 2(72¢x0 ]E{th(Z)wK} .

Let us now determme an upper bound on each of these terms.
First, since ||0c0 H2 < M| Af||%ax, We have:

i ]<02MHA£‘

max

{
< M || Ao[Frax

20
< 2 M! max (1, <12v]1) ) . (69)

Second, by definition of €; and €3 (see expressions (55) and (56)), 1> takes the following form:

bl = (ean) + ealnl)® =0 () - 70)



Third, second-order Taylor expansions of h(*) give:

Fourth,

But,

Thus,

Seventh,

But,

As before, since IE{ggz) 7]
vanishes. And,

E{gy[r]

w [m]wi[m ‘ =

C2 M-1

il < 2 Y [E{n O}

m,m’'=0

C2 M(M+1)-1 afm

§4Z

rr'=0 ag[ ] g=

- 4

afll)

_ GMAM+1)? & e 1
ot K

B(glrgl)}| +o ()

g=0

(CEUZ + 204> +o0 (Il<)

CZM2(M +1)2d2 2
<= ( ) “W(C +2)+0(11<).

4K

1
maln)l < oG, ||ag| Y [E{RO m]wilm']}]
M+1 afm / 1
BOwdr)| < RS Eglriwiln} o (1 )
< M(M+ 1)d1f;§4'fcz% +o0 (}()

27\ \¢ 1 1
mlall < MM+ 1)Co s (max (137) ) o ()

Fifth and sixth, second-order Taylor expansions of h() give

3)

1
K
1
T K|
2
K-

<

2 k+mr+ar,1<+m5k+m;,l<+m/ + 5k+mr+ar,K+m’5k+m£,K+m

| B bwlmwln | +o (1) -

n5(n] =
bl =0 () -
nalm)| < 202 [ag]| \E{h mwicm]wic ']}
H\E bl
E{g)[rlwkmlwk[m']} = o {g}” [r]wx[m]wx

[m']} + PE{g} [rlwi [m]w[m']} .

i E {wy[m, + a,Jwi[m|wg[m]wg[m']} =6, o wE {wi[m]wg[m'] }|

12

1)

(72)

(73)

(74)

(75)

wi[m|wg[m']} is a third-order moment of a multivariate zero-mean Gaussian vector, it
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Thus,

d 202 1
< 92 H ¢ H 3 1,2,M,0 20° 1
ln7ln]| < 20°||Ag maXM (M+1) 2 tolx

42 27\\" o2 1
<AM (M +1)dq 4 p ¢ | Max 1'M < tolz) - (76)

To conclude, we combine the expressions (69), (70), (71), (73), (74), (75), and (76) to determine an upper bound
on the variance 7[n, n]. It follows:

oo 1 [ ) )2 1
’Y[n/n]éco (% +E ?"_ +C3 +0 K 7

20
c(()n) = M’ max (l, <]2\/]I> )

1
an) = ZCQIMZ(M +1)%d3, vy

where

V4
1
oM = Echz(M 122, g+ MM+ 1)C2dy 1 <max (1, ])>

l
Cén) = AM2(M + 1)dy 500 (max (1, ]2\/]1>) .

a) If > N: When n > N and n’ > N, applying the Cauchy-Schwarz inequality, we obtain the following
bound on the covariance y[n, n]:

|v[n,n']| < \/y[n ]y, n']
(1) 07) 2 1 (1 (" o (" s 1
<\ 6 1+@ T —5+c ey o —|—C(n,) wz ta tee tolg)-
0 0

A first-order Taylor expansion of this bound as K — co gives

L [0 o\ [ .
< c(()")c((J N2 4 7K c?") (;2 +cg ") +c3"0 ) + (On/) (;2 e ey 02> +o <K>

0

) 1 C(n,n’) 1
SC(()rz,rl)az_i_K( 1(72 + (nn)+c(nn) 2) +O(K> ,

where

Co Co

ol ((” e n,) Vp e {1,2,3}.

b) If n’ € I: When n > N and n’ € I, equation (17) shows us that:
q

yln,n'] = cE{w[n'Th(}zg + PE{wln'la wi} + PE{w[n'ThOwy}
2 paln '] + Palin, '] + paln, ']
where
puln,n'] = cE{w(n'Th" }zg,
Baln,n'] = (TZIE{w[n’]tx((f)wK},

Bsln, n'] = P E{w[n']hOwg} .
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Besides, thanks to the bound (72) we have:
[E{wln' | ]}
2 AR (M 1) DA, Oy, <1>
o2 K
§M2(M+1)C% 1zM(1 ( ) 77)
Besides,

M~
Z | E{w[nJwy[m]}|

max
m=0

[Baln, ]| < 0? | A

<o? |

max

l
< Mt (max <1, ]2\/]I>) . (78)

Besides, identically to the bound (76) on %7, we obtain

M-1
ol )| < X [E{wla'Ib i}

d 40? 1
< 223 1,z,M,L .
O'M(M+1)70_ © tolx

40 1
§M3(M+1)dlegK+o(K) : (79)
Finally, we combine expressions (77), (78), and (79) to determine an upper bound on the variance 7[n, n’]. It follows:

nn' 1 nn' n 1
|y[n,n']| < b(() )2 ¢ e (bg )—l—bg )(72) +o (K) ,

, 14
b(()”’n )= mt? <max (1, 12\/]I>)

/ C2d
bin,n) _ MZ(M-i-l) z 12,z,M,€

where

bén,n') =AMP(M+V)dygpe -

II. APPLICATION TO AN ELECTROCARDIOGRAM

We provide here an additional implementation of BoundEffRed, applied to an electrocardiogram (ECG) dataset.
The dataset is constructed from a 500-second-long ECG, sampled at f; = 200 Hz, cut into 10 segments of 50 seconds
each. Fig. 10 depicts the right boundary of one of these subsignals, together with the 6-second extensions estimated
by SigExt (first panel), or EDMD (second panel), GPR (third panel), or TBATS (fourth panel). These extensions are
superimposed to the ground-truth extension, plotted in red. The sharp and spiky ECG patterns make the AHM
model too simplistic to describe this type of signal. Consequently, the forecast produced by SigExt is moderately
satisfactory. Note that TBATS is the only one that seems to accurately capture the locations of QRS complexes after
37 seconds. We will explore this long-term prediction capability in the future work.

Table IV contains the median performance index D of the boundary-free TF representations, over the N subsignals
evaluated, according to the extension method. As a result of the fair quality of the forecasts, the reduction of
boundary effects is less significant than for PPG signal. Nevertheles, the results show that BoundEffRed has the
same efficiency when the SigExt extension, the EDMD extension or the GPR extension is chosen. Indeed, t-tests
performed under the null hypothesis that the mean are equals, with a 5% significance level, show no statistical
significant difference between SigExt and EDMD or GPR, regardless of the representation considered. This justifies
the choice of SigExt for real-time implementation.
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Fig. 10. Extended ECG (blue) obtained by the SigExt forecasting (first panel), the EDMD forecasting (second panel), the GPR forecasting (third
panel), and the TBATS forecasting (fourth panel), superimposed with the ground truth signal (dashed red).

TABLE IV
ECG: PERFORMANCE OF THE BOUNDARY-FREE TF REPRESENTATIONS ACCORDING TO THE EXTENSION METHOD

Extension Median performance index D
method STFT | SST [ ConceFT RS
SigExt 0.584 | 0.630 0.462 0.642
Symmetric 1.199 | 1.354 1.427 0.943
EDMD 0.538 | 0.558 0.496 0.714
GPR 0.639 | 0.588 0.485 0.616

III. APPLICATION TO A MULTICOMPONENT CARDIAC SIGNAL

We consider a cardiac signal, namely a photoplethysmogram (PPG) recording, sampled at 300 Hz. In addition to
the cardiac cycle measurement, this signal contains a slow varying component, which is the respiratory component,
known as respiration induced intensity variation (RIIV) [2]. The top of Fig. 11 displays an excerpt of the signal along
with a 3-second-long extension obtained by the SigExt forecasting. The lower part of Fig. 11 shows the respiratory
signal recording the concentration of CO,. This signal was recorded simultaneously with the PPG signal, and
visually highlights the low-frequency respiratory component contained in the PPG signal. Indeed, the intervals
where the concentration of CO, drops—highlighted by the bluish areas—coincide with the decreases in the PPG
signal. Note also that the forecasting breaks the waveform of the oscillations because of its inability to forecast
the high-frequency harmonics contained in the signal. Nevertheless, as long as the low-frequency harmonics of the
components contained in the signal are preserved, the forecasting is sufficient to reduce boundary effects in the
low-frequency TF domain.

The ordinary and boundary-free SSTs of this signal are displayed in Fig. 12. These TF analyses brings out both
components—the fundamental frequency of the cardiac component, the most energetic one, indicated by the blue
arrows, is located around 1.3 Hz, while the respiratory component, less visible, indicated by the green arrows, is
located around 0.2 Hz and its multiples. Clearly, near the boundaries, BoundEffRed helps improve the quality of
the TF representation. Besides, the performance index of this representation takes the value D = 0.491. This means
that BoundEffRed has reduced the right-side boundary effects by about 51% with respect to the ordinary SST. This
shows the ability of our algorithm to work on signals containing several nonstationary components.
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Fig. 11. PPG signal (top, yellow), and the associated SigExt extension (blue). The simultaneously recorded concentration of CO; is below. The
bluish areas show the synchrony between the drops in CO, concentration and the decreases in the PPG signal.
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Fig. 12. Ordinary SST (left) and boundary-free SST (right) of the PPG signal. The window length for the SSTs is 18 seconds. The green arrows
indicate the instantaneous frequency of the respiratory component. The blue arrows, on the other hand, indicate the instantaneous frequency
of the blood pressure component. The red dashed boxes highlight the areas where boundary effects may appear.



