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Efficient Deep Learning Model for Mitosis Detection
using Breast Histopathology Images

Monjoy Saha!, Chandan Chakraborty *+!, Daniel Racoceanu?®*

Abstract

Mitosis detection is one of the critical factors of cancer prognosis, carrying
significant diagnostic information required for breast cancer grading. It provides
vital clues to estimate the aggressiveness and the proliferation rate of the tumour.
The manual mitosis quantification from whole slide images is a very labor-
intensive and challenging task. The aim of this study is to propose a supervised
model to detect mitosis signature from breast histopathology WSI images. The
model has been designed using deep learning architecture with handcrafted
features. We used handcrafted features issued from previous medical challenges
MITOS @ ICPR 2012, AMIDA-13 and projects (MICO ANR TecSan) expertise.
The deep learning architecture mainly consists of five convolution layers, four
max-pooling layers, four rectified linear units (ReLU), and two fully connected
layers. ReLU has been used after each convolution layer as an activation
function. Dropout layer has been included after first fully connected layer to
avoid overfitting. Handcrafted features mainly consist of morphological, textural
and intensity features. The proposed architecture has shown to have an improved
92% precision, 88% recall and 90% F-score. Prospectively, the proposed model
will be very beneficial in routine exam, providing pathologists with efficient and
- as we will prove - effective second opinion for breast cancer grading from whole
slide images. Last but not the least, this model could lead junior and senior
pathologists, as medical researchers, to a superior understanding and evaluation
of breast cancer stage and genesis.
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convolution, hematoxylin and eosin.
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1. Introduction

Breast cancer (BC) is increasing gradually in developed and developing
countries (considered second most common cancer among women) [1, 2]. As
per the Nottingham score, BC grading is done by the assessment of nuclear
pleomorphism, tubule formation and mitotic count [3]. In the healthy breast,
epithelial cell nuclei are uniform in size and shape. But in the case of malignancy,
epithelial cell nuclei become non-uniform, darker and larger in shape. This
transformation is called nuclear pleomorphism [4]. Tubule formation represents
the percentage of malignant cells form regular duct structure. Mitotic count,
one of the most important proliferation factors, carries significant diagnostic
information required for BC histological grading. Indeed, it provides clues to
estimate the aggressiveness and proliferation rate of the tumor [5] by assessing
the severity of the disease. During mitotic cell division, the chromosome is
divided into two identical chromosomes. The mitotic cell division process is
characterised by four main phases: prophase, metaphase, anaphase and telophase
[6]. Due to mutational changes in cell DNAs, there might be possibilities of
uncontrolled cell division [7].

An individual observation area is usually called HPF [9]. Mitotic scoring is
calculated based on the number of mitotic figures present in the high power field
(HPF). If 0-11 mitotic figures are present in 10 neighbour HPFs, then the score
will be 1. If 12-22 mitotic figures are present in 10 neighbour HPFs, then the
score will be 2, and the score will be 3 if more than 23 mitotic figures are visible
in 10 neighbour HPFs [5, §].

In histopathological image analysis, automatic mitosis detection exhibits
various challenges. Firstly, the shape of mitotic figures is different in each of the
phases. Secondly, in hematoxylin and eosin (H&E) stained images, apart mitotic
figures, some other similar objects like dense nuclei, lymphocytes, etc., are also
present, inducing an important chance of misclassification. Therefore, due to
some possible variation in the slide preparation (staining process, concentration,
proportion, etc.), pathologists may miss some prominent mitotic figures. More-
over, manual detection of the mitotic figure is tedious and prone to intra-observer
variability. Furthermore, in rural or urban areas with no/less expert pathologist,
the manual assessment alone may provide wrong (or misleading) information.
Automatic detection and count of the mitotic figure will not only attenuate
these problems but also provide a safeguard to the doctors to consolidate their
decision and support their commitment. In clinical practice, the pathologists
assess the proliferated area present in the H&E stained tissue slides under 40x
magnification.

Literature shows that computer aided mitosis detection (see MITOS-ATYPIA-
14 [10] and MITOS 2012 [11, 12] challenges organised at ICPR) has not yet
achieved enough performances (the maximum F-score gained was 0.734 in 2014) to
envisage into routine implementation [13]. Therefore, an efficient and affordable
deep learning model has been studied in this article. The proposed model is
genuine and requires no prior knowledge about mitosis detection.

The key idea of the proposed architecture is based on two premises: (a) to



learn deep learning features and handcrafted features from the ground truth
annotated data and (b) classification between mitosis and non-mitosis. Small
patches of size 71 x 71 have been used to train the model. The use of small
patches in the proposed model localises the mitosis and non-mitosis in the images.

The paper is structured around VI sections: section I gives an introduction.
The literature review is reported in Section II. Section III describes the dataset
and proposed methodology. Results and discussion are discussed in Section IV
and V. Finally, Section VI concludes and presents the perspectives of our work.

2. LITERATURE REVIEW

Many automatic machine learning techniques are already developed in mitosis
detection using H&E images and a certain success has been witnessed. Due to
imperfections in cutting and staining, various issues arise from the variability
of tissue appearance. Most of the mitosis detection techniques are based on
conventional imaging techniques. From the extensive literature survey, we can
remark that there are very few studies dedicated to the deep learning approaches.
Table 1 shows the characterisation of different mitosis detection methods using
BC histological images. Table 2 illustrates comparative results of different BC
dataset and strategies.

2.1. Review Based on Conventional Techniques

Table 1 shows maximum BC mitosis detection issues which have been resolved
by color, texture and intensity related attributes. H. Irshad et al.,(2013) proposed
a method where candidate cells were detected and segmented by extracting vari-
ous channel features followed by Laplacian Gaussian, morphological operations
and active contour [14]. They used ICPR 2012 dataset. Their proposed method
achieved F-score 72% on Aperio and 63% on Hamamatsu scanner images. This
study was further extended based on various textures, Hierarchical Model and
X (HMAX) features [9]. This approach resulted in 0.76 recall, 0.75 precision
and 0.76 F-measure. The authors concluded that the result could be used for
additional analysis. H. Irshad et al., (2014) proposed spatial characterisation and
multispectral band selection technique for mitosis detection. Their algorithm
achieved 67.35% detection rate and 63.74% F-score [15]. The use of multispectral
images using specifically designed spectral band selection algorithm for mitosis
detection has been proposed in [16]. This algorithm achieved F-score 74%,
positive predictive value 76% and true positive rate 74%.

In [17], a probabilistic model using phase-contrast microscopy images has
been discussed. The algorithm has been designed in a two-step processes: (a)
the detection of spatiotemporal patches and (b) localization of birth events. The
results show that their approach outperforms the previous approaches concerning
computational efficiency and detection accuracy. In the method proposed by
[18], mitosis detection was done by extracting generic features and classifying
by single and cascaded Adaboost classifier. The authors tested their model on
ICPR 2012 contest dataset. The performance of the single classifier was 68%



recall, 28.1% precision, 39.7% F-score, whereas, cascaded Adaboost classifier
shows 54% recall, 62.7% precision, 58% F-score. The authors suggested to use
the ensemble of cascaded Adaboost classifier rather than single classifier along
with the features which express better color variations and granular structure.

L. Roux et al., (2013) described the methods used for MITOS @ ICPR 2012
contest dataset. The participants to this first challenge in Digital Pathology
used level set, active contour, thresholding, mathematical morphology along
with radiometry, morphological features and texture features for the detection
of mitosis [11]. The authors achieved F-measure 0.78 in mitosis detection.
A. Liu et al., (2010) proposed the development of a mitosis event detection
technique using hidden conditional random field. The model was designed into
two parts. The candidate spatiotemporal sub-regions were segmented by image
pre-conditioning and volumetric segmentation. This method achieved 85% recall
and 95% precision [19]. M. schlachter et al.,(2010) used harmonic filters with
rotation invariant to detect mitosis in colorectal cancer images. Their approach
successfully detected the mitosis in colorectal cancer [20].

C.Y.Tao et al., (2007) proposed the use of a support vector machine classifier
for mitotic figure detection using high-content screening data. The model
tested on 99 cells and result shows 95.2% sensitivity and 95.8% specificity [21].
Another computerized mitosis detection technique has been described in [22].
The authors found strong agreement between pathological observation results
and computerized technique. In [23], Exclusive Independent Component Analysis
has been used for mitosis detection. The algorithm tested on ICPR, 2012 dataset.
They achieved an area under the curve 100%. In [24], objective and texture based
features have been used for mitosis detection. The acquired histology images
firstly pre-processed by 2D anisotropic diffusion and morphological operations.
Secondly, maximum likelihood estimation had been used for pixel-wise feature
extraction. Finally, a SVM classifier has been used for classification. The test has
been done on ICPR 2012 contest dataset images and achieved F-score of 70.11%
for Hamamatsu images and 70.94% for Aperio XT scanner images. The work has
been extended in [25]. R. Nateghi et al., (2014) presents an automatic mitosis
detection method using cast function and Genetic optimization algorithm. The
segmented mitosis and non-mitosis cells were classified using the SVM classifier.
They achieved F-score 78.47% [26]. In [27], statistical detection algorithms,
i.e., constrained energy minimization, matched filtering and adaptive coherence
estimator has been used for mitosis detection. They used matched filter and
achieved 80% accuracy.

In [28], the authors compared the manual and automatic mitosis detection
algorithms. They suggested that there should be a sufficient number of the
training dataset. A. S. Tripathi et al.,(2013) proposed a 2-Sieve model for
mitosis detection. They have extracted Gray Level Entropy Matrix features and
Multiresolution wavelet features on all the spectral bands. Classical data mining
technique and dimensionality selection technique had been used in this model.
Their results show positive predictive value 73.04% and sensitivity 82.35% [29].
The approach presented in [30], uses the whole slide histological images for
mitotic cell extraction and visualization, using the multi-resolution graph-based



technique. The accuracy of this unsupervised learning technique was improved
by spatial refinement of label regularization.

In [31], the authors reviewed the graph-based methods for microscopic
histopathology images. They addressed various methodologies and their corre-
sponding time complexities. The authors concluded that graph based methods
are capable of differencing tissue component based on neighborhood relationships
and spatial arrangements. This tends to consume less time during training
and testing phase. The authors of [32] proposed structure and function based
diagnosis using tissue slides. They used histological images for measuring stain-
ing intensity in a gray level. Additionally, Shannon’s and structural entropy
and entropy flow had been derived from the mapped gray level datasets. The
significant changes found in the entropy level suggested biological function and
structure based diagnosis for rapid reporting and result.

2.2. Review Based on Convolution and Deep Learning Techniques

A deep neural network based mitotic figure detection technique was proposed
for BC histology images [33]. This study was based on the deep max-pooling
convolutional network. Their approach won the ICPR 2012 mitosis detection
challenge by achieving an F-score of 0.782. M.Veta et al., (2016) reported an
assessment of object-level inter-observer variability on mitosis counting in BC
[34]. The authors trained a deep learning model for mitosis counting followed by
performance analysis based on an inter-observer agreement between automatic
and manual method. Their framework consisted of four convolutional and two
fully connected layers. The authors employed AMIDA13 dataset with image
patch of size 63 x 63. They concluded that small objects create substantial
disagreement so there should be size constraint in mitosis detection. The results
of AMIDA13 challenge algorithms of 11 participants have been summarised in
[35] and the outcomes of individual participants are discussed.

Table 1
Categorization of mitosis detection approaches

Categorize Mitosis Detection Approaches
Cooccurrence features, scaleinvariant features, runlength features [19]
Wavelet-based [36]

Oriented gradient histograms [HOG] [37]

Generic features [17]

Blue ratio [19]

Hand-Crafted features Maximization of relative-entropy [11]

Spectral band selection [38]

Gamma-Gaussian Mixture Model [39]

Chan-Vese level set [40]

SCILAIM software used for mitosis detection
using Feulgen Stained BC images [41]

Contextual learning based | Learning based [42]

Convolutional neural network (CNN) [43]

Deep CNN and max-pooling [10]

Deep Learning CNN and Handcrafted Features [17]

CNN and seeded blob features [22]

AggNet: Deep learning from crowd [44]

Texture based

Color-based

H.Wang et al., [47], [48] used CNN and handcrafted features for mitotic
figure detection. The proposed model employs one convolution, one pooling



Whole Slide Image ‘Whole slide image with grid HPF image (40X magnification)

Figure 1: High power field image (40X magnification) generation

Table 2
Comparative results of different dataset and methods

Reference Dataset Used F-score Precision Recall | Accuracy
[45] MITOS-ATYPIA-14 0.734 0.826 0.66 -
10] 0.782 0.88 0.70 -
[15] 0.70 (Aperio images), 0.74 (Aperio images), .

0.56 (Hamamatsu images) | 0.71 (Hamamatsu images)
22 0.659 0.74 0.59 -
39 0.513 0.46 0.57 -
17 0.397 0.28 0.68 -
42 0.374 0.14 0.80 -
14 - 0.7345 0.84 0.65 -
] o e —
20 ; 0.34 - - -
21 0.64 - 0.67 -
26 - - - 0.84
0.7094 (Aperio images),

(27, [29) 0.7011 (Hamamatsu images) B B }
16 0.7847 0.80 0.77 -
30! 0.74 0.76 - -
33 - - - 0.859
30! - 0.7304 0.8235 -
36, - - 0.8680 0.8794
14 AMIDA13 0.319 - - -
46! 0.6133 - - 0.8695

and one fully-connected layer. The convolution layer contains 64 neurons; the
pooling layer comprises of 128 neurons and the fully-connected layer contains
256 neurons. The parameters of the each layer were fixed, i.e. 8 x 8 convolution
kernel size, 2 x 2 pooling kernel size. The handcrafted features used in the
model are morphological (eccentricity, area, compactness, smoothness, etc.),
textural (concurrence features and run-length features) and intensity features
(median, mean, variance, interquartile range, maximum/minimum ratio, range
etc.). They tested the model on ICPR 2012 dataset and achieved F-measure
of 0.7345. Another CNN based mitosis detection technique has been described
in [49]. They used CNN based feature along with nuclear features in this
model. They tested on the ICPR 2012 dataset and achieved F-score 0.589 on the
multispectral scanner and F-score 0.659 on the color scanner. They concluded
that this technique provides majority mitosis with fair precision value (0.747
in Aperio, 0.759 in Hamamatsu and 0.738 in the multispectral scanner). In
[44], convolutional neural network along with additional aggregation layer for



learning from crowds have been employed for mitosis detection. The methodology
used AMIDA13 Challenge BC histopathology image dataset achieved an overall
F1-score of 0.433, a precision of 0.441 and a recall of 0.424.

Unlike most of the deep learning models involving convolutional, resizing and
handcrafted layers, the approach presented in this paper employs deep learning
for high-level feature learning. In our proposed deep architecture, the size of
mitosis as well as non-mitosis patches were assigned the pixel size of 71 x 71
at 40x magnification. Every patch contains only a single object, i.e. mitosis
or non-mitosis, that would be suitable for the building of a supervised deep
learning model. Therefore, we included handcrafted features instead of only
deep learning network (DLN). On the other hand, to extract some additional
features, handcrafted features are trained in a supervised fashion. Moreover,
this supervised technique is much more efficient than the usual deep learning
techniques. This method permits us to detect mitosis and non-mitosis efficiently
from the large cohort of BC histological images.

The novelties of this paper are:

e The proposed deep architecture is efficient to learn and classify from a
large number of non-annotated histological image data.

e The handcrafted features have been merged with the DLN features and all
the features directly fed to the first fully connected layer which represents
high-level representation of mitosis and non-mitosis.

e Handcrafted layer allows quick traversal through large images for detection
of single mitosis more accurately and efficiently.

To summarise, this paper incorporates the handcrafted features and deep
learning based high-level features for mitosis detection. Our proposed approach
is efficiently detecting mitosis patches from whole slide HPF images.

3. EXPERIMENTAL SETUP

8.1. Dataset

The proposed method has been assessed on the MITOS-ATYPIA-14 (1,136
training and 991 testing frames), ICPR-2012 (35 training and 15 testing frames)
and AMIDA-13 (326 training and 259 testing frames) dataset [10, 12, 50]. The
slides were stained with routine H&FE stain. The images were scanned by
Hamamatsu NanoZoomer 2.0-HT and Aperio Scanscope XT. The size of MITOS-
ATYPIA-14 images were for Aperio scanner 1539 x 1376 pixels (width x height),
1 pixel= 0.2456 pm and Hamamatsu scanner 1663 x 1485 pixels (width x height),
1 pixel= 0.2273 pm. The size of ICPR-2012 images were for Aperio 2048 x 2048
pixels (width x height), 1 pixel= 0.2456 pm and Hamamatsu scanner 2252 x 2250
pixels (width x height), 1 pixel= 0.2273 pum. The size of AMIDA-13 images
were for Aperio scanner 2000 x 2000 pixels (width X height), 1 pixel= 0.2456 pm.
For all the dataset image, dimension is different, but magnification (40x) and
pixel resolution are fixed, for a particular type of scanner.



3.2. Deep Learning

3.2.1. Convolutional Network (CN)

It is an arrangement of an order of hidden layers. Let’s, CN denoted by ‘f’ and
order of ‘I’ layers / functions (f1, f2, fg,«evn--. fi) that feed to the input ‘w’
vector to an output ‘z’ vector. Mathematically, we can write [39] [51] [52]:

x:f(w;vl,vg,vgg ...... ’Ul)

= fi(swi) o fo(swe) o fioa(wi—1) o fi(;wy)

Here, ‘v;’ represents weight and bias vector for I*" layer, i.e., ‘f;’. ‘f;’ has
been used to perform pooling, non-linear activation and convolution with bank
of filters. As per stochastic gradient descent method, numerical optimisation
problem is calculated by:

(1)

M
1 X )
Optvl,vz.,.vl - MZQ(f(wl, V1, V2, ’U3...Ul), J,‘Z) (2)

i=1

Where '’ denotes loss function, ‘M’ is number of data.

3.2.2. Rectified Linear Unit
Rectified linear unit (ReLU) works as an activation function. In caffe, ReLU
with gradient descent is defined as [42]:

g(r) = max(0,r) (3)
Where, ‘g’ denotes model’s output function with an input ‘r’.

8.2.3. Pooling Layer

Pooling layer is employed to down-samples the image size by a constant
factor, i.e., 2 or 3 [37]. This layer improves the filter selectivity. This layer
produces single output by sub-sampling the convolutional layer. We have used
max-pooling layers, which consider a maximum of the block, in the model.

8.2.4. Fully Connected Layer

In deep learning, fully connected (FC) layer works as a classifier. FC layer
is not spatially located and serves as a simple vector. This layer produces an
output like single vector. In the proposed model, the fully connected layer height
and width of each blob are set to 1.

3.2.5. Dropout Layer

Dropout layer is basically used to set the hidden neurone output to zero
[42]. In the proposed model, dropout value is set to 0.05. The dropout neurones
will not be useful for back-propagation or forward pass. This layer reduces
the co-adaption complexity of neurones. In the proposed architecture, in order
to avoid overfitting, the dropout layer has been included after the first fully
connected layer.



8.2.6. Handcrafted Features Layer

A lot of research articles has been dedicated to select handcrafted features
in conventional mitosis detection techniques. However, it is tedious and time-
consuming to mathematically describe the domain specific knowledge and human
intuition. Moreover, human heuristics may not guarantee the performance of a
feature on a related machine learning problem. An increasing number of papers
demonstrate that handcrafted features and deep learning alone provide the best
result in computer vision problem. Inspired by this concept, we compile both the
techniques to achieve a better result. The handcrafted features played a vital role
in the proposed architecture. We used handcrafted features issued from previous
medical challenges MITOS @ ICPR 2012, AMIDA-13, and projects (MICO ANR
TecSan) expertise. In our methodology, handcrafted features mainly consist of
morphological, textural and intensity features [53, 54, 55]. The morphological
features mainly signify characteristics of mitosis shape. The texture and intensity
features represent textural and statistical characteristics of mitosis region. All
the features have been extracted from the masked RGB image patches of training
dataset. The table 3 shows the 55 Hand-crafted features extracted from the
mitosis and non-mitosis image patches (* represents significant).

8.8. The Proposed Deep Learning Architecture

At first, whole slide images were processed using openslide software to get
HPF images. Fig. 1 shows the flow of HPF image generation (40X magnification),
an image adopted from [56]. Then, the HPF colour images have been converted
into blue ratio images [Fig. 2]. The main goal of the conversion is to find the most
prominent and high brightness objects within the image. Mathematically, the
conversion from RGB to Blue Ratio image is denoted by the following equation
[46]:

100 x B 256

BlueRatio
v = T R TG 1Y R+ G+ B

(4)

Here, ‘R’ denotes red channel intensity ‘B’ denotes blue channel intensity
and ‘G’ denotes green channel intensity.

The blue ratio images are then processed by morphological erosion and
dilation operations. The gray scale erosion is denoted by the below equation
[57):

(r&s)(p,q) = min{r(p+pqa+q)—s,a) | (o, @) € Vi} (5)
Here, (r&s) represents binary erosion of r and the structuring element s. Vj

represents the domain of the structuring element s and r(p,q) assigned to +oc.
Now, for flat structuring element, gray scale erosion will be,

(res)(p,q) = min{r(p+p,q+q)| (p/,q!) € Vs} (6)



Table 3 The 55 Hand-crafted features extracted from the mitosis and non-mitosis image

patches
Sl. No. | Features Mitosis Non-mitosis
1 Area* 7.475+1.769 9.022+2.246
2 Perimeter® 27.595+6.936 31.824+6.304
3 Compactness 112.158+22.610 113.890£23.592
4 Eccentricity 0.84140.189 0.824+0.210
5 Zernike moment NaN NaN
6 Area equivalent diameter 8.973+£0.949 8.974£1.134
7 Perimeter equivalent diameter® 16.919+4.005 20.422445.084
8 Form factor* 0.334+0.042 0.115+0.024
9 Convex area™ 66.694+16.807 79.319+17.696
10 Solidity* 0.85240.050 0.40540.059
11 Roundness* 0.658+0.123 0.375+0.114
12 Aspect Ratio*® 1.395+0.254 1.057+0.273
13 Concavity™* 11.540+5.669 15.160+4.733
14 Rectangularity 0.698+0.040 0.682+0.059
15 Fourier descriptor* 62007.048+16264.126 | 70987.962+12160.941
16 Mean intensity 1.844+0.293 1.798+0.358
17 Energy 1.825+0.291 1.84240.354
18 Homogeneity 2.237+0.292 2.267+0.354
19 Spot area ratio 2.827+0.289 2.787+0.384
20 Contour,irregularity 0.165£0.223 0.24240.356
21 Area irregularity 0.22340.068 0.21840.067
22 Area overlapped,Ratio 0.177+0.056 0.179+0.089
23 Euler number 0.218+0.067 0.223£0.066
24 Extent 0.775+0.041 0.281+0.081
25 Major axis length 0.796+0.052 0.800+0.044
26 Minor axis length 0.757+0.043 0.754+0.061
27 Average radial ratio 0.704+0.048 0.705+0.051
28 Hausdorff dimension* 15.168+0.389 10.743+0.056
29 Smoothness* 13.326£7.901 26.354+9.227
30 Standard distance,ratio® 14.540+8.038 23.871£8.004
31 Autocorrelation*® 13.460+7.623 26.104+8.834
32 Contrast™* 33.699+1.460 24.098+8.166
33 Correlation-1* 3.370+1.342 6.602+1.249
34 Correlation-2* 3.605+1.361 6.203+1.174
35 Cluster Prominence 3.395+1.290 3.576+1.229
36 Cluster Shade 0.09540.028 0.10540.034
37 Dissimilarity 0.12540.035 0.11440.044
38 Skewness * 0.5024+0.029 0.927+0.033
39 Entropy* 0.32240.034 0.814+0.039
40 Homogeneity 0.60040.077 0.60540.095
41 Maximum probability 0.6754+0.079 0.662+0.097
42 Sum of squares 0.617+0.077 0.603£0.092
43 Sum average 0.676+0.078 0.692+0.096
44 Sum variance* 0.798+0.178 1.00840.209
45 Sum entropy 0.9484+0.178 0.957+0.219
46 Difference variance 0.978+0.168 0.963£0.200
47 Difference entropy 0.054+0.176 0.057+0.212
48 Information measure of correlation-1 0.9624+0.010 0.958+0.012
49 Information measure of correlation-2 0.9524+0.013 0.949+0.016
50 Inverse difference homogeneity 0.960+0.011 0.955+0.012
51 Inverse difference normalized 0.9434+0.013 0.9414+0.014
52 Inverse difference moment normalized* 0.82440.052 0.467£0.067
53 Maximum ratio* 0.81540.053 0.359+0.069
54 Minimum ratio* 0.822+0.051 0.566£0.065
55 Haralick feature* 0.816+0.053 0.45940.068

10




(b)

Figure 2: RGB to Blue ratio image conversion (a) original RGB image; (b) blue ratio image

Where, s(p,q)=0.
In the same way, the dilation equation for flat structuring element gray scale
image is,

(r®s)(p,q) = max{r(p —p,q —q) | (pt,qr) € Vi } (7)

Erosion and dilation help in removing unnecessary objects in a blue ratio
image. We found the centroid of each objects. On the basis of centroid, we
crop the image into small patches (mitosis and non-mitosis). The small patches
of w x w= T1 x 71=5041 pixels are collected and passed to the model. To
contain mitosis/non-mitosis within the above mentioned patch size under 40x
magnification resolution image is enough. The non-mitosis patches do not contain
any mitosis or any part of mitosis and vice-versa. For the proposed architecture,
we rotated patches into 0°,45%, 90° and 180" to diminish the rotation-variant
issue of the input features and to increase the number of training dataset. All
patches are in RGB image format. Let’s, the number of colour channels is denoted
by (T) = 3. In the input layer of the proposed deep learning architecture, patch
represents vector pixel intensity in the form of column vector. Therefore, there
are d,=so= 3 X 71 x 71= 15123 inputs. Here, 2 x 2 region corresponds to 4
input pixels. This region is called Local receptive fields (LRF). Now, we move
the LRF across the whole image. In the first input layer the LRF is being moved
by one layer pixel at a time. This length is called stride length.

The proposed deep learning model has been developed using CAFFE deep
learning framework [38]. The model contains mainly two sections, i.e., the first
section is deep architecture and the second section is handcrafted features. The
deep architecture contains five convolution layer, four max-pooling layer, four
ReLU, and two fully connected layer. ReLU has been used after each convo-
lutional layer [36]. Dropout layer has been included after first fully connected
layer [43]. For better result, the dropout ratio is set to 0.05. Table 4 shows

11



architectural details of the proposed deep framework. The workflow diagram of
the proposed deep framework has been shown in Fig. 3. The Fig. 4 illustrates a
flow diagram of the handcrafted feature generation. The overall methodology has
been described in Fig. 5. This model is inspired by [42] and [40]. Our proposed
model learns from the labeled data.

Table 4
Proposed deep learning architecture

Layer Type Maps | Neurons | Filter size

0 Input image 3 71x71 -

1 Conv 90 70 x 70 2x2
2 Max-pooling 90 35 x 35 2x2
3 Conv 256 32 x 32 4x4
4 Max-pooling 256 16 x 16 2x2
5 Conv 384 14 x 14 3x3
6 Max-pooling 384 7Tx7 2x2
7 Conv 512 6x6 2x2
8 Max-pooling 512 3x3 2x2
9 Conv 512 2x2 2x2
10 FC-1 - 1000 1x1
11 FC-2 - 2 1x1

8.4. Parameter Initialisation and Training

Before training, we initialise few relevant parameters (e.g., training batch
size, validation batch size, the number of testing iteration, etc.). We have total
11,921 (6,800 mitosis + 5,121 non-mitosis) training image patches (ts) and 4323
validation image patches (v). Training batch size is calculated by the total
number of training images processed together in a single batch. In our proposed
model training batch size (tps) is set to 256. Alternatively, validation batch
size (vps) is the total number of validation images processed together for test
phase. In the proposed model, ‘v’ is set to 50. Testing iteration (test;.) is
calculated as: test;y,= (vs/vps). Testing interval (test;,,) determines how often
you validate the model. Here ’test;,,’ is set to 5000. So to cover the entire
training set or completing an epoch, we have to run (s /tss) iterations. Maximum
iteration is set to 300,000, weight decay 0.005, learning rate 0.01 and momentum
0.9. The architecture was trained using stochastic gradient descent approach.

4. EXPERIMENTAL RESULTS

4.1. Qualitative Results

Total 55 features among all categories have been extracted. After that, the
student’s t-test has been performed and we got 24 significant (p <0.05, 95% con-
fidence interval) features out of 55 features. Fig. 6 shows the correlation matrix
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Figure 3: Flow diagram of the proposed deep learning network

Table 5
Performance measures for mitosis detection

Scanner types | Confusion Matrix | Precision | Recall | F-score
. 172 23
Aperio 13 160 0.92 0.88 0.90
171 24
Hamamatsu 13 160 0.92 0.88 0.90
Average 0.92 0.88 0.90

for 24 global features (p<0.05) for image classification. | Corrcoef(z,y) |=1
means highest correlation and | Corrcoef(z,y) |= 0 indicates no correlation.
The visualisation of first layer filters and trained high-level (i.e., first, second,
third, fourth and fifth hidden layer) features are shown in the Fig. 7. Only 100
feature maps have been shown in each hidden layer to visualise the maps clearly.
These features illustrate the proposed deep architecture, allowing the detection
of mitosis from the image patches.

The qualitative and detection results of the proposed architecture have
been shown in Fig. 8 and Fig. 9 respectively. In these images, the yellow
circle represents the true mitosis; the green circle represents the non-mitosis.
These results suggested that the proposed architecture is working well for better
detection of mitosis and non-mitosis.

4.2. Quantitative Evaluation

According to the MITOS-ATYPIA-14 challenge evaluation criteria, if the
coordinates of the detected mitosis centroid to the ground truth mitosis centroid
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Figure 7: Shows filters and learned features maps of the proposed deep network, (a) first layer
filter (b) first hidden layer 90(10 x 9) units. (c) second hidden layer 100(10 x 10) units. (d)
third hidden layer 100(10 x 10) units. (e) fourth hidden layer 100(10 x 10) units. (f) fifth
hidden layer 100(10 x 10)

Table 6
5-fold cross-validation
Cross-Validation | Pr | Re | F-score
1st FOLD 0.92 | 0.88 0.90
2nd FOLD 0.92 | 0.90 0.90
3rd FOLD 0.91 | 0.88 0.89
4th FOLD 0.92 | 0.88 0.90
5th FOLD 0.92 | 0.87 0.89
Average 0.92 | 0.88 0.90
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Figure 8: The mitosis detection results

Figure 9: The mitosis detection results on HPF images at 40x magnification, Hamamatsu
scanner: (a) original image, (b) final result mitosis (yellow circle) and non-mitosis (green
circle); Aperio scanner: (c) original image, (d) final result mitosis (yellow circle) and
non-mitosis (green circle)
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Table 7
Comparison with other methodologies
References Pr | Re | F-score
13 0.83 | 0.66 -
47 0.84 | 0.65 0.73
33 0.88 | 0.70 0.78
Proposed method | 0.92 | 0.88 0.90
1
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g 05
= 04
03
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0 PROPOSED IPAL CUHK MINES YILDIZ STRASBOURG
|DF—score 0.9 0.734 0.356 0.235 0.167 0.024

Figure 11: Comparison of F-score values using various methods on MITOS-ATYPIA-14

dataset
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Table 8
Performance with/without handcrafted features

Proposed Method Pr | Re | F-score
Without handcrafted features | 0.86 | 0.69 0.76
With handcrafted features 0.92 | 0.88 0.90

Table 9
Performance based on various combinations of training and testing dataset

Training tmages (%) | Testing images (%) | Pr | Re | F-score
25 75 0.92 | 0.88 0.90
50 50 0.93 | 0.88 0.90
75 25 0.94 | 0.89 0.91

are within a range of 8 pum, then the detected mitosis will be considered as
true positive [10]. The model is quantitatively evaluated using precision (Pr),
recall(Re) and F-Score [58].

Pr x Re

F =2X —— 8
score Pr+ Re (8)

True Positive
Pr = 9
" True Positive + False Positive 9)

True Positive
= 10
Re True Positive + False Positive (10)

Table 5 shows the performance measures of Hamamatsu NanoZoomer 2.0-HT
and Aperio Scanscope XT scanner images. The proposed model achieved 0.92
precision, 0.88 recall and 0.90 F-score value. The ROC curve is shown in Fig. 10.
The area under the curve is 0.875 (green line denotes the reference line). The
results of Table 5 suggest that the proposed model achieves the high precision,
F-Score and recall value in comparison with the existing other methods. High
true positive rate or precision signifies more accurate results for mitosis detection.
In our problem, we only knew the total number of mitosis patches. However, we
were unaware of the number of non-mitosis patches in the testing data. Therefore,
for testing the number of non-mitosis is considered for almost all non-mitosis
portions in the image. The results show the importance of the model along with
handcrafted feature, the relatively poor performance of the existing models or
models without the handcrafted layer. It is the most interesting result of this
work. Usually, people are adopting deep learning to extract features (i.e. without
performing manually) automatically. In this case, the use of handcrafted ones is
making things better. Table 8 shows the performance comparison table between
with and without using handcrafted features. The performance measures without
handcrafted features show comparatively lower precision, recall and F-score value
in comparison with the proposed method. This table shows that deep learning
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Figure 12: Training performance graphs: (a) Loss vs iteration graph, (b) accuracy versus
iteration graph

with handcrafted features confirms mitosis and non-mitosis more accurately in
comparison to the one without handcrafted features.

4.3. Comparative Results

We engaged 5-fold cross validation where each subset was included 20% of
the total data. The each fold cross-validation performances has been shown in
table 6. Table 7 shows comparison result among most recently published articles
and the proposed model. From this table, it is evident that our model performs
satisfactorily regarding F-score, precision and recall value than the existing
methods worked on similar kind of dataset. Fig. 11 shows the comparative graphs
of F-score value on the MITOS-ATYPIA dataset. Furthermore, performances
based on various combinations of training and testing dataset have been discussed
in table 9.

4.4. Computation Time

In clinical application, computation time is crucial as WSI images consist
of thousands of HPFs. The superiority of our proposed model is that it’s
detection time is very less. It took around 0.3 seconds for each HPF input image
patch. Furthermore, the proposed cascaded framework achieved a comparable
classification accuracy of 98%. It makes the framework possible for real-world
clinical applications. Fig. 12 shows training performance graphs. During training,
classification accuracy observed more than 98% at the 120,000 iterations.

5. DISCUSSION

Histopathological images are contaminated with subjectivity and incomplete-
ness. These are unavoidable to morphological variation and a sheer number of
mitosis. The architecture presented in this paper on the basis of dataset available
in hand. An extensive network requires more training time, more variation in
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the representations of high-level object and expenses for other resources. In
the proposed model, morphological, textural and intensity features deliver best
results. Selection of input features is very much important because suitable
features reduce the time duration, complexity and provide better performance.

Automatic mitosis detection from BC histopathology images could provide
better benefits to pathologists in many ways. The most important application is
to locate, identify and count all mitosis in HPF images. This technique could
facilitate quantitative analysis, reduce intra-observer variability and remove
tediousness in routine pathological practice. There has few limitation which has
been discussed below:

5.1. Limitations

e First, the proposed framework has been trained based on 40x magnification
images. Hence, it may not work properly if lesser or higher magnification
images are used.

e Second, the shape of mitotic figures is different in each of the mitosis phases
which may increase false positive rate.

e Third, huge datasets are required for training using deep learning. This
is one of the main obstacles the researchers may face as there are very
limited standard dataset available online.

e Fourth, due to some possible variation in the slide preparation (staining
process, concentration, proportion, etc.), pathologists may miss some
prominent mitotic figures.

These limitations can be reduced to a greater extent if the image patches
are selected with proper concentration and expertise.

6. CONCLUSION

The proposed model has been used for automated detection of mitosis in
routine H&E stained BC histology images. The use of deep architecture reinforced
with handcrafted features issued from three challenges increased the performance
of the proposed deep learning framework. The comparison results show the
strength of the proposed methodology. Moreover, the F-score, precision and recall
value indicates better performance evaluation results as compared with the other
existing techniques. The proposed deep architecture can enable classification
of topological features on BC tumour histology. Finally, the presented mitosis
detection model could potentially offer a useful tool to pathologists for a better
understanding of BC grading.
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blue ratio image

. Figure 3: Flow diagram of the proposed deep learning network

. Figure 4: Work flow diagram of the handcrafted features generation

. Figure 5: Flow diagram of the proposed methodology

. Figure 6: Correlation matrix for 24 global features for image classification

. Figure 7: Shows filters and learned features maps of the proposed deep net-

work, (a) first layer filter (b) first hidden layer 90(10 x 9) units. (c) second
hidden layer 100(10 x 10) units. (d) third hidden layer 100(10 x 10) units.
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Figure 9: The mitosis detection results on HPF images at 40x magnifi-
cation, Hamamatsu scanner: (a) original image, (b) final result mitosis
(yellow circle) and non-mitosis (green circle); Aperio scanner: (c) original
image, (d) final result mitosis (yellow circle) and non-mitosis (green circle)

Figure 10: ROC curve

Figure 11: Comparison of F-score values using various methods on MITOS-
ATYPIA-14 dataset

Figure 12: Training performance graphs: (a) Loss versus iteration graph,
(b) accuracy versus iteration graph

Table Captions

1.

Table 1. Categorization of mitosis detection approaches
Table 2.Comparative results of different dataset and methods

Table 3. The 55 Hand-crafted features extracted from the mitosis and
non-mitosis image patches

. Table 4. Proposed deep learning architecture

Table 5. Performance measures for mitosis detection
Table 6. 5-fold cross-validation

Table 7. Comparison with other methodologies

Table 8. Performance with/without handcrafted features

Table 9. Performance based on various combinations of training and testing
dataset
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