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Symmetry properties of macroscopic transport coefficients
in porous media
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We report on symmetry properties of tensorial effective transport coefficients characteristic of many 
transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the 
macroscopic models (derived by upscaling (volume averaging) the governing equations at the under-
lying scale) are obtained from the solution of closure problems that allow passing the information 
from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are 
identified from a formal analysis of the closure problems and this is illustrated for several differ-
ent physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial 
effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds 
model including slip effects, single-phase flow in heterogeneous porous media embedding a porous 
matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as 
well as dispersive heat and mass transport. The results from the analysis of these study cases are 
summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly 
decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, 
the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in 
the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains 
valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability 
tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, 
whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat 
transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter 
being a consequence of convective transport only. A similar result is achieved for mass dispersion. 
Beyond the physical mechanisms under consideration in the present work, the reported technique can 
be viewed as a general methodology applicable to any type of upscaled model obtained by volume 
averaging. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979907]

I. INTRODUCTION

Modeling transport phenomena in porous media at the
pore-scale is often not sufficient for applications as a macro-
scopic description of the physical mechanisms through flux-
to-force relationships is of more practical interest. Derivation
of macroscale models from the underlying physics at the pore
scale is hence of major importance, and this can be carried out
with the aid of an upscaling technique such as volume averag-
ing,1 homogenization,2 thermodynamically constrained aver-
aging theory,3 or stochastic approaches.4 For most of them,
the idea consists in the derivation of an upscaled model that
involves macroscopic coefficients together with the appropri-
ate boundary-value problems allowing the prediction of these
coefficients for a given microstructure and transport conditions
taking place in the porous medium. To complete the descrip-
tion and the understanding of the physics at the macroscopic
scale, knowledge of the symmetry properties of the macro-
scopic transport coefficients is very important. In a general
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sense, a tensorial transport coefficient relates the flux to the
force in the macroscopic model. When this coefficient is sym-
metric, it indicates that the flux in the ith-direction due to a
force in the jth-direction is exactly the same as the flux in
the jth-direction due to the same force in the ith-direction,
whatever the microstructure of the medium, and this repre-
sents fundamental information on the transport process. In
other words, accounting for the symmetry properties of the
coefficients involved in macroscale models is essential from
a mathematical viewpoint, especially in terms of the manipu-
lations related to the macroscale flux terms. The importance
of the symmetry properties is also evident for the characteri-
zation of transport phenomena in multiscale systems from an
experimental or numerical point of view, as the knowledge
of the number of independent components of the tensors that
need to be determined is of prime interest. Moreover, if an
effective-medium equation is taken as the departing model for
a subsequent upscaling process, knowledge of the symmetry
properties of the associated coefficients is crucial to analyze the
properties of the coefficients involved in the resulting larger-
scale model. A clear example of the above is the study of
momentum transport in porous media. Since the derivation
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of the vector form of Darcy’s law involves a permeability
tensor, the properties of this tensor appear to be ambiguous
when this macroscale model is applied to situations different
from steady and incompressible creeping flow in rigid and
homogeneous porous media, where it is well-known that this
tensor is symmetric as will be recalled below. Under inertial
flow conditions, there may be situations in which this ten-
sor is quasi-symmetric or even skew-symmetric, depending
on the value of the Reynolds number. If more than one phase
is involved, the porous medium structure is heterogeneous, or
the flow is not incompressible, the properties of the perme-
ability tensor become more obscure. Certainly, these doubts
are extensible to the dispersion tensor involved in heat or mass
transport in porous media.

To be more precise, a quick review of the literature dealing
with the analysis of the symmetry of macroscopic transport
coefficients shows that this property has been reported for
few transport mechanisms only. The intrinsic permeability ten-
sor for one-phase incompressible momentum transport in the
creeping regime is probably the one for which symmetry has
been studied most frequently, from energy considerations,5

double-scale homogenization,6–9 stochastic approach,10 or
volume averaging.1,11,12 When inertia is present, there is no
formal result available regarding the symmetry properties of
the apparent permeability tensor except some observation that
it is not symmetric in general as obtained from the volume
averaging procedure applied to the incompressible Navier-
Stokes equations11 or from numerical simulations.13,14 Non-
symmetry of the apparent permeability tensor for single-phase
slip-flow was only mentioned in the work by Skjetne and Auri-
ault8 using homogenization. It was recently addressed in more
detail by Lasseux et al.12 by means of the volume averag-
ing method. In the case of two-phase flow in homogeneous
porous media, symmetry of the effective (or dominant) perme-
ability tensors was reported together with reciprocity relation-
ships for the coupling permeability tensors in accordance with
Onsager’s principle, both in the context of homogenization9,15

and volume averaging.16,17 The case of mass dispersion of a
tracer is strikingly a situation where confusion on the symme-
try properties of the dispersion tensor reported in the literature
has lasted for several decades. The dispersion tensor was some-
times assumed (without any proof) to be non-symmetric in the
general case.1,18–20 Some proof was provided while employ-
ing double-scale homogenization21 or volume averaging.22

Conversely, symmetry of this tensor is often implicitly pos-
tulated,23 demonstrated when determined from the method of
moments,24–26 or simply considered as such because any non-
symmetric component in this tensor would be unimportant in
the estimation of the dispersive flux in the macroscopic dis-
persion equation.1,18,20 It is sometimes invoked on the basis
of Onsager’s reciprocity arguments.27,28 Onsager’s arguments
have been widely employed in the upscaling process from the
molecular scale to the continuum scale to justify reciprocity of
the coupling at the continuum scale.29,30 However, they do not
necessarily apply for subsequent upscaling procedures leading
to macroscopic transport models in porous media.21,31 In all
cases mentioned above, it must be noted that the symmetry
analysis of macroscopic tensorial transport coefficients does
not rely on a well-defined and systematic methodology. There

are many other transport processes, apart from those cited
above, for which, to the best of our knowledge, no results at all
were reported so far on the symmetry properties of the macro-
scopic coefficients present in the upscaled models. The case of
single-phase incompressible flow through fractures featuring
heterogeneous aperture fields, or through strongly heteroge-
neous porous materials embedding porous matrix and clear
fluid regions, together with heat dispersion are amongst the
principal ones.

The focus of the present work is hence laid upon an
efficient method dedicated to the analysis of the symme-
try properties of macroscopic coefficients arising in upscaled
transport models within the framework of the volume aver-
aging method (detailed in Appendix A). With this purpose
in mind, a series of problems dealing with momentum, heat,
and mass transport in porous media are analyzed. In all
cases, we limit our presentation to the pore-scale model, the
upscaled model, and the ancillary closure problems, so that
attention can be directed to the reformulation and symme-
try properties analysis of the corresponding effective-medium
coefficients.

The paper is organized as follows. In Section II, study
cases related to momentum transport are considered, namely,
inertial one-phase flow, slip flow in the creeping regime, flow
in a fracture including slip effects, one-phase flow in a medium
embedding a porous matrix and a clear fluid region, and finally
creeping two-phase flow. In Section III, dispersive heat and
mass transport in homogeneous porous media are subsequently
analyzed, highlighting the relevance of the symmetric and
skew-symmetric parts of the associated macroscopic transport
coefficients. Finally, the corresponding conclusions are pre-
sented in Section IV. The derivations in all the study cases
require the use of tensor analysis; thus for the sake of brevity
in presentation, a list of the most relevant tensor identities is
provided in Appendix B, together with some important recalls
on vector and tensor algebra necessary to recover them.

II. MOMENTUM TRANSPORT
A. Inertial one-phase flow

Consider the steady, incompressible, and Newtonian flow
of a single fluid phase β saturating a rigid and homogeneous
porous medium, for which the solid matrix is referred to
as the σ-phase. The configuration is schematized in Fig. 1
where we have represented the macroscopic region VM of
scale L and the averaging domain V of radius r0 over which
the pore-scale physical model is averaged and where the β-
phase and σ-phase can be identified. The governing equations
for total mass and momentum transport at the pore-scale are
given by

∇ · vβ = 0, in Vβ , (1a)

ρvβ · ∇vβ = −∇pβ + µ∇2vβ , in Vβ , (1b)

vβ = 0, at Aβσ . (1c)

As indicated by Eq. (1c), the fluid velocity is subject to
the nonslip boundary condition at the solid-fluid interface
Aβσ . Throughout this work, ρ and µ are used to denote
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FIG. 1. Sketch of a system, consisting of a porous medium saturated with
a single fluid phase including characteristic lengths and a sample of the
averaging domain.

the density and dynamic viscosity of the β-phase for single
phase-flow.

As detailed by Whitaker,11 the resulting upscaled model
arising from the volume averaging method consists of the
macroscale continuity equation,

∇ · 〈vβ〉 β = 0 (2a)

and the following Darcy-like equation:

〈vβ〉 = −
H
µ
· ∇〈pβ〉

β . (2b)

Here the superficial averaged velocity and pressure are defined
as (see Appendix A)

〈vβ〉 =
1
V

∫
Vβ

vβdV , 〈pβ〉
β =

1
Vβ

∫
Vβ

pβdV . (3)

Note that 〈vβ〉 = ε〈vβ〉 β , with ε being the porous medium
porosity. In addition, the apparent permeability tensor H is
defined as

H = 〈E〉. (4)

In the above expression, the second-order tensor E is a clo-
sure variable that maps 〈vβ〉 β onto the spatial variations of
the fluid velocity, ṽβ , and it satisfies the following boundary-
value problem (see the work of Whitaker11 for details in the
derivation):

∇ · E = 0, in Vβ , (5a)
ρ

µ
vβ · ∇E = −∇e +∇2E + I, in Vβ , (5b)

E = 0, at Aβσ , (5c)

ψ(r) = ψ(r + li), ψ = E, e, (5d)

〈e〉β = 0. (5e)

At this point, it is worth mentioning that the developments
presented this far involve adopting a set of length-scale con-
straints and assumptions as explained in item 5 of Appendix
A. One of these scaling postulates is that a periodic unit cell

is a reasonable solution domain for the above closure problem
and thus the periodic boundary condition given in Eq. (5d). In
this problem, the vector e is another closure variable that maps
〈vβ〉β onto the spatial variations of the fluid pressure, p̃β . Note
that ∇E is a third-order tensor which is defined in Eq. (B3)
of Appendix B. This closure problem has been numerically
solved by Lasseux et al.14 on unit cells of model structures
for several Reynolds number values and incident flow angle
orientations.

Our objective in this section is to analyze the structure of
the apparent permeability tensor H. From Eq. (4), it follows
that, in order to gain more knowledge about this coefficient, it
is necessary to have more insight into the closure variable E.
With this in mind, let us pre-multiply Eq. (5b) by ET and take
into account the solenoidal nature of the fluid velocity fields,
in order to obtain

ρ

µ
ET
· ∇ ·

(
vβE

)
= −ET

· ∇e + ET
· ∇2E + ET . (6)

Applying the superficial average operator to this equation leads
to
ρ

µ

〈
ET
· ∇ ·

(
vβE

)〉
= −

〈
ET
· ∇e

〉
+

〈
ET
· ∇2E

〉
+ HT , (7)

where, for the last term of the above equation, we used the
definition given in Eq. (4). Moreover, employing the identity
in Eq. (B18) of Appendix B, taking into account Eq. (5a),
and after using the spatial averaging theorem in its divergence
form as indicated in Eq. (A2) of Appendix A, the first term
on the right-hand side (rhs) of the above equation takes the
form〈

ET
· ∇e

〉
=

〈
∇ ·

(Ee
)〉
= ∇ ·

〈Ee
〉

+
1
V

∫
Aβσ

n · EedA, (8)

where n denotes the unit normal vector to the Aβσ inter-
face directed from the β- to the σ-phase (see Fig. 1). Note
also that Ee is a third-order tensor resulting from the outer
product defined in Eq. (B11) of Appendix B. When the inter-
facial boundary condition given by Eq. (5c) is considered and
while limiting the analysis to the bulk of the porous medium
where average quantities are position-invariant, it results that〈
ET
· ∇e

〉
= 0 and Eq. (7) can be written as

ρ

µ

〈
ET
· ∇ ·

(
vβE

)〉
=

〈
ET
· ∇2E

〉
+ HT . (9)

Directing the attention to the first term on the rhs of this equa-
tion, and using successively the identities reported in Appendix
B in Eqs. (B21), (B12), and (B22) (taking A to be ET and B
to be E) and Eq. (B16), we have〈

ET
· ∇2E

〉
=

〈
∇2ET

· E
〉T

=
〈
∇ ·

(
∇ET

· E
)〉T
−

〈
(∇ET )

T1
: (∇E)T1

〉T

=
〈
∇ ·

(
∇ET

· E
)〉T
−

〈
(∇E)T3 : ∇E

〉T
. (10)

In this result, one must keep in mind that ∇E (or ∇ET ) is
a third-order tensor. Since the transposition operation is not
unique for this type of tensors, we have used the superscript
T1 to denote the transpose that permutes the first and second
indices as defined in Eq. (B8) of Appendix B, i.e. (C is a
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third-order tensor),
(
CT1

)
ijk
= Cjik , while the superscript T3

denotes the transpose that permutes the first and third indices
as defined in Eq. (B9) of Appendix B, i.e.,

(
CT3

)
ijk
= Ckji.

In addition, throughout this work, the nested convention is
adopted for double inner products (see Eqs. (B5) and (B7) in
Appendix B).

Applying the spatial averaging theorem to the first term on
the rhs of the last above equation and using similar arguments
as those used to simplify Eq. (8) (i.e., the nonslip-like boundary
condition in Eq. (5c) and the fact that average quantities are
considered as constants at the closure level), it is not hard to
conclude that this term is zero. Consequently, Eq. (9) can now
be written as

HT
=

〈
(∇E)T3 : ∇E

〉
+
ρ

µ

〈
ET
· ∇ ·

(
vβE

)〉
. (11)

The first term on the rhs of this result is clearly symmetric. As a
matter of fact, under creeping-flow conditions, this is the only
term remaining in the definition of the intrinsic permeability
tensor and it is the proof that this tensor is symmetric7 (see
also Problems 4 and 5 in the work of Whitaker1). Therefore,
the rest of this section is dedicated to the analysis of the second
term on the rhs of Eq. (11) (which is originated from inertial
effects at the pore-scale).

Let us commence the analysis by noting that, due to the
continuity equation, the last term in Eq. (11) may also be
written as (see Eq. (B19))〈

ET
· ∇ ·

(
vβE

)〉
=

〈
ET vβ : ∇E

〉
. (12)

At this point, it is convenient to note that〈
ET
· ∇ ·

(
vβE

)〉T
=

〈
∇ ·

(
vβET

)
· E

〉
=

〈
∇ ·

(
vβET

· E
)〉
−

〈
ET vβ : ∇E

〉
. (13)

In order to obtain the last equality, we took into account Eq.
(B20). As shown above, the use of the spatial averaging theo-
rem together with the interfacial boundary condition leads to
conclude that the first term on the rhs of the above equation
is null. In this way, substitution of Eq. (12) on the remaining
term on the rhs of Eq. (13) yields〈

ET
· ∇ ·

(
vβE

)〉
= −

〈
ET
· ∇ ·

(
vβE

)〉T
. (14)

This is the proof that the second term in the decomposition of
the apparent permeability tensor, given in Eq. (11), is skew-
symmetric and the tensor H can finally be written as

H =
〈
(∇E)T3 : ∇E

〉︸            ︷︷            ︸
Symmetric part

−
ρ

µ

〈
ET
· ∇ ·

(
vβE

)〉
︸                  ︷︷                  ︸

Skew-symmetric part

. (15)

In this way, it can be deduced that the first term on the rhs of this
last expression, which results from dissipative-like transport, is
the symmetric part of the apparent permeability tensor and that
the second term, arising from convective transport, is its skew-
symmetric part. In other words, the decomposition shown in
Eq. (15) readily provides the irreducible parts of the tensor H.

B. Slip flow

From the results presented in the previous paragraphs,
it may be inferred that the permeability tensor remains sym-
metric for creeping flow, whatever the conditions. However,

this conclusion should be carefully considered because it is
only applicable whenever it is safe to impose nonslip condi-
tions at the solid-fluid interface. To prove this point, consider
the steady, non-inertial, Newtonian, and slightly compress-
ible flow of a barotropic fluid saturating the pores of a rigid
and homogeneous porous medium. The situation is again the
one schematically represented in Fig. 1. Under isothermal
conditions, the governing total mass, momentum, and state
equations at the pore-scale are

∂ρ

∂t
+ ∇ · (ρvβ) = 0, in Vβ , (16a)

0 = −∇pβ + µ∇2vβ , in Vβ , (16b)

ρ = f
(
pβ

)
, in Vβ . (16c)

At the solid-fluid interface, the following slip-condition is
applicable:12,32–35

vβ = −
(

2 − σ3
σ3

)
︸     ︷︷     ︸

ξ

λβ
(I − nn

)
·

[
n ·

(
∇vβ +

(
∇vβ

)T
)]

,

(16d)

with σ3 and λβ being the accommodation coefficient and the
mean free path, respectively. Upscaling of this problem with
the use of the volume averaging method was addressed ear-
lier by Lasseux et al.12 where the following set of macroscale
equations was obtained:

∂〈ρ〉β

∂t
+ ∇ ·

(
〈ρ〉β〈vβ〉β

)
= 0, (17a)

〈vβ〉 = −
Ks

µ
· ∇〈pβ〉

β , (17b)

〈ρ〉β = f
(
〈pβ〉

β
)

, (17c)

where Ks is an apparent slip-corrected permeability tensor,
which can be computed from

Ks = 〈D〉. (18)

Here, the closure variable D is obtained from the solution of
the following boundary-value problem:

∇ · D = 0, in Vβ , (19a)

0 = −∇d + ∇2D + I, in Vβ , (19b)

D = −ξλβ(I − nn)·
[
n·

(
∇D + (∇D)T1

)]
, at Aβσ , (19c)

ψ(r) = ψ(r + li); ψ = D, d, (19d)

〈d〉β = 0, (19e)

where, in the boundary condition in Eq. (19c), the superscript
T1 denotes the transpose of a third-order tensor as defined in
Eq. (B8) in Appendix B. The definitions of the closure vari-
ables D and d are analogous to those of E and e presented
above, respectively. In addition, λβ represents the mean free
path at the intrinsic-average density and it can thus be regarded
as a constant at the closure level.35

In Appendix B of the work by Lasseux et al.,12 an analysis
similar to the one used in Sec. II A for the properties of the
apparent permeability tensor for inertial momentum transport
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is provided. Here, only the final reformulation of the appar-
ent slip-corrected permeability reported in this reference is
recalled. It is given by

Ks =
〈
(∇D)T3 : ∇D

〉
−

1
V

∫
Aβσ

(∇D)T3 :
(
nD)

dA. (20)

Just like for flow with inertia, the first term on the rhs of this
expression results from the dissipation-like term in Eq. (19b)
and it is not difficult to demonstrate that it is symmetric. The
remaining term is, in general, non-symmetric. This observa-
tion is consistent with the study by Skjetne and Auriault8

using the homogenization method. As a matter of fact, the

last term in Eq. (20) is only symmetric if the solid-fluid inter-
face exhibits symmetries across the three planes parallel to the
edges of the periodic unit cell and passing through its centroid.
Furthermore, after performing an order of magnitude analy-
sis, Lasseux et al.12 concluded that, for conditions in which
ξKn � ε (with Kn = λβ/`β being the macroscale Knudsen
number), Ks can be considered to be quasi-symmetric. This
analysis thus shows that, under creeping slip-flow conditions,
it cannot be concluded that the apparent permeability tensor
in Darcy’s law is a symmetric tensor.

Finally, using the irreducible decomposition of any
second-order tensor and the identity given in Eq. (B17),
Eq. (20) may be expressed as

Ks =
〈
(∇D)T3 : ∇D

〉
−

1
2V

∫
Aβσ

[
(∇D)T3 :

(
nD)

+ ∇D : (nD)T3
]

dA

︸                                                                            ︷︷                                                                            ︸
Symmetric part

−
1

2V

∫
Aβσ

[
(∇D)T3 :

(
nD)

− ∇D : (nD)T3
]

dA

︸                                                       ︷︷                                                       ︸
Skew-symmetric part

, (21)

where the symmetric and skew-symmetric terms are clearly
identified. The existence of the skew-symmetric term may
contribute to a misalignment of the velocity with the macro-
scopic pressure gradient as it is the case, in general, for inertial
flow.

C. Slightly compressible slip-flow in a fracture

The conclusion reached in Sec. II B regarding slip flow in
the bulk of a porous medium raises the question on whether
it remains valid in the case of slip-flow within the confined
space between two surfaces, i.e., in a fracture. The purpose of
the present section is hence to investigate the properties of the
effective-medium coefficient present in the upscaled model
for the steady Newtonian flow of a fluid (β-phase) saturat-
ing a fracture. The study is directed to slightly compressible
slip-flow under isothermal conditions. The fracture, of local
aperture h, consists of two impermeable rough walls (σ-phase)
as sketched in Fig. 2(a). Contact spots may also occur between
the upper and lower surfaces of the fracture as it would be the
case, for instance, for the contact under normal stress between
two manufactured solid surfaces (see Fig. 2(a)). When this con-
tact exists, their contours shall be denoted by Cβσ in the mean
plane of the fracture (see Fig. 2(b)). The incompressible flow
version of this problem has been the object of many studies

for the leak-rate determination through mechanical seals36–39

or for the lubrication of rough surfaces.40 The boundary-value
problem governing flow within the fracture is the one provided
by Equation (16), except a steady version of the mass conserva-
tion Equation (16a) is considered. When the local slope of the
fracture walls’ roughness (i.e., tan α, see Fig. 2(a)) remains
small compared to unity, the form of the above-mentioned
mass and momentum conservation equations, pre-integrated
in the direction of the thickness of the fracture, can be easily
obtained, reducing the dimension of the problem from three to
two:

∇ · qβ = 0, in AβM , (22a)

qβ = −ρ
k
µ
∇pβ , in AβM , (22b)

ρ = f
(
pβ

)
, in AβM , (22c)

qβ · n = 0, at Cβσ , (22d)

where qβ represents the mass flow rate per unit length of the
fracture in each direction, while k stands for the so-called local
transmissivity of the fracture aperture field that includes slip
effects, i.e.,

k =
1

12
h3

(
1 + 6

ξλβ

h

)
. (23)

FIG. 2. (a) Sketch of a fracture between two rough sur-
faces for which the aperture field is h. The local slope
is such that tanα � 1 everywhere. (b) Top view of the
fracture with contact areas which contours are Cβσ and
averaging surface A.
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Moreover, in this last equation, as in Sec. II B, λβ denotes the
mean-free path of the fluid molecules at the pressure and tem-
perature under consideration. In addition, in Eqs. (22), AβM

represents the surface where no effective contact takes place
and n is the unit normal vector atCβσ directed from the β-phase
to the σ-phase.

Equations (22), which basically correspond to the
Reynolds model including slip, are still operating at the scale of
roughnesses, and, from a practical point of view, it is useful to
provide a description of the flow over a representative elemen-
tary surface A in which the portion that excludes the effective
contact area is denoted by Aβ . To this goal, an upscaling can
be carried out using the following definitions of the averages,
analog to the ones employed for volume averaging, namely,
the superficial area averaging operator

〈ψβ〉s =
1
A

∫
Aβ

ψβdA (24a)

and intrinsic averaging operator

〈ψβ〉
β
s =

1
Aβ

∫
Aβ

ψβdA, (24b)

where A and Aβ represent the areas of A and Aβ , respectively.
Similarly, the surface version of the spatial averaging theorem
takes the form

〈∇ψβ〉s = ∇〈ψβ〉s +
1
A

∫
Cβσ

nψβd`. (25)

When the superficial average of the problem in Eqs. (22) is car-
ried out, it can be shown that the steady macroscopic Reynolds
model for slightly compressible slip flow may be written as

∇ · 〈qβ〉s = 0, (26a)

〈qβ〉s = −〈ρ〉
β
s εs

K
µ
· ∇〈pβ〉

β
s , (26b)

〈ρ〉
β
s = f

(
〈pβ〉

β
s

)
(26c)

in which εs =
Aβ
A = 1 − δs, where δs stands for the so-called

load-bearing capacity. At this point, it is opportune to clarify
that the slightly compressible hypothesis is supported by the
constraint

ρ̃ = ρ − 〈ρ〉
β
s � 〈ρ〉

β
s . (27)

In the expression of the macroscale flow-rate in Eq. (26b), K is
the effective transmissivity tensor characterizing the fracture
that is given by

K = 〈k (
∇b + I)〉βs , (28)

where k is defined as

k =
1

12
h3 *

,
1 + 6

ξλβs

h
+
-

, (29)

λβs being now the mean-free path at the average density 〈ρ〉βs .
In the expression of K above, b is the closure variable that

maps ∇〈pβ〉βs onto the spatial variations of the fluid pressure
and is the solution of the following boundary-value problem:

∇ ·
(
k
(
∇b + I)) = 0, in Aβ , (30a)

−n ·
(
∇b + I) = 0, at Cβσ , (30b)

〈b〉βs = 0, (30c)

b(r + li) = b(r), i = 1, 2. (30d)

The interest shall now be dedicated to the analysis of the
symmetry properties of the transmissivity tensor K. With this
purpose in mind, the outer product of Eq. (30a) with b may
be formed, and while taking the superficial area average of the
result, one obtains

∇ · 〈k
(
∇b + I) b〉s +

1
A

∫
Cβσ

kn ·
(
∇b + I) bd`

− 〈k
(
∇bT + I

)
· ∇b〉s = 0. (31)

To arrive at this expression, the identity given in Eq. (B18) of
Appendix B was employed as well as the averaging theorem
in Eq. (25).

Because of periodicity and due to the slightly compress-
ible flow assumption, the average 〈k

(
∇b + I) b〉s can be treated

as a constant at the closure level so that the first term on the
left-hand side of Eq. (31) is zero. The second term vanishes
also when the boundary condition given in Eq. (30b) is taken
into account and this yields

〈k∇b〉
β

s = −〈k∇bT · ∇b〉
β

s (32)

where we have employed the intrinsic average instead of the
superficial average. When this last result is introduced back
into Eq. (28), the effective transmissivity tensor takes the form

K = 〈kI〉βs − 〈k∇bT · ∇b〉
β

s (33)

and this final result proves that K is a symmetric tensor.
As important remarks following the development per-

formed in this section, it should be noted that:

• The expression for the effective transmissivity tensor,
given in Eq. (33), remains completely valid if the flow
takes place without slip effects and/or if the flow is
perfectly incompressible.
• More generally, the conclusions may be extended to the

effective diffusivity tensor resulting from the upscaling
of a diffusion process within a heterogeneous medium
when the local diffusivity can be considered as a con-
tinuous function of space. In particular, it is readily
applicable to the permeability tensor resulting from the
large-scale averaging process carried out on the one-
phase Darcy flow in a heterogeneous porous medium
when the permeability field is considered as a contin-
uous function of space as reported by Quintard and
Whitaker.41

D. One-phase flow in a medium embedding
a porous matrix and a clear fluid region

Up to this point of the investigation, momentum trans-
port has not been considered in a heterogeneous porous
medium featuring discontinuous properties and the question
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now remains on whether the conclusions reached so far are
still applicable in this situation. To illustrate this, we are hence
interested to study one-phase creeping flow of a fluid-phase β
within a heterogeneous system in which a porous matrix (ω-
region) and a clear fluid (η-region) can be distinctly identified
as for example in a vugular (see Fig. 3) or a fractured porous
medium. This problem has been analyzed by Arbogast and
Lehr42 and more recently by Golfier et al.43 The macroscale
model used in the latter work to describe the incompressible
Newtonian flow in such a material is the result of a first up-
scaling of the continuity and Stokes equations at the microscale
and it is given by

∇ · Vω
β = 0 in the ω-region, (34a)

0 = −∇Pωβ + ρg +
µ

ε
∇

2
Vω
β − µK−1

ω · V
ω
β in the ω-region,

(34b)

Vω
β = Vη

β at Aωη , (34c)

n ·
[(

Pηβ − Pωβ
)

I + µ
[(
ε−1∇Vω

β − ∇Vη
β

)
+

(
ε−1∇Vω

β − ∇Vη
β

)T
)]
= 0 at Aωη , (34d)

∇ · Vη
β = 0 in the η-region, (34e)

0 = −∇Pηβ + ρg + µ∇2Vη
β in the η-region. (34f)

In these equations, Vκ
β and Pκβ (κ = ω, η) are the macroscale

velocity and pressure in the κ-region, ε and Kω are the poros-
ity and intrinsic permeability tensor of theω-porous region. In
the boundary condition given in Eq. (34d), n denotes the unit
normal vector at theω – η boundaryAωη , directed from theω-
region toward the η-region (i.e., nωη as shown in Fig. 3). After
applying the averaging procedure to the above equations,43

the megascale model operating on the effective medium
reads

∇ · V∗β = 0, (35a)

FIG. 3. Sketch of a megascopic vugular medium saturated with a single fluid
phase that contains a homogeneous porous medium (ω-region) and clear fluid
zones (η-region).

V∗β = −
K∗

µ
·
(
∇P∗β − ρg

)
, (35b)

where V∗β and P∗β represent the megascale average velocity
and pressure defined as

Ψ
∗
β = {Ψβ } =

1
V

∫
V

Ψβ dV = {Ψωβ }ω + {Ψηβ }η

=
1
V

∫
Vω

Ψ
ω
β dV +

1
V

∫
Vη

Ψ
η
β dV , (36)

where Vκ (κ = ω, η) represents the portion of the κ-region
contained within the averaging volume V = Vω + Vη . In the
megascale momentum Equation (35b), K∗ represents the effec-
tive permeability tensor that can be computed from the solution
of the associated closure problem given by

∇ · Dω = 0, in Vω , (37a)

0 = −∇dω +
1
ε
∇2Dω − K−1

ω · Dω + I, in Vω , (37b)

B.C. 1 Dω = Dη at Aωη , (37c)

B.C. 2 n ·
[
−Idω +

1
ε

(
∇Dω +

(
∇Dω

)T1
)]

= n ·
[(
−Idη +

(
∇Dη +

(
∇Dη

)T1
))]

at Aωη , (37d)

∇ · Dη = 0, in Vη , (37e)

0 = −∇dη + ∇2Dη + I, in Vη , (37f)

d∗ = 0, (37g)

D∗ = K∗, (37h)

ψk(r + li) = ψk(r), ψ = d, D, k = ω, η, i = 1, 2, 3. (37i)

In these equations, Dκ and dκ (κ = ω, η) are closure
variables that map V∗β onto the velocity and pressure varia-
tions in the κ-region, respectively, whereas D∗ and d∗ are the
megascale averages based on the definition given in Eq. (36).

The analysis of the symmetry properties of the effec-
tive permeability tensor K∗ starts by first reformulating the
momentum-like Equations (37b) and (37f), which, while tak-
ing into account the fact that Dκ , (κ = ω, η) are solenoidal
tensor fields as indicated by Eqs. (37a) and (37e), may indeed
be written as

0 = −∇dω +
1
ε
∇ ·

(
∇Dω +

(
∇Dω

)T1
)
− K−1

ω · Dω + I (38)

and

0 = −∇dη +
1
ε
∇ ·

(
∇Dη +

(
∇Dη

)T1
)

+ I. (39)

When the former of these two equations is pre-multiplied
by DT

ω and when theω-regional average of the result is formed,
the following expression is obtained:
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0 =
1
V

∫
Aωη

DT
ω · ndω dA +

1
ε

1
V

×

∫
Aωη

[
n ·

(
∇DT

ω +
(
∇DT

ω

)T3
)
· Dω

]T
dA

−
1
ε

{(
∇DT

ω +
(
∇DT

ω

)T3
)T1

:
(
∇Dω

)T1
}T

ω

−
{
DT
ω · K−1

ω · Dω

}
ω

+
{
DT
ω

}
ω

. (40)

This last result is subject to the use of the averaging theorem
for the ω-regional average, which has exactly the same form
as the one given in Eq. (A2), together with the fact that dω
and Dω are periodic. Moreover, the first term on the rhs of the
above equation results from the fact that Dω is solenoidal. The
second term on the rhs of Eq. (40) results from the use of the
identities given in Eqs. (B12) and (B14) in which the arbitrary
twice-derivable second-order tensor A is identified as Dω . It
also makes use of the identity given in Eq. (B22), in which∇A
is identified as ∇DT

ω +
(
∇DT

ω

)T3
and B to Dω .

At this point, it is worth noticing that
(
n ·

(
∇DT

ω

))T

= n · ∇Dω and
(
n ·

(
∇DT

ω

)T3
)T
= n ·

(
∇Dω

)T1, so that taking

into account Eqs. (B15) and (B16), Eq. (40) can be rewritten
as

0 =
1
V

∫
Aωη

DT
ω · n ·

[
−Idω +

1
ε

(
∇Dω +

(
∇Dω

)T1
)]

dA

−
1
ε

{(
∇Dω

)T3 :
[
∇Dω +

(
∇Dω

)T1
] }T

ω

−
{
DT
ω · K−1

ω · Dω

}
ω

+
{
DT
ω

}
ω

. (41)

Let now attention be directed toward the η-region. Using
the same procedure employed above, it follows that

0 = −
1
V

∫
Aηη

DT
η · n ·

[
−Idη +

(
∇Dη +

(
∇Dη

)T1
)]

dA

−

{(
∇Dη

)T3
:

[
∇Dη +

(
∇Dη

)T1
]}T

η
+

{
DT
η

}
η

. (42)

When Eqs. (41) and (42) are added and when the boundary con-
ditions B.C.1 and B.C.2 in Eqs. (37c) and (37d) are employed
together with the definition of the effective permeability tensor
in Eq. (37h), the following expression for K∗ arises:

K∗ = 1
ε

{(
∇Dω

)T3 :
[
∇Dω +

(
∇Dω

)T1
] }
ω

+
{(
∇Dη

)T3
:

[
∇Dη +

(
∇Dη

)T1
]}
η

+
{
DT
ω · K−1

ω · Dω

}
ω

. (43)

In this last expression, we have made use of the fact that Kω

is a symmetric tensor to infer that
{
DT
ω · K−1

ω · Dω

}
ω

is also
symmetric. To reach this conclusion, the symmetry property
of Kω , which is known in the creeping flow regime with the
no-slip boundary condition at the fluid-solid interface, as men-
tioned earlier, is indeed fundamental. This is a clear example
showing why the knowledge of the symmetry properties of

transport coefficients at the macroscale is extremely impor-
tant. Clearly, the first two terms in Eq. (43) are also symmetric
as shown in Appendix B (see Eqs. (B25) and (B26)) making
the effective permeability tensor K∗ a symmetric tensor and
this represents the final important result of this section.

E. Creeping two-phase flow in homogeneous
porous media

So far, the analysis of macroscopic coefficients has been
restricted to single phase-flow in porous structures. As a final
momentum transport case, let us then consider incompressible,
immiscible, and Newtonian two-phase momentum transport in
the bulk region of a rigid porous medium as sketched in Fig. 4.
The governing pore-scale equations and interfacial boundary
conditions for this transport process are given by

∇ · vk = 0, in the k-phase (k = β, γ), (44a)

0 = −∇pk + µk∇
2vk , in the k-phase(k = β, γ), (44b)

B.C. 1 vk = 0, at Akσ(k = β, γ), (44c)

B.C. 2 vβ = vγ, at Aβγ, (44d)

B.C. 3 nβγ · Tβ = nβγ · Tγ + 2σHnβγ, at Aβγ. (44e)

Here, the nonslip condition has been imposed for both fluid
phases in contact with the solid phase. In addition, assum-
ing that no mass transport is taking place between the fluid
phases, it is reasonable to impose continuity of the velocity
fields at Aβγ. Moreover, at this interface, the normal stress
is exactly compensated by the Laplace pressure as expressed
in Eq. (44e) where the total stress tensor is denoted as Tk

= −Ipk + µk

[
∇vk + (∇vk)T

]
(k = β, γ), while σ and H rep-

resent the interfacial tension and the mean curvature of Aβγ,
respectively. This problem has been studied by Whitaker16,44

and by Lasseux et al.17 using the volume averaging method.
The resulting upscaled model for momentum transport can be
expressed as follows:

〈vβ〉 = −
K∗ββ
µβ
· ∇〈pβ〉

β −
K∗βγ
µγ
· ∇〈pγ〉

γ, (45a)

〈vγ〉 = −
K∗γγ
µγ
· ∇〈pγ〉

γ −
K∗γβ
µβ
· ∇〈pβ〉

β . (45b)

FIG. 4. Sketch of a porous medium saturated with two immiscible fluid
phases.
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This model was also derived using the homogenization method
by Auriault.15 In Eqs. (45), the permeability tensors K∗αk
(α, k = β,σ) are defined in terms of the corresponding closure
variables as

K∗αk = −〈Dαk〉, α, k = β, γ. (46)

Following the work of Lasseux et al.,17 we shall refer to the
tensors K∗ββ and K∗γγ as the dominant permeability tensors
and to the tensors K∗βγ and K∗γβ as the coupling permeability
tensors. The closure variables Dββ and Dγβ are the solution of
the following boundary-value problem.

1. Problem I

∇ · Dkβ = 0, in Vk (k = β, γ), (47a)

−∇dkβ + ∇ ·
[
∇Dkβ +

(
∇Dkβ

)T1
]
= δkβI, in Vk (k = β, γ),

(47b)

B.C. 1 Dkβ = 0, at Akσ (k = β, γ), (47c)

B.C. 2 Dββ = Dγβ , at Aβγ, (47d)

B.C. 3 µβnβγ ·
[
−Idββ + ∇Dββ +

(
∇Dββ

)T1
]

= µγnβγ ·
[
−Idγβ + ∇Dγβ +

(
∇Dγβ

)T1
]

, at Aβγ, (47e)

ψkβ(r + li) = ψkβ(r), i = 1, 2, 3;ψ = d, D; k = β, γ,

(47f)

〈dkβ〉
k = 0, k = β, γ. (47g)

In Eq. (47b), δkβ is the Dirac delta function. Note that in this
equation, we have taken into account the solenoidal nature
of the tensors Dkβ (k = β, γ), so that ∇

(
∇ · Dkβ

)
= ∇ ·(

∇Dkβ

)T1
= 0. In a similar manner, the closure variables Dβγ

and Dγγ must satisfy the following closure problem.

2. Problem II

∇ · Dkγ = 0, in Vk (k = β, γ), (48a)

−∇dkγ + ∇ ·
[
∇Dkγ +

(
∇Dkγ

)T1
]
= δkγI, in Vk (k = β, γ),

(48b)

B.C. 1 Dkγ = 0, at Akσ (k = β, γ), (48c)

B.C. 2 Dβγ = Dγγ, at Aβγ, (48d)

B.C. 3 µβnβγ ·
[
−Idβγ + ∇Dβγ +

(
∇Dβγ

)T1
]

= µγnβγ ·
[
−Idγγ + ∇Dγγ +

(
∇Dγγ

)T1
]

, at Aβγ, (48e)

ψkγ(r + li) = ψkγ(r), i = 1, 2, 3;ψ = d, D; k = β, γ, (48f)

〈dkγ〉
k = 0, k = β, γ. (48g)

These closure problems are restricted to cases in which the
surface tension has no effects at the closure problem level.15,44

This is a reasonable assumption whenever the capillary number
is much smaller than unity; i.e., Ca = µ〈3〉/σ � 1, with µ〈3〉
being the largest of O(µβ〈vβ〉β) or O(µγ〈vγ〉γ).

To commence the derivations, let attention be focused to
Problem I, in specific, consider Eq. (47b) for k = β, pre-
multiply it by DT

ββ , and apply the superficial average defined
in Eq. (A1a) of Appendix A on the resulting equation in order
to obtain

−
〈
DT
ββ · ∇dββ

〉
β

+
〈
DT
ββ · ∇ ·

[
∇Dββ +

(
∇Dββ

)T1
]〉
β

+ K∗Tββ = 0. (49)

Here, we have used the subscript β in the superficial average to
clearly indicate that this average is taken only in the β-phase.
At this point, one may follow the same line of derivations
performed in Section II D in order to obtain

0 =
1
V

∫
Aβγ

DT
ββ ·

[
nβγ ·

(
−Idββ + ∇Dββ +

(
∇Dββ

)T1
)]

dA

−

〈(
∇Dββ

)T3
:

[
∇Dββ +

(
∇Dββ

)T1
]〉T

β
+ K∗Tββ . (50a)

Let us return the attention to Eq. (47b) but now for k = γ with
a pre-multiplication by DT

γβ; performing the same procedure
used just above, it is not hard to deduce that

0 = −
1
V

∫
Aβγ

DT
γβ ·

[
nβγ ·

(
−Idγβ + ∇Dγβ +

(
∇Dγβ

)T1
)]

dA

−

〈(
∇Dγβ

)T3
:

[
∇Dγβ +

(
∇Dγβ

)T1
]〉T

γ
. (50b)

When this last result is multiplied by µγ and it is added to Eq.
(50a) multiplied by µβ , the resulting equation takes the form

K∗ββ =
µγ

µβ

〈(
∇Dγβ

)T3
:

[
∇Dγβ +

(
∇Dγβ

)T1
]〉
γ

+
〈(
∇Dββ

)T3
:

[
∇Dββ +

(
∇Dββ

)T1
]〉
β
. (51)

Here, the interfacial boundary conditions given in Eqs. (47d)
and (47e) were taken into account. The two average terms
on the rhs of this equation can be easily shown to be sym-
metric (see the proof in Appendix B, Eqs. (B25) and (B26)),
thus making K∗ββ a symmetric tensor. This conclusion is con-
sistent with those obtained separately by Auriault9,15 and
Whitaker.16

The above procedure can be repeated with Eq. (47b) (for
k = β) when it is pre-multiplied by DT

βγ and also with this
same equation, when evaluated for k = γ and pre-multiplied
by DT

γγ to obtain, after few steps, which are analogues to those
used above,

K∗βγ =
µγ

µβ

〈[
∇Dγβ +

(
∇Dγβ

)T1
]T3

:
(
∇Dγγ

)T1
〉
γ

+

〈[
∇Dββ +

(
∇Dββ

)T1
]T3

:
(
∇Dβγ

)T1
〉
β

. (52)

To arrive at this result, we have made use of the identity given
in Eq. (B13).
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The remaining tensors in the macroscale model can be
obtained by performing a similar analysis to Problem II. For
the sake of brevity in presentation, we only report the final
results, which are given by

K∗γβ =
µβ

µγ

〈[
∇Dβγ +

(
∇Dβγ

)T1
]T3

:
(
∇Dββ

)T1
〉
β

+

〈[
∇Dγγ +

(
∇Dγγ

)T1
]T3

:
(
∇Dγβ

)T1
〉
γ

, (53a)

K∗γγ =
µβ

µγ

〈(
∇Dβγ

)T3
:

[
∇Dβγ +

(
∇Dβγ

)T1
]〉
β

+
〈(
∇Dγγ

)T3
:

[
∇Dγγ +

(
∇Dγγ

)T1
]〉
γ
. (53b)

This last result on K∗γγ clearly exhibits the same symmetry
properties as K∗ββ (see Eq. (51)). Unfortunately, the tensors
K∗γβ and K∗βγ do not show any particular symmetry properties.
Nevertheless, a reciprocity relationship can still be derived. To
prove this point, it is useful to consider the identities given in
Eqs. (B23) and (B24), so that

µβK∗βγ = µγK∗Tγβ . (54)

The reciprocity relationship given in Eq. (54), which is in
agreement with Onsager’s arguments, has been previously
obtained by Auriault9,15 and Lasseux et al.17

As a summary for this case study, it is worth recalling
that, for the upscaled model given in Eqs. (45), the tensors
K∗ββ and K∗γγ are symmetric. In addition, the coupling per-
meability tensors K∗βγ and K∗γβ , although they do not exhibit
a special symmetry or skew-symmetry property, are related
as shown in Eq. (54), thus reducing the number of effec-
tive medium coefficients to be computed to 3 instead of 4.
The irreducible decomposition of second-order tensors can
be used for the coupling tensors in order to express them in
terms of their symmetric and skew-symmetric parts. However,
for the sake of brevity, this decomposition is not presented
here. As a final note, it is worth pointing out that the rele-
vance of the coupling permeability tensors has been addressed
in several works,45–47 from which a definite conclusion is still
lacking.

III. DISPERSIVE HEAT AND MASS TRANSPORT

This last part of the article is devoted to the analysis of
the effective transport coefficients involved in the upscaled
equations for dispersive heat and mass transport in the bulk
region of a rigid and homogeneous porous medium. The con-
figuration is the one depicted in Fig. 1 showing the different
scales and the domain over which the pore-scale equations are
averaged. Heat transport, involving conduction and convec-
tion, is first considered under non-equilibrium conditions and
subsequently passive mass dispersion is addressed.

A. Heat transport

In their study of heat dispersion in homogeneous porous
media, Quintard et al.48 considered the following pore-scale

equations:(
ρcp

)
β

∂Tβ
∂t

+
(
ρcp

)
β
vβ · ∇Tβ = ∇ ·

(
kβ∇Tβ

)
, in Vβ ,

(55a)(
ρcp

)
σ

∂Tσ
∂t
= ∇ · (kσ∇Tσ) , in Vσ , (55b)

where convection only takes place in the fluid-phase experi-
encing an incompressible and Newtonian flow governed by
the Stokes equations. The above equations are coupled at
the solid-fluid interface by means of the following boundary
conditions:

Tβ = Tσ , at Aβσ , (55c)

n · kβ∇Tβ = n · kσ∇Tσ , at Aβσ . (55d)

The result of applying the volume averaging method, without
the imposition of the local thermal equilibrium assumption, is
the following set of upscaled equations:

εβ
(
ρcp

)
β

∂〈Tβ〉
β

∂t
+ εβ

(
ρcp

)
β
〈vβ〉β · ∇〈Tβ〉β

−uββ · ∇〈Tβ〉β − uβσ · ∇〈Tσ〉σ

= ∇ ·
(
Kββ · ∇〈Tβ〉

β + Kβσ · ∇〈Tσ〉
σ
)

− a3h
(
〈Tβ〉

β − 〈Tσ〉
σ
)

, (56a)

εσ
(
ρcp

)
σ

∂〈Tσ〉
σ

∂t
− uσβ · ∇〈Tβ〉β − uσσ · ∇〈Tσ〉σ

= ∇ ·
(
Kσβ · ∇〈Tβ〉

β + Kσσ · ∇〈Tσ〉
σ
)

+ a3h
(
〈Tβ〉

β − 〈Tσ〉
σ
)

, (56b)

where the scalar a3h, the vectors uαk , and the tensors Kαk

(α, k = β,σ) are defined in terms of the corresponding closure
variables (see Eq. (19) in the work of Quintard et al.48). In
this section, the attention is focused on the effective thermal
conductivity tensors defined as

Kββ = kβ
*..
,
ε I +

1
V

∫
Aβσ

nbββdA
+//
-
−

(
ρcp

)
β
〈ṽβbββ〉, (57a)

Kβσ =
kβ
V

∫
Aβσ

nbβσdA −
(
ρcp

)
β
〈ṽβbβσ〉, (57b)

Kσβ = −
kσ
V

∫
Aβσ

nbσβdA, (57c)

Kσσ = kσ


(1 − ε)I − 1

V

∫
Aβσ

nbσσdA


. (57d)

The closure variables bββ and bσβ are the solution of the
following boundary-value problem.
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1. Problem I(
ρcp

)
β
ṽβ +

(
ρcp

)
β
vβ · ∇bββ = kβ∇

2bββ − ε−1cββ , in Vβ ,

(58a)

0 = kσ∇
2bσβ − (1 − ε)−1cσβ , in Vσ , (58b)

bββ = bσβ , at Aβσ , (58c)

n · kβ∇bββ = n · kσ∇bσβ − nkβ , at Aβσ , (58d)

bkβ(r + li) = bkβ(r), i = 1, 2, 3; k = β,σ, (58e)

〈bkβ〉
k = 0, k = β,σ. (58f)

In the above expressions,

cββ = −cσβ =
1
V

∫
Aβσ

n · kβ∇bββdA. (59)

In addition, the closure variables bβσ and bσσ are given
by the solution of the following boundary-value problem.

2. Problem II(
ρcp

)
β
vβ · ∇bβσ = kβ∇

2bβσ − ε−1cβσ , in Vβ , (60a)

0 = kσ∇
2bσσ − (1 − ε)−1cσσ , in Vσ , (60b)

bβσ = bσσ , at Aβσ , (60c)

n · kβ∇bβσ = n · kσ∇bσσ + nkσ , at Aβσ , (60d)

bkσ(r + li) = bkσ(r), i = 1, 2, 3; k = β,σ, (60e)

〈bkσ〉
k = 0, k = β,σ. (60f)

In this case,

cβσ = −cσσ =
1
V

∫
Aβσ

n · kβ∇bβσdA. (61)

Note that, at the closure problem level, all the cαk (α, k = β,σ)
vectors are constants within the unit cell.

Let us commence by analyzing the properties of the tensor
Kββ . From Eq. (57a), it follows that, in order to study the nature
of this tensor, it is convenient to make the outer product of Eq.
(58a) with bββ , in order to obtain(

ρcp

)
β
ṽβbββ +

(
ρcp

)
β

(
vβ · ∇bββ

)
bββ

= ∇ ·
(
kβ∇bββbββ

)
− kβ∇bT

ββ · ∇bββ

− ε−1cββbββ , in Vβ , (62)

where we used the following identity in the diffusive term:(
kβ∇

2bββ
)

bββ = ∇ ·
(
kβ∇bββbββ

)
− kβ∇bT

ββ · ∇bββ . (63)

Applying the superficial averaging operator (see Eq. (A1a) in
Appendix A) corresponding to the β-phase to Eqs. (62) leads
to

(ρcp)β〈ṽβbββ〉β + (ρcp)β〈(vβ · ∇bββ)bββ〉β

= 〈∇ · (kβ∇bββbββ)〉β − kβ〈∇bT
ββ · ∇bββ〉β

− 〈ε−1cββbββ〉β . (64)

The last term on the above equation can be readily dropped
because both the porosity and cββ can be taken out from the
averaging operator, leaving only bββ . Therefore, on the basis
of Eq. (58f), this last term is zero. Directing the attention to
the first term on the rhs of the above equation, and applying
the spatial averaging theorem, yields

〈∇ · [kβ(∇bββ)bββ]〉β = ∇ · 〈kβ∇bββbββ〉β

+
1
V

∫
Aβσ

n · kβ∇bββbββdA. (65)

As already noticed in this work, since closure variables are
periodic, there are no spatial variations of average quantities.
After application of the interfacial boundary conditions given
in Eq. (58d), this last result can be consequently expressed as
follows:

〈∇ · [kβ(∇bββ)bββ]〉β = −
kβ
V

∫
Aβσ

nbββdA

+
1
V

∫
Aβσ

n · kσ∇bσβbσβdA. (66)

The first term on the rhs of this equation is present in the
definition of Kββ as indicated in Eq. (57a). Note that in the
second term, the boundary condition given in Eq. (58c) was
used. Moreover, since this term involves the closure variable
bσβ , it is opportune to make the outer product of Eq. (58b)
with bσβ and then apply the superficial averaging operator
corresponding to the σ-phase, in order to obtain

0 = 〈∇ · (kσ∇bσβ)bσβ〉σ − 〈(1 − ε)−1cσβbσβ〉σ . (67)

Following developments similar to those used in the β-phase,
it is not hard to deduce that

〈∇ · (kσ∇bσβ)bσβ〉σ = −
1
V

∫
Aβσ

n · (kσ∇bσβ)bσβdA

− kσ〈∇bT
σβ · ∇bσβ〉σ = 0. (68)

Using this expression in Eq. (66) and substituting the result
into Eq. (64) lead to

kβ
V

∫
Aβσ

nbββdA = −(ρcp)β〈ṽβbββ〉β

− (ρcp)β〈vβ · ∇bββbββ〉β

− kσ〈∇bT
σβ · ∇bσβ〉σ − kβ〈∇bT

ββ · ∇bββ〉β .

(69)



D. Lasseux and F. J. Valdés-Parada Phys. Fluids 29, 043303 (2017)

In this way, Eq. (57a) can now be written as

Kββ = kβεI − kβ〈∇bT
ββ · ∇bββ〉β − kσ〈∇bT

σβ · ∇bσβ〉σ
− (ρcp)β〈vβ · ∇bββbββ〉β − 2(ρcp)β〈ṽβbββ〉β . (70)

Taking into account the spatial decomposition of the velocity
and the average constraint in Eq. (58f), we may group the last
two terms of the above equation into a single one and express
Kββ in its final form,

Kββ = kβεI − kβ〈∇bT
ββ · ∇bββ〉β − kσ〈∇bT

σβ · ∇bσβ〉σ
− (ρcp)β〈vβ · (∇bββ + 2I)bββ〉β . (71)

Furthermore, on the basis of the interfacial boundary
condition in Eq. (58c), it can also be deduced that

kβ
kσ

Kσβ = kσ〈∇bT
σβ · ∇bσβ〉σ + kβ〈∇bT

ββ · ∇bββ〉β

+ (ρcp)β〈vβ · (∇bββ + I)bββ〉β . (72)

With the aim of analyzing the remaining effective-
medium coefficients, let us now make the outer product of
Eq. (60a) with bβσ and apply the superficial averaging oper-
ator for the β-phase. After performing similar steps to those
used above, one easily arrives at

〈∇ · (kβ∇bβσ)bβσ〉β =
kσ
V

∫
Aβσ

nbσσdA

+
1
V

∫
Aβσ

n · (kσ∇bσσ) bσσdA

− kβ〈∇bT
βσ · ∇bβσ〉β . (73)

To make further progress, let us make the outer product of
Eq. (60b) with bσσ and apply the superficial average in the
σ-phase. After few steps that also involve the use of Eq. (73),
the following expression is obtained:

kσ
V

∫
Aβσ

nbσσdA = (ρcp)β〈vβ · ∇bβσbβσ〉β

+ kβ〈∇bT
βσ · ∇bβσ〉β + kσ〈∇bT

σσ · ∇bσσ〉σ .

(74)

Substitution of this result into Eq. (57d) yields

Kσσ = kσ(1 − ε)I − kβ〈∇bT
βσ · ∇bβσ〉β

− kσ〈∇bT
σσ · ∇bσσ〉σ − (ρcp)β〈vβ · ∇bβσbβσ〉β .

(75)

Finally, taking into account the interfacial boundary condition
given in Eq. (60c), the result given in Eq. (74) can also be used
to express Kβσ as follows:

kσ
kβ

Kβσ = kβ〈∇bT
βσ · ∇bβσ〉β + kσ〈∇bT

σσ · ∇bσσ〉σ

+ (ρcp)β

〈
vβ ·

(
∇bβσ −

kσ
kβ

I
)

bβσ

〉
β

. (76)

Observation of the derived expressions for all the effective
thermal conductivity coefficients shows that they all contain
symmetric terms and one volume-averaged term that van-
ishes under non-convective conditions. It is thus interesting
to carry out a deeper analysis in order to determine the struc-
ture of this last term. As a matter of fact, for all the effec-
tive conductivities, this term involves the following average,
〈vβ ·

(
∇bβk

)
bβk〉β(k = β,σ), which, due to the solenoidal

nature of the velocity field, can be written in the following
alternative form:〈

vβ ·
(
∇bβk

)
bβk

〉
β
=

〈
∇ ·

(
vβbβk

)
bβk

〉
β

=
〈
∇ ·

(
vβbβkbβk

)〉
β
−

〈
bβkvβ · ∇bβk

〉
β
.

(77)

Here we have also taken into account the identity given in Eq.
(B18). It is not hard to prove that the first term on the rhs of
the last equality of the above expression is null as a result of
the use of the spatial averaging theorem together with the non-
slip boundary condition at the β-σ interface. Finally, taking
once again into account the solenoidal nature of vβ , it follows
that 〈

∇ · (vβbβk)bβk

〉
β
= −〈bβk∇ · (vβbβk)〉β

= −〈∇ · (vβbβk)bβk〉
T
β , (78)

hence showing that this term is skew-symmetric. Unfortu-
nately, since the outer product between the velocity and the
closure variable bβk has no particular symmetry properties,
the term 〈vβbβk〉β , which is present in all the effective thermal
conductivities (except in Kσσ) is neither symmetric nor skew-
symmetric. However, this term can be simply decomposed into
its irreducible form. In this way, all the thermal conductivity
tensors can be expressed as

Kββ = kβεI − kβ〈∇bT
ββ · ∇bββ〉β − kσ〈∇bT

σβ · ∇bσβ〉σ − (ρcp)β〈vβbββ + bββvβ〉β︸                                                                                               ︷︷                                                                                               ︸
Symmetric part

−(ρcp)β〈vβ · ∇bββbββ〉β − (ρcp)β〈vβbββ − bββvβ〉β︸                                                                ︷︷                                                                ︸
Skew-symmetric part

, (79a)
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kβ
kσ

Kσβ = kσ〈∇bT
σβ · ∇bσβ〉σ + kβ〈∇bT

ββ · ∇bββ〉β +
1
2

(ρcp)β〈vβbββ + bββvβ〉β︸                                                                                        ︷︷                                                                                        ︸
Symmetric part

+
(
ρcp

)
β〈vβ · ∇bββbββ〉β +

1
2

(ρcp)β〈vβbββ − bββvβ〉β︸                                                                   ︷︷                                                                   ︸
Skew-symmetric part

, (79b)

kσ
kβ

Kβσ = kβ〈∇bT
βσ · ∇bβσ〉β + kσ〈∇bT

σσ · ∇bσσ)〉σ −
kσ
2kβ

(ρcp)β
〈
vβbβσ + bβσvβ

〉
β︸                                                                                                ︷︷                                                                                                ︸

Symmetric part

+
(
ρcp

)
β

〈
vβ · ∇bβσbβσ

〉
β
−

kσ
2kβ

(ρcp)β
〈
vβbβσ − bβσvβ

〉
β︸                                                                         ︷︷                                                                         ︸

Skew-symmetric part

, (79c)

Kσσ = kσ(1 − ε)I − kβ〈∇bT
βσ · ∇bβσ〉β − kσ〈∇bT

σσ · ∇bσσ〉σ︸                                                                    ︷︷                                                                    ︸
Symmetric part

−
(
ρcp

)
β〈vβ · ∇bβσbβσ〉β︸                            ︷︷                            ︸

Skew-symmetric part

. (79d)

From the above results, the following comments are in order.

(1) The analysis carried out here allows us to exhibit the
dependence on convection of all the coefficients. This
contrasts with the original form given in Eqs. (57),
where the effective coefficients associated with the σ-
phase (Kσσ and Kσβ) do not contain a hydrodynamic
dispersion contribution as it is the case for the Kββ and
Kβσ coefficients.

(2) The reformulation of the thermal conductivity tensors
shows that none of them are symmetric. However, the
present developments operate decomposition into the
symmetric and skew-symmetric parts in each tensor.
The skew-symmetric parts of the tensors only contain
convective transport terms in the β-phase.

(3) For transport conditions in which the thermal Péclet
number, defined as Pe= (ρcP)β ‖〈vβ〉

β ‖`β/kβ , is much
smaller than unity, all the coefficients are quasi-
symmetric and they are perfectly symmetric under
purely conductive conditions.

(4) For situations in which the assumption of local ther-
mal equilibrium is reasonable, there is only one effec-
tive thermal conduction coefficient, Keff = Kββ + Kβσ

+ Kσβ + Kσσ (see Eq. (15) in the work of Quintard et
al.48) to which all the above observations are applicable.

(5) As explained by Whitaker1 (see Problems 3-7), only
the symmetric parts of the effective medium coeffi-
cients influence the transport equation. However, if
the macroscopic boundary conditions are of Neumann
or Robin-type, then the skew-symmetric parts of the
tensors cannot be discarded.

B. Mass dispersion

Finally, from the previous derivations, it is of interest to
address the passive mass dispersion problem in the bulk region
of a rigid and homogeneous porous medium. The governing

equation involving diffusive and convective mass transport of
species A at the pore-scale is

∂cAβ

∂t
+ vβ · ∇cAβ = ∇ ·

(
Dβ∇cAβ

)
, in Vβ . (80a)

Assuming the solid phase to be impermeable to mass transport,
the following interfacial boundary condition is applicable:

−n ·
(
Dβ∇cAβ

)
= 0, at Aβσ . (80b)

As in the heat transport analysis, this problem is coupled
to momentum transport and the fluid velocity is subject to
nonslip conditions at the fluid-solid interface. As detailed by
Whitaker1 (see Chapter 3), the result from using the volume
averaging method to this problem is the following upscaled
model:

ε
∂〈cAβ〉

β

∂t
+ 〈vβ〉 · ∇〈cAβ〉

β = εD∗β : ∇∇〈cAβ〉
β , (81)

where the total dispersion tensor is defined as

D∗β
Dβ
= I +

1
Vβ

∫
Aβσ

nfβdA −
1

DAβ
〈ṽβfβ〉β . (82)

In order to predict the values of this coefficient, it is thus
necessary to solve the following closure problem:

ṽβ + vβ · ∇fβ = Dβ∇
2fβ , in Vβ , (83a)

n · ∇fβ = −n, at Aβσ , (83b)

fβ(r + li) = fβ(r), i = 1, 2, 3, (83c)

〈fβ〉β = 0. (83d)

As recently shown by Valdés-Parada et al.,22 the dispersion
tensor can be re-written in an equivalent dimensional form,
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using exactly the same procedure employed in the previous
paragraphs for heat transfer, as follows:

D∗β
Dβ
= I − 〈(∇fβ)T · ∇fβ〉

β

−
1
Dβ
〈vβ · (∇fβ)fβ〉β −

2
Dβ
〈vβfβ〉β . (84)

The last term in this equation is exactly twice the so-called
hydrodynamic dispersion tensor in the original work by
Whitaker.1 This term has no specific symmetry properties in
the general case, except when the periodic unit cell represen-
tative of the structure is symmetric and when the flow is along
one of the symmetry axes. The third term on the rhs of Eq.
(84) can be easily proven to be skew-symmetric and this can
be obtained by following exactly the same procedure and argu-
ments as those used for Eqs. (77) and (78). Certainly, after
using the irreducible decomposition in this last term, the total
dispersion tensor may be expressed as

D∗β
Dβ
= I − 〈(∇fβ)T · ∇fβ〉

β
−

1
Dβ
〈vβfβ + fβvβ〉β︸                                               ︷︷                                               ︸

Symmetric part

−
1
Dβ
〈vβ · (∇fβ)fβ〉β −

1
Dβ
〈vβfβ − fβvβ〉β︸                                                  ︷︷                                                  ︸

Skew-symmetric part

. (85)

Here, it is not hard to identify the same properties as for the
effective thermal conductivity tensors, namely, a symmetric
part present in the first three terms on the rhs of Eq. (85) and a
skew-symmetric part (fourth and fifth terms). Not surprisingly,
the skew-symmetric part of D∗β only contains convective terms.

There has been some confusion in the literature not only
about the definition of the hydrodynamic dispersion part of D∗β
but also about the properties of the total dispersion tensor itself.
For example, in the works by Bear et al.,27,28 the total disper-
sion tensor is argued to be totally symmetric on the basis of the
conjugated thermodynamic force and flux relation. The present
development evidences that this cannot be the case due to the
presence of skew-symmetric terms, which are only negligible
under poorly or non-convective conditions. This conclusion
is in agreement with the results presented by Auriault et al.21

using the homogenization method and confirmed by numerical
simulations. As remarked by these authors, Onsager’s relations
cannot be invoked here due to the irreversible character of the
mass and momentum transport processes taking place at the
pore-scale.

It should be noted that the symmetric part of D∗β in Eq. (85)
is the one resulting from the method of moments, as reported
by Brenner24 (see Sections 5 and 6 therein) and later on by
Salles et al.25 This is consistent with what has been pointed
out by Koch and Brady,26 who showed that the method of
moments, or the Lagrangian approach, can only predict the
symmetric part of the total dispersion tensor. Importantly,
the present analysis clearly evidences the complementary (i.e.,
the skew-symmetric) parts of this tensor that are missing from
the method of moments analysis. As a matter of fact, these
parts of D∗β do not contribute to the macroscopic mass trans-
port as can be easily inferred from the rhs of Eq. (81); this is
simply due to the fact that ∇∇〈cAβ〉

β is a symmetric tensor.

Nevertheless, as pointed out during the analysis of heat trans-
port, this result is not extensible to situations in which mass
transport near the porous medium boundaries is prescribed
by Neumann or Robin-type boundary conditions.1 Indeed, in
this situation the skew-symmetric part of the dispersion tensor
cannot be neglected in the estimation of mass flux and this is
even the dominant part under strongly convective conditions
(i.e., for sufficiently large values of the mass Péclet number,
say Pe= ‖〈vβ〉β‖`β/Dβ). In this way, the conclusions from the
work by Bear et al.27,28 can only hold if their total dispersion
tensor is meant to be the same as the one arising from the
method of moments.

IV. CONCLUSION

In this work, we have used the framework of volume aver-
aging as an upscaling tool to study the symmetry properties
of effective-medium coefficients arising in macroscopic equa-
tions in many transport processes. In all cases we have followed
a similar procedure, which can be summarized as follows.

(1) Use the governing equations for the closure variables
that define the macroscopic transport coefficients and
perform an appropriate (inner or outer) product with
the adequate closure variable. Since the definition of
the effective-medium coefficient is to be recovered from
the differential equation that governs the fields of the
closure variable, the appropriate product to be used in
each case is the one that leads to a tensorial equation of
the same rank as the desired coefficient. For example,
in momentum transport the corresponding differential
equations are already tensorial; therefore, the corre-
sponding product is an inner product, whereas for heat
and mass transport the equation is vectorial and thus an
outer product is in order.

(2) Apply the superficial average to the previous result
along with the averaging theorem and correspond-
ing boundary and periodicity conditions in the closure
problem to obtain, after few algebraic manipulations
involving tensor analysis, an alternative expression of
the corresponding macroscopic transport coefficient in
terms of the closure variables.

(3) The resulting expression for the effective-medium
coefficients has the nice feature that it allows a straight-
forward identification of the symmetry and skew-
symmetric parts of the tensors.

The technique outlined above was widely illustrated over
several study cases, from which the following comments
arise.

• For inertial one-phase flow in homogeneous porous
media, the method performs the irreducible decom-
position of the apparent permeability tensor, showing
that the symmetric part results from viscous dissipa-
tion, while the skew-symmetric part originates from
inertial transport only. Hence, under creeping flow con-
ditions, the apparent permeability tensor corresponds
to the intrinsic one, which is fully symmetric as it is
well-known in the literature.
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• When the slip-boundary condition is applicable, even
in the creeping-flow regime, the apparent permeability
tensor is not symmetric.
• For one-phase slightly compressible gas flow, in the slip

regime within a fracture, the effective transmissivity
tensor is symmetric despite the presence of slip effects.
The result obtained in this case can be generalized to
any diffusion process involving continuously position
dependent diffusivities.
• The effective permeability tensor for one-phase flow in

a heterogeneous porous medium embedding a porous
matrix and a clear fluid region was shown to be sym-
metric when the flow is assumed to be governed by the
Darcy-Brinkman equations in the porous medium and
by the Stokes equations in the clear fluid region.
• In the case of two-phase creeping flow in homoge-

neous porous media, the dominant permeability ten-
sors are shown to be symmetric, while the coupling
permeability tensors do not exhibit specific symme-
try properties. A reciprocity relationship between the
latter was recovered in consistency with a previous
analysis.
• While studying conductive and convective heat transfer

under non-local thermal equilibrium conditions, it was
demonstrated that the effective thermal conductivity
tensors include a symmetric and a skew-symmetric part,
the latter involving convective effects only. When con-
vection is unimportant or absent, the effective thermal
conductivity tensors become symmetric.
• The results from the previous item are extensible to

passive mass dispersion in homogeneous porous media.
More importantly, our developments allow us to explic-
itly identify the skew-symmetric part of the total dis-
persion tensor that is otherwise missing when derived
from the method of moments.

Beyond the study cases included in this work, the tech-
nique used here can be applied to any other transport process
that is upscaled using the volume averaging method. Hence, the
procedure can be regarded to be systematic for the analysis of
the symmetry properties of macroscopic transport coefficients
as it was the goal of this work. Finally, it is worth mention-
ing that the conclusions reached in this analysis remain valid
whatever the microstructure of the porous medium. Indeed,

the upscaling process does not require any specification of the
porous medium geometry except that, at the closure level, the
structure is made pseudo-periodic.
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APPENDIX A: OUTLINE OF THE VOLUME
AVERAGING METHOD

In this section, the method of volume averaging is briefly
outlined. The steps presented here are consistent with the
monograph by Whitaker1 and also with the more recent ver-
sion reported by Wood and Valdés-Parada.49 In Fig. 5, the
main steps, assumptions, and tools involved in this upscaling
method are schematized and listed below.

(1) First, a set of starting assumptions are introduced with
the aim of defining the transport problem at the pore
scale.

(2) An averaging domain V (of measure V ) that contains
portions of all the phases involved in the system is then
defined along with the corresponding superficial

〈ψα〉 =
1
V

∫
Vα

ψαdV (A1a)

and intrinsic

〈ψα〉
α =

1
Vα

∫
Vα

ψαdV (A1b)

averaging operators for a piece-wise continuous func-
tion, ψα, defined everywhere in the α-phase. Actu-
ally, these averaging operators are coupled by means
of the Dupuit-Forchheimer relation 〈ψα〉 = εα〈ψα〉

α,
with εα = Vα/V being the volume fraction of the
α-phase within the averaging domain. For the case in

FIG. 5. Scheme of the upscaling process using the
method of volume averaging.
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which there is only one fluid phase (the β-phase) (see
Fig. 1) saturating the porous matrix, the fluid volume
fraction corresponds to the porosity, and throughout this
work, it is denoted by εβ ≡ ε.

(3) The superficial averaging operator defined in Eq. (A1a)
is applied to the pore-scale equations. In addition, the
interchange of spatial integration and differentiation
can be achieved by means of the spatial averaging
theorem,50 which, for any quantity ψα defined in the
α-phase, is given by

〈∇ψα〉 = ∇〈ψα〉 +
1
V

∫
Aα

nαψαdA (A2)

and a completely similar expression in its divergence
form.
It is worth adding that the application of the averaging
theorems often allows substitution of the correspond-
ing interfacial boundary conditions. In Eq. (A2), Aα

denotes all the surfaces with which the α-phase is in
contact and nα is a unit normal vector directed from the
α-phase toward each of the other phases in contact. For
the particular case in which there is a single fluid-phase
saturating the porous medium, Aβ = Aβσ and nβσ
≡ n.

(4) At this point, the average equations are expressed in
terms of both average and pointwise quantities. To elim-
inate the latter, the spatial decomposition introduced by
Gray51 is used,

ψα = 〈ψα〉
α + ψ̃α, (A3)

ψ̃α being the spatial deviations of ψα about its intrin-
sic average. The resulting expression is the unclosed
average model because it lacks of a relation between
the spatial deviations and average quantities. Following
the work of Whitaker,1 the (surface and/or volumet-
ric) integrals containing deviation terms may be con-
ceived as filters of information coming from the pore
scale.

(5) With the aim of closing the average model, a boundary-
value problem for the spatial deviations is derived
and formally solved. Since no assumptions have been
imposed so far, let us refer to this boundary-value prob-
lem as the exact closure problem. However, the price to
be paid is that its complexity is the same as (or even
greater than) that of the pore-scale model. It is thus
convenient to introduce a first set of scaling postulates
with the aim of filtering out the redundant information
present in the pore-scale. In typical volume averag-
ing applications, these scaling postulates consist of a
set of reasonable length-scale constraints and assump-
tions among which it is worth recalling the following
one:

` � r0 � L (A4)

in which r0 is the characteristic size of the averag-
ing domain, while ` and L represent the largest char-
acteristic length of the pore-scale and the smallest
characteristic length of the macroscale, respectively.

Using orders of magnitude estimates and taking into
account this separation of length scales, the differen-
tial equations and boundary conditions in the closure
problem can be considerably simplified. In this way, the
average quantities present in the closure problem are
position-invariant. A corollary of this approximation
is that the deviations fields must satisfy the following
average constraint:

〈ψ̃α〉
α
= 0. (A5)

A convenient, although non-mandatory, simplification
of the closure problem is that, in many situations, its
solution domain can be reduced to a single periodic unit
cell. Therefore, one may impose the following bound-
ary condition at the entrances and exits of the unit
cell:

ψ̃α(r + li) = ψ̃α(r), i = 1, 2, 3, (A6)

with r and li being a position vector and each of the
lattice vectors in the unit cell, respectively. Under these
conditions, let us refer to this version of the closure
problem as the simplified closure problem, which has the
nice quality of requiring knowledge of less information
than the pore-scale model.

(6) Substitution of the formal solution of the simplified
closure problem into the filters terms of the unclosed
average model leads to its closed version, which can
be subsequently reduced by performing orders of mag-
nitude analyses taking into account the separation of
length scales already imposed in the simplified closure
problem. After performing this final development, the
resulting model may be referred to as the simplified
upscaled model.

APPENDIX B: TENSOR IDENTITIES

In this manuscript, many identities involving tensor alge-
bra are used that are listed in the present appendix. For the sake
of clarity, basic definitions and necessary material to recover
them are first recalled in Gibbs’ notation together with the
Einstein summation convention. Let A and b be respectively
a second-order tensor and a vector having all the necessary
properties of regularity in the three dimensions of space for
the derivation operators to be defined on their fields; these
basic definitions are given by (we use the notation ψ,i =

∂ψ
∂xi

)

(∇b)ij = bj,i, (B1)(
∇ · A)

j = Aij,i, (B2)(
∇A)

ijk = Ajk,i. (B3)

Note here that ∇A is a third-order tensor,(
∇2A

)
ij
=

(
∇ ·

(
∇A))

ij =
(
∇A)

kij,k = Aij,k,k . (B4)

Throughout the article, the nested convention for inner
products is employed. This means that the indices that are
closest together are those on which summation applies. As a
consequence, the double inner product between two second-
order tensors A and B is defined as

A : B = AijBji = B : A. (B5)
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Similarly, if C is a third-order tensor, we have(C · A)
ijk = CijlAlk (B6)

and further, if F is another third-order tensor(C : F)
ik = CijlFljk . (B7)

Importantly, while dealing with third-order tensors, one must
be clear about the transposes of such algebraic quantities
as three different transpose operators can be defined. In this
manuscript, two of them are employed. The transpose denoted
by the superscript T1 permutes the first and second indices,
whereas the transpose denoted by the superscript T3 permutes
the first and third indices, namely (C is again a third-order
tensor), (

CT1
)

ijk
= Cjik , (B8)(

CT3
)

ijk
= Ckji. (B9)

In addition, throughout this work, the outer product
between two vectors, a and b, is defined as

(ab)ij = aibj. (B10)

It is worth mentioning that some authors52 denote this product
as a ⊗ b. The outer product between a second-order tensor A
and a vector b is given in a similar manner by(Ab

)
ijk = Aijbk . (B11)

With this at hand, it is not hard to deduce the following
formulas that are used in the article and which can be listed as
follows.

(1) For a second-order tensor, A, which is a regular enough
function of position, the following identities are applica-
ble (the superscript T represents the classical transpose
of a second-order tensor, i.e.,

(
AT

)
ij
= Aji),(

∇2A
)T
= ∇ ·

(
∇AT

) (
= ∇2AT

)
, (B12)(

∇AT
)T1
=

((
∇A)T1

)T3
, (B13)

∇ ·
(
∇A)T1

=
(
∇ ·

(
∇A)T3

)T
, (B14)((

∇AT
)T3

)T1
=

(
∇A)T3, (B15)

(
∇AT

)T1
:
(
∇A)T1

=
(
∇A)T3 : ∇A. (B16)

(2) For a second-order tensor A and a vector b, which are
both continuous and derivable functions of position, the
following identities are applicable:

AT b =
(
bA)T3, (B17)

∇ · (Ab) = (∇ · A)b + AT
· ∇b. (B18)

When b is a solenoidal vector field, the following
identities are valid:

AT
·
[
∇ · (bA)

]
= AT b : ∇A, (B19)

∇ ·
(
bAT

· A
)
= ∇ ·

(
bAT

)
· A + AT b : ∇A.

(B20)

(3) For any arbitrary second-order tensors A and B hav-
ing the required regularity properties, the following
identities hold: (A · B)T

= BT
· AT , (B21)

∇ ·
(
∇A · B)

= ∇2A · B +
(
∇A)T1 :

(
∇B)T1,

(B22)

(
∇A : ∇B)T

=
(
∇B)T3 :

(
∇A)T3, (B23)

[
∇A +

(
∇A)T1

]T3
:
(
∇B)T1

=
[
∇A +

(
∇A)T1

]T3
: ∇B

=
1
2

[
∇A +

(
∇A)T1

]T3
:

[
∇B +

(
∇B)T1

]
.

(B24)

(4) The last part of this appendix is dedicated to the proof
that, for any second-order tensor A having the required
regularity properties, the second-order tensor given by
the expression B= (

∇A)T3 :
[
∇A +

(
∇A)T1

]
is sym-

metric. The ij component of this tensor is given by(B)
ij =

((
∇A)T3

)
ikl

(
∇A +

(
∇A)T1

)
lkj

=
(
∇A)

lki
(
∇A)

lkj +
(
∇A)

lki
(
∇A)

klj. (B25)

The ji component of this tensor is obtained by inverting
the i and j indices, yielding(B)

ji =
(
∇A)

lkj
(
∇A)

lki +
(
∇A)

lkj
(
∇A)

kli. (B26)

The first term on the rhs of both Eqs. (B25) and (B26) is
obviously the same. Moreover, for the second term, one
can notice that the two indices on which summation is
performed are dummy and can hence be interchanged
so that the second term on the rhs of both the above
expressions is also the same, completing the proof that(
∇A)T3 :

[
∇A +

(
∇A)T1

]
is a symmetric tensor.
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