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Enhanced Methods for Lymphocyte Detection and Segmentation
on H&E Stained Images using eXclusive Autoencoders

Chao-Hui HUANG1 and Daniel RACOCEANU2

Abstract— In this paper, we propose a generalized solution for
lymphocyte detection and segmentation, based on a novel image
feature extraction method, named exclusive autoencoder (XAE).
XAE is compatible with conventional autoencoder (AE) and
able to provide additional information about the categorization
in the feature space. For the task of lymphocyte detection, XAE
was able to reach the an F-score of 99.96%, outperforming
the state-of-the-art methods (reporting an F-score of 90% [1]).
Further, based on the integration of XAE+FCN (fully connected
network) and conventional image processing function blocks
provided in CellProfiler, we propose a lymphocyte segmentation
pipeline. The obtained Dice coefficient reached 88.31% while
the cutting-edge approach was at 74% [2].

I. INTRODUCTION

Image processing at the scale of nucleus is a critical
step for computer-aided pathology [3]. Although immuno-
histo-chemical (IHC) antibody staining produces images for
more specific purposes, the conventional hematoxylin &
eosin (H&E) staining remains the golden standard for routine
cancer diagnosis.

Automated lymphocyte (as well as the general nuclei)
detection, classification and segmentation problems are im-
portant in clinical studies and have attracted a huge number
of researchers’ attention, e.g., for detection problems, Xu
et al. [4] proposed methods of stacked sparse autoencoder
(SSAE); Khoshdeli et al. [5] reported convolutional neural
network (CNN) based approaches. For nuclei detection and
classification, Sirinukunwattana et al. proposed a locality
sensitive deep learning method [6] which took the advan-
tages of location sensitivity on the given images. Further,
Janowczyk et al. introduced a deep-learning-based lympho-
cyte classification [1]. For lymphocyte segmentation, most of
the existing approaches were based on traditional computer
vision algorithms or conventional machine learning methods.
Recently, deep learning took also the lead regarding this
challenging task [7].

An autoencoder (AE) is a key component in many deep
learning (DL) based approaches (e.g., [4], [6]). However, as
a unsupervised neural network (NN), a conventional AE has
its limitations, including: 1) AE does not provide clear clues
indicating to which class belongs the obtained feature; 2) a
feature obtained using a conventional AE can exist in two or
more classes of the given dataset, thus, the feature will not be
able to effectively contribute to the classification task; and 3)
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XAE package can be downloaded from: https://github.com/huangch/xae/

in a unbalanced dataset, the feature space may be occupied
by the majority of the dataset, and, as a result, subtle (but
critical) features may be ignored.

In order to palliate these issues, we propose an improved
version of AE, called exclusive autoencoder (XAE), which
aims at learning the features in the manner which is not
only focusing on the common features across classes, but
also the exclusive features of each class of the given dataset.
Based on this concept, in this paper, we propose a two-
step lymphocyte detection approach based on XAE+FCN.
The first step performs a coarse detection, which multiple
regions of interest as the candidates for further classifica-
tion. In the second step, we performe true-lymphocyte v.s.
false-lymphocyte classification. As a result, a high accurate
lymphocyte detection can be achieved.

In addition, we develop a method of lymphocyte seg-
mentation, based on the proposed XAE+FCN architecture.
The process steps includes: 1) lymphocyte detection; 2)
lymphocyte classification; and 3) the integration with general
image segmentation procedure provided in CellProfiler [8].
In this experiment, a lymphocyte H&E image dataset 1 was
obtained from the online supplemental materials of the article
[1]. The details of these steps will be described in the
following sub-sections.

In this paper, we will discuss how does the proposed
XAE largely improve the existing AE-based nuclei detec-
tion/classification. In the following sections, we will, first,
introduce the approach of XAE (Sect. II). Then, in the result
section, based on the proposed approaches, the examples of
the use of XAE on nuclei detection, classification, and a
real world application of lymphocyte segmentation will be
presented (Sect. III). Finally, the conclusions will be drawn
(Sect. IV).

II. METHOD

The core of the proposed methods of lymphocyte detection
segmentation is a combination of XAE and a fully connected
network (FCN). XAE, in fact, is an extension of conventional
AE, which is a type of neural network aiming at reconstruct-
ing the input by a smaller number of hidden units. In other
words, AE is able to extract the key components of the given
training patterns. This capability has been widely used as a
pre-training step of feature extraction. E.g., Sparse AE [9],
the output of the hidden layer is sparse, and each unit in
the hidden represents a unique feature of the given training
patterns. The performance of the following classification

1http://www.andrewjanowczyk.com/deep-learning/



depends on a probability that one or more hidden units
are correlated to the data labels. If this probability can be
controlled, the accuracy of the following classification can
so be improved.

Given a dataset of two classes, one idea is to partition
the hidden layer of AE into two segments, so that given the
training patterns of the first data class, the first segment is
highly correlated to the first segment, but uncorrelated to
the second segment, and vice visa. More precisely, given the
training patterns of the first data class, we wish the units of
the first segment to represent all critical features and the units
of the second segment to all be 0. However, this is a very
strict requirement. Thus, we pursuit the next best option, that
is, making the first segment sparse and the second segment
falling into a narrow zero-mean Gaussian distribution. To
achieve this goal, we introduce XAE.

The conceptual idea of XAE is to partition the hidden
layer into two or more segments so that a segment is
only correlated to relevant dataset, according to the given
labels. There are two types of hidden layer segments: 1) the
segments for exclusive components , which represents the
feature representation for a specific class of the dataset; and
2) the segments for mutual components , representing the
mutual features across two or more data classes. The XAE
configuration can be expanded for datasets with two or more
data categories. In the following sections, the further details
of XAE architecture will be discussed.

Given a dataset with two or more classes, the labels
of the classes can be described as a finite set, L ={
l1, l2, · · · , li, · · · , l|L|

}
, where each li represents a label

in the problem. The cardinality, |L|, is the total number
of label types in the problem. According to the situation, a
dataset may or may not contain data instances corresponding
to multiple labels [10]. Thus, instead of using a single
label li for indicating the category of a dataset, we can
use a set of labels, Si, to describe the involved labels
of the ith group of data instances, which share the same
label sets, as following: Si ⊆ L,Si 6= ∅. Thus, given a
dataset, X = {x1,x2, · · · ,xk, · · · }, each xk ∈ RM is a M
dimensional data vector. The subset of all labels, Si, can be
used to indicate the categories of a sub-dataset, X(Si) ⊆ X,
representing in the form of a block matrix:

X(Si) =
[
x

(Si)
1 ,x

(Si)
2 , · · · ,x(Si)

k , · · ·
]
∈ RM×|X

(Si)|, (1)

where each x
(Si)
k represents a data instance corresponding to

one or more data categories, according to the defined Si. In
other words, Si represents the priori knowledge of X(Si).

A. Architecture of XAE

a) Encoder:: Given the input x(Si)
k , the hidden layer is

obtained by:

z
(Si)
k = aencoder

(
WTx

(Si)
k + bencoder

)
, (2)

where aencoder(·) represents an activation function for the
encoder; bencoder ∈ RN is the bias term for the encoder;
z

(Si)
k is the output of the hidden layer; and W is the feature

set representing in the form of a block matrix, which, in fact,
is a concatenation of some subset of all features, e.g.,

W =
[
W

(T1)

(M×n1)
W

(T2)

(M×n2)
· · ·
]
∈ RM×N (3)

where N =
∑
j nj . Each Tj ⊆ L, which is similarly defined

as of Si. However, Tj and Si are serving different purposes.
That is, each Si is used as a meta-variable, mapping X(Si)

to one or more labels, while each Tj represents the desired
segmentation of W(Tj), correlating each W(Tj) to one or
more data classes.

By following this concept, given a set of W(Tj), z
(Si)
k

coresponds to a concatenation:

z
(Si)
k =

[(
z

(Si,T1)
k

)T (
z

(Si,T2)
k

)T
· · ·
]T
∈ RN , (4)

where each

z
(Si,Tj)

k =
[
z

(Si,Tj)

k,1 , z
(Si,Tj)

k,2 , · · · , z(Si,Tj)

k,nj

]T
∈ Rnj , (5)

represents the sub-activation-vector of the given x
(Si)
k and

its value is related to the relationship between subset of all
labels Si and Tj . Note that the superscription, Si, doesn’t
imply an additional index of z

(Si,Tj)

k . Instead, it represents
how does the z

(Si,Tj)

k being treated based on the relationship
between Si and Tj .

b) Decoder:: The decoder performs a partially con-
nected feed-forward neural network [11], in which, the
neurons are connected differently based on their input types,
e.g.,

y
(Si)
k = adecoder

Q(Si)∑
j=1

W(Tj)z
(Si,Tj)

k + bdecoder

 , (6)

where {Tj |Si ∩Tj 6≡ ∅,∀j}Q(Si) . adecoder(·) is the activation
of the decoder; W(Tj) is a subset of all features defined in
Eq. (3); bdecoder ∈ RM is the bias term of the decoder; y(Si)

k is
the output of the decoder, which is reconstruction of the x

(Si)
k

of the encoder defined in Eq. (2); Q(Si) = |{Tj |Si ∩ Tj 6≡
∅,∀j}| is the number of all Tj satisfying this condition with
the given Si. In other words, y(Si)

k is computed using a subset
of all possible Tj , each of which is a non-disjoint set of Si.

The cost function of an XAE is defined as:

JXAE =
1

2|X(Si)|
∑
i,k

||x(Si)
k − y

(Si)
k ||

2
2 +

λ

2
||W||2F

+ αvSi,Tj

∑
i,j

(
1

nj

nj∑
m=1

KL
(
ρ||ρ(Si,Tj)

m

))

+
βv̄Si,Tj

2

∑
i,j

 1

nj |X(Si)|

|X(Si)|∑
k=1

nj∑
m=1

Ha

(
τ0,σ||z

(Si,Tj)

k,m

)2

+
γv̄Si,Tj

2

∑
i,j

 1

|X(Si)|

|X(Si)|∑
k=1

(
z

(Si,Tj)

k

)(
z

(Si,Tj)

k

)T
− bI

2

,

(7)



where α, β and γ are parameters controlling the weights of
sparseness and exclusiveness;

ρ(Si,Tj)
m =

1

|X(Si)|

|X(Si)|∑
k=1

z
(Si,Tj)

k,m (8)

is the sparsity measurement of the mth element of the sub-
activation-vector z(Si,Tj)

k in Eq. (5); KL(ρ||·) is the measure-
ment of Kullback–Leibler (KL) divergence, which requires
a parameter ρ, indicating the level of sparsity; and

Ha

(
τ0,σ||z

(Si,Tj)

k,m

)
= Ga

(
z

(Si,Tj)

k,m

)
−Ga(τ0,σ) (9)

measures the Gaussianity of the given z
(Si,Tj)

k,m so that the
response of an excluded feature approximates to a Gaussian
random variable defined by τ0,σ , which is a zero-mean
Gaussian random variable with a small standard deviation
of σ. Finally, vSi,Tj

represents a semaphore determined by
the relationship between Si and Tj :

vSi,Tj
=

{
1, if Si ∩Tj 6≡ ∅
0, otherwise , v̄Si,Tj

= 1− vSi,Tj
. (10)

III. RESULTS

In lymphocyte detection, first, we cropped lymphocyte
images according to the annotations provided by the dataset.
Since the negative (image background) samples were not
provided in the dataset, we used the same approach proposed
by Janowczyk et al. [1], that is, cropping image patches with
the exclusion locations annotated as lymphocyte based on a
Baysan’s naı̈ve classifier. Then, we performed XAE+FCN
for the lymphocyte / background classification. Some image
patterns can be found in Fig. 1a and 1b; the corresponding
XAE features are showing in Fig. 1c; the ROC plot can
be found in Fig. 1d At this step, the F-score was 98.67%.
Meanwhile, for comparison, we also tested AE+FCN and the
obtained F-score was 98.29%.

Although at this stage, we obtained a good accuracy, a
major issue was that most of the false-positives were other
cell types (see Fig. 1e). As a result, the performance of
lymphocyte detection was impacted. To tackle this problem,
we introduced an additional step of true-lymphocyte v.s.
false-lymphocyte classification (here, the false-lymphocytes
mainly represent image patterns of other nucleus-like struc-
tures). The training patterns for true-lymphocytes were the
same as in the previous step. The false-lymphocytes were
the false-positives from the results of the previous step (see
Fig. 1e and 1f). The corresponding XAE features are shown
in Fig. 1g and the receiver operating characteristic (ROC)
plot is shown in Fig. 1h.

By integrating the above steps, we obtained the overall F-
score at 99.96% for lymphocyte detection. The performance
can be compared with the cutting-edge technology reported
in [1], in which, Janowczyk et al. obtained an F-score of
90%. In addition, we also compared this performance with
the one using AE+FCN. In this case, the obtained F-score
was 99.38%. The performance was behind the proposed
XAE+FCN due to the fact that in the second step, XAE+FCN

(a) background. (b) lymph.

W(T‘backg.’)

W(T‘common’)

W(T‘lympho.’)

(c) XAE feat.

(d) ROC plot.

(e) false-lym. (f) true-lym.

W(T‘false-lym.’)

W(T‘common’)

W(T‘true-lym.’)

(g) XAE feat.

(h) ROC plot.
Fig. 1: The corresponding images of lymphocyte detec-
tion/classification and the corresponding ROC plots: (a)-(d)
lymphocyte detection; (e)-(h) lymphocyte classification.

outperformed AE+FCN. Further, we compared the result
with cutting edge approach e.g., a locality sensitive deep
learning approach [6] proposed by Sirinukunwattana et al..
In their report, the authors reported a performance of nearly
80% for inflammatory categories, while the outcome of
XAE+FCN in a similar configuration was corresponding
to an F-score of 92.39%. In order to also compare with
the conventional AE, the obtained F-score of AE+FCN was
77.13%.

Finally, we built a pipeline based on CellProfiler [8], with
the integration of the proposed XAE+FCN approach. The
scenario can be found in Fig. 2. We used the data provided
in the supplemental materials of [1] as the ground truth. The



(a) (b) (c) (d) (e) (f)
Fig. 2: The procedure of lymphocyte segmentation: (a) the input; (b) a probability map obtained from the proposed lymphocyte
detection based on XAE+FCN, where the intensity represents the probability that a pixel belongs to a lymphocyte; (c)
performing general object detection on the probability map obtained from step (b); (d) performing general object segmentation
on the result of object detection, where each object is either a lymphocyte or a false-positive; (e) the result of lymphocyte
classification based on XAE+FCN, where the intensity represents the probability that a pixel corresponds to the center of a
lymphocyte; and (f) the final result of lymphocyte segmentation obtained by integrating steps (d) and (e).

Layer Dimensions Activate Functions
XAE Input Layer 11 (pixel) × 11 (pixel) × 3 (RGB) N/A

XAE Hidden Layer
exclusive features for positives exclusive features for negatives encoder decoder

225 225 sigmoid linear
FCN Hidden Layer 1 225 lrelu
FCN Hidden Layer 2 45 lrelu
FCN Hidden Layer 3 9 lrelu
Classification Layer 2 softmax with logits

TABLE I: The network configuration for the FCN used in the experiments, the parameters: λ = 1, β = 1, γ = 1, ρ = 0.05; the
learning rates ηXAE = 0.00005, ηFCN = 0.00001; the batch sizes BXAE = 1000, BFCN = 1000; and the iterations TXAE = 1000000,
TFCN = 1000000; The chosen optimizers were Adam [12] and its heirs.

data included the manually annotated contours of a subset of
all labeled lymphocytes. The obtained Dice coefficient [13]
achieved 88.31%, while the best reported performance based
on the same dataset was 74% [2].

IV. CONCLUSIONS

In this paper, a novel architecture of autoencoder (AE),
named exclusive autoencoder (XAE), was discussed for
performing lymphocyte detection and segmentation. An XAE
provides a solution where the hidden units can learn the
features according to the relationship between the extracted
feature set and the corresponding label set of the given
dataset. In XAEs, the exclusive hidden units learn features
of the relevant classes while the features remain uncorrelated
to the irrelevant classes of the dataset. On the other had, the
common hidden units learn the mutual features across some
(or all) classes of the given dataset.

In our experiments, we evaluated the proposed XAE+FCN
for lymphocyte detection and segmentation, and reached the
F-score at 99.96% while the cutting-edge technology was at
90%. Also, the proposed segmentation method was able to
achieve a Dice coefficient of 88.31% while the cutting-edge
best record was at 74% on the same dataset.

In the experiments, we have found that in a simpler
classification task (e.g. lymphocytes v.s. background classifi-
cation), XAE didn’t show advantages in the comparison with
a AE-based solution. However, in a more difficult scenario
(e.g., lymphocytes v.s. other nuclei types), XAE helped to
improve the performance.

REFERENCES

[1] A. Janowczyk et al., “Deep learning for digital pathology image
analysis: A comprehensive tutorial with selected use cases.,” Journal
of Pathology Informatics, vol. 7, no. 1, p. 29, 2016.

[2] M. Kuse et al., “A Classification Scheme for Lymphocyte Segmenta-
tion in H&E Stained Histology Images,” pp. 235–243, Springer, Berlin,
Heidelberg, 2010.

[3] O. Rujuta et al., “Review of Nuclei Detection, Segmentation in Mi-
croscopic Images,” Journal of Bioengineering & Biomedical Science,
vol. 07, pp. –, may 2017.

[4] J. Xu et al., “Stacked sparse autoencoder (SSAE) for nuclei detec-
tion on breast cancer histopathology images,” IEEE Transactions on
Medical Imaging, vol. 35, pp. 119–130, jan 2016.

[5] M. Khoshdeli et al., “Detection of Nuclei in H&E Stained Sections
Using Convolutional Neural Networks.,” IEEE-EMBS International
Conference on Biomedical and Health Informatics. IEEE-EMBS Inter-
national Conference on Biomedical and Health Informatics, vol. 2017,
pp. 105–108, feb 2017.

[6] K. Sirinukunwattana et al., “Locality Sensitive Deep Learning for
Detection and Classification of Nuclei in Routine Colon Cancer
Histology Images,” IEEE Transactions on Medical Imaging, vol. 35,
pp. 1196–1206, may 2016.

[7] J. Chen et al., “Automatic lymphocyte detection in h&e images
with deep neural networks,” ArXiv: Computer Vision and Pattern
Recognition (cs.CV), dec 2016.

[8] A. E. Carpenter et al., “CellProfiler: image analysis software for
identifying and quantifying cell phenotypes,” Genome Biology, vol. 7,
p. R100, oct 2006.

[9] A. Ng, “CS294A lecture notes: sparse autoencoder,”
[10] Z.-H. Zhou et al., “Multi-instance multi-label learning,” Artificial

Intelligence, vol. 176, pp. 2291–2320, jan 2012.
[11] S. Kang et al., “Partially connected feedforward neural networks

structured by input types,” IEEE Transactions on Neural Networks,
vol. 16, no. 1, 2005.

[12] D. P. Kingma et al., “Adam: A Method for Stochastic Optimization,”
dec 2014.

[13] L. R. Dice, “Measures of the Amount of Ecologic Association Be-
tween Species,” Ecology, vol. 26, pp. 297–302, jul 1945.


