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In this paper, we prove the exact local controllability around different ground state solitary wave for the slightly subcritical mass and mass critical nonlinear Schrödinger equation. More precisely, if Q c1 and Q c2 denotes the ground states with two different scaling, we prove the exact local controllability from Q c1 to Q c2 in a minimal time depending on c 1 and c 2 . The results presented relies on the blow-up profile in the mass slightly supercritical case and mass critical case.

Introduction

We study in this article the controllability of the ground state solitary wave in the mass critical and slightly subcritical mass regime of the nonlinear focusing Schrödinger equation,

iψ t + ∆ψ + ψ|ψ| p-1 = 0, (x, t) ∈ R d × R, ψ(x, 0) = ψ 0 , x ∈ R d , (1) 
with ψ 0 ∈ H1 (R d ) and p > 1. Equation (1) has many physical applications for p = 3 and d = 1, 2, as it serves as a model for signal propagation in nonlinear optic for optic fibers and self-focusing laser beams in hollow core fibers ( [START_REF] Hasegawa | Optical Solitons in Fibers[END_REF][START_REF] Sulem | The nonlinear Schrödinger equation[END_REF]). The nonlinear focusing Schrödinger equation ( 1) is also completely integrable if d = 1 and p = 3 ( [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]). The solutions to (1) conserve three quantities over time,

Mass: ψ(., t) L 2 (R d ) = ψ 0 L 2 (R d ) ,
Energy: E(ψ(., t)) := 1 2 ∇ψ(., t) 2 L 2 -

1 p + 1 ψ(., t) p+1 L p+1 = E(ψ 0 ),
Momentum: Im ∇ψ(x, t)ψ(x, t)dx = Im ∇ψ 0 (x)ψ 0 (x)dx .

Bound states

The bound states, or solitary waves, are stationary solutions to (1) of the form ψ(x, t) = e iλt W λ (x) where W λ (x) = λ

1 p-1 W ( √ λx
) is solution to the nonlinear elliptic equation,

∆W λ + |W λ | p-1 W λ = λW λ , x ∈ R d . (3) 
Non-trivial solutions to (3) exist if the energy is subcritical and if and only if λ > 0. The solutions W λ to (3) belongs to W 3,q (R d ) for any 2 ≤ q < ∞ and numerous properties of bound states have been established. It is well-known that solutions to (3) are not unique, but unicity is recovered under the additional constraint of seeking a positive and radially symmetric solution to (3) [START_REF] Tao | Nonlinear dispersive equations[END_REF][START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]. This unique solution denoted Q λ (x) = λ 1 p-1 Q( √ λx), the ground state solitary wave, belongs to the Schwarz class S(R d ) and has an explicit representation in dimension one,

Q(x) = p + 1 2 sech 2 p -1 2 x 1 p-1 .
In higher dimensions, the exponential decay of the ground state is characterized by the following estimate for r ≥ 1 ( [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Sulem | The nonlinear Schrödinger equation[END_REF]), Q(r) -κr -(d-1)/2 e -r + Q (r) -κr -(d-1)/2 e -r ≤ Cr -(d+1)/2 e -r ,

where r = |x| and where κ, C > 0 are two constants, depending on d ≥ 1. Here and below, the constant κ will always refer to the constant appearing in the inequality [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF]. Finally, Q λ satisfies E(Q λ ) = λE(Q) = 0 in the mass critical case thanks to Pohozaev's identity [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]. We refer to [START_REF] Tao | Nonlinear dispersive equations[END_REF]Appendix B] for additional properties of the ground state.

for d = 1, 2 ( [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Ginibre | On a class of nonlinear schrödinger equations. i. the cauchy problem, general case[END_REF]). Such solutions belongs to ψ ∈ C((-T min , T max ); H 1 (R d )), with T min = T min (ψ 0 ), T max = T max (ψ 0 ) and T min , T max ∈ [0, ∞). Moreover, there is a blow-up alternative ( [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]), that is to say, either T min = T max = ∞ and the solution is defined globally, or, if T max < ∞ (resp. T min < ∞), then lim t → T - max ψ(t) H 1 (R d ) = +∞ (resp. lim t → T - min ψ(-t) H 1 (R d ) = +∞). In the mass subcritical regime s c < 0, the conserved quantities as well as the Gagliardo-Nirenberg inequality allows to extend the time existence, T min and T max , of all solutions to [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF], implying the global well-posedness in H 1 (R d ) ( [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]).

The mass critical regime s c = 0 is the first regime to exhibit blow-up phenomenon. Weinstein proved in [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF] that the estimate ψ 0 L 2 (R d ) < Q L 2 (R d ) ensures the global existence of solutions to [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF], thanks to the conservation of mass, energy and the Gagliardo-Nirenberg inequality

E(ψ) ≥ 1 2 ψ 2 Ḣ1 (R d )   1 - ψ 2 L 2 (R d ) Q 2 L 2 (R d ) 4/d   , ∀ψ ∈ H 1 (R d ).
This estimate was proved to be sharp by Merle [START_REF] Merle | Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power[END_REF] in the following sense. Assume

ψ 0 L 2 (R d ) = Q L 2 (R d )
and assume that the solution ψ(., t) of (1) blows up in finite time T > 0. Then the solution ψ is given (with an initial data at t = -T for simplicity) by the pseudo conformal transformation profile

S(x, t) = 1 |t| d/2 Q x t e -i |x| 2 4t + i t . (5) 
This profile lies in the set Σ = H 1 (R d ) ∩ {xψ 0 ∈ L 2 (R d )}, invariant by the flow, and blows up at the speed ∇S(., t) L 2 (R d ) 1/|t|, t → 0 -. A general blow-up phenomenon occurs in Σ in the range 0 ≤ s c < 1 due to the so-called virial identity. Indeed, assume ψ 0 ∈ Σ = H 1 (R d ) ∩ {xψ 0 ∈ L 2 (R d )} and E(ψ 0 ) < 0. Then, the associated solution ψ(., t) of (1) belongs to Σ and d 2 dt 2 xψ(., t) 2 L 2 (R d ) = 4d(p -1)E(ψ 0 ) < 0, leading to a contradiction on the infinite time of existence of the solution.

The blow-up phenomenon in the mass critical regime was further investigated in a serie of works [START_REF] Merle | Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation[END_REF][START_REF] Merle | On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation[END_REF][START_REF] Merle | The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF][START_REF] Merle | Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation[END_REF][START_REF] Merle | On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation[END_REF][START_REF] Raphaël | Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation[END_REF]. The blow-up phenomenon was studied in the set

B α * = ψ 0 ∈ H 1 (R d ) Q 2 L 2 < ψ 0 2 L 2 < Q 2 L 2 + α *
for α * > 0 sufficiently small. Assuming the spectral property 1 , it was shown that if E(ψ 0 ) > 0, then blow-up occurs at rate 1/|t|, the same rate as the pseudo conformal transformation [START_REF] Burq | Geometric control in the presence of a black box[END_REF] and if E(ψ 0 ) < 0, then blow-up occurs at the rate

∇ψ(., t) L 2 (R) log | log(T -t)| T -t .
We shall denote here the concentration factor in the mass critical regime

λ * (t) = T -t log | log(T -t)|
, t < T.

1 Without going into details, the spectral property is related to the coercivity of linear form coming from the linearization around state Q along with H 1 orthogonality properties. It was proven in dimension d = 1 in [START_REF] Merle | The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF] and in dimensions d = 2, 3, 4 using rigorously verified computing [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF]. It is conjectured that the spectral property holds in any dimension. We refer to these works for a precise definition. This rate is not self-similar as

lim t→T - λ * (t) √ T -t = 0.
In fact, more can be said about the blow-up profile in the case E(ψ 0 ) < 0. Indeed, in [START_REF] Merle | The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF], it is shown that the solution ψ(., t) coming from the initial data ψ 0 ∈ B α * such that E(ψ 0 ) < 0 decomposes as

ψ(x, t) = e iγ(t) λ(t) (Q + ) x -x(t) λ(t) , t , with H 1 (R d ) → 0 as α * → 0.
An important remark that we shall use in the present article is that, if the initial data ψ 0 is radial, then translation parameter x(t) is equal to 0 ( [START_REF] Merle | The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF]).

Let us underline here that the mass subcritical case s c < 0 is in sharp contrast with the mass critical and supercritical regime. Not only the solutions are always globally defined in H 1 (R d ), but the ground state is in fact orbitally stable with respect to H 1 (R d ) pertubations, that is, stable up to translation in space and phase shift [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. More precisely, for any > 0, there exists δ > 0 such that if, inf

(γ,x 0 )∈[0,2π]×R ψ 0 (. -x 0 ) -Q(.)e iγ H 1 (R d ) < δ, then inf (γ,x 0 )∈[0,2π]×R ψ(. -x 0 , t) -e i(t+γ) Q(.) H 1 (R d ) < .
Finally, the mass intercritical case 0 < s c < 1 is conjectured ( [START_REF] Sulem | Focusing nonlinear Schrödinger equation and wave-packet collapse[END_REF][START_REF] Zakharov | Collapse of self-focusing of langmuir waves[END_REF]) to exhibit self-similar blow-up in finite time for initial data close to the ground state Q in Ḣ1 (R d ). The existence and stability of the self-similar blow-up was proved in [START_REF] Merle | Stable self-similar blow-up dynamics for slightly L 2 super-critical NLS equations[END_REF] for 0 < s c 1 and a precise description of the blow-up profile was obtained in a recent work of Bahri, Martel and Raphaël [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF].

Before stating our main results, we present a short overview of the controllability of solitary waves as well as the controllability of the Schrödinger equation, as it will ease the presentation and allow us to state more precisely the nature of our results.

Literature overview

Despite the extensive literature on solitary waves, it seems that little is known so far on its controllability properties. If the solitary waves are defined on the whole space, only one result exists on the controllability of the ground state for the generalized KdV equation (where the ground state is also solution to (3)) due to Muñoz. In [START_REF] Muñoz | On approximate controllability of generalized KdV solitons[END_REF], considering the ground state on the whole line and using a moving distributed control, Muñoz proved the approximate controllability in large time from

Q c 1 to Q c 2 for c 1 , c 2 ∈ R + .
More precisely, the nonlinear interaction between the control and the solitary wave allows Muñoz to add (or remove, depending on the sign of c 2 -c 1 ) an important mass to the ground state with a slow varying distributed control. It is important to highlight that the control strategy is not destructive, meaning that the solution over time remains close to the ground state for t ∈ [0, T ]. We also note a second result on linking the controllability and the solitary waves defined on the real line. In [START_REF] Gagnon | Lagrangian controllability of the 1-dimensional korteweg-de vries equation[END_REF], the N -solitons solution was used by the author as a trajectory to achieve small-time Lagrangian controllability for the Korteweg-de Vries equation.

Other results are found in the literature on the controllability of the ground state when defined on bounded domains. Lange and Teismann [START_REF] Lange | Controllability of the nonlinear Schrödinger equation in the vicinity of the ground state[END_REF], considered the 1-D nonlinear focusing Schrödinger equation on a bounded domain with homogeneous Dirichlet boundary conditions and with a distributed control. In [START_REF] Lange | Controllability of the nonlinear Schrödinger equation in the vicinity of the ground state[END_REF], the ground state is defined as the unique positive solution in x ∈ (0, 1) of

ψ (x) + ψ 3 (x) = ψ(x), x ∈ (0, 1), ψ(0) = ψ(1) = 0. (6) 
The local controllability around the ground state was obtained using the HUM method [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] and a fine spectral analysis of the underlying linearized equation. A similar question was addressed by Castelli and Teismann in [START_REF] Castelli | Rigorous numerics for nls: Bound states, spectra, and controllability[END_REF], but this time with the size L(t) of the 1-D domain having the role of the control.

We also find few results on the stabilization of the solitary waves. In [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF], the approximate stability of the bilinear Schrödinger equation in R d , modelling the action of a laser on a quantum particle, around ground state solutions to

(∆ + V (x))ψ(x) = 0, x ∈ R d ,
was proven by Mirrahimi under spectral hypothesis of the operator ∆ + V . In the particular case of a dipolar function µ(x) = x and with a domain equal to the interval (-1/2, 1/2), a global practical stabilisation was obtained by Beauchard and Mirrahimi through a Lyapunov analysis in [START_REF] Beauchard | Practical stabilization of a quantum particle in a onedimensional infinite square potential well[END_REF].

We now turn to general controllability properties of the nonlinear Schrödinger equation. We first emphasize on the result of Rosier and Zhang [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF], as the extension of their results shall be needed in the present work. They have proved the exact local controllability around smooth trajectories to (1) of

iψ t + ∆ψ + |ψ| 2 ψ = 0, (x, t) ∈ Ω × (0, T ), ψ(x, 0) = ψ 0 (x), x ∈ Ω, (7) 
for where ν denotes the outward normal vector to Ω. More precisely, Theorem 1 (Theorem 1.1, [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF]). Let T > 0 be given and let w ∈ C ∞ ([-, T + ]; S(R)) be a solution of the nonlinear Schrödinger equation, with λ ∈ C * ,

Ω ⊂ R d ,
iw t + ∆w + λ|w| 2 w = 0, for any (x, t) ∈ Ω 1 × (-, T + ) where > 0 and Ω 1 is a bounded domain in R d with Ω ⊂ Ω 1 . Assume s > d 2 , or 0 ≤ s < d 2 with 1 ≤ d ≤ 2 + 2s, or s = 0, 1 with d = 2.
Then there exists a δ > 0 such that for any ψ 0 , ψ 1 ∈ H s (Ω) satisfying

ψ 0 -w(., 0) H s (Ω) ≤ δ, ψ 1 -w(., T ) H s (Ω) ≤ δ,
one can find an appropriate boundary control function v(x, t) such that (7)-( 8) admits a solution

ψ ∈ C([0, T ]; H s (Ω)) such that ψ(x, 0) = ψ 0 (x), ψ(x, T ) = ψ 1 (x), in Ω.
The control strategy deployed in [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF] consists to extend the initial data ψ 0 to R d and to consider the control problem in the whole space

iψ t + ∆ψ + |ψ| 2 ψ = ϕ(x)h(x, t), (x, t) ∈ R d × R + , ψ(x, 0) = ψ 0 (x), x ∈ R d , (9) 
where

ϕ ∈ C ∞ (R d ; [0, 1]) is a cut-off function such that ϕ(x) = 1, if |x| ≥ R + 1 0, if |x| ≤ R (10) 
with R > 0 sufficiently large so that Ω ⊂ B R (0). This strategy of extending the solution to the whole space to deduce boundary controllability property is attributed to Russell who first used it for the wave equation in [START_REF] Russell | Boundary value control of the higher-dimensional wave equation[END_REF][START_REF] Russell | Boundary value control theory of the higher-dimensional wave equation[END_REF]. Littman and Taylor later on gave a general principle for the boundary controllability of a linear partial differential equation, that is reversibility, smoothing properties and uniqueness usually leads to controllability [START_REF] Littman | Smoothing evolution equations and boundary control theory[END_REF]. In [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF], the smoothing properties come from the Strichartz estimates available in R d . The controllability of the linearized equation associated to [START_REF] Coron | of Mathematical Surveys and Monographs[END_REF] around the smooth trajectory w is obtained in [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF] via Carleman estimates for C ∞ ([-, T + ]; S(R)) potentials. The local exact controllability of (9) around smooth trajectories is deduced by a fixed point argument. Theorem 1 is obtained by constructing the control v in (8) as the trace of ( 9), and the controlled solution of ( 7) is obtained as the restriction of the solution of [START_REF] Coron | of Mathematical Surveys and Monographs[END_REF] to Ω. Such solutions may be defined in a weak sense (see Section 2.4).

Other controllability results were obtained for the nonlinear Schrödinger equation. The controllability of the nonlinear defocusing Schrödinger equation on a compact manifold without boundary was proved by Dehman, Gérard and Lebeau [START_REF] Dehman | Stabilization and control for the nonlinear Schrödinger equation on a compact surface[END_REF] using the exponential decay of the nonlinear problem and local controllability, assuming that the support of the internal control satisfies the Geometric Control Condition [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF], where the time of controllability depends on the size of the initial data. This argument of first stabilizing the solution and then using local controllability around zero was also used by Laurent in [START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on an interval[END_REF][START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3[END_REF]. The Geometric Control Condition (GCC) was shown by Lebeau to be sufficient for the controllability of the linear Schrödinger equation [START_REF] Lebeau | Contrôle de l'équation de Schrödinger[END_REF], but unlike the linear wave equation where GCC is necessary and sufficient (see [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF] for a precise statement), GCC is not always necessary, as illustred by Jaffard [START_REF] Jaffard | Contrôle interne exact des vibrations d'une plaque rectangulaire[END_REF] and Burq and Zworski [START_REF] Burq | Geometric control in the presence of a black box[END_REF]. It was more recently proved by Jin that a control supported in any nonempty open set yields the controllability on hyperbolic surfaces (see [START_REF] Jin | Control for Schrödinger equation on hyperbolic surfaces[END_REF] and reference therein). Extensive study was also done on the controllability of the linear and bilinear Schrödinger equation and with boundary or internal control. We refer the reader to the surveys [START_REF] Laurent | Internal control of the Schrödinger equation[END_REF][START_REF] Zuazua | Remarks on the controllability of the Schrödinger equation[END_REF] on the subject

Main results

Let T > 0 and Ω ⊂ R d , with d ≥ 1 be an open, connected and bounded domain with a boundary ∂Ω of class C 2 . In the spirit of [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF], we consider the boundary controllability of the focusing nonlinear Schrödinger equation

     iψ t + ∆ψ + ψ|ψ| p-1 = 0, (x, t) ∈ Ω × (0, T ), ψ(x, t) = v(x, t), (x, t) ∈ ∂Ω × (0, T ), ψ(x, 0) = ψ 0 (x), x ∈ Ω, (11) 
where v ∈ L 2 ((0, T ); L 

ψ 0 -e iγ Q c 1 H 1 (Ω) < , inf γ∈[0,2π] ψ 1 -e iγ Q c 2 H 1 (Ω) < , there exists a control v ∈ C([0, T ]; H 1/2 -(∂Ω)) such that (11) admits a solution ψ ∈ C([0, T ]; H 1 (Ω)) satisfying ψ(x, 0) = ψ 0 (x), ψ(x, T ) = ψ 1 (x), in Ω, for T T * 1 -T * 2 > 0, where log | log(T * 1 )| T * 1 = c 1 , log | log(T * 1 -T * 2 )| T * 1 -T * 2 = c 2 .
Remark. The minimal time of controllability T * 1 -T * 2 given by Theorem 2 is approximately the minimal time of controllability with the technique employed in this article. A precise time of controllability is given in the proof of Theorem 5, and is obtained by taking into account the phase shift of the blow-up profile as well as the initial and final data. We highlight that

T * 1 -T * 2
is the minimal time of controllability if the phase of ψ 0 and ψ T are those of the blow-up profile, hence the statement of Theorem 2.

The proof of Theorem 2 relies on two main arguments. One is to exploit the nonlinear nature of the equation to use the blow-up profile ψ b in the set B α * , and such that E(ψ 0 ) < 0, as a trajectory to go from the vicinity of

Q c 1 to the vicinity of Q c 2 . The second is to use the C ∞ (R; S(R d ))
regularity of the ground state to adapt the exact local controllability around smooth trajectories [37, Theorem 1.1] for [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF] around the ground state. Theorem 3. Let T > 0, p ∈ [1, p * ] and λ ≥ 0. Then there exists a δ > 0 such that for any ψ 0 , ψ T ∈ H 1 (Ω) satisfying

ψ 0 -Q λ (., 0) H 1 (Ω) ≤ δ, ψ T -Q λ (., T ) H 1 (Ω) ≤ δ, (12) 
one can find an appropriate boundary control function v(x, t) such that (11) admits a solution

ψ ∈ C([0, T ]; H 1 (Ω)) such that ψ(x, 0) = ψ 0 (x), ψ(x, T ) = ψ T (x), in Ω.
The control strategy therefore consists to drive the initial data to the blow-up profile ψ b (., ), for > 0 arbitrarily small, and for α * sufficiently small. Then, the blow-up profile is used for ( , T -) to reach the vicinity of Q c 2 where the local exact controllability around Q c 2 is used again to reach ψ T at time t = T . The minimal time is therefore dependent on the finite speed of blow-up. This strategy of proof is similar to the result of Muñoz [START_REF] Muñoz | On approximate controllability of generalized KdV solitons[END_REF], as the control strategy is non destructive and as the controlled solution ψ remains close to the ground state ∀t ∈ [0, T ]. Note that the assumption c 1 < c 2 is not restrictive as the case c 2 < c 1 is easily obtained by the time reversibility of (1) through the change of variables ψ(x, t) → ψ(x, -t) (the case c 1 = c 2 is trivially deduced from Theorem 3). In particular, we deduce the null-controllability in large time in the neighborhood of the ground state. 

ψ 0 ∈ H 1 (Ω) such that inf γ∈[0,2π] ψ 0 -e iγ Q c H 1 (Ω) < there exists a control v ∈ C([0, T ]; H 1/2 -(∂Ω)) such that (11) admits a solution ψ ∈ C([0, T ]; H 1 (Ω)) satisfying ψ(x, 0) = ψ 0 (x), ψ(x, T ) = 0, in Ω,
for T 1/δ > 0, with δ > 0 given by the smallness assumption (12) of Theorem 3.

Proof. Theorem 2 implies Theorem 4. Indeed, choose c 2 = c and, for any given δ > 0, choose 0 < c 1 sufficiently small so that Q c 1 H 1 (Ω) < δ. Such c 1 always exist since Ω is bounded, and therefore . L 2 (Ω) is not invariant with respect to the scaling ψ λ (x, t) = λ 2 p-1 ψ(λx, λ 2 t). For instance, if Ω ⊂ B 1 (0), the ball of radius 1 and centered at the origin, then

Q c 1 L 2 (Ω) ≤ Q c 1 L 2 (B 1 (0)) = Q L 2 (B √ c 1 (0)) . Since Q is bounded on B √ c 1 (0), we have Q B √ c 1 (0) → 0 as c 1 → 0. The same argument is used for Q c 1 Ḣ1 (Ω)
. Then, the time reversibility of (11) yields a trajectory starting from ψ 0 to Q c 1 . We use Theorem 3 to drive the solution near Q c 1 to 0.

A natural question following Theorem 2 and Theorem 4 is to understand whether this type of controllability results hold for the ground state in the mass subcritical regime. Indeed, the ground state is known to be orbitally stable in this regime, and one could assert that this stability is sufficient to disrupt the control strategy employed for Theorem 2. By proving that the blow-up profile of Bahri, Martel and Raphaël [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF] holds in the mass slightly subcritical regime, we prove the exact controllability between the vicinity of two different ground states for the mass slightly subcritical case. 

∂Ω of class C 2 . Let c 1 , c 2 ∈ R + with c 2 > c 1 .
Then, there exists 1 < p < p * such that for every p ∈ (p, p * ), there exists > 0 such that, for every

ψ 0 , ψ 1 ∈ H 1 (Ω) such that inf γ∈[0,2π] ψ 0 -e iγ Q c 1 H 1 (Ω) < , inf γ∈[0,2π] ψ 1 -e iγ Q c 2 H 1 (Ω) < , there exists a control v ∈ C([0, T ]; H 1/2 -(∂Ω)) such that (11) admits a solution ψ ∈ C([0, T ]; H 1 (Ω)) satisfying ψ(x, 0) = ψ 0 (x), ψ(x, T ) = ψ 1 (x), in Ω, in time T T c 1 ,c 2 > 0, where T c 1 ,c 2 := C c 2 -c 1 c 1 c 2 , with C(p) > 0 independant of c 1 , c 2 .
As for Theorem 2, we deduce that Theorem 5 holds for c 2 < c 1 as well as the null controllability.

Theorem 6. Let d ≥ 1 and Ω ⊂ R d be an open, connected and bounded domain with a boundary ∂Ω of class C 2 . Let c ∈ R + . Then, there exists 1 < p < p * such that for every p ∈ (p, p * ), there exists > 0 such that, for every

ψ 0 ∈ H 1 (Ω) such that inf γ∈[0,2π] ψ 0 -e iγ Q c H 1 (Ω) < , there exists a control v ∈ C([0, T ]; H 1/2 -(∂Ω)) such that (11) admits a solution ψ ∈ C([0, T ]; H 1 (Ω)) satisfying ψ(x, 0) = ψ 0 (x), ψ(x, T ) = 0, in Ω,
in time T 1/δ > 0, with δ > 0 given by the smallness assumption (12) of Theorem 3.

We underline that Theorem 2, Theorem 4, Theorem 5 and Theorem 6 are closely related to the open question of global exact controllability of [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF]. Not only the solitary waves are special solutions to (1), but they are in fact conjectured to be generic in the decomposition of the solutions to [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]. Indeed, the soliton resolution, conjectured to hold in the energy subcritical regime [START_REF] Soffer | Soliton dynamics and scattering[END_REF], states that the solutions of (1) evolve as a finite number of solitons, and a radiation behaving as a solution to the linear Schrödinger equation. Therefore, any control strategy of [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF] relying on the extension on the Euclidean space either needs to rule out altogether the existence of solitary waves, or to understand, in some extent, their global controllability properties. In this sense, we view the results above as a step in this direction.

Structure of the article

In Section 2, we recall the well-posedness results for the focusing nonlinear Schrödinger equation. In Section 3, we extend the results of Rosier and Zhang [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF] to deduce the exact local controllability around the ground state for the mass critical and subcritical regime. Section 4 is dedicated to the various results on the blow-up profiles that we shall need for the proof of the main results. Finally, Section 5 is reserved for the proof of Theorem 2 and Theorem 5.

Well-posedness

Functional framework

We consider, for Ω an open subset of R d , the space L p (Ω) of measurable complex-valued functions

u : Ω → C such that u L p (Ω) < ∞ with the norm u L p (Ω) = Ω |u(x)| p dx 1/p , if p < ∞, ess sup x∈Ω |u(x)|, if p = ∞.
The space L 2 (Ω) is a real Hilbert space equipped with the scalar product

(u, v) L 2 (Ω) = Re Ω u(x)v(x)dx , ∀u, v ∈ L 2 (Ω).
Likewise, H m (Ω), m ∈ N is a real Hilbert space with the scalar product

(u, v) H m (Ω) = 0≤|α|≤m Re Ω D α u(x)D α v(x)dx , ∀u, v ∈ H m (Ω), where α ∈ N d is a multi-index and D α = D (α 1 ,...,α d ) = ∂ α 1 x 1 • • • ∂ α d x d .

Strichartz estimates

Let us now introduce the definition of admissible pair for the Strichartz estimates. Let 1 ≤ q ≤ ∞ and r ∈ R + . We say that the pair (q, r) is admissible if and only if

2 q = d 1 2 - 1 r , (13) 
and if 2 ≤ r ≤ ∞ for d = 1, 2 ≤ r < ∞ for d = 2 and 2 ≤ r ≤ 2d d -2 , if d ≥ 3.
We denote q the conjugate of q such that 1 q + 1 q = 1. Let us recall the Strichartz estimates that we shall use in this paper.

Lemma 1 (Strichartz's estimates, [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]). For any s ∈ R, the following holds • If (q, r) is an admissible pair, then there exists a constant C > 0 such that, for every

ψ ∈ H s (R d ), S(t)ψ L q (R;W s,r (R d )) ≤ C ψ H s (R d ) ,
• Let I ⊂ R, be an interval, bounded or not , J = I satisfying 0 ∈ J. If (γ, ρ) and (q, r) are two admissible pairs, then there exists a constant C > 0 such that for every

f ∈ L γ (I, W s,ρ (R d )) t 0 S(t -τ )f (τ )dτ L q (I;W s,r (R d )) ≤ C f L γ (I,W s,ρ (R d )) .

Linear Schrödinger equation

We begin with the well-posedness of the linear Schrödinger equation. For any s ∈ R, denote

Aψ = i∆ψ, ∀ψ ∈ D(A) with A : D(A) = H s+2 (R) → H s (R)
the infinitesimal generator of the group of isometry S(t) on H s (R). The solution of

iψ t + ∆ψ = 0, (x, t) ∈ R d × R, ψ(x, 0) = ψ 0 (x), x ∈ R d , for ψ 0 ∈ H s (R)
, is given by ψ(., t) = S(t)ψ 0 and satisfies ψ(., t) ∈ C(R; H s (R d )). We now turn to the inhomogeneous problem. Consider I ⊂ R an interval such that 0 ∈ I, and consider

iψ t + ∆ψ = f, (x, t) ∈ R d × I, ψ(x, 0) = ψ 0 (x), x ∈ R d . ( 14 
)
We follow [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] for the definition of the well-posedness. We say that ψ ∈ C(I; H 1 (R d )) is a H 1 strong solution to [START_REF] Godet | Blow up on a curve for a nonlinear Schrödinger equation on Riemannian surfaces[END_REF] if and only if ψ satisfies

ψ(t) = S(t)ψ 0 -i t 0 S(t -τ )f (τ )dτ, ∀t ∈ I,
and the well-posedness is defined as follow.

Definition 1. We say that ( 14) is locally well-posed in H 1 if :

• There is uniqueness in H 1 of the solution ψ;

• For every

ψ 0 ∈ H 1 (R d ), there exists a strong H 1 (R d ) solution which is defined on a maximal interval (-T min , T max ) with T min = T min (ψ 0 ) and T max = T max (ψ 0 ) such that T min , T max ∈ (0, ∞].
• There is a blow-up alternative : if

T max < ∞, then lim t→T - max ψ(., t) H 1 (R d ) = ∞ (respec- tively T min < ∞, then lim t→-T + max ψ(., t) H 1 (R d ) = ∞).
• The solution depends continuously on the initial data : if ψ 0,n → ψ 0 in H 1 (R d ), and if I ⊂ (-T min (ψ 0 ), T max (ψ 0 )) is a closed interval, then the maximal solution ψ n of (14) with the initial data ψ n (0) = ψ 0,n is defined on I for n large enough and satisfies

ψ n → ψ, n → ∞ in C(I; H 1 (R d )).
Then, the Strichartz estimates and a classical semigroup result [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] yields the local wellposedness of [START_REF] Godet | Blow up on a curve for a nonlinear Schrödinger equation on Riemannian surfaces[END_REF]. 14) is locally well-posedness.

Proposition 1. Let I ⊂ R an interval such that 0 ∈ I. Then, for ψ 0 ∈ H 1 (R d ) and f ∈ L 1 (I; H s (R d )), (
The above Strichartz estimates allows us to deduce the local well-posedness of the linearized equation of ( 9) around smooth trajectories of (1). Indeed, consider

iψ t + ∆ψ + a(x, t)ψ + b(x, t)ψ = f (x, t), (x, t) ∈ R d × I, ψ(x, 0) = ψ 0 (x), x ∈ R d , (15) 
with

ψ 0 ∈ H 1 (R d ), f ∈ L 1 (I; H s (R d )) and a, b complex-valued functions belonging to C ∞ (R; S(R d )).
The solution to ( 15) is given by the Duhamel formula,

ψ(t) = S(t)ψ 0 -i t 0 S(t -τ )(aψ + bψ + f )(τ )dτ, in H s (R d ).
The local well-posedness of (15) in C(I; H s (R d )) was proved [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF] by proving that the Strichartz estimates of Lemma 1 also holds for the flow map S L (t) associated to

Lψ := iψ t + ∆ψ + a(x, t)ψ + b(x, t)ψ.
Proposition 2 (Proposition 2.4, [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF]). For any s ∈ R and any an admissible pair (q, r) such that q > 2, then the following holds:

• There exists a constant C > 0 such that, for every ψ ∈ H s (R d ),

S L (t)ψ L q (R;W s,r (R d )) ≤ C ψ H s (R d ) ,
• Let I ⊂ R, be an interval, bounded or not, J = I satisfying 0 ∈ J. Let (γ, ρ) be another admissible pair, then there exists a constant C > 0 such that for every f ∈ L γ (I, W s,ρ (R d )),

t 0 S L (t -τ )f (τ )dτ L q (I;W s,r (R d )) ≤ C f L γ (I,W s,ρ (R d )) .
These estimates together with standard semigroup arguments [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] allows to prove the wellposedness of

iψ t + ∆ψ + a(x, t)ψ + b(x, t)ψ = f (x, t), (x, t) ∈ R d × R + , ψ(x, 0) = ψ 0 (x), x ∈ R d . ( 16 
)
Proposition 3. Let I ⊂ R such that 0 ∈ I. Let ψ 0 ∈ H 1 (R d ), f ∈ L 1 (I; H 1 (R d ))
. Then equation ( 16) is locally well-posed with ψ ∈ C(I; H 1 (R d )).

Well-posedness of the nonlinear equation on R d

We now turn to the well-posedness of the nonlinear equation

iψ t + ∆ψ + |ψ| p-1 ψ = 0, (x, t) ∈ R d × I, ψ(x, 0) = ψ 0 (x), x ∈ R d , (17) 
where

ψ 0 ∈ H 1 (R d ).
The local well-posedness holds using Kato's argument [START_REF] Kato | On nonlinear Schrödinger equations[END_REF] (see also [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Section 4.4]).

Theorem 7 ([18]

). Let j ∈ C(C; C) such that j(0) = 0,

|j(u) -j(v)| ≤ L(K)|u -v|, for all u, v ∈ C such that |u|, |v| ≤ K for K > 0 with    L(t) ∈ C([0, ∞)), d = 1, L(t) ≤ C(1 + t α ), with 0 ≤ α < 4 d -2 , if d ≥ 2.
Set g(u)(x) = j(u(x)) for all measurable u : R d → C almost everywhere in R d . Assume j, considered as a function of

R 2 → R 2 , is of class C 1 . Then, ( 17 
) is locally well-posed in H 1 (R d ).
In turn,

iψ t + ∆ψ + |ψ| p-1 ψ = f (x, t), (x, t) ∈ R d × (0, T ), ψ(x, 0) = ψ 0 (x), x ∈ R d , (18) 
is also locally well-posed with f ∈ L 1 (I; H 1 (R d )). In fact, one deduces the local well-posedness of ( 18) around any smooth trajectory w of (1) from [7, Theorem 4.4.6],

iψ t + ∆ψ + |w + ψ| p-1 (w + ψ) -|w| p-1 w = f (x, t), (x, t) ∈ R d × (0, T ), ψ(x, 0) = ψ 0 (x), x ∈ R d . ( 19 
) Proposition 4. Let ψ 0 ∈ H 1 (R d ), f ∈ L 1 (I; H 1 (R d )), w ∈ C ∞ (I; S(R d )) solution to (1). Then, ( 19 
) is locally well-posed in H 1 (R d ).
Proof. Indeed, [7, Theorem 4.4.6] is stated as follow for general nonlinear equation of the form

iψ t + ∆ψ + g(ψ) = 0, (x, t) ∈ R d × (0, T ), ψ(x, 0) = ψ 0 (x), x ∈ R d , (20) 
with the following assumption on the non-linearity g ∈ C(H

1 (R d ); H -1 (R d )) : suppose there exist 2 ≤ r, ρ < 2d d-2 (2 ≤ r, ρ < ∞ if d = 1, 2) such that g(u) -g(v) L ρ (R d ) ≤ C(δ) u -v L r (R d ) , (21) 
for all u, v ∈ H 1 (R d ) such that u H 1 (R d ) < δ, v H 1 (R d ) < δ and g(u) W 1,ρ (R d ) ≤ C(δ)(1 + u W 1,r (R d ) ), (22) 
for all u ∈ H 1 (R d ) ∩ W 1,r (R d ), such that u H 1 (R d ) < δ.
Then, (we refer to [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] for a more precise statement)

Theorem 8 (Theorem 4.4.6 [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]). Let g = g 1 + g 2 + . . . + g k such that each g j , j = 1, . . . k satisfies (21) and ( 22) for some exponent r j , ρ j . Then, for every ψ 0 ∈ H 1 (R d ), there exists a unique strong H 1 solution of (20) defined on a maximal time interval (0, T ψ 0 ).

Then, Proposition 4 follows easily. Indeed, define

g(ψ) = |w + ψ| p-1 (w + ψ) -|w| p-1 w, θ(z) = 1 if |z| ≤ 1 and g 1 (ψ) = θ(ψ)g(ψ), g 2 (ψ) = (1 -θ(ψ))g(ψ).
Then g 1 , g 2 satisfies ( 21) and [START_REF] Laurent | Internal control of the Schrödinger equation[END_REF] (see the proof of Proposition 6). Hence the local well-posedness follows for f = 0, and the case with f = 0 with f L 1 ((0,T );H 1 (R d )) < δ is dealt classically by including f in the Duhamel formula and using the Strichartz estimates.

Let us finally give a meaning to a solution of [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF], following for instance [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]. We underline that this definition is weaker than Definition 1, as nothing is stated about the uniqueness, the blow-up alternative or the continuous dependence on the initial data. Definition 2. We say that ψ is a solution to [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF] 

if ∀τ ∈ [0, T ), i Ω ψ(x, τ )φ(x, τ ) -ψ 0 (x)φ(x, 0)dx - τ 0 Ω
∇ψ(x, t)∇φ(x, t)dxdt

+ τ 0 Ω ψ|ψ| p-1 φdxdt = τ 0 ∂Ω v(x, t)∂ ν φ(x, t)dxdt, ( 23 
)
for any φ ∈ C([0, T ]; H 1 (Ω)) ∩ {∂ ν φ ∈ C([0, T ]; L 2 (∂Ω))}.
We underline that ( 23) make sense since, as p -

1 < 4/(d -2), |ψ| p-1 ψ ∈ C([0, T ); H -1 (R d )). Therefore, denoting φ the extension of φ by 0 outside Ω, τ 0 Ω ψ|ψ| p-1 φdxdt = τ 0 R d ψ|ψ| p-1 φdxdt ≤ Cτ |ψ| p-1 ψ L ∞ ((0,τ );H -1 (R d )) φ L ∞ ((0,τ );H 1 (Ω)) .

Local exact controllability around the ground state

The goal of this section is to extend the local exact controllability around smooth trajectories of (1) obtained by Rosier and Zhang [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF] for p = 3 and d ≥ 1 to the local exact controllability around the ground state for the mass critical and mass subcritical regime 0 < p -1 ≤ 4/d with d ≥ 1, as given by Theorem 3. We begin by recalling their exact controllability result for the linear equation.

Controllability of the linearized equation

Let T > 0 and consider

iψ t + ∆ψ + a(x, t)ψ + b(x, t)ψ = ϕ(x)h(x, t), (x, t) ∈ R d × (0, T ), ψ(x, 0) = ψ 0 (x), x ∈ R d , (24) 
with

ψ 0 ∈ H s (R d ), a, b ∈ C ∞ ((0, T ); S(R d )), h ∈ L 2 ((0, T ); H s (R d )) and ϕ ∈ C ∞ (R d ; [0, 1])
defined by [START_REF] Dehman | Stabilization and control for the nonlinear Schrödinger equation on a compact surface[END_REF].

Theorem 9 ([37, Theorem 3.1]). Let T > 0 and s ≥ 0 be given and assume a, b ∈ C ∞ ((0, T ); S(R d )).

There exists a bounded linear operator

G : H s (R d ) × H s (R d ) → L 2 ((0, T ); H s (R d )),
such that for any ψ 0 , ψ T ∈ H s (R d ), if one chooses h = G(ψ 0 , ψ T ) as a control input, then the system (24) admits a solution ψ ∈ C([0, T ];

H s (R d )) satisfying ψ(., T ) = ψ T , in H s (R d ).

Local exact controllability around smooth trajectories

We now turn to the local exact controllability of,

iψ t + ∆ψ + |ψ| p-1 ψ = ϕ(x)h(x, t), (x, t) ∈ R d × (0, T ), ψ(x, 0) = ψ 0 (x), x ∈ R d , (25) 
around ground state solitary wave ψ λ (x, t) = e iλt Q λ (x). We recall that, in this case, ψ λ ∈ C ∞ (R; S(R d )) and that Q λ is positive. We first write solution to [START_REF] Littman | Smoothing evolution equations and boundary control theory[END_REF] under the form ψ = ψ λ +y, where y solves,

   iy t + ∆y + p + 1 2 Q p-1 λ y + p -1 2 e i2λt Q p-1 λ y + g(y) = ϕ(x)h(x, t), (x, t) ∈ R d × (0, T ), y(x, 0) = y 0 (x), x ∈ R d , (26) 
where,

g(y) = |e iλt Q λ + y| p-1 (e iλt Q λ + y) -e iλt Q p λ - p + 1 2 Q p-1 λ y - p -1 2 e i2λt Q p-1 λ y. (27) 
Denote S L (t) the flow map associated to [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] with

a(x, t) = p + 1 2 Q p-1 λ (x), b(x, t) = p -1 2 e 2iλt Q p-1 λ (x). (28) 
The following result give the sufficient functional framework to obtain the local exact bility of (26).

Proposition 5. Let s ≥ 0, T > 0 and g defined by [START_REF] Merle | Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation[END_REF]. If the following holds in a Banach space X s,T ⊂ C([0, T ];

H s (R d )) : there exists C > 0 such that φ ∈ H s (R d ), S L (t)φ X s,T ≤ C φ H s (R d ) , for every f ∈ L 2 ((0, T ); H s (R d )), t 0 S L (t -τ )f (., τ ) dτ X s,T ≤ C f L 2 ((0,T );H s (R d )) , for every z 1 , z 2 ∈ X s,T , t 0 S L (t -τ )g(z 1 )(τ ) dτ X s,T ≤ C(1 + z 1 X s,T ) z 1 p-1 X s,T , and 
t 0 S L (t -τ )(g(z 1 ) -g(z 2 ))(τ ) dτ X s,T ≤ C( z 1 X s,T + z 2 X s,T + z 1 p-1 X s,T + z 2 p-1 X s,T ) z 1 -z 2 X s,T , then (26 
) is locally exactly controllable in H s (R d ), that is, there exists δ > 0 such that for every

y 0 , y 1 ∈ H s (R d ) such that, y 0 H s (R d ) < δ, y 1 H s (R d ) < δ, then one can find a control h ∈ L 2 ((0, T ); H s (R d )) such that the solution y ∈ C([0, T ]; H s (R d )) of (26) satisfies, y(., T ) = y 1 , in H s (R d ).
Proof. The proof is very similar to [37, Theorem 4.1]. First, notice that (26) linearized around zero is given by ( 24), with a and b are defined by [START_REF] Merle | On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation[END_REF]. Since a, b defined by [START_REF] Merle | On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation[END_REF] belong to C ∞ (R; S(R d )), the exact controllability given by Theorem 9 holds.

The solution to ( 26) is given by the Duhamel formula,

y(t) = S L (t)y 0 - t 0 S L (t -τ )g(y)(τ )dτ + t 0 S L (t -τ )ϕ(x)h(x, τ )dτ.
Using the time-reversibility, we can assume y 1 = 0. The proof of Proposition 5 is obtained by a classical Fixed Point Theorem. Indeed, let

h = G y 0 , t 0 S L (t -τ )g(u)(τ )dτ for every u ∈ C([0, T ]; H s (R)). Then, let Γ(u)(t) = W S L (t)y 0 - t 0 S L (t -τ )g(y)(τ )dτ + t 0 S L (t -τ )ϕ(x)h(x, τ ))dτ.
We easily see that

Γ(u)(0) = y 0 , Γ(u)(T ) = 0.
It therefore suffices to prove that Γ(u)(t) is a contraction in X s,T thanks to the various estimates in hypothesis of Proposition 5. From now on, the proof is the same as in [37, Theorem 4.1] and we therefore omit it here.

It remains to define the proper space X s,T and to prove the estimates of Proposition 5, which yields Theorem 3.

Proposition 6. Let T > 0, d ≥ 1, s = 1 and r = p + 1 for p ∈ (1, p * ]. Then the estimates of Proposition 5 hold in X T := C([0, T ]; H 1 (R d )) ∩ L q ((0, T ); W 1,r (R d )) endowed with the norm . X s,T := . L ∞ ((0,T );H 1 (R d )) + . L q ((0,T );W 1,r (R d )) .
Proof. Let r := p + 1 and q defined by ( 13). The pair (q, r) is admissible pair since r ≥ 2, r is always finite and satisfies

2 ≤ r ≤ 2d d -2 , if d ≥ 3.
Following [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF], let ξ ∈ C ∞ 0 (C) be such that ξ(z) = 1 for |z| ≤ 1 and set

g 1 (z) = ξ(z)g(z), g 2 (v) = (1 -ξ(z))g(z)
Since p > 1, we have the following for C i > 0,

g 1 (z) L 2 (R d ) ≤ C z L 2 (R d ) + ξ(z) (1 + |ψ c | p-1 )(z + ψ c ) -e ict Q p c L 2 (R d ) ≤ C 1 (C 2 + z L 2 (R d ) ) ≤ C 3 z L 2 (R d )
and

g 2 (z) L r (R d ) ≤ C z L r (R d ) + ξ(z) (1 + |ψ c | p-1 )(z + ψ c ) -e ict Q p c L r (R d ) ≤ C 1 (C 2 + z p-1 L r (R d ) ) ≤ C 3 z p-1 L r (R d )
A straightforward estimation yields

g 1 (z 1 ) -g 1 (z 2 ) L 2 (R d ) ≤ C z 1 -z 2 L 2 (R d )
and using the inequality ||u| p-1 u -|v| p-1 v| ≤ C(|u| p-1 + |v| p-1 )|u -v| for p > 1 ( [START_REF] Tao | Nonlinear dispersive equations[END_REF]), Hölder and Minkowski inequalities, we deduce

g 2 (z 1 ) -g 2 (z 2 ) L r ≤ C Q p-1 c (z 1 -z 2 ) L r + C (|z 1 + ψ c | p-1 + |z 2 + ψ c | p-1 )|z 1 -z 2 | L r ≤ C z 1 -z 2 L r + C z 1 + ψ c p-1 L r + z 2 + ψ c p-1 L r z 1 -z 2 L r ≤ C z 1 p-1 L r + z 2 p-1 L r z 1 -z 2 L r .
where r denotes the conjugate of r. Moreover, using the diamagnetic inequality ( [START_REF] Tao | Nonlinear dispersive equations[END_REF]) : for all

f ∈ H 1 (R d ) ∇|f | ≤ |∇f |,
in the sense of distribution, we obtain

∇g 1 (z) L 2 (R d ) ≤ C ∇z L 2 (R d )
and

∇g 2 (z) L r (R d ) ≤ C z p-1 L r (R d ) ∇z L r (R d ) Since p ∈ (1, p * ],
we have q > 2 (recall ( 13)) and therefore from [37, Proposition 2.4] (or see also [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]), we have that for every admissible pair (q, r), the following holds

S L (t)ψ 0 X T ≤ C ψ 0 H 1 (R d ) , t 0 S L (t -τ )ϕ(.)h(., τ )dτ X s,T ≤ C ϕh L 1 ((0,T );H 1 (R d )) ≤ C ϕh L 2 ((0,T );H 1 (R d )) , t 0 S L (t -τ ) (g(z)) (τ )dτ X T ≤ C g 1 (z) L 1 ((0,T );H 1 (R d )) + g 2 (z) L q ((0,T );W 1,r (R d )) , t 0 S L (t -τ ) (g(v 1 ) -g(v 2 )) (τ )dτ X T ≤ C g 1 (z 1 ) -g 1 (z 2 ) L 1 ((0,T );H 1 (R d )) + g 2 (z 1 ) -g 2 (z 2 ) L q ((0,T );W 1,r (R d )) .
In a similar fashion as above, one deduces that for z 1 , z 2 ∈ X T , g 1 (z 1 ) ∈ L ∞ ((0, T ); H 1 (R d )) and g 2 (z 1 ) ∈ L q ((0, T ); W 1,r (R d )) with the following estimates

g 1 (z 1 ) L ∞ ((0,T );H 1 (R d )) ≤ C z 1 L ∞ ((0,T );H 1 (R d )) g 2 (z 1 ) L q ((0,T );W 1,r (R d )) ≤ C z 1 p-1 L ∞ ((0,T );L 1,r (R d )) z 1 L q ((0,T );W 1,r (R d )) g 1 (z 1 ) -g 1 (z 2 ) L ∞ (H 1 ) ≤ C z 1 L ∞ (H 1 ) + z 2 L ∞ (H 1 ) z 1 -z 2 L ∞ (H 1 ) g 2 (z 1 ) -g 2 (z 2 ) L q (W 1,r ) ≤ C z 1 p-1 L ∞ (L 1,r ) + z 2 p-1 L ∞ (L 1,r ) z 1 -z 2 L ∞ (W 1,r )
Consequently,

g 1 (z) L 1 ((0,T );H 1 (R d )) + g 2 (z) L q ((0,T );W 1,r (R d )) ≤ C(1 + z X T ) z p-1 X T and g 1 (z 1 ) -g 1 (z 2 ) L 1 ((0,T );H 1 (R d )) + g 2 (z 1 ) -g 2 (z 2 ) L q ((0,T );W 1,r (R d )) ≤ C z 1 X T + z 2 X T + z 1 p-1 X T + z 2 p-1 X T z 1 -z 2 X T ,
that is, the desired estimates.

We finally obtain the local exact controllability of [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF] around smooth trajectories of (1) stated in Theorem 3 by taking the trace of the solution of ( 25) as the control. The well-posedness and the properties of the control operator G ensures that the solution ψ defined this way belongs to C([0, T ]; H 1 (R d )).

Properties of the blow-up trajectory

We present here the properties of the blow-up trajectory in the mass critical and mass slightly subcritical regime that shall be needed for the proof of Theorem 5. We begin by recalling the blow-up profile close in Ḣ1 (R d ) to the ground state in the mass slightly supercritical regime obtained in [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]. Using this construction, we prove first in Theorem 11 that this construction yields a blow-up profile close in Ḣ1 (R d ) to the ground state in the slightly subcritical regime. The second part of the proof of Theorem 11 lies in the proof that the blow-up profile is close to the ground state in H 1 loc (R d ). This closeness to the ground state shall be used in the proof of Theorem 5 to drive the initial or final data to the blow-up trajectory using the local controllability around the ground state. We recall that one cannot expect the blow-up profile to be close to the ground state in H 1 (R d ) as the blow-up profile does not belong to L 2 (R d ) [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF].

Blow-up profile in the slightly mass supercritical regime

The blow-up profile constructed in [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF] is based on the ansatz

ψ(x, t) = 1 λ 2 p-1 (t) e iθ(t) ψ x λ(t) , ( 29 
)
where ψ is assumed to be radially symmetric, ψ(x) = ψ(|x|) = ψ(r), r := |x| and where, for a given T ∈ R and b > 0, λ(t) and θ(t) are defined for t ∈ [0, T ) by

λ(t) := 2b(T -t), θ(t) := - log(T -t) 2b . (30) 
The parameter b, that shall be small, is used as a bifurcation parameter. Indeed, for ψ defined by ( 29) to be a solution to [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF], ψ has to satisfy

∆ ψ -ψ + ib 2 p -1 ψ + x.∇ψ + | ψ| p-1 ψ = 0, x ∈ R d . (31) 
Notice that taking b = 0 in ( 31) is equivalent to (3), which makes the bifurcation parameter b apparent. Bahri, Martel and Raphaël are able to give a precise description of the finite energy self-similar blow-up according to the ansatz [START_REF] Merle | The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF].

Theorem 10. [1, Theorem 1] Let d ≥ 1, 0 < s c
1 and p * = 1 + 4/d be the mass critical exponent. There exists > 0 such that for any p satisfying 0 < p -p * < , there exists b(p) > 0 and a non-zero radially symmetric solution ψ to [START_REF] Merle | On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation[END_REF] 

such that ψ ∈ Ḣ1 (R d ) ∩ C 2 (R d ), E( ψ) = 0.
Moreover, as p → p * + , the following hold 

s c = κ 2 N c b sc exp - π b sc , N c = ∞ 0 Q 2 (r)r d-1 dr, (32) 
and κ is defined as in (4);

• Bifurcation from the soliton profile :

ψ -Q Ḣ1 (R d ) = o(1);
• Non-oscillatory behaviour for the outgoing wave:

lim r→∞ r 2 p-1 | ψ(r)| = ρ sc (1 + o(1)), lim sup r→∞ r p+1 p-1 | ψ (r)| < ∞,
where

ρ sc = 2N c s c .
Based on the construction of [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF], we shall prove that there exists a blow-up profile in the mass slightly subcritical case satisfying the following.

Theorem 11. Let d ≥ 1, -1
s c < 0 and p * = 1 + 4/d be the mass critical exponent. Then there exists > 0 such that for any p satisfying -< p -p * < 0 there exists b(p) > 0 and a non-zero radially symmetric solution ψ to [START_REF] Merle | On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation[END_REF] 

such that ψ ∈ Ḣ1 (R d ) ∩ C 2 (R d ), E( ψ) = 0.
|s c | = κ 2 N c b sc exp - π b sc , N c = ∞ 0 Q 2 (r)r d-1 dr;
• Bifurcation from the soliton profile :

ψ -Q H 1 loc (R d ) = o (1) 
; • Non oscillatory behaviour for the outgoing wave:

lim r→∞ r 2 p-1 | ψ(r)| = ρ sc (1 + o(1)), lim sup r→∞ r p+1 p-1 | ψ (r)| < ∞, where ρ sc = 2N c |s c |.
For the controllability purposes of Theorem 5, we shall prove that the blow-up profile satisfies

ψ -Q H 1 loc (R d ) = o(1)
. Compared to Theorem 10, this requires to prove the additional convergence

ψ -Q L 2 loc (R d ) = o(1)
. We therefore recall below the main results behind Theorem 10 to collect the estimates of the blow-up profile in the different regions.

Let |x| = r ∈ [0, ∞) and consider the change of variables

ψ(x) = exp -i br 2 4 P (r). ( 33 
)
Then ψ is a radial symmetric solution to [START_REF] Merle | On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation[END_REF] if we are able to find P : [0, ∞) → C solution to

   P + d -1 r P + b 2 r 2 4 -1 -ibs c P + |P | p-1 P = 0, r > 0, P (0) = 0. (34) 
The dependence between b and s c in ( 34) is relaxed by looking for a solution P σ of

   P + d -1 r P + b 2 r 2 4 -1 -ibσ P + |P | p-1 P = 0, r > 0, P (0) = 0, (35) 
with σ > 0 small. Clearly, if P σ is solution to [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] for any σ > 0 small, then taking σ = s c yields P sc solution to [START_REF] Muñoz | On approximate controllability of generalized KdV solitons[END_REF] and therefore a radially symmetric profile ψ satisfying [START_REF] Merle | On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation[END_REF]. Additional parameters (σ, ρ, γ, θ) ∈ R + × R + × R × R are introduced in order to construct the profile P σ , with an a priori control with respect to σ:

b ∈ b σ - 1 2 b 13 6 σ , b σ + 1 2 b 13 6 σ , (36) 
where b σ > 0 is defined by

σ = κ 2 N c b σ exp - π b σ , N c = ∞ 0 Q 2 (r)r d-1 dr, and 
ρ ∈ 1 2 ρ σ , 3 2 ρ σ , γ ∈ - 1 2 γ σ , 1 2 γ σ , θ ∈ - 1 2 θ σ , 1 2 θ σ , (37) 
where

ρ σ = √ 2N 1 2 c √ σ, γ σ = b 1 6 σ exp - 2 √ b σ , θ σ = b 1 6 σ exp - π b σ exp 2 √ b σ .
In particular, there exists C > 0,

exp π b - π b σ -1 ≤ C π b - π b σ ≤ Cb 1 6 σ , σ ≤ Cb -1 exp - π b . (38) 
These parameters allows are used to define the solutions of (35) over three intervals,

K := [0, r K ], J = [r K , r I ] and I = [r I , ∞), where r K = b -1/2 and r I = b -2 .
The three intervals take into account three different dynamic of the solution near the ground state : in K the non-linearity plays an important role, while in I, the ground state is exponentially small and therefore the equation is essentially linear. The interval J includes the so-called turning point, where the real part of the zeroth order operator vanishes2 . In the proof of Theorem 10, the solution in I is extended to J, and is denoted P ext . It is then matched to the solution P int in K at r = r K to yield the profile P σ .

4.1.1 Solution P int of (35) in K

In K, the solution to P int of (35) on K satisfies the following Proposition 7 (Proposition 4.1, [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]). For σ > 0 small enough and for any b, γ satisfying (36) and (37), there exists a solution 4 )), 4 )),

P int = P int [σ, b, γ] of (35) on K satisfying Re(P int (r K )) = κb d-1 4 exp - 1 √ b (1 + O(b 1 3 )) + κ A γb d-1 4 exp 1 √ b , Re(P int (r K )) = -κb d-1 4 exp - 1 √ b (1 + O(b 1 3 )) + κ A γb d-1 4 exp 1 √ b , Im(P int (r K )) = κ B σb d+3 4 exp 1 √ b (1 + O(b 1 
Im(P int (r K )) = κ B σb d+3 4 exp 1 √ b (1 + O(b 1 
and there exists C > 0 such that

P int -Q Ḣ1 (K) ≤ Cb 1 12 .
Moreover, the map (σ, b, γ)

→ (P int [σ, b, γ](r K ), P int [σ, b, γ](r K )) is continuous.
The solution P int is obtained from the decomposition

P = (Q + γA + φ + ) + i(bσB + φ -) (39) 
by a fixed point argument on (φ + , φ -) ∈ E K where E K is the complete metric space

E K := {(φ + , φ -) : K → R 2 is continuous and satisfies (φ + , φ -) K ≤ 1} (40) 
endowed with the norm

(φ + , φ -) K := max(b -1/3 N + (φ + ), b -5/4 σ -1 N -(φ -)),
where

N + (φ + ) = φ + /Q L ∞ (K) , N -(φ -) = Hφ -L ∞ (K) , H(r) = (1 + r) d-1 Q(r), r ≥ 0.
Moreover, the functions A and B are associated with the linearized operators around the ground state, defined by

L + = -∂ rr - d -1 r ∂ r + 1 -pQ p-1 , (41) 
L -= -∂ rr - d -1 r ∂ r + 1 -Q p-1 , (42) 
and satisfies, by collecting the results from Lemma 4.1 and Lemma 4.4 of [1],

Lemma 2 ([1]

). There exist

C 2 functions A : [0, ∞) → R and B : [0, ∞) → R solutions respectively of L + A = 0 and L -B = -Q on (0, ∞), such that A(0) = 1, A (0) = B(0) = B (0) = 0 and 
A(r) = κ A r -d-1 2 e r (1 + O(r -1 )), r ∈ [1, ∞), A (r) = κ A r -d-1 2 e r (1 + O(r -1 )), r ∈ [1, ∞), B(r) = κ B r -d-1 2 e r (1 + O(r -1 )), r ∈ [1, ∞), B (r) = κ B r -d-1 2 e r (1 + O(r -1 )), r ∈ [1, ∞),
for a constant κ A = 0 and κ B = N c /(2κ) > 0.

Proposition 7 is obtained in part with the following estimates on the decomposition of P int (39) which relates to the closeness to the ground state with respect to the parameter b (see for instance eq (4.15) in [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]). We shall use these estimates for the closeness of the ground state to the blow-up profile in H 1 loc (R d ).

Lemma 3 ([1]

). There exists C > 0 such that |γA| ≤ Cb

1 6 Q, |φ + | ≤ Cb 1 3 Q, b|σB| + |φ -| ≤ C exp - π b + 2 √ b Q.
Proof. These estimates come from the a priori bounds on the parameters σ, b, γ, (4), ( 36), [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF] and ( 38) that, A and B given by Lemma 2 and for every (φ + , φ -) ∈ E K , using the definition of the norm N ± . Indeed, one has for r ∈ K, since Q is positive,

φ + Q ≤ φ + Q L ∞ (K) ≤ b 1/3 ,
from the definition of N + . Moreover, from the definition A and the a priori bound on γ, we have

|γA| ≤ 1 2 γ σ |A| ≤ Cb 1/6 σ exp - 2 √ b σ r -d-1 2 e r ,
Using (4) we have κr -(d-1)/2 e -r ≤ Q(r) + Cr -(d+1)/2 e -r ,

|γA| ≤ Cb 1/6 σ exp - 2 √ b σ e 2r Q(r) + Cr -(d+1)/2 e -r ≤ Cb 1/6 σ exp 2 √ b - 2 √ b σ (Q(r) + C) ≤ Cb 1/6 σ Q(r) + 2 √ b - 2 √ b σ Q(r)
≤ Cb 1/6 σ Q(r). The bound on bσB and φ -are obtained similarly.

Solution of (35) in I ∪ J

The profile in P ext in I ∪ J is constructed in two main steps. First, the solution is defined in

I = [b -2 , ∞) by letting P (r) = r -d-1 2 U (r), (43) 
where

U + b 2 r 2 4 -1 - (d -1)(d -3) 4r 2 -ibσ U + r -1 2 (d-1)(p-1) |U | p-1 U = 0 (44) 
The equation ( 44) is essentially linear near the profile Q in the region I as profile Q is exponentially decreasing.

Proposition 8 (Proposition 2.1, [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]). For σ > 0 small enough and for any b, ρ satisfying (36), [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF], there exists a C 2 solution U of (44) on I satisfying

U (r) = ρr -1 2 +σ exp ib r 2 4 exp -i ln r b (1 + O(b -3 r -2 )) (45) 
U (r) = i b 2 ρr 1 2 +σ exp ib r 2 4 exp -i ln r b (1 + O(b -3 r -2 )), (46) 
and

U -i br 2 U = O(b -1 r -1 |U |) = O(ρb -1 r -3 2 +σ ).
Moreover, the map (σ, b, ρ)

→ (U [σ, b, ρ](b -2 ), U [σ, b, ρ](b -2 )) is continuous.
As pointed out in [1, Remark 2.3], the profile P given by [START_REF] Tao | Nonlinear dispersive equations[END_REF] in I belongs to Ḣ1 (I) but not in L 2 (I) due to the asymptotic given by ( 45), [START_REF] Zuazua | Remarks on the controllability of the Schrödinger equation[END_REF]. However, ( 45) is sufficient to recover L 2 loc (I) for the profile P given by [START_REF] Tao | Nonlinear dispersive equations[END_REF], which shall be used to deduce P -Q L 2 loc (I) = o(1). The solution U on I is then extended to I ∪ J, the region including the turning point, which complicates significantly the analysis. Proposition 9 (Proposition 3.1, [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]). For σ > 0 small enough and for any b, ρ, satisfying (36), [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF], the solution U of (44) on I constructed in Proposition 8 extends to a solution of (44) on J ∪ I. Moreover, there exists a real θ ext ∈ [0, 2π) such that the function P ext defined by

P ext (r) = e iθext r -d-1 2 U (r), r ∈ J ∪ I,
is a solution of (35) on J ∪ I and satisfies 4 )) 4 ))

Re(P ext (r K )) = ρb d+1 4 √ 2 exp π 2b - 1 √ b (1 + O(b 1 
Re(P ext (r K )) = - ρb d+1 4 √ 2 exp π 2b - 1 √ b (1 + O(b 1 
Im(P ext (r K )) = ρb d+1 4 2 √ 2 exp 1 √ b - π 2b (1 + O(b 1 4 
))

Im(P ext (r K )) = ρb d+1 4 2 √ 2 exp 1 √ b - π 2b (1 + O(b 1 4 
))

Moreover, the map (σ, b, ρ) → (P ext [σ, b, ρ](r K ), P ext [σ, b, ρ](r K )) is continuous

Matching asymptotic

The solution P int , defined over K, and P ext , defined over J ∪ I, are matched at r K using a fixed-point argument on the parameters.

Theorem 12 (Theorem 2, [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]). Let d ≥ 1 and p * < p. There exists σ 0 > 0 such that for any σ ∈ (0, σ 0 ), and p ∈ [p * , p], there exists b, ρ, γ, θ satisfying (36), [START_REF] Rosier | Exact boundary controllability of the nonlinear Schrödinger equation[END_REF] such that the solution P ext [σ, b, ρ] of (35) on I ∪ J given by Proposition 3.1 and P int [σ, b, γ] of (35) on K given by Proposition 4.1 satisfy the following matching conditions

P int (r K ) = P ext (r K ), P int (r K ) = P ext (r K ).
In particular, the function P defined on [0, ∞) by

P (r) = P int (r), r ∈ K, P int (r), r ∈ I ∪ J,
is a C 2 solution of (35) on [0, ∞) satisfying the asymptotic: for r large,

|P (r)| = |ρ|r -d 2 +σ (1 + O(b -3 r -2 )) P (r) -i br 2 P (r) = O(ρb -1 r -d 2 -1+σ )
Theorem 10 is obtained from Theorem 12 by choosing σ = s c = d 2 -2 p-1 .

Blow-up profile for the mass slightly subcritical case

We deduce Theorem 11 in the mass slightly subcritical regime -1 s c < 0.

Proof. Consider ψ according to the ansatz

ψ(x, t) = 1 λ 2 p-1 (t) e iθ(t) ψ x λ(t) , ( 47 
)
where ψ is assumed radially symmetric and λ(t), θ(t) defined by [START_REF] Merle | Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation[END_REF]. Then, if ψ satisfies

∆ ψ -ψ + ib 2 p -1 ψ + x.∇ψ + | ψ| p-1 ψ = 0, x ∈ R d . (48) 
Then ψ defined by (47) satisfies [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]. Now, let

ψ(x) = exp -i br 2 4 P (r).
If P is a solution to

   P + d -1 r P + b 2 r 2 4 -1 -ibs c P + |P | p-1 P = 0, r > 0, P (0) = 0. ( 49 
)
then ψ is a solution to (48). The proof of Theorem 10 is obtained from Proposition 7, Proposition 8 and Proposition 9 by relaxing the dependence of (49) with respect to s c > 0 by considering the family of equations,

   P + d -1 r P + b 2 r 2 4 -1 -ibσ P + |P | p-1 P = 0, r > 0, P (0) = 0. (50) 
with respect to the parameter σ > 0. To prove that the conclusion of Theorem 10 holds in the mass slightly subcritical case -1 s c < 0, we seek a profile P solution to

   P + d -1 r P + b 2 r 2 4 -1 + ibσ P + |P | p-1 P = 0, r > 0, P (0) = 0. (51) 
where the sign of ibσP is chosen so that b > 0 and σ > 0 (recall that in the mass subcritical case, Im(-ibs c ) > 0). Therefore, if P denotes the solution of (50) in the mass supercritical case, then P is solution to (51). Indeed, taking the complex conjugate of (51) yields, [START_REF] Zuazua | Remarks on the controllability of the Schrödinger equation[END_REF] of Proposition 8, we have, using again (4)

   P + d -1 r P + b 2 r 2 4 -1 + ibσ P + |P | p-1 P = 0, r > 0, P ( 
-Q L 2 loc (R d ) = o(1). Let C be a compact subset of R d . Denote first C K = B r K (0) ∩ C, where B r K (0) is the ball of R d centered
ψ -Q 2 L 2 (C I∪J ) ≤ ψ -Q 2 L 2 (Br C (0)\Br K (0)) ≤ r K ≤r≤r C |P (r) -Q(r)| 2 r d-1 dr + r K ≤r≤r C 1 -exp -i br 2 4 Q(r) 2 r d-1 dr
Dealing with the second integral as for (52), we deduce

r K ≤r≤r C 1 -exp -i br 2 4 Q(r) 2 r d-1 dr ≤ Ce -b -1/2 .
We are left with the first integral. We use the exponential decay of the ground state given by ( 45) to obtain

r K ≤r≤r C |P (r) -Q(r)| 2 r d-1 dr ≤ r K ≤r≤r C r -(d-1)/2 U (r) -κr -(d-1)/2 e -r 2 r d-1 dr + C r K ≤r≤r C e -2r r -1 dr ≤ r K ≤r≤r C |U (r)| 2 dr + κ r K ≤r≤r C e -2r dr + C r K ≤r≤r C e -2r r -1 dr.
The last two integrals are bounded by Ce -2b -1/2 . It remains to bound the first integral. In order to do so, we use (52), and the bound on ρ with respect to b given by ( 37) and (38) to deduce

r K ≤r≤r C |U (r)| 2 dr ≤(r C -b -1/2 ) U 2 L ∞ (r K ≤r≤r C ) ≤|r C -b -1/2 |b -5 e -π/b
which allows to finally prove that ψ -

Q L 2 (C I∪J ) → 0 as b → 0. Combining this fact with ψ -Q Ḣ1 (R d ) → 0 as b → 0, we finally deduce ψ -Q H 1 loc (R d )
→ 0 as b → 0, which ends the proof.

Controllability to the blow-up trajectory

We are now in position to prove Theorem 2 and Theorem 5. We begin by the proof of Theorem 5.

Proof. Let d ≥ 1 and > 0. Consider for now p ∈ [1, p * ). Denote ψ b the blow-up profile

ψ b (x, t) = 1 λ(t) 2 p-1 e iθ(t) ψ x λ(t) .
where ψ is given by Theorem 11, where

λ(t) = 2b(T -t), θ(t) = - log(T -t) 2b , t < T,
and where T > 0 is fixed the following way,

T -= 1 2bc 1 , T -T c 1 ,c 2 + = 1 2bc 2 . (53) 
Hence,

ψ b (x, ) = e iθ( ) c 1 p-1 1 ψ( √ c 1 x), ψ b (x, T c 1 ,c 2 -) = e iθ(Tc 1 ,c 2 -) c 1 p-1 2 ψ( √ c 1 x). (54) 
For p ∈ (1, p * ], denote δ 1 (p), δ 2 (p) ∈ R + such that Theorem 3 apply in time T = for the smooth trajectory ψ c 1 (x, t) = e itc 1 Q c 1 (x) and ψ c 2 (x, t) = e itc 2 Q c 2 (x) respectively. Define δ := min p∈[1,p * ] {δ 1 (p), δ 2 (p)}. We easily see that δ > 0 since Theorem 3 holds for p ∈ [1, p * ]. We fix p ∈ (1, p * ) such that, ∀p ∈ (p, p * ),

Q c 1 -c 1 p-1 1 ψ( √ c 1 x) H 1 (Ω) < δ, Q c 2 -c 1 p-1 2 ψ( √ c 2 x) H 1 (Ω) < δ. ( 55 
)
This is always possible since Q -ψ ψ T -e iγ Q c 2 H 1 (Ω) .

We are now in position to prove Theorem 2. First, we need to adjust the phase of the blow-up profile as well as the initial and final data. Using the phase invariance of the solutions to (1), we define the trajectory ψ traj (x, t) = e i(c 1 +γ 1 -θ( )) ψ b (x, t).

By construction, using (54), ( 55) and ( 57), e i(c 1 +γ 1 ) Q c 1 -ψ traj (., ) H 1 (Ω) < δ.

Therefore, we can apply Theorem 3 in time T = around the smooth trajectory e i(c 1 t+γ 1 ) Q c 1 . This implies that the solution to [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF], denoted ψ 1 , satisfies ψ 1 (., 0) = ψ 0 and ψ 1 (., ) = ψ traj (., ).

We denote the associated control v 1 .

During the time interval ( , T c 1 ,c 2 -) we define ψ 2 (., t) = ψ traj (., t). Then, using again (54), ( 55) and (57), we apply Theorem 3 to drive the solution to [START_REF] Fibich | Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation[END_REF], denoted ψ 3 , from ψ 3 (., T c 1 ,c 2 -) = ψ traj (., T c 1 ,c 2 -) to ψ 3 (., T c 1 ,c 2 ) = e i(c 1 +γ 1 +θ(Tc 1 ,c 2 -)-θ( )) Q c 2 . Now, define the smallest T γ 2 ≥ 0 such that e ic 2 Tγ 2 e i(c 1 +γ 1 +θ(Tc 1 ,c 2 -)-θ( )) = e iγ 2 , and define ψ 4 (., t) = e i(c 1 +γ 1 +θ(Tc 1 ,c 2 -)-θ( )) e ic 2 (t-Tc 1 ,c 2 ) Q c 2 . We therefore have ψ 3 (., T c 1 ,c 2 ) = ψ 4 (., T c 1 ,c 2 ) and ψ 4 (., T c 1 ,c 2 + T γ 2 ) = e iγ 2 Q c 2 . We can finally apply Theorem 3 one last time to deduce that there exists a solution ψ 5 to (11) such that ψ 5 (., T c 1 ,c 2 + T γ 2 ) = ψ 4 (., T c 1 ,c 2 + T γ 2 ) = e iγ 2 Q c 2 and ψ 5 (., T c 1 ,c 2 + T γ 2 + ) = ψ T .

Hence, the solution We now turn to the proof of Theorem 2.

ψ(x, t) =                ψ 1 (x,
Proof. The proof of Theorem 2 is very similar to the proof above. Indeed, the only modification needed in the proof is the profile to go from one scaled ground state from another. In order to do so, we use the simple remark that the solution to (1) with the initial data ψ 0 = (1 + )Q λ satisfies the requirement for > 0 sufficiently small. Indeed, we have ψ 0 ∈ B α * using that the L 2 (R d )-norm is invariant under the scaling in the mass critical case. Moreover, using Pohozaev's identity E(Q λ ) = λE(Q) = 0, < 0

E(ψ 0 ) = (1 + ) 2 2 |∇Q λ | 2 - ( 1 
Therefore the solution ψ to (1) starting from ψ 0 = (1 + )Q λ blow-up in finite time and belongs to C([0, T ); H 1 (R d )). We use the exact local controllability to reach this blow-up profile from the initial and to the final data in arbitrarly small time.

Conclusion

In lights of the results presented here, we obtained the controllability of initial and final states close to ground state solitary waves with different scaling. In some sense, this strategy is close to the return method, as a trajectory with "good control properties" [START_REF] Coron | of Mathematical Surveys and Monographs[END_REF] was used to connect two different states. However, the small-time global controllability of ( 11) remains an open question.

Moreover, using the results presented here, we are able to address the question of finite time blow-up in the mass subcritical case on bounded domain. Indeed, consider

     iψ t + ∆ψ + |ψ| p-1 ψ = 0, (x, t) ∈ Ω × R + ψ(x, t) = v(x, t), (x, t) ∈ ∂Ω × R + ψ(x, 0) = ψ 0 , x ∈ Ω, (58) 
with ψ 0 ∈ H 1 (Ω) and v ∈ L 2 (R + ; H 1/2 -(∂Ω)). Then Theorem 13. Let Ω ⊂ R d be a bounded domain and p < p * for 0 < p * -p 1. Then there exists ψ 0 ∈ H 1 (Ω) close to Q in H 1 (Ω) and v ∈ L 2 (R + ; H 1/2 -(∂Ω)) such that the solution blow-up in finite time with

∇ψ L 2 (Ω) 1 b(T -t) , t → T -.
The framework given by (58) allows to properly define blow-up solutions in H 1 (Ω) in the mass subcritical regime, that is, without having solutions not belonging to L 2 (|x| > R) for R > 0 large. We highlight that Theorem 13 is close to the blow-up phenomenon exhibited in for (58) in the mass critical case with v ≡ 0 where the ground state was defined as the unique positive steady state.

Theorem 4 .

 4 Let d ≥ 1 and Ω ⊂ R d be an open, connected and bounded domain with a boundary ∂Ω of class C 2 . Let c ∈ R + . For d ≥ 5, assume that the spectral property ([29]) holds. Then there exists > 0 such that, for every

Theorem 5 .

 5 Let d ≥ 1 and Ω ⊂ R d be an open, connected and bounded domain with a boundary

•

  Law for the nonlinear eigenvalue : b = b sc (1 + o(1)) where 0 < b sc 1 is defined by

  Moreover, as p → p * -, the following hold • Law for the nonlinear eigenvalue : b = b sc (1 + o(1)) where 0 < b sc 1 is defined by

  0) = 0. with b > 0 and σ > 0. Hence, Proposition 7, Proposition 8 and Proposition 9 hold, and taking σ = s c = d 2 -2 p-1 , the conclusion of Theorem 10 holds in the mass slightly subcritical case. To conclude the proof of Theorem 11, it remains to prove ψ

H 1 loc

 1 (R d ) → 0 as b → 0. Now consider ψ 0 , ψ T ∈ H 1 (Ω) such that min γ∈[0,2π] ψ 0 -e iγ Q c 1 H 1 (Ω) < δ, min γ∈[0,2π] ψ T -e iγ Q c 2 H 1 (Ω) < δ,(56)and denoteγ 1 = arg min γ∈[0,2π] ψ 0 -e iγ Q c 1 H 1 (Ω) , γ 2 = arg min γ∈[0,2π]

  d ≥ 1 an open, connected and bounded domain with a boundary ∂Ω of class C 2 .

	The boundary control v is imposed either on the Dirichlet or Neumann boundary condition,
	ψ(x, t) = v(x, t), (x, t) ∈ ∂Ω × (0, T ), or	∂ψ ∂ν	(x, t) = v(x, t), (x, t) ∈ ∂Ω × (0, T ), (8)

  2 (∂Ω)) is the boundary control. We first state the exact local controllability around ground state with different scaling in the mass critical regime p -1 = 4/d. This result covers the physically relevant case p = 3 in dimension d = 2. Theorem 2. Let d ≥ 1 and Ω ⊂ R d be an open, connected and bounded with a boundary ∂Ω of class C 2 . Let c 1 , c 2 ∈ R + and c 1 < c 2 . For d ≥ 5, assume that the spectral property ([29]) holds.Then there exists > 0 such that, for every ψ 0 , ψ 1 ∈ H 1 (Ω) such that

	inf
	γ∈[0,2π]

  t), t ∈ (0, ),ψ 2 (x, t), t ∈ ( , T c 1 ,c 2 -), ψ 3 (x, t), t ∈ (T c 1 ,c 2 -, T c 1 ,c 2 ), ψ 4 (x, t), t ∈ (T c 1 ,c 2 , T c 1 ,c 2 + T γ 2 ), ψ 5 (x, t), t ∈ (T c 1 ,c 2 + T γ 2 , T c 1 ,c 2 + T γ 2 + ), belongs to C([0, T c 1 ,c 2 + T γ 2 + ]; H 1 (Ω)). By a classical trace theorem, the trace of ψ provides the definition of the control v ∈ C([0, T c 1 ,c 2 + T γ 2 + ]; H 1/2 -(∂Ω)).
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it is in fact on[START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF] that this turning point is seen, and it depends on the dimension d (see[START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF][START_REF] Godet | Blow up on a curve for a nonlinear Schrödinger equation on Riemannian surfaces[END_REF])
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Well-posedness in the different regimes in R d

The ground state Q plays an important role in the description of the global well-posedness of [START_REF] Bahri | Self-similar blow-up profiles for slightly supercritical nonlinear schrödinger equations[END_REF]. The local well-posedness of (1) with initial data ψ 0 ∈ H 1 (R d ) is established by the Cauchy theory if the energy is subcritical for d ≥ 3, and without any restriction on p > 1 at the origin and of radius r K = b -1/2 . We have,

We divide the region of integration of the first integral,

Then, on one hand

On the other hand, using the exponential decay of the ground state (4)

(52)

To deal with the profile P , we use the profile decomposition of P in K, the bounds of Lemma 3. Indeed, there exists (φ + , φ -) ∈ E K (recall [START_REF] Soffer | Soliton dynamics and scattering[END_REF]) such that

and such that Lemma 3 holds. Then,

Hence, we deduce ψ -Q L 2 (C K ) → 0 as b → 0. Second, we deal with C I∪J := C \ C K . Denote r C > 0, the radius of B r C (0) such that C ⊂ B r C (0). Since the profile P int on I ∪ J satisfies (45),