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Abstract The problem of input-to-state stability (ISS), and its integral ver-
sion (iISS), are considered for switched nonlinear systems with inputs, resets
and possibly unstable subsystems. For the dissipation inequalities associated
with the Lyapunov function of each subsystem, it is assumed that the sup-
ply functions, which characterize the decay rate and ISS/iISS gains of the
subsystems, are nonlinear. The change in the value of Lyapunov functions at
switching instants is described by a sum of growth and gain functions, which
are also nonlinear. Using the notion of average dwell-time (ADT) to limit the
number of switching instants on an interval, and the notion of average activ-
ation time (AAT) to limit the activation time for unstable systems, a formula
relating ADT and AAT is derived to guarantee ISS/iISS of the switched sys-
tem. Case studies of switched systems with saturating dynamics and switched
bilinear systems are included for illustration of the results.
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1 Introduction

Switched systems – comprising a family of dynamical subsystems orchestrated
by a piecewise constant switching signal – provide a mathematical framework
for modeling systems where the state trajectories exhibit sudden transitions,
either due to instant change in the vector field or due to jumps in some of
the state variables [13,14]. A canonical approach for stability analysis of such
systems is to develop characterizations based on the stability properties of the
individual subsystems, and the effects observed at switching times. When all
subsystems are stable, the undesired instability effects may occur at switching
times. In such cases, if one restricts the frequency of switching times over an
interval, then the decay in the norm of state trajectories can overcome the
growth at switching times. Such slow switching results are usually obtained
by imposing lower bounds on the dwell-time or average dwell-time (ADT)
between switching instances [26,11]. In the case when some subsystems are
unstable, one needs to restrict the average activation time (AAT) of these
unstable subsystems along with sufficiently large ADT bounds in order for the
resulting switched system to be stable, and this has been studied in [17,29,31].
For switched linear systems, stability conditions based on matrix measure can
also be used to determine stability when the switching signals are periodic [19],
and this criterion is later extended to switching signals satisfying asymptotic
AAT constraints [28]. Meanwhile, it is also possible to consider cases where
the continuous dynamics of all the individual subsystems are unstable, but the
impulsive effects from switching between these subsystems stabilize the system
[25,30]. Conditions describing how fast such stabilizing impulsive effects must
occur are captured under the notion of reverse average dwell-time (r-ADT),
introduced in [9].

An additional important element that we incorporate in our stability ana-
lysis of switched systems is the presence of inputs or disturbances. For non-
linear systems, in general, quantitative relationships between the norm of the
state trajectories and the magnitude of the inputs are appropriately captured
by the notion of input-to-state stability (ISS), or its integral variant, integral
input-to-state stability (iISS). These notions have been pioneered in [21] and
[22], and since their inception, these tools have been used for analysis and
design purposes in many control-related problems. In the context of switched
systems under arbitrary switching, converse results regarding the existence of
ISS and iISS Lyapunov functions first appeared in [16], and some implica-
tions relating ISS and iISS for switched systems have been developed in [8].
Switching dynamics with reset maps can also be captured by the framework
of hybrid systems [7] and ISS characterizations via Lyapunov functions for
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hybrid systems have been developed in [3,4]. Relaxing certain assumptions in
these works, along with some developments based on converse results, iISS
characterizations via Lyapunov functions for hybrid systems appear in [18].
However, these results do not explicitly work out the stability conditions for
switched systems in terms of the data associated with individual subsystems.

Combining the aforementioned two directions of research, it is rather nat-
ural to ask whether the Lyapunov characterizations for individual subsystems
can be combined with ADT and AAT notions to obtain sufficient conditions
for ISS/iISS of switched systems with inputs. This question has indeed been
addressed in the literature in different settings. In the work [9], ISS/iISS is
studied for impulsive systems, which can be viewed as switched systems with
a single mode. The paper [24] provides lower bounds on ADT in terms of the
data associated with individual ISS subsystems so that the switched system
is ISS. Later the paper [17] relaxes the assumption of all ISS subsystems and
allows possible unstable subsystems. A result on ISS switched system is con-
cluded in that work when the switching signal satisfies both ADT and AAT
conditions. Nevertheless, a major restriction of these works is that most results
require the assumption that both the decay rates in the inequalities associated
with the derivative of Lyapunov functions or the growth rate in the value of the
Lyapunov functions at switching instants are linear. This assumption becomes
overly restrictive when studying iISS. An exception is the result [9, Theorem
6], which provides conditions for the impulsive system to be iISS under ar-
bitrary switching even if the decay rate is nonlinear. However, growth in the
Lyapunov function when impulses occur is not allowed in that result.

Compared to the aforementioned references, the major contribution of this
work is to study ISS and iISS of switched systems with nonlinear decay rate
in the dissipation inequalities associated with the Lyapunov functions of indi-
vidual subsystems. In other words, using the terminology from [23], we con-
sider Lyapunov functions for each subsystem with nonlinear supply functions.
Moreover, the change in the value of Lyapunov function at switching times
is also described by nonlinear growth function. This setup was, in particular,
adopted in the conference version of this paper [15], and the previous independ-
ent work of the authors [32,20]. While [32] provides the construction of an ISS
Lyapunov function to find the lower bounds on ADT for stability of cascade
interconnections, the present work uses a conceptually similar approach for a
broader class of switched systems and extends the study to iISS. In contrast
to [20], where the analysis is carried out using trajectory-based methods with
nested comparison functions, this paper makes transition from dwell-time con-
ditions to a more quantitative ADT estimate. In our conference paper [15], we
only study switched systems whose subsystems are all (i)ISS and the growth
of the Lyapunov functions at the switching times is not allowed to depend on
the input. Such assumptions have been relaxed in this work and consequently,
a generalization of the results in [17] is obtained with a Lyapunov-function-
based approach that allows us to handle additional nonlinearities in the supply
functions.
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The rest of the paper is organized as follows. After some necessary prelim-
inaries about switched systems given in Section 2, our main result is stated
in Section 3 with some discussions about the validity of its assumptions. Sec-
tion 4 contains the technical tools used to prove our main result. Case studies
of switched systems with saturating dynamics and switched bilinear systems
are provided in Section 5 for illustration of the results, followed by the con-
clusion in Section 6.

2 Preliminaries

In this section, we introduce the basic notation of comparison functions, the
definition of switched systems and switching signals, and the definitions of ISS
and iISS of switched systems.

Comparison functions. A function α : R>0 −→ R>0 is said to be positive
definite if it is continuous, α(0) = 0 and α(s) > 0 for all s > 0. If α is
also strictly increasing, then it is said to be of class K. In addition if α is also
unbounded, then it is said to be of class K∞. A function β : R>0×R>0 −→ R>0
is said to be of class KL if β(·, t) is of class K for each t ∈ R>0, β(s, ·) is
continuously decreasing and β(s, t) −→ 0 as t −→ ∞ for each fixed s ∈ R>0;
see [12, Chapter 4] for their use in formulation of common stability notions. In
addition, we require class KLL functions: A function β : R>0×R>0×R>0 −→
R>0 is a class KLL function if β(·, ·, j) is a class KL function for each j > 0
and β(·, t, ·) is a class KL function for each s > 0.

Switched systems. Let P ⊂ N be a set of either finite or infinite cardinality.
For each p ∈ P, there is a locally Lipschitz vector field fp : Rn × Rm −→ Rn.
The differential equations

ẋ = fp(x, ω), p ∈ P (1)

are the dynamics of the subsystems or modes of the switched system. For each
pair (p, q) ∈ P×P, there is also a continuous jump map gq,p : Rn×Rm −→ Rn.
Let Σ be the set of all right-continuous, piecewise constant mappings from R>0
to P with a locally finite number of discontinuities, called switching signals.
For each switching signal σ ∈ Σ, define

T (σ) := {t > 0 : σ(t) 6= σ(t−)} (2)

In other words, T (σ) is the collection of switching instants. With this data,
we consider switched dynamical systems with inputs and resets, described by

ẋ(t) = fσ(t)(x(t), ω(t)) if t 6∈ T (σ), (3a)

x(t) = gσ(t−),σ(t)(x(t−), ω(t)) if t ∈ T (σ), (3b)
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where ω : R>0 −→ Rm is locally essentially bounded on R>0 and bounded
on T (σ). We call (3a) the continuous flow and (3b) the discrete jumps. We
denote the solution of (3) with initial state x0, input ω and switching signal σ
by x(·;x0, ω, σ). When x0, ω, σ are clear from the context, the solution is also
abbreviated by x(·).

Switching signals. We now specify the class of switching signals for which
we study the stability of the system (3). Conceptually, the class of switching
signals with ADT constraints puts an upper bound on the average number
of switches over any time interval. According to [11], we say that a switching
signal σ satisfies average dwell-time (ADT) condition with parameters τa > 0
(average dwell-time) and N0 > 1 if

∀t2 > t1 > 0 : Nσ(t1, t2) 6 N0 + t2 − t1
τa

, (4)

where Nσ(t1, t2) is the number of switches occurring in the interval (t1, t2]:
Nσ(t1, t2) := |(t1, t2] ∩ T (σ)|. We denote ΣADT(τa, N0) to be the collection of
all ADT switching signals with parameters τa, N0.

Following the definition in [17], we take a disjoint union P = Ps ∪ Pu and
say that a switching signal σ satisfies average activation time (AAT) condition
with parameters η ∈ [0, 1] (percentage activation time), T0 > 0, if

∀t2 > t1 > 0 : Tσ,Pu(t1, t2) 6 T0 + η(t2 − t1), (5)

where Tσ,Pu(t1, t2) is the activation time of modes in Pu over the interval
(t1, t2]. More precisely, if we consider the function 1Pu : P −→ {0, 1}, defined
as

1Pu(σ) =
{

1, if σ ∈ Pu,

0, otherwise,
(6)

then Tσ,Pu(t1, t2) :=
∫ t2
t1

1Pu(σ(τ))dτ . We denote ΣAAT(Pu, η, T0) to be the
collection of all AAT switching signals of modes in Pu with parameters η, T0.
Notice that the AAT condition is always with respect to the set Pu, which we
later associate with the collection of subsystems with not necessarily stable
dynamics. In addition, in the special case when η = 1, (5) imposes no con-
straints on the activation time and hence the switching signal can be arbitrary.
On the other hand, when T0 = 0 and η < 1, (5) implies that modes in Pu are
not activated at all.

Stability definitions. Let Σ ⊂ Σ be a set of switching signals. In this paper,
we will focus on the following two uniform external stability properties of
switched systems with respect to all switching signals in Σ. In what follows,
the essential supremum norm of ω over a set I (that is, the supremum of ω on
I except for a set of measure zero) is denoted by ess sups∈I |ω(s)|.
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Definition 1 A switched system (3) is uniformly input-to-state stable (ISS)
over Σ if there exist β ∈ KL, γ1, γ2 ∈ K such that

|x(t;x0, ω, σ)| 6 β(|x0|, t) + γ1( ess sup
s∈[0,t]\T (σ)

|ω(s)|) + γ2( sup
s∈[0,t]∩T (σ)

|ω(s)|) (7)

for all t > 0, x0 ∈ Rn and σ ∈ Σ.

Definition 2 A switched system (3) is uniformly integral input-to-state stable
(iISS) over Σ if there exist α0 ∈ K∞, β ∈ KL, γ1, γ2 ∈ K such that

α0(|x(t;x0, ω, σ)|) 6 β(|x0|, t) +
∫ t

0
γ1(|ω(s)|)ds+

∑
s∈[0,t]∩T (σ)

γ2(|ω(s)|) (8)

for all t > 0, x0 ∈ Rn, and σ ∈ Σ.

Our definitions of ISS and iISS are adopted from [3] and [18]. Notice that
the last terms in (7), and in (8) do not appear in standard definitions of ISS
and iISS for non-switched systems; these additional terms are needed in our
framework to capture the growth of state trajectories at switching instants
due to the presence of inputs in the jump dynamics (3b).

3 Assumptions and main results

We now state some assumptions on the data of system (3) required for the
statement of the main result.

Assumption 1 There exist C1 Lyapunov functions Vp : Rn −→ R>0, p ∈ P,
satisfying the conditions:

(L1) There exist α, α ∈ K∞ such that

α(|x|) 6 Vp(x) 6 α(|x|), ∀x ∈ Rn, p ∈ P. (9)

(L2) There exist a disjoint partition P = Ps ∪ Pu, two positive definite func-
tions αs, αu, and γ ∈ K such that〈 ∂

∂x
Vp(x), fp(x, ω)

〉
6 −αs(Vp(x)) + γ(|ω|) ∀x ∈ Rn, ω ∈ Rm, p ∈ Ps,

(10a)
and〈 ∂

∂x
Vp(x), fp(x, ω)

〉
6 αu(Vp(x)) + γ(|ω|) ∀x ∈ Rn, ω ∈ Rm, p ∈ Pu.

(10b)
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(L3) There exist χ ∈ K∞, ρ ∈ K such that

Vp(gq,p(x, ω)) 6 χ(Vq(x)) + ρ(|ω|) ∀x ∈ Rn, ω ∈ Rm, p, q ∈ P. (11)

Remark 1 For each subsystem in Ps, (L1) and the condition (10a) in (L2)
provide a necessary and sufficient condition for it to be iISS [2]. In addition if
it is assumed that αs in (10a) is K∞, then each subsystem in Ps is ISS.

Remark 2 The partition Ps,Pu is not necessarily an indicator whether a sub-
system is iISS or not. Indeed, when a subsystem is not iISS, (10a) will not hold
for any choice of Vp but (10b) may still hold. However, even if a subsystem is
iISS, it may still lead to the inequality (10b) due to the improper choice of Vp.
In this case this subsystem needs to be categorized to the set Pu.

Based on Assumption 1, we introduce the function ψ : R>0 −→ R>0 as

ψ(t) := min
s∈[0,t]

{αs(s) + c(t− s)} (12)

where c > 0 is some constant. The next assumption bounds the divergence
rate for the subsystems in Pu:

Assumption 2 The supremum

κ := sup
s>0

αu(s)
ψ(s) (13)

is finite, where αu comes from (L2) in Assumption 1 and ψ is defined in (12).

Our last assumption will be instrumental in deriving a lower bound for
ADT in a similar fashion as in [32]:

Assumption 3 The supremum

ζ∗ := sup
s>0

∫ χ(s)

s

1
ψ(r)dr (14)

is finite, where χ comes from (L3) in Assumption 1 and ψ is defined in (12).

We are now ready to state the main theorem of this paper:

Theorem 1 Consider the switched system (3) and suppose that Assumptions 1,
2, and 3 hold with the function ψ constructed via (12) for some c > 0. If
τa > ζ∗, then for every η ∈ [0, 1] satisfying the inequality

(1 + κ)η + ζ∗

τa
< 1, (15)

the system (3) is uniformly iISS over ΣADT(τa, N0)∩ΣAAT(Pu, η, T0) for any
N0 > 1 and T0 > 0. Moreover, if in (L2) αs ∈ K∞, and τa > ζ∗, then system
(3) is uniformly ISS over ΣADT(τa, N0) ∩ΣAAT(Pu, η, T0) for every η ∈ [0, 1]
satisfying (15) and any N0 > 1, T0 > 0.
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To provide some insight about Theorem 1, let us consider its application
to some special types of switched systems. We first consider the case when all
the subsystems are (i)ISS. In this case, we can always find Vp satisfying (10a)
in (L2) for all p ∈ P so that Pu = ∅. Hence the AAT condition vanishes and
we could simply set η = 0. As a result, (15) reduces to τa > ζ∗. In other words,
in this case the switched system (3) is uniformly (i)ISS over ΣADT(τa, N0) for
any τa > ζ∗, N0 > 1.

We next consider the case when the switching does not introduce jumps in
the Lyapunov functions evaluated along the solutions of the unforced system,
so that χ = id. We then conclude from (14) that ζ∗ = 0, so by Theorem 1,
the switched system is (i)ISS with arbitrarily small values of the average dwell
time τa. In addition, (15) results in η < 1

1+κ and the switched system (3) is
uniformly (i)ISS over

(
∪τa>0 ΣADT(τa, N0)

)
∩ΣAAT(Pu, η, T0).

Lastly, we consider the case when the decaying rates and growth rates in
(L2), (L3) of Assumption 1 are all linear; that is, there exist λs, λu, µ > 0
such that αs(s) = λss, αu(s) = λus, χ(s) = µs for all s > 0. In this case, the
formula (14) yields

ζ∗ =
∫ µs

s

1
λsr

dr = lnµ
λs

and consequently the inequality (15) becomes(
1 + λu

λs

)
η + lnµ

λsτa
< 1.

After rearranging the terms, we recover the conditions on τa and η which
guarantee ISS switched system as stated in [17, Theorem 2]. Thus our work
turns out to be a generalization from linear to nonlinear setting of the known
results in the literature.

Discussion of the assumptions. Once we impose some characterizations of the
stability or instability of individual subsystems and the reset maps in As-
sumption 1, it is seen that the stability condition in (15) primarily depends
on finiteness of κ in Assumption 2 and ζ∗ in Assumption 3. In both the as-
sumptions, the function ψ constructed in (12) plays a key role.
1. Note that (12) immediately implies that ψ(t) 6 ψ(t) := min{αs(t), ct}. In

[15], we proposed stability conditions using the function ψ while assuming
that it is globally one-sided Lipschitz. That assumption is necessary in [15];
for example, take αs(s) = se−s + 1 − cos(s2), then ψ(t) is not one-sided
Lipschitz for any c > 0. In this work, the Lipschitzness assumption is no
longer required because the function ψ in (12) inherits this property by
construction, which will be shown later by Lemma 8.

2. The function ψ defined by (12) is essentially a global one-sided Lipschitz
modification of αs. In case αs is already globally Lipschitz, ψ can be chosen
equal to αs by setting c larger than its Lipschitz constant. Functions like
αs(s) = s, αs(s) = ln(1 + s) and αs(s) = se−s are examples of such a case.
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3. Combining (12) and (13), we conclude from (10b) that for all p ∈ Pu,〈
∂
∂xVp(x), fp(x, ω)

〉
6 κcVp(x) + γ(|ω|). According to [1, Theorem 1], this

property in turn implies that these subsystems are forward complete, which
is a very reasonable assumption on the subsystems as one cannot expect
the switched system to be iISS if an active subsystem has finite escape
time.

4. In order to get a qualitative answer to the question of when the switched
system is iISS/ISS under slow switching, we need to better understand
Assumption 3. The next lemma states that, in order to show that ζ∗ is
finite, we only need to examine the values of ψ(s), χ(s) for small and large
s without computing the integral in (14). To this end, we say a positive
definite function α : R>0 −→ R>0 is initially increasing if there exists r > 0
such that α(s) 6 α(t) for all 0 6 s 6 t 6 r, and eventually increasing (resp.
eventually decreasing) if there exists R > 0 such that α(s) 6 α(t) (resp.
α(s) > α(t)) for all R 6 s 6 t.
Lemma 2 The value ζ∗ defined in (14) is finite when both conditions (a)
and (b) hold:

(a) ψ is initially increasing and lim sups−→0+
χ(s)−s
ψ(s) <∞, and

(b) ψ is eventually increasing and lim sups−→∞
χ(s)−s
ψ(s) <∞, or

ψ is eventually decreasing and lim sups−→∞
χ(s)−s
ψ(χ(s)) <∞.

Proof. We only study the non-trivial case when χ(s) > s for all s > 0. By
inspecting the definition of ζ∗ in (14), we see that it suffices to show that
lim sups

∫ χ(s)
s

1
ψ(r)dr is finite when s approaches both 0+ and infinity in

order for ζ∗ to be finite. When ψ is initially increasing, we have r > 0 such
that for all s > 0 with χ(s) 6 r,∫ χ(s)

s

1
ψ(r)dr 6

∫ χ(s)

s

1
ψ(s)dr = χ(s)− s

ψ(s) .

Take the limit as s −→ 0+, and it follows from the first condition in
Lemma 2 that lim sups−→0+

∫ χ(s)
s

1
ψ(r)dr is bounded. Similarly, the second

condition results in lim sups−→∞
∫ χ(s)
s

1
ψ(r)dr being bounded.

It is not hard to see that ζ∗ is finite for the linear functions when ψ(s) =
λs, χ(s) = µs. In addition, using Lemma 2, it is straightforward to verify
that the nonlinear pairs such as (ψ(s), χ(s)) = (1 − e−s, s + 1 − e−s),
(e−s(1− e−s), ln(es + 1)) also ensure finite ζ∗.

4 Technical Tools and Proofs

Our proof of Theorem 1 relies on rewriting the switched system into a hybrid
system in the framework of [7] and then showing ISS/iISS of that hybrid sys-
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tem. In this section we provide a brief description of hybrid systems, followed
with some supporting lemmas and the proof of Theorem 1.

4.1 Hybrid systems with inputs

Consider the hybrid dynamical system with inputs, which is described as:{
ξ̇ ∈ F(ξ, d), (ξ, d) ∈ C,
ξ+ ∈ G(ξ, d), (ξ, d) ∈ D,

(16)

where the state trajectory ξ evolves in X ⊂ Rn, and the disturbance d takes
values in Rm. The sets C, D are subsets of X×Rm and are called flow and jump
sets, respectively. The evolution of the state is thus described by F (during
flows) and by G (at jump instants), which are set-valued mappings from X×Rm
to X . The solutions of the hybrid system (16) are defined on hybrid time
domains. A set I ⊂ R>0 × Z>0 is called a compact hybrid time domain if
I = ∪J−1

j=0 ([tj , tj+1], j) for some finite sequence of times 0 = t0 6 t1 · · · 6 tJ ;
and I is a hybrid time domain if for all (T, J) ∈ I, I ∩ ([0, T ]× {0, 1, . . . , J})
is a compact hybrid time domain. The domain of the hybrid input d in (16) is
a hybrid time domain, and d : dom d −→ Rm is such that d(·, j) is Lebesgue
measurable and locally essentially bounded for each j ∈ Z>0. It is assumed
that when the system data (F ,G, C,D) satisfies certain basic assumptions [4,
7], then for each input d : dom d −→ Rm, the system (16) admits a local
solution, called hybrid arc, ξ : dom ξ −→ X . A hybrid arc ξ : dom ξ −→ X and
a hybrid input d : dom d −→ Rm are a solution pair to the hybrid model (16)
if:
– dom ξ = dom d;
– for all j ∈ Z>0 and almost all t ∈ R>0 such that (t, j) ∈ dom ξ, we have

(ξ(t, j), d(t, j)) ∈ C and ξ̇(t, j) ∈ F(ξ(t, j), d(t, j)); and
– for (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ we have (ξ(t, j), d(t, j)) ∈ D

and x(t, j + 1) ∈ G(ξ(t, j), d(t, j)).
For an initial state ξ0 and an input d, a hybrid arc of (16) is denoted by

ξ(·, ·; ξ0, d). In what follows, we denote the distance between a vector ξ ∈ X
and a compact set A ⊂ X by |ξ|A, that is, |ξ| := infζ∈A |ξ − ζ|. Following
[3], for a hybrid signal d, we use the notation ‖d‖(t,j) to denote the maximum
between ess sup

(t̂,ĵ+1)6∈dom d,t̂+ĵ6t+j
|d(t̂, ĵ)| and sup

(t̂,ĵ+1)∈dom d,t̂+ĵ6t+j
|d(t̂, ĵ)|.

Definition 3 A hybrid system (16) is said to be input-to-state stable (ISS)
with respect to A if there exist βh ∈ KLL and γh ∈ K such that for all ξ0 ∈ X
and all (t, j) ∈ dom ξ, each solution pair (ξ, d) satisfies

|ξ(t, j; ξ0, d)|A 6 βh(|ξ0|A, t, j) + γh(‖d‖(t,j)). (17)
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Definition 4 A hybrid system (16) is said to be integral input-to-state stable
(iISS) with respect to A if there exist αh ∈ K∞, βh ∈ KLL and γh ∈ K such
that for all ξ0 ∈ X and all (t, j) ∈ dom ξ, each solution pair (ξ, d) satisfies

αh(|ξ(t, j; ξ0, d)|A) 6 βh(|ξ0|A, t, j)+
∫ t

0
γh(|d(s, jd,s)|)ds+

∑
(t̂,ĵ+1)∈dom d

t̂+ĵ6t+j

γh(|d(t̂, ĵ)|)

(18)
where jd,s := max{i ∈ N | (s, i) ∈ dom d}.

We can also characterize ISS and iISS using Lyapunov functions, as stated
in the following two lemmas [3,18]:

Lemma 3 A hybrid system (16) is ISS with respect to A if there exists a
smooth function V : X −→ R>0 and functions α1, α2, αc, αd ∈ K∞ and γc ∈ K
such that

α1(|ξ|A) 6 V (ξ) 6 α2(|ξ|A) (19)

for all ξ ∈ X , 〈
∂

∂ξ
V (ξ), f

〉
6 −αc(|ξ|A) + γc(|d|) (20)

for all (ξ, d) ∈ C, f ∈ F(ξ, d), and

V (g)− V (ξ) 6 −αd(|ξ|A) + γd(|d|) (21)

for all (ξ, d) ∈ D, g ∈ G(ξ, d).

Lemma 4 A hybrid system is iISS with respect to A if there exists a smooth
function V : X −→ R>0 and functions α1, α2 ∈ K∞, positive definite functions
αc, αd and γc ∈ K such that (19) holds for all ξ ∈ X , (20) holds for all
(ξ, d) ∈ C, f ∈ F(ξ, d) and (21) holds for all (ξ, d) ∈ D, g ∈ G(ξ, d).

We call a function V satisfying the inequalities in Lemma 3 (resp. Lemma 4)
a hybrid ISS (resp. iISS) Lyapunov function.

Remark 3 Note that Lemma 4 differs from Lemma 3 in the sense that αc, αd
are only assumed to be positive definite instead of class K∞, which also reflects
the fact that iISS is strictly weaker than ISS.

4.2 Hybrid models for ADT and AAT

We now model the switched systems with ADT and AAT constraints as a
hybrid system (16). It is assumed that P = Pu∪Ps, and we recall that 1Pu(·),
defined in (6), is the indicator function associated with unstable modes indexed
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by Pu. Recall that the definitions of ADT and AAT constrained switching
signals in (4) and (5) depend on the positive integer N0 and the scalar T0. We
consider an autonomous hybrid system evolving on X := P × [0, N0]× [0, T0]
with state denoted by (p, τ, τu). The dynamics of this hybrid system is given
by 

ṗ = 0,
τ̇ ∈ [0, 1

τa
],

τ̇u ∈ [1Pu(p)− η,1Pu(p)],
ξ ∈ C, (22a)


p+ ∈ P,
τ+ = τ − 1,
τ+
u = τu,

ξ ∈ D (22b)

where the parameters τa, η come from (4), (5) and the flow and jump sets are
given by C := P × [0, N0]× [0, T0], D := P × [1, N0]× [0, T0], respectively. Note
that the domain of 1Pu(·) is discrete, which makes it continuous with discrete
topology. Consequently, the right-hand side of (22a) is outer semi-continuous,
closed and convex-valued so it satisfies the regularity assumption on the hybrid
system. Essentially, in our model (22), we are introducing two timers: τ and
τu. The underlying intuition is that τ keeps track of ADT constraint, and τu
models the AAT constraint. Recall the definition of T (σ) in (2) and denote
T (σ) =: {t1, t2, · · · } with t1 < t2 < · · · and denote t0 := 0. In addition we
abuse the notation that when |T (σ)| < ∞, [t|T (σ)|, t|T (σ)+1|] := [t|T (σ)|,∞).
The next proposition formalizes the relation between the complete solutions
of the hybrid system (22) and the switching signals satisfying both ADT and
AAT conditions.

Proposition 5 For every switching signal σ ∈ ΣADT(τa, N0)∩ΣAAT(Pu, η, T0),
there exists a complete solution ξ = (p, τ, τu) to the hybrid system (22) with
the hybrid domain dom ξ = ∪|T (σ)|

j=0 [tj , tj+1]× {j} and it satisfies that

p(t, j) = σ(tj) ∀(t, j) ∈ dom ξ. (23)

On the other hand, for every complete solution ξ = (p, τ, τu) to the hybrid
system (22), denote its hybrid domain by dom ξ := ∪Jj=0[tj , tj+1]× {j}, where
[tJ , tJ+1] = [tJ ,∞) if J <∞. Define a switching signal

σ(t) := p(t, j) ∀ t ∈ [tj , tj+1), j = 1, · · · , J (24)

then σ ∈ ΣADT(τa, N0) ∩ΣAAT(Pu, η, T0).

Proof. As shown in [7, Example 2.15], the dynamics of p and τ guarantees
the equivalence between complete solutions of the hybrid system (22) and
switching signals σ ∈ ΣADT(τa, N0) such that p(t, j) = σ(t). It remains to
show that the dynamics on τu confines p(t, j) to be equivalent to an AAT
switching signal. To show the first part of Proposition 5, let σ ∈ ΣADT(τa, N0)∩
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ΣAAT(Pu, η, T0) be arbitrary. If η = 1, then there is no AAT constraint on the
switching signal and a hybrid arc ξ = (p, τ, τu) with p(0, 0) = σ(0), ṗ = 0 if
t 6∈ T (σ), p+ = σ(t) if t ∈ T (σ) and τu ≡ 0 is complete and satisfies (23). If
η < 1, we construct this hybrid arc ξ with the same p dynamics as earlier. Also,
we take τu(0, 0) = 0 and in the set-valued dynamics of τ̇u for this solution, we
choose

τ̇u(t, j) =

−η if σ(t) ∈ Ps, τu(t, j) > 0,
0 if σ(t) ∈ Ps, τu(t, j) = 0,
1− η if σ(t) ∈ Pu.

(25)

Proceeding by contradiction, assume that this solution to the hybrid system is
not complete. This happens when the solution reaches the boundary of C ∪D
and the continuous dynamics keeps “pushing” the solution to go beyond the
boundary of C ∪ D. By inspecting the dynamics of τu as defined in (25), we
see that the solution is not complete if and only if there exists (t, j) such that
τu(t, j) = T0 and σ(t) ∈ Pu. Note that the complete solutions whose hybrid
domain only consists of discrete jumps after hybrid time (t̄, j̄) are ruled out
by the ADT condition. Now, let

(t, j) := max
{

(t, j) ∈ dom ξ : (t, j) 6 (t, j), τu(t, j) = 0
}
.

It is noted that (t, j) exists as τu(0, 0) = 0, τu(t, j) = T0 and the function τu is
continuous. Use the notation

js := max{j ∈ N : (s, j) ∈ dom ξ} (26)

and because the switching signal is piecewise constant, we have the observation
that ∫ t

t

1Ps(p(s, js))ds =
∫ t

t

1Ps(σ(sjs))ds =
∫ t

t

1Ps(σ(s))ds

and the relation also holds if replacing Ps by Pu. Hence we have

T0 = τu(t, j)− τu(t, j) =
∫ t

t

τ̇u(s, js) ds

=
∫ t

t

τ̇u(s, js)1Pu(p(s, js)) ds+
∫ t

t

τ̇u(s, js)1Ps(p(s, js)) ds

=
∫ t

t

(1− η)1Pu(p(s, js)) ds+
∫ t

t

(−η)1Ps(p(s, js)) ds

=
∫ t

t

1Pu(σ(s)) ds−
∫ t

t

η ds

= Tσ,Pu(t, t)− η(t− t).

This shows that the given switching signal σ has reached the maximum activ-
ation time over [t, t). Therefore, the switched system has to switch to a stable
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mode so that σ(t) ∈ Ps, which is a contradiction. This proves that there exists
a complete solution to the hybrid system (22) which satisfies (23).

To prove the second part, we need to verify that the switching signal given
by (24) satisfies the AAT condition. We first observe that (24) implies that
σ(s) = (s, js), where js is defined in (26). Since ξ ∈ C ∪ D, we see that
τu(t, j) ∈ [0, T ] for all (t, j) ∈ dom ξ. Thus for any (t1, j1), (t2, j2) ∈ dom ξ
with t2 > t1,

T0 > τu(t2, j2)− τu(t1, j1) =
∫ t2

t1

τ̇u(s, js) ds

=
∫ t2

t1

τ̇u(s, js)1Pu(p(s, js)) ds+
∫ t2

t1

τ̇u(s, js)1Ps(p(s, js)) ds

=
∫ t2

t1

(1− η)1Pu(σ(s)) ds+
∫ t2

t1

(−η)1Ps(σ(s)) ds

=
∫ t2

t1

1Pu(σ(s)) ds−
∫ t2

t1

η ds

= Tσ,Pu(t1, t2)− η(t1 − t2).

This shows that the switching signal σ defined by (24) satisfies the AAT con-
dition and this completes the proof.

Remark 4 We make a comparison between our model and the one proposed in
[27]. While we use two timers to track ADT and AAT constraints individually,
a single timer is developed in the context of a small-gain theorem in [27],
which imitates a switching signal under both ADT and AAT constraints. We
acknowledge here that although the models are different, Proposition 1 in [27]
is analogous to Proposition 5 in our paper. Nevertheless, it turns out that for
our purpose (see Section 4.4), using two individual timers makes the argument
fairly intuitive and straightforward.

Using the result of Proposition 5, one can write the switched system (3),
along with the ADT and AAT constraints on the switching signal, more nat-
urally in the form of (16). To do so, we let

ξ :=


y
p
τ
τu

 ∈ Rn × P × [0, N0]× [0, T0] =: X . (27)

The hybrid model capturing the dynamics of the switched system, driven
by an Rm-valued disturbance d and a switching signal σ ∈ ΣADT(τa, N0) ∩
ΣAAT(Pu, η, T0), is compactly written as

ξ̇ ∈ F(ξ, d) :


ẏ = fp(y, d),
ṗ = 0,
τ̇ ∈ [0, 1

τa
],

τ̇u ∈ [1Pu(p)− η,1Pu(p)],

(ξ, d) ∈ C, (28a)
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ξ+ ∈ G(ξ, d) :


y+ ∈ Gp(y, d),
p+ ∈ P,
τ+ = τ − 1,
τ+
u = τu,

(ξ, d) ∈ D, (28b)

where C := X × Rm,D := Rn × P × [1, N0] × [0, T0] × Rm, and Gp(y, d) :=⋃
q∈P gp,q(y, d). For the system (28), it is of interest to study whether the

compact set
A := {0}n × P × [0, N0]× [0, T0] (29)

is an attractor. Comparing (17) and (18) with (7) and (8) respectively, we
have the following straightforward result:

Corollary 6 The switched system (3) is uniformly ISS (resp. iISS) over the
class of switching signals ΣADT(τa, N0)∩ΣAAT(Pu, η, T0) if the hybrid system
(28), with augmented state variable defined in (27), is ISS (resp. iISS) with
respect to A.

Proof. We show that a solution of the switched system (3) satisfies the estimate
(7) if the hybrid system (28) is ISS with respect to A. The proof for iISS follows
by similar arguments. Let x(·;x0, ω, σ) be a solution of the switched system.
From Proposition 5, we see that x is equivalent to a complete solution of the
hybrid system (28) with a hybrid input signal d defined by d(0, 0) := ω(0),
d(t, j) := ω(t) for t ∈ [tj , tj+1), where we recall that {t1, t2, · · · } = T (σ) is the
set of switching instants, in the sense that (23) holds and y(0, 0) = x0, y(t, j) =
x(t;x0, ω, σ) for all t ∈ [tj , tj+1). With the hybrid system (28) being ISS,
dom ξ = dom d and the pair (ξ, d) satisfies the estimate (17). Therefore, by
observing that |x(t;x0, ω, σ)| = |y(t, j)| = |ξ(t, j)|A for all t ∈ [tj , tj+1), and

‖d‖(t,j) = max
{

ess sup
s∈[0,t]\T (σ)

|ω(s)|, sup
s∈[0,t]∩T (σ)

|ω(s)|
}
,

the estimate in (7) is now obtained by taking β(s, t) = βh(s, t, 0) and γ1 =
γ2 = γh.

4.3 Supporting lemmas

In this subsection we provide a couple of supporting lemmas which will be
used in our proof of Theorem 1. We start with an obvious observation on ψ:

Lemma 7 The function ψ constructed in (12) is positive definite. It is also
of class K∞ if αs is of class K∞.
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Proof. By construction it is clear that ψ is positive definite. To show that
ψ ∈ K∞ when αs ∈ K∞, notice that ψ is continuous, ψ(0) = 0 so we are left
to show that ψ is strictly increasing and unbounded. To show ψ is strictly
increasing, we take arbitrary t2 > t1 > 0. Suppose that αs(s) + c(t2 − s)
achieves minimum at some t∗ ∈ [0, t2], that is, ψ(t2) = αs(t∗) + c(t2 − t∗). We
consider two cases by comparing t∗ and t1. If t∗ 6 t1, then

ψ(t2) = αs(t∗) + c(t1 − t∗) + c(t2 − t1) > αs(t∗) + c(t1 − t∗)
> min
s∈[0,t1]

{αs(s) + c(t1 − s)} = ψ(t1).

Otherwise, if t∗ > t1, then

ψ(t2) = αs(t1) + (αs(t∗)− αs(t1)) + c(t2 − t∗) > αs(t1)
> min
s∈[0,t1]

{αs(s) + c(t1 − s)} = ψ(t1).

Therefore, we conclude that ψ(t2) > ψ(t1). Next we show that limt−→∞ ψ(t) =
∞. If this is not true, there exists K > 0 such that ψ(t) 6 K for all t > 0.
Because αs ∈ K∞, there exists r > 0 such that αs(r) = 2K. Then, for any
s ∈ [0, r + 2K

c ], either s ∈ [0, r] so that c(r + 2K
c − s) > 2K, or s ∈ (r, r + 2K

c ]
so that αs(s) > 2K. Thus,

ψ

(
r + 2K

c

)
= min
s∈[0,r+ 2K

c ]

{
αs(s) + c

(
r + 2K

c
− s
)}

> 2K > K,

which is a contradiction. This completes the proof.

The next lemma shows that ψ is globally one-sided Lipschitz. This property
often appears in the study of differential inclusions (see, e.g., [6]).

Lemma 8 The function ψ constructed in (12) is a globally one-sided Lipschitz
function on R>0 with constant c; that is, for any t2 > t1 > 0, ψ(t2)−ψ(t1) 6
c(t2 − t1).

Proof. For any t2 > t1 > 0,

ψ(t2) = min
s∈[0,t2]

{αs(s) + c(t2 − s)}

6 min
s∈[0,t1]

{αs(s) + c(t2 − s)}

= min
s∈[0,t1]

{αs(s) + c(t1 − s)}+ c(t2 − t1)

= ψ(t1) + c(t2 − t1)

which is the desired inequality.
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Next we define a function which will be used in the construction of the
(i)ISS Lyapunov function for the hybrid system. Define the function ϕ :
R>0 −→ R>0 by

ϕ(s) :=
{

exp
(∫ s

1
2c
ψ(r)dr

)
, if s > 0,

0, if s = 0.
(30)

where we recall c and ψ are introduced in (12). We state two properties asso-
ciated with ϕ.

Lemma 9 It holds that ϕ ∈ K∞.

Proof. By definition, ϕ(s) is strictly increasing and continuous for all s > 0. It
remains to show that ϕ is continuous at 0 and lims−→∞ ϕ(s) = ∞. It follows
from (12) that ψ(r) 6 cr for all r > 0 so 2c

ψ(r) > 2
r . Therefore when s > 1,∫ s

1
2c
ψ(r)dr >

∫ s
1

2c
crdr = 2 ln s so lims−→∞ ϕ(s) = ∞. On the other hand when

s < 1,
∫ s

1
2c
ψ(r)dr 6

∫ s
1

2c
crdr = 2 ln s so lims−→0+ ϕ(s) = 0 and thus ϕ is

continuous at 0.

Lemma 10 Let c0 > 0 and s > t > 0 such that ϕ(s) 6 c0ϕ(t). It follows that
ψ(s)
ψ(t) 6

√
c0.

Proof. Fix s > t > 0. Then, the inequality ϕ(s) 6 c0ϕ(t) implies that

exp
(∫ s

1

2c
ψ(r)dr

)
6 c0 exp

(∫ t

1

2c
ψ(r)dr

)
.

Take logarithm on both sides and subtract the integral on the right from the
left, to get ∫ s

t

2c
ψ(r)dr 6 ln(c0). (31)

Define ψ̃t : [t,∞) −→ R+ by ψ̃t(r) := ψ(t)+c(r−t). Recall from Lemma 8 that
c is also the global one-sided Lipschitz constant of ψ, so we have ψ̃t(r) > ψ(r)
for all r > t. Hence, continuing from (31), we have

ln(c0) >
∫ s

t

2c
ψ(r)dr >

∫ s

t

2c
ψ̃t(r)

dr =
∫ s

t

2c
ψ(t) + c(r − t)dr

= 2 ln
(
ψ(t) + c(r − t)

)∣∣r=s
r=t = 2 ln ψ(t) + c(s− t)

ψ(t) > 2 ln ψ(s)
ψ(t) ,

which results in ψ(s)
ψ(t) 6

√
c0.

The next Lemma tells that a special transformation of function ϕ inherits
the global one-sided Lispchitzness from ψ.
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Lemma 11 The function θ : R>0 −→ R>0 defined by θ(s) := ϕ−1(c0ϕ(s))
with any c0 > 1 is globally one-sided Lipschitz with constant √c0, where ϕ is
defined by (30).

Proof. Before we start the proof, we note that ϕ−1 in the definition of θ is well-
defined because ϕ ∈ K∞, stated by Lemma 9. To show θ is globally one-sided
Lipschitz with constant

√
c0, it suffices to show that

θ(t2)− θ(t1) 6
√
c0(t2 − t1)

for all t2 > t1 > 0; in other words, we need to show that θ(t) − t
√
c0 is a

non-increasing function on R>0. To this end, we first observe that it follows
from the definition of ϕ in (30) that

ϕ′(s) = 2cϕ(s)
ψ(s) (32)

and
(ϕ−1)′(s) = 1

ϕ′(ϕ−1(s)) = ψ(ϕ−1(s))
2cs . (33)

Hence, we conclude that for any t ∈ R>0,

d

dt
θ(t) = d

dt

(
ϕ−1(c0ϕ(t)

))
=
ψ
(
ϕ−1(c0ϕ(t))

)
2cc0ϕ(t)

2cc0ϕ(t)
ψ(t) = ψ(θ(t))

ψ(t) .

Let s := θ(t), so that ϕ(s) = c0ϕ(t). Since c0 > 1, s > t > 0, Lemma 10 yields
ψ(s)
ψ(t) 6

√
c0, and

d

dt

(
θ(t)− t

√
c0
)

= ψ(s)
ψ(t) −

√
c0 6 0.

Therefore, θ(t)− t
√
c0 is non-increasing and this completes the proof.

4.4 Proof of the main result

We now use the developments carried out in Sections 4.1, 4.2, and 4.3 to prove
Theorem 1.

Proof of Theorem 1. Since τa > ζ∗ and (15) holds, we pick ζ ∈ (ζ∗, τa) which
is sufficiently close to ζ∗ so that

(κ+ 1)η + ζ

τa
< 1. (34)

We prove the theorem by showing that

V (ξ) := ϕ−1
(
e2c
(
ζτ+(κ+1)(T0−τu)

)
ϕ
(
Vp(x)

))
(35)
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is an (i)ISS Lyapunov function for the hybrid system (28) corresponding to
the switched system (3) with ADT and AAT constrained switching signals.

Firstly, to verify the condition (19), we set

α1(s) = α(s), and α2(s) = ϕ−1
(
e2c
(
ζN0+(κ+1)T0

)
ϕ
(
α(s)

))
and the bounds in (19) clearly hold.

Secondly, to verify the condition (20) for the continuous flow, we define

W (ξ) := e2c
(
ζτ+(κ+1)(T0−τu)

)
ϕ
(
Vp(x)

)
. (36)

Picking (ξ, d) ∈ C and f ∈ F(ξ, d), we have〈
∂

∂ξ
W (ξ), f

〉
= 2cζW (ξ)τ̇ − 2c(κ+ 1)W (ξ)τ̇u

+
〈
e2c(ζτ+(κ+1)(T0−τu))ϕ′(Vp(x)) ∂

∂x
Vp(x), fp(x, d)

〉
= 2c

(
ζτ̇ − (κ+ 1)τ̇u + 1

ψ(Vp(x))

〈
∂

∂x
Vp(x), fp(x, d)

〉)
W (ξ)

where we have used (32) for ϕ′. When p ∈ Ps, it follows from (10a) and (12)
that

〈
∂
∂xVp(x), fp(x, d)

〉
6 −ψ(Vp(x)) + γ(|d|). In addition τ̇ ∈ [0, 1

τa
] and

τ̇u ∈ [−η, 0], so〈
∂

∂ξ
W (ξ), f

〉
6 2c

(
ζ

τa
+ (κ+ 1)η − 1

)
W (ξ) + 2cW (ξ)

ψ(Vp(x))γ(|d|).

When p ∈ Pu, it follows from (10b) and (13) that
〈
∂
∂xVp(x), fp

〉
6 κψ(Vp(x))+

γ(|d|). In addition τ̇ ∈ [0, 1
τa

] and τ̇u ∈ [1− η, 1], so〈
∂

∂ξ
W (ξ), f

〉
6 2c

(
ζ

τa
+ (κ+ 1)(η − 1) + κ

)
W (ξ) + 2cW (ξ)

ψ(Vp(x))γ(|d|)

and we reach the same upper bound as in the first case. Appealing to (34), we
conclude that 〈

∂

∂ξ
W (ξ), f

〉
6 −2caW (ξ) + 2cW (ξ)

ψ(Vp(x))γ(|d|)

where
a := 1− ζ

τa
− (κ+ 1)η > 0. (37)

Consequently it can be computed that along the differential inclusion (28a),〈
∂

∂ξ
V (ξ), f

〉
= (ϕ−1)′(W (ξ))

〈
∂

∂ξ
W (ξ), f

〉
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6

(
ψ
(
ϕ−1(W (ξ))

)
2cW (ξ)

)(
−2caW (ξ) + 2cW (ξ)

ψ(Vp(x))γ(|d|)
)

= −aψ
(
ϕ−1(W (ξ))

)
+ ψ(ϕ−1(W (ξ)))

ψ(Vp(x)) γ(|d|)

= −aψ(V (ξ)) + ψ(V (ξ))
ψ(Vp(x))γ(|d|).

To further simplify the right-hand side, let v := Vp(x), w := V (ξ). Then
we have w > v > 0 and ϕ(w) = W (ξ) = e2c

(
ζτ+(κ+1)(T0−τu)

)
ϕ(Vp(x)) 6

e2c
(
ζN0+(κ+1)T0

)
ϕ(v). Hence from Lemma 10,〈

∂

∂ξ
V (ξ), f

〉
6 −aψ(V (ξ)) + ec

(
ζN0+(κ+1)T0

)
γ(|d|)

6 −aψ ◦ α1(|ξ|A) + ec
(
ζN0+(κ+1)T0

)
γ(|d|)

and (20) holds with

αc(s) = aψ ◦ α1(s), γc(s) = ec
(
ζN0+(κ+1)T0

)
γ(s). (38)

It follows from Lemma 7 that if αs is positive definite (resp. αs ∈ K∞), then
αc is also positive definite (resp. αc ∈ K∞). In addition, γc ∈ K.

Lastly, to verify the condition (21) for the discrete jumps, we pick (ξ, d) ∈ D
and ḡ ∈ G(ξ, d). Notice that

ϕ
(
χ(Vp(x))

)
= exp

(∫ χ(Vp(x))

1

2
ψ(r)dr

)
= exp

(∫ χ(Vp(x))

Vp(x)

2c
ψ(r)dr

)
exp

(∫ Vp(x)

1

2c
ψ(r)dr

)
6 e2cζ∗ϕ(Vp(x))

where we recall that ζ∗ is defined in (14). Hence, if we define

θ(s) := ϕ−1
(
e2c(ζ(τ−1)+(κ+1)(T0−τu))ϕ(s)

)
,

and recall the definition ofW from (36), we have the estimate that θ
(
χ(Vp(x))

)
6

ϕ−1 (e2c(ζ(τ−1)+(κ+1)(T0−τu))+2cζ∗ϕ
(
Vp(x)

))
= ϕ−1 (e2c(ζ∗−ζ)W (ξ)

)
. Therefore,

using the assumption (L3) and Lemma 11, we get

V (g) = ϕ−1
(
e2c(ζτ++(κ+1)(T0−τ+

u ))ϕ(Vp+(x+))
)

6 ϕ−1
(
e2c(ζ(τ−1)+(κ+1)(T0−τu))ϕ

(
χ(Vp(x)) + ρ(|d|)

))
= θ
(
χ(Vp(x)) + ρ(|d|)

)
6 θ
(
χ(Vp(x)

)
+ ec(ζ(τ−1)+(κ+1)(T0−τu))ρ(|d|)
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6 ϕ−1
(
e2c(ζ∗−ζ)W (ξ)

)
+ ec(ζ(N0−1)+(κ+1)T0)ρ(|d|)

= ϕ−1
(
e2c(ζ∗−ζ)ϕ(V (ξ))

)
+ ec(ζ(N0−1)+(κ+1)T0)ρ(|d|).

Define
κ(s) := s− ϕ−1

(
e2c(ζ∗−ζ)ϕ(s)

)
, (39)

then the inequality (21) is seen to hold with

αd(s) = κ ◦ α1(s), γd(s) = ec(ζ(N0−1)+(κ+1)T0)ρ(s). (40)

Recall that ζ > ζ∗ and ϕ ∈ K∞; thus by construction κ is positive definite,
so is αd. In addition, γd ∈ K. Lastly we show that αd ∈ K∞ when αs ∈ K∞
and it suffices to show that κ ∈ K∞. It follows from (39) that ϕ

(
(s− κ(s)

)
=

e2c(ζ∗−ζ)ϕ(s). Using the definition of ϕ in (30), and taking logarithm, it follows
that ∫ s−κ(s)

1

2c
ψ(r)dr = 2c(ζ∗ − ζ) +

∫ s

1

2c
ψ(r)dr.

Hence, we have ∫ s

s−κ(s)

1
ψ(r)dr = ζ − ζ∗ > 0. (41)

By Lemma 7, when αs ∈ K∞, ψ ∈ K∞ as well and thus 1
ψ(r) decreases to 0 as

r increases to infinity. Therefore, (41) holds for all s > 0 only when the length
of the interval of integration grows to infinity as s −→∞. In other words, we
conclude that κ ∈ K∞.

With all the three conditions (19), (20) and (21) verified, we appeal to
Lemma 3 (resp. Lemma 4) and conclude that the hybrid system (28) is ISS
(resp. iISS) when αs ∈ K∞ (resp. αs is only positive definite). Then by Co-
rollary 6, the switched system (3) is uniformly ISS (resp. uniformly iISS) over
ΣADT(τa, N0) ∩ΣAAT(Pu, η, T0).

Remark 5 It is observed that the formulas for γc, γd in (38), (40) only depend
on the parameters N0, T0 but not τa, η. Since it is known in [3,18] that the
(i)ISS gain is related to γc, γd, we conclude that the average dwell-time or
percentage activation time of the unstable modes do not affect the (i)ISS gain.
On the other hand, it is seen that the functions αc, αd depend on τa, η. Thus we
conclude that the convergence rate of the unforced switched system depends on
the average dwell-time and percentage activation time of the unstable modes.
In particular when the left-hand side of (15) is close to 1, the convergence rate
of the unforced switched system may become extremely slow and when it is
larger than 1, the unforced switched system may become unstable and thus
the switched system with inputs is not (i)ISS. This observation is consistent
with the known results in [10].
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5 Case Studies

In this section we will demonstrate how our results can be applied to determ-
ining stability of several switched nonlinear systems. The subsystems of these
switched systems will be constructed using the matrices:

A1 =
(
−0.1 −1

2 −0.1

)
, A2 =

(
−0.1 −2

1 −0.1

)
, A3 =

(
0.1 −1
2 0.1

)
. (42)

Notice that A1 and A2 are both Hurwitz and they have the same eigenvalues;
A3 is not Hurwitz. In addition, it is discussed in [13, Section 3.2] that the
switched linear system with modes P = {1, 2}

ẋ = Aσx if t 6∈ T (σ), (43a)

x = x− if t ∈ T (σ). (43b)
has no common Lyapunov function and for some particular switching signals
the solution will diverge.

5.1 Switched system with saturation-like scaling

Consider the switched system with modes P = {1, 2}

ẋ = 1
1 + |x|Aσx+ ω if t 6∈ T (σ), (44a)

x = x− if t ∈ T (σ) (44b)
where ω ∈ R2 is the input. The coefficient 1

1+|x| mimics the effect of saturation
such that ẋ ≈ Aσx+ ω when |x| is small and ẋ ≈ Aσ x

|x| + ω when |x| is large.
The subsystems of (44) are both iISS, which can be verified by picking the
iISS-Lyapunov functions

Vp(x) =
√

1 + x>Mpx− 1 (45)

where Mp are the solutions to the Lyapunov equations

MpAp +A>pMp + I = 0. (46)

However, this switched system is not iISS under slow switching. To see this,
notice that when u ≡ 0, the solutions of the switched system (44) are the same
as the solutions of (43) after a time re-parameterization. By similar arguments
as discussed in [20], for any τa > 0 and N0 > 1, we can pick an initial state far
away enough from the origin and a switching signal from ΣADT(τa, N0), yet
the solution diverges. Hence the switched system (44) is not uniformly iISS
over ΣADT(τa, N0) for any τa > 0. Nevertheless, we show that the switched
system (44) is iISS over AAT switching signals. To do this, let V1 be defined
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as in (45) with p = 1 and set V2 = V1. We first see that (9) is verified with
α(s) :=

√
1 + σ(M1)s2 − 1 and ᾱ(s) :=

√
1 + σ̄(M1)s2 − 1, where σ̄(·), σ(·)

denote the largest and smallest singular values, respectively. We further denote
Q1 := −I,Q2 := M1A2 + A>2 M1. Notice that because V2 is not a Lyapunov
function for the subsystem p = 2, Q2 defined in this way is sign indefinite. It
can be computed that〈 ∂

∂x
Vp(x), fp(x, ω)

〉
= 1√

1 + x>M1x

(
ẋ>M1x+ x>M1ẋ

)
=
x>
(
A>pM1 +M1Ap

)
x

(1 + |x|)
√

1 + x>M1x
+ 2x>Mp√

1 + x>Mpx
ω

= x>Qpx

(1 + |x|)
√

1 + x>M1x
+ 2x>M1√

1 + x>M1x
ω

= x>Qpx

(1 + |x|)(Vp(x) + 1) + 2x>M1√
1 + x>M1x

ω.

It is observed that the function h(s) = s2

1+s is increasing on R>0; in addition,

from (45) we have
√

V 2
p +2Vp

σ̄(M1) 6 |x| 6
√

V 2
p +2Vp

σ(M1) . Hence we conclude that〈 ∂

∂x
V1(x), f1(x, ω)

〉
6 − V 2

1 + 2V1(
σ̄(M1) +

√
σ̄(M1)(V 2

1 + 2V1)
)

(V1 + 1)
+ 2σ̄(M1)√

σ(M1)
|ω|,

which fits the form (10a) with αs(s) := s2+2s(
σ̄(M1)+

√
σ̄(M1)(s2+2s)

)
(s+1)

and γ(s) :=
2σ̄(M1)√
σ(M1)

s. It can be verified that αs is globally Lipschitz so as discussed in Sec-
tion 3, we can set ψ = αs. For p = 2,〈 ∂

∂x
V2(x), f2(x, ω)

〉
6

σ̄(Q2)(V 2
2 + 2V2)(

σ(M1) +
√
σ(M1)(V 2

2 + 2V2)
)

(V2 + 1)
+ 2σ̄(M1)√

σ(M1)
|ω|,

which fits the form (10b) with αu(s) := σ̄(Q2)(s2+2s)(
σ(M1)+

√
σ(M1)(s2+2s)

)
(s+1)

. Plugging

the numerical values (42) for A1, A2 into the formulas for ψ, αu, it is computed
that κ = sups>0

αu(s)
ψ(s) = σ̄(Q2) σ̄(M1)

σ(M1) = 24.9436 and 1
1+κ = 0.0385. In addition,

because we have chosen V1 = V2 and the switched system has no resets at
switches, ζ∗ = 0 and hence by Theorem 1 and the discussion after the theorem
statement, we conclude that the switched system (44) is uniformly ISS over
ΣADT(τa, N0) ∩ΣAAT({2}, η, T0) for any τa > 0, N0 > 1, η < 0.0385, T0 > 0.

5.2 Switched bilinear system with resets and stable modes

Consider the switched system with modes P = {1, 2}

ẋ = Aσx+ ωBx if t 6∈ T (σ), (47a)
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x = Dx− + ωEx− if t ∈ T (σ), (47b)

where ω ∈ R is the input, Ap are given in (42) and B,D,E ∈ R2×2. Each
subsystem is shown to be iISS (see, e.g., [5]) by picking the iISS-Lyapunov
function Vp(x) as

Vp(x) := ln(1 + x>Mpx) (48)

where again Mp are the solutions of (46). We have

α(|x|) := ln(1 + min
p∈P

σ(Mp)|x|2) 6 Vp(x) 6 ln(1 + max
p∈P

σ̄(Mp)|x|2) =: ᾱ(|x|).

(49)
For the continuous flow, it can be computed that〈 ∂

∂x
Vp(x), fp(x, ω)

〉
= 1

1 + x>Mpx

(
ẋ>Mpx+ x>Mpẋ

)
= 1

1 + x>Mpx
x>(A>pMp +MpAp)x+ 2x>MpBx

1 + x>Mpx
ω

= − |x|2

1 + x>Mpx
+ 2x>MpBx

1 + x>Mpx
ω

6 − (eVp − 1)
σ̄(Mp)eVp

+ σ̄(MpB)
σ(Mp)

|ω|

Hence (10a) is satisfied for all p ∈ Ps = P with αs(s) := 1−e−s

σmax
, γ(s) :=

c1s where σmax := maxp∈P σ̄(Mp), c1 := maxp∈P σ̄(MpB)
σ(Mp) . Now consider the

discrete jumps and denote g(x, ω) := Dx + ωEx. Let µ > 0 be such that
x>D>MpDx 6 µx>Mqx for all x ∈ Rn and p, q ∈ P, then we have the
inequality that

1 + g(x, ω)>Mg(x, ω) = 1 + (Dx+ uEx)>Mp(Dx+ uEx)
= 1 + x>D>MpDx+ x>(2uE>MpD + ω2E>MpE)x
6 1 + µx>Mqx+ x>(2uE>MpD + ω2E>MpE)x

= (1 + µx>Mqx)
(

1 + x>(2uE>MpD + ω2E>MpE)x
1 + µx>Mqx

)
6 (1 + µx>Mqx)

(
1 + 2σ̄(E>MpD)|ω|+ σ̄(E>MpE)|ω|2

µσ(Mq)

)
Hence when a switch occurs,

Vp(g(x, ω)) = ln(1 + g(x, ω)>Mg(x, ω))

6 ln
(

(1 + µx>Mqx)
(

1 + 2σ̄(E>MpD)|ω|+ σ̄(E>MpE)|ω|2

µσ(Mq)

))
= ln(1 + µx>Mqx) + ln

(
1 + 2σ̄(E>MpD)|ω|+ σ̄(E>MpE)|ω|2

µσ(Mq)

)
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= ln
(

1 + µ
(
eVq(x) − 1

))
+ ln

(
1 + 2σ̄(E>MpD)|ω|+ σ̄(E>MpE)|ω|2

µσ(Mq)

)
Hence (11) is satisfied with χ(s) := ln

(
1 + µ

(
es − 1

))
and ρ(s) := ln(1 +

c2s+c3s2), where c2 := 2 maxp∈P σ̄(E>MpD)
µminq∈P σ(Mq) , c3 := 2 maxp∈P σ̄(E>MpE)

µminq∈P σ(Mp) . Therefore
Assumption 1 is verified and since both modes are stable, Assumption 2 is
omitted. Again because αs is globally Lipschitz, we let ψ = αs and it can be
computed that

ζ∗ = sup
s>0

∫ χ(s)

s

1
ψ(r)dr = sup

s>0

∫ χ(s)

s

σmaxe
r

(er − 1)dr

= σmax sup
s>0

ln(er − 1)
∣∣∣ln(µ(es−1)+1)

s

= σmax sup
s>0

ln (µ(es − 1) + 1)− 1
es − 1

= σmax lnµ

and Assumption 3 is verified. Hence we conclude from the special case of
Theorem 1 that the switched system (47) with modes P = {1, 2} is uniformly
iISS over ΣADT(τa, N0) for all τa > σmax lnµ,N0 > 1. In particular if D = I,
it can be numerically computed that σmax lnµ = 5.1804.

The same arguments also work for switched bilinear systems with resets
and stable modes in general, in the form

ẋ = Aσx+
mc∑
j=1

Bσ,jxωj + Cσω, if t ∈ T (σ), (50a)

x = D(σ−,σ)x
− +

md∑
k=1

E(σ−,σ),kx
−ωk + F(σ−,σ)ω if t ∈ T (σ), (50b)

where x ∈ Rn is the state, ω ∈ Rm is the input and Ap, Bp,j , D(p,q), E(p,q),k ∈
Rn×n, Cp, F(p,q) ∈ Rn×m for all p, q ∈ P, j = 1, · · ·mc, k = 1, · · ·md.

Proposition 12 Consider the switched system (50) with finitely many modes
and assume that Ap are Hurwitz for all p ∈ P so that there exist positive
definite symmetric matrices Mp, Qp ∈ Rn×n for which A>pMp+MpAp+Qp = 0
hold. Let λ > 0 be such that x>Qpx > λx>Mpx and µ > 0 be such that
x>D>(p,q)MpD(p,q)x 6 µx>Mqx for all x ∈ Rn and p, q ∈ P. Then (50) is
uniformly iISS over ΣADT(τa, N0) for all τa > lnµ

λ and N0 > 1.

The proof is similar to the one carried out for system (47) and is provided
in the Appendix.



26 Shenyu Liu et al.

Remark 6 Notice that λ, µ defined in Proposition 12 are exactly the linear
decay rate in the continuous flow and linear growth rate in the discrete jumps,
respectively for the unforced switched system (50). It is known that in this
case, lnµ

λ is the lower bound on ADT such that the unforced switched linear
system is globally asymptotically stable (see [11]). It follows that the bilinear
input does not break the stability properties when the switched system is under
slow switching. In addition, when there exists a common Lyapunov function,
all Mp’s are the same and further when D = I, we conclude ζ∗ = 0 so τa can
be as small as possible. This is indeed the case because such switched system
is iISS with arbitrary switching [16].

5.3 Switched bilinear system with unstable modes

For the last example we still consider the switched system with dynamics
given by (47) but now the set of modes is P = {1, 3}. Recall that A3 given
in (42) is non-Hurwitz so this switched system is not uniformly iISS over
ΣADT(τa, N0) for any τa > 0. We also let D = 2I, that is, whenever a switch
occurs the state is scaled by 2 and hence this switched system is also not
uniformly iISS over ΣAAT(Pu, η, T0) for any η ∈ [0, 1]. However, if we pick
V3 = V1 = ln(1 + x>M1x), it can be computed that

〈 ∂

∂x
V3(x), f3(x, ω)

〉
= 1

1 + x>M1x
x>(A>3 M1 +M1A3)x+ 2x>M1Bx

1 + x>M1x
ω

6
σ̄(A>3 M1 +M1A3)|x|2

1 + x>M1x
+ 2x>M1Bx

1 + x>M1x
ω

6
σ̄(A>3 M1 +M1A3)

σ(M1)
(
1− eVp(x))+ σ̄(M1B)

σ(M1) ω

So we have Pu = {3} with αu(s) := σ̄(A>3 M1+M1A3)
σ(M1)

(
1−es

)
. Thus Assumption 2

holds with κ = αu
ψ = σ̄(A>3 M1 + M1A3) σ̄(M1)

σ(M1) = 3.9868. On the other hand,
Vp being the same and D = 2I imply µ = 4. Thus Assumption 3 holds with
ζ∗ = σmax lnµ = 10.3857. Therefore by Theorem 1 we conclude that (47) is
uniformly iISS over ΣADT(τa, N0) ∩ ΣAAT({3}, η, T0) for any N0 > 1, T0 > 0
and all τa > 0, η ∈ [0, 1] satisfying 3.9868η + 10.3857

τa
< 1.

6 Conclusion

Within the context of literature on stability of switched systems, this paper
provided conditions on the switching signals such that a switched nonlinear
system with inputs, resets and unstable modes is ISS or iISS. In particular, we
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considered the case where the decay or growth rates of all subsystems are al-
lowed to be nonlinear, and the changes of Lyapunov function values at switch-
ing instants are also assumed to be nonlinear. Under some mild assumptions
on the switched system, and using the hybrid system framework, we derived a
mixed ADT and AAT condition which guarantees ISS or iISS of the switched
system. Using the main result of our work, switched systems with saturating
dynamics and switched bilinear systems were shown to be uniformly iISS over
switching signals satisfying this mixed ADT and AAT condition.

Appendix

Proof of Proposition 12. First of all, each subsystem is shown to be iISS (see, e.g., [5]) by
picking the iISS-Lyapunov function Vp(x) as

Vp(x) := ln(1 + x>Mpx). (51)

We have

α(|x|) := ln(1 + min
p∈P

σ(Mp)|x|2) 6 Vp(x) 6 ln(1 + max
p∈P

σ̄(Mp)|x|2) =: ᾱ(|x|). (52)

So the condition (L1) is verified. For the continuous flow, it can be computed that〈
∂

∂x
Vp(x), fp(x, ω)

〉
=

1
1 + x>Mpx

(
ẋ>Mpx+ x>Mpẋ

)
=

1
1 + x>Mpx

x>(A>pMp +MpAp)x+
mc∑
j=1

2x>MpBp,jx

1 + x>Mpx
ωj +

2x>MpCp

1 + x>Mpx
ω

6 −
x>Qpx

1 + x>Mpx
+

√√√√ mc∑
j=1

(
2x>MpBp,jx

1 + x>Mpx

)2

|ω|+
2|x>MpCp|
1 + x>Mpx

|ω|

6 −
λx>Mpx

1 + x>Mpx
+ 2
√
n

maxj σ̄(MpBp,j)
σ(Mp)

|ω|+
σ̄(MpCp)√
σ(Mp)

|ω|

= −λ(1− e−Vp(x)) +

(
2
√
n

maxj σ̄(MpBp,j)
σ(Mp)

+
σ̄(MpCp)√
σ(Mp)

)
|ω|.

Hence (10a) is satisfied for all p ∈ Ps = P with

αs(s) := λ(1− e−s), γ(s) :=

(
max
p

(
2
√
n

maxj σ̄(MpBp,j)
σ(Mp)

+
σ̄(MpCp)√
σ(Mp)

))
s.

Now consider the discrete jumps. we start by defining the terms:

KDD := (D(q,p)x
−)>MpD(q,p)x

−,

KEE :=
( md∑
k=1

E(q,p),kx
−ωk

)>
Mp

( md∑
k=1

E(q,p),kx
−ωk

)
,

KFF := (F(q,p)ω)>Mp(F(q,p)ω),
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KDE := (D(q,p)x
−)>Mp

( md∑
k=1

E(q,p),kx
−ωk

)
,

KDF := (D(q,p)x
−)>Mp(F(q,p)ω),

KEF :=
( md∑
k=1

E(q,p),kx
−ωk

)>
Mp(F(q,p)ω).

These are the terms when expanding the product

(
D(q,p)x

− +
md∑
k=1

E(q,p),kx
−ωk + F(q,p)ω

)>
Mp

(
D(q,p)x

− +
md∑
k=1

E(q,p),kx
−ωk + F(q,p)ω

)
.

From the hypothesis of Proposition (12) we have KDD 6 µ(x−)>Mqx−. Meanwhile, use
the fact that y>My 6 σ̄(M)|y|2 for any matrix M ∈ Rn×n and any vectors y ∈ Ry , in
addition to the inequality that

∣∣ md∑
k=1

E(q,p),kxωk
∣∣ 6 ∣∣ md∑

k=1

ωkE(q,p),k
∣∣|x| 6

√√√√md∑
k=1

σ̄(E(q,p),k)2|ω||x|,

we conclude that KEE 6 kEE |x−|2|ω|2, KFF 6 kFF |ω|2, KDE 6 kDE |x−|2|ω|, KDF 6
kDF |x−||ω| and KEF 6 kEF |x−||ω|2, where

kEE := σ̄(Mp)
md∑
k=1

σ̄(E(q,p),k)2, kFF := σ̄(F>(q,p)MpF(q,p)),

kDE := σ̄(MpD(q,p))
( md∑
k=1

σ̄(E(q,p),k)2
) 1

2
, kDF := σ̄(D>(q,p)MpF(q,p)),

kEF := σ̄(MpF(q,p))
( md∑
k=1

σ̄(E(q,p),k)2
) 1

2
.

Therefore when a switch occurs,

Vp(x) = ln
(
1 +KDD +KEE +KFF + 2KDE + 2KDF + 2KEF

)
6 ln

(
1 + µ(x−)>Mqx

− + (2kDE |ω|+ kEE |ω|2)|x−|2 + (2kDF |ω|+ 2kEF |ω|2)|x−|+ kFF |ω|2
)

= ln
(

(1 + µ(x−)>Mqx
−)
(
1 +

(2kDE |ω|+ kEE |ω|2)|x−|2 + (2kDF |ω|+ 2kEF |ω|2)|x−|+ kFF |ω|2

1 + µ(x−)>Mqx−

))
ln(1 + µ(x−)>Mqx

−) + ln
(

1 +
(2kDE |ω|+ kEE |ω|2)|x−|2 + (2kDF |ω|+ 2kEF |ω|2)|x−|+ kFF |ω|2

1 + µ(x−)>Mqx−

)
6 ln(1 + µ(x−)>Mqx

−) + ln
(

1 +
(2kDE |ω|+ kEE |ω|2)|x−|2

µ(x−)>Mqx−
+

(2kDF |ω|+ 2kEF |ω|2)|x−|
1 + µ(x−)>Mqx−

+ kFF |ω|2
)

6 ln(1 + µ(eVq(x−) − 1)) + ln
(

1 +
2kDE |ω|+ kEE |ω|2

µσ(Mq)
+
kDF |ω|+ kEF |ω|2√

µσ(Mq)
+ kFF |ω|2

)

Hence (11) is satisfied with χ(s) := ln
(
1 + µ

(
es − 1

))
and ρ(s) := ln

(
1 +
( 2kDE
µσ(Mq) +

kDF√
µσ(Mq)

)
s+
(

kEE
µσ(Mq) + kEF√

µσ(Mq)
+kFF

)
s2
)

. Therefore Assumption 1 is verified. Because
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αs is globally Lipschitz, we let ψ = αs and it can be computed that

ζ∗ = sup
s>0

∫ χ(s)

s

1
ψ(r)

dr = sup
s>0

∫ χ(s)

s

er

λ(er − 1)
dr

=
1
λ

sup
s>0

ln(er − 1)
∣∣∣ln(µ(es−1)+1)

s

=
1
λ

sup
s>0

ln
(µ(es − 1) + 1)− 1

es − 1

=
lnµ
λ
.

Thus Assumption 3 is verified and Proposition 12 is proven by Theorem 1.
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