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Modeling flow in porous media is usually focused on the governing equations for mass and momentum 

transport, which yield the velocity and pressure at the pore or Darcy scales. However, in many applications, it 
is important to determine the work (or power) needed to induce flow in porous media, and this can be achieved 
when the mechanical energy equation is taken into account. At the macroscopic scale, this equation may be 
postulated to be the result of the inner product of Darcy's law and the seepage velocity. However, near the porous 
medium boundaries, this postulate seems questionable due to the spatial variations of the effective properties 
(velocity, permeability, porosity, etc.). In this work we derive the macroscopic mechanical energy equation using 
the method of volume averaging for the simple case of incompressible single-phase flow in porous media. Our 
analysis shows that the result of averaging the pore-scale version of the mechanical energy equation at the Darcy 
scale is not, in general, the expected product of Darcy's law and the seepage velocity. As a matter of fact, this result 
is only applicable in the bulk region of the porous medium and, in the derivation of this result, the properties of 
the permeability tensor are determinant. Furthermore, near the porous medium boundaries, a more novel version 
of the mechanical energy equation is obtained, which incorporates additional terms that take into account the 
rapid variations of structural properties taking place in this particular portion of the system. This analysis can be 
applied to multiphase and compressible flows in porous media and in many other multiscale systems. 
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I. INTRODUCTION

The mechanical energy equation is, together with the total 

mass and momentum equations, a key relationship for the 

study of fluid dynamics in many systems. As a matter of 

fact, the study of many engineering systems requires the 

use of the macroscopic versions of these three equations 

[ see Chapter 7 in Ref. [I]]. In the particular case of the 

macroscopic mechanical energy equation, a challenge usually 

lies on the prediction of the rate at which mechanical energy 

decreases in a system due to viscous dissipation. Interestingly, 

in natural porous systems, such as geological media, the 

information provided by the mechanical energy equation is 

usually not crucial, as, for instance, in the macroscopic study 

of groundwater flow. Therefore, the focus is directed to the 

macroscopic conservation equations of mass and momentum, 

i.e., the continuity equation and Darcy's law. This is due to the

interest on the prediction of the piezometric head, which can be

experimentally measured [see Chapter 4 in [2]]. However, as

emphasized by Celia and Norbotten [3] in engineering systems

such as geothermal engineering, enhanced oil recovery, or

geological CO2 sequestration, the use of the continuity

equation and Darcy's law is insufficient and it is necessary to

take into account the information provided by the macroscopic

mechanical energy equation, which is related to the total head

[see Eq. 4.1.5 in Ref. [2]]. In addition, in applications such

as the disposal of high-level radioactive wastes, understanding

of the thermohydromechanical processes taking place in the

porous medium is crucial as remarked by Chen et al. [4].

* didier.lasseux@u-bordeaux.fr

Furthermore, the study of the viscous dissipation term in the 

mechanical energy equation is also relevant in the study of 

nanofibrous media, in specific when the goal is to achieve 

outstanding properties such as stiffness, strength, and impact 

resistance [5]. 

The derivation of the macroscopic version of the mechani­

cal energy equation has been scarcely addressed in the litera­

ture. Some relevant works are those by Cushman [6], who used 

the formalism of statistical mechanics to derive the average 

version of the total energy equation. A more recent derivation 

is available from the thermodynamically constrained averaging 

theory (TCAT) [7] by Gray and Miller, where this equation is 

used together with those from momentum and mass transport 

in order to derive a constrained entropy inequality, which is a 

key part of the TCAT theory. Following also a thermodynamic 

approach, Borja [8] analyzed the mechanical energy equation 

for unsaturated porous media. Furthermore, Zhu et al. [9], 

using the volume averaging method [IO], showed that the 

macroscopic form of the mechanical energy equation is 

equivalent to the result of taking the inner product of the 

seepage velocity with Darcy's law for single-phase unsteady 

flow in homogeneous porous media. In their analysis, they 

found that the term related to the rate of viscous dissipation is 

equal to Darcy's term dotted with the seepage velocity. Nev­

ertheless, this result may not necessarily hold near the porous 

medium boundaries, where rapid variations of the effective 

properties (velocity, permeability, porosity) take place as it is 

the case in many engineering applications. In addition, if more 

complicated situations are considered, such as multiphase flow 

or compressible flow, there are more reasons to doubt that the 

macroscopic energy equation in porous media is simply the 

result of the inner product of Darcy's law with the seepage 
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velocity. Despite the plausible interest in these and other 
more complicated situations, the focus in this work is on the 
derivation of the mechanical energy equation using the method 
of volume averaging in the case of single-phase and steady­
state flow of an incompressible fluid that saturates a rigid 
porous medium. As a first approach, isothermal conditions 
are assumed, so only the mechanical part of the total energy 
equation is justified. Our aim is to first derive an expression 
for momentum transport that is sufficiently general so it can 
be applied everywhere in the system, i.e., in the bulk and near 
the porous medium boundaries, through which momentum 
exchange can occur (e.g., between a porous medium and a 
fluid or between two porous media). This expression can 
be subsequently simplified by imposing pertinent scaling 
postulates so the Darcy-Brinkman-Forchheimer (DBF) or just 
the Darcy-Forchheimer (DF) equations can be deduced from 
this general model. A relevant question to be addressed is if the 
result of upscaling the pore-scale mechanical energy equation 
is compatible with the result of taking the inner product of the 
DBF equation with the seepage velocity. This will allow us to 
determine up to which point the result from Zhu et al. [9] is 
valid and to provide a more general form. 

The paper is organized as follows: first, we present 
the governing equations and boundary conditions for mass, 
momentum, and mechanical energy at the pore scale. The 
main steps involved in the volume averaging method are 
then recalled. Since our interest lies in the correspondence 
between the macroscopic mechanical energy and momentum 
transport equations (both near the boundaries and in the porous 
medium bulk) at the Darcy scale, we first direct the attention 
to the averaging of the momentum transport equation and 
then apply the volume averaging method to the mechanical 
energy equation. Finally, the corresponding discussions and 
conclusions are provided, taking into account extensions to 
other flow situations. 

II. PORE-SCALE MODEL

Let us consider the steady, incompressible, and Newtonian 
flow of a single fluid-phase f3 saturating a rigid and homoge­
neous porous medium, as shown in Fig. I. Flow is assumed to 
take place in a range of the Reynolds number, justifying that 
both inertial and viscous forces play a significant role and the 
no-slip boundary condition is assumed to be applicable at the 
solid-fluid interface. On the basis of these starting assumptions, 
the governing equations for total mass and momentum in the 
f3-phase are 

V-v/J=O, (la) 

PVtJ•VVfJ =-VpfJ +PtJg+µV2vfJ . (lb) 

The fluid velocity is subject to the interfacial boundary 
condition: 

(le) 

To complete the statement of the boundary-value problem, 
it is necessary to provide the boundary conditions at entrances 

�-phase 

FIG. 1. Sketch of a porous medium including the averaging 
domain and the characteristic lengths. 

and exits of the macroscopic system (dfJ,e), which can be 
written as 

VfJ = VfJ,e, at dfJ,e, (ld) 

where v fJ,e is assumed to be a known function of position. 
The solution of this boundary value problem provides the 

pressure and velocity fields everywhere in the {3-phase from 
which one could analyze the different terms in the pore-scale 
mechanical energy equation that is formally obtained after 
a dot product of the momentum equation with the velocity, 
yielding 

�V • (v�vtJ) = - V • (pfJvfJ) +pg• vfJ 

] 2 2 T 
+

2
µ,V v

fJ 
- µVv

fJ 
: Vv/J. (2)

Here, as in the remainder of the development, the nested 
convention is adopted for the double inner products, i.e., 
A: B = AijBj; (= B: A). In addition, fluid density and 

viscosity are assumed to be constants. 
Although achievable, the pointwise detailed solution on PfJ 

and v fJ may not be of interest while a macroscopic description 
is more relevant. As a consequence, there is a necessity for 
a systematic filtering of nonredundant information arising 
from the pore-scale model, a procedure that is referred to 
as upscaling [11]. In this way, it is desirable to derive 
upscaled models starting from the pore-scale equations by 
means of a convenient averaging procedure. There are many 
methodologies to carry out this task such as the method 
of moments, homogenization, or, more recently, the ther­
modynamically constrained averaging theory. In this work, 
the method of volume averaging is employed to derive the 
upscaled models that are valid both at the porous medium bulk 
and near its boundaries. Some salient features of this method 
is that it not only provides the means to derive the upscaled 



MACROSCOPIC MOMENTUM AND MECHANICAL ENERGY ... 

models but also allows us to clearly identify the associated 
scaling postulates involved in the derivation of the models 
and incorporates a closure scheme to predict the associated 
macroscopic coefficients appearing in the model [12]. To have 
a clear view of the above, the main steps of the method of 
volume averaging are described in the following section. 

III. OVERVIEW OF THE VOLUME AVERAGING METHOD

In Fig. 2 we show a scheme that describes the method
of volume averaging. This scheme should be read from up 
to down and from left to right. In the latter case, the colors 
illustrate the systematic loss of redundant information, which 
we refer to as upscaling. Throughout this work, we will follow 
Wood [I I] and make a distinction between the mathematical 
operation of averaging and upscaling, because the first one 
does not require any reduction in the number of degrees of 
freedom involved in the model. For this reason, Fig. 2 shows 
two routes that can be followed to obtain different average 
models. The first route is followed by the continuous lines 
and it describes the classical method of volume averaging as 
used in Ref. [10], which leads to a closed upscaled model. 
The dashed lines in Fig. 2 indicate a second route that leads 
to an average equation that does not involve upscaling and is 
known as the one-domain approach [13], which can be further 
simplified to also yield a closed upscaled model as in the first 
route. In this work, we will follow this last approach. The rest 
of this section is devoted to explain in more detail each step 
represented in Fig. 2. 

The first step of the method is the statement of the pore-scale 
model, which relies on a set of starting assumptions (number 1 
in Fig. 2); this step was already described with the associated 
hypotheses in the previous section. Next, an averaging domain, 
Y (of norm V), such as the one shown in Fig. 1, is defined in 
such a way that it contains portions of all the phases involved
in the analysis (i.e., Y = ytJ + % ) (letter a in Fig. 2). In
terms of the averaging domain, the superficial and intrinsic 
averaging operators are introduced for a piecewise function 

Upscaling 

Assumptions 
Tools 

a. Definition ofan AD 
I. Starting assumptions b. Averaging theorems 
2. Scaling postulates 1 c. Spatial decomposition 
3. Scaling postulates 2 d. Substitution in filters 

FIG. 2. Diagram of the volume averaging method. The continu­
ous lines and arrows lead to the classical approach whereas the dashed 
lines and arrows lead to the one-domain approach. 

FIG. 3. Position vectors associated to the averaging domain. 

defined everywhere in the ,8-phase, 1/1{3 , as follows:

(1/l{J)lx = � f 1/l{JlrdV,

yE'1p(x) 

(3a) 

(3b) 

Throughout this work, the equations written in terms of the 
piecewise function 1/1{3 are applicable to scalar, vectorial, or 
tensorial quantities. In the above equations, the vector x locates 
the position of the centroid of the averaging domain whereas 
the position vectors y and r locate points in the ,8-phase relative 
to x and to an arbitrary reference system, respectively, as shown 
in Fig. 3. The superficial and intrinsic averaging operators are 
related by the Dupuit-Forchheimer equation: 

(4) 

where .s(x) = VfJ(x)/ V is the volume fraction of the ,8-phase 
contained in the averaging domain. 

The superficial averaging operator is subsequently applied 
to the governing equations at the pore scale. This operation 
requires interchanging differentiation and integration (letter b 
in Fig. 2), which can be achieved by means of the general 
transport theorem [ 1], 

f n • 1/JfJwdA, (Sa) 

w being the velocity of S'if3a , and the spatial averaging theorem 
[14]: 

(Vi/lfJ)lx = V(i/lfJ)lx + � f nijlfJ dA. (Sb) 

yEdp0 (x) 
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For the case of the average of the divergence of a vectorial
function, the spatial averaging theorem is slightly modified as
indicated in Eq. (1.2-23) in Ref. [10]. It is worth mentioning
that the interfacial integrals involved in the above theorems
often allow direct substitution of the corresponding boundary
conditions. At this point in the analysis, the average model
involves integrals of pore-scale quantities and their averaged
counterparts. We will refer to the integrals of pore-scale
quantities as filters of information as suggested by Whitaker
[10]. To eliminate the remaining pore-scale functions, the
spatial decomposition introduced by Gray [15] is used (letter
c in Fig. 2):

fJ -
1/r{Jlr = (1/rfJ) Ir+ 1/r{Jlr- (6) 

For the remaining of this work, we will make a distinction
between average quantities evaluated at r or at x, but we will
no longer specify that pore-scale quantities (i.e., ifrfJ and 1frfJ)
are evaluated at r.

In this way, the resulting average model is unclosed
because it involves two unknowns (the deviations and average
quantities) and only one equation. To overcome this issue, it
is necessary to derive and formally solve a boundary-value
problem for the deviations fields, which we refer to as a
closure problem. This is achieved on the basis of the spatial
decomposition given by Eq. (6) and we will illustrate this in
the following section. If no assumptions are made, then we can
qualify this closure problem to be exact because it contains all
the information from the pore scale. As explained by Wood
and Valdes-Parada [12], despite the considerable complexity
of this problem, it is possible to formally solve it using
integral equation formulations based on Green's functions.
If this solution is substituted into the filters of the unclosed
model (letter d in Fig. 2), then the resulting average (but
not upscaled) equation is the so-called one-domain approach
because it can be applied everywhere in the system, i.e., in
the bulk of the porous medium and near its boundaries. This
completes the nonclassical route of application of the volume
averaging method as explained above. Certainly, one may
apply scaling postulates in order to obtain simplified versions
of the one-domain approach and to even obtain the resulting
simplified upscaled model that is only applicable in the bulk
of the porous medium.

Analyzing this modeling approach, it is not hard to deduce
that the kernel of the upscaling process relies on the systematic
reduction of the information contained in the closure problem
solution. Therefore, if reasonable scaling postulates (usually
in the form of length-scale constraints and assumptions) are
adopted (number 2 in Fig. 2), then one may significantly
reduce the amount of information carried by the deviations
variables and yet still capture the essential (i.e., nonredundant)
information from the pore-scale model. The formal solution
of this simplified closure problem can be substituted into
the filters of the unclosed average model (letter d in Fig. 2)
to obtain its closed form. However, the resulting model is
still subject to additional simplifications that are based on
complementary scaling postulates (number 3 in Fig. 2) in
order to obtain a simplified closed upscaled model. In the
following section, we will follow the methodology outlined
here, i.e., we first derive the one-domain approach models for
mass and momentum transport in porous media. Afterwards,

pertinent scaling postulates are introduced in order to derive
the corresponding models that are valid only in the bulk of
the porous medium. Then a similar procedure is applied to the
mechanical energy equation.

IV. UPSCALING MASS AND MOMENTUM TRANSPORT

A. Averaging

Let us, for the moment, direct the attention to mass transport
and apply the superficial averaging operator as defined by
Eq. (3a) to Eq. (la). The resulting equation is

(V · V fJ) Ix = 0. (7)

As explained in the previous section, with the aim of
interchanging spatial differentiation and integration, we use
the spatial averaging theorem in order to obtain:

V · (vfJ)lx = 0. (8)

Here we have taken into account the nonslip boundary
condition that was imposed at the solid-fluid interface. It
should be noted that this result is written in terms of the seepage
velocity, which is the common form of averaging for the
velocity found in the literature. As will be shown below, for the
derivation of the closure problem, it is necessary to express the
continuity equation in terms of the intrinsic averaged velocity.
This is easily achieved by means of the Dupuit-Forchheimer
relation [Eq. (4)]:

V · (vfJ)/Jlx = -V ln .s · (vfJ)/Jlx - (9)

Directing the attention to momentum transport, let us apply the
superficial averaging operator to Eq. (lb), taking into account
the continuity equation, to obtain:

p(V · VfJVfJ)lx = -(V PfJ)lx - .spg + µ,(V2vfJ)lx- (10)

The result of using the spatial averaging theorem to the
transport terms in the above equation is

pV · (VfJVfJ)lx = - V (pfJ)lx + .spg + µ,v'2(vfJ)lx 

+ 
V 

1 

I n · (- IPfJ + µ,VvfJ )dA

(11) 

or, in terms of intrinsic averages,

pV · (c(VfJ VfJ)/J Ix)= - .sV (PfJj/J Ix+ .spg + µ,.sv'2(v{Jj/J Ix 

+ µ,V · (V.s(vfJ llx)

+ � f n-[-l(pfJ - (PfJ)/Jlx)
yEd'fa(X) 

With the aim of eliminating the pore-scale pressure and
velocity contained in the surface and volume integrals (i.e., the
filters) from this expression, we use the spatial decomposition
defined in Eq. (6) so the result can be written as

pV · (.s((vfJ)/Jlr(VfJ)/Jlr + (vfJ)/JlrVfJ + VfJ (VfJ)/Jlr + VfJVfJ)/Jlx)

-.sV (pfJ)/Jlx + .spg + µ,.sv'2(vfJ)/Jlx + µ,V · (V.s(vfJ)/Jlx)
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+ 
V 

(13)

It should be noted that each term in the above equation is
evaluated at x. In addition, in the surface integral of the above
equation, we used the following definition: 

(14)

B. Exact closure problem

Equation (13) is the unclosed average model. Our goal
now is to derive expressions for the velocity and pressure
deviations. With this in mind, it is necessary to derive and
formally solve the boundary-value problem that governs the
fields of Pf! and v fJ · Substitution of Eq. ( 6) into the pore-scale
continuity equation [Eq. (la)] yields 

V-vfJ = -V · (vfJ)fJlr ­
� 

volumetric 

(I Sa)

Directing the attention to the momentum transport equation,
let us divide Eq. (13) by E, evaluate the resulting expression at
x =r and subtract it to Eq. (lb) in order to obtain: 

volumetric source 

+ pV · [(vfJ)fJlrVfJ + VfJ(vtJllr + VfJVfJ]

- E-
1 P (V · [((vtJllz(vtJllz)lrJ

volumetric source 

= -Vh + µ,V2vfJ - µ,E- 1 V · (VE(VfJ)fJlr)
1 

/ n-[-lh+µ,vvtJJdA
vtJ 

zEdµ0 (r)

I n · [-l�(PtJ)fJ + µ,V(�(vfJ)fJ)JdA .
vfJ zEdµ0 (r) 

volumetric source 

(lSb)

In this last result, we introduced the dummy vector z, in order to
make a distinction with the position vector r in the volumetric
and interfacial integrals. 

The corresponding boundary conditions for the deviations,
which result from substituting the spatial decomposition as
given by Eq. (6) into Eqs. (le) and (ld), are 

VfJ = -(VfJ)fJlr, at dfJrr, (lSc)

VfJ = VfJ,e - (vtJllr, at dfJ,e· (lSd)

The formal solution of this problem is feasible using inte­
gral equations formulations based on Green's functions, as

explained in Ref. [12], and it can be expressed as follows:

/ Gv · rfJdV
yE'.f;,(x) 

Influence of volumetric sources 

/ n · µ,V Gv · (vfJ)fJlydA

yEdµ0 (X) 

Influence of the interfacial source 

+ f n-µ,VGv·(VfJ,e - (VfJ)fJly)dA , (16a)
yEdp _,,(x)

Influence of the entrances and exits 

Pf!= - f gP • rfJdV
yE'.f;,(x) 

Influence of volumetric sources 

/ n · Vgp · (vfJ)fJlydA

yEdp0 (x)
Influence of the interfacial source 

+ f n · Vg/J · (vfJ,e - (vfJ)fJly)dA .

yEdp _,.(x)
Influence of the entrances and exits 

(16b)

In the above equations, Gv and gP represent the corresponding
Green's functions for the velocity and the pressure, respec­
tively, and r fJ represents a linear combination of the volumetric
source terms identified in the differential equations (lSa) and
(I Sb). 

C. One-domain approach

Now that we have the solution of the closure problem,
the average model given by Eq. (13) is complete. For the
sake of simplicity in presentation, we introduce the following
definition: 

ffJ (X) = - pV · (E((vfJllrVfJ + VfJ(VfJ)fJlr + VfJVfJ)fJlx)

+ 
V I 

+ µ,V(vfJ + �(vfJ)fJ)JdA, (17)

which, once inserted into Eq. (13), yields the final form:

pV · ((VfJ)fJlr(VfJ)fJlr)lx 

= -EV (PfJ )fJ Ix + Epg + J,l V2 (v fJ) Ix 

- µ,VE· V(E- 1(vfJ)lx) + ffJ(x). (18)

The structure of this equation resembles its pore-scale
counterpart, as given by Eq. (lb); however, it is important
to clearly identify the physical meaning of each term in the
above equation. The term in the left-hand side, although not
written in the traditional form, is the macroscopic inertial term
due to the macroscopic convective acceleration; the first term
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in the right-hand side corresponds to the macroscopic normal
surface force due to the pressure gradient; the next one is
due to volume forces in the fluid phase (gravity). The term
µ, V2 (v .e ) Ix is usually known in the porous media literature
as the Brinkman correction term and it partially captures the
macroscopic viscous forces. The term µ,Vs • V (c 1 (v .e ) I)
has been identified as the second Brinkman correction by
Ochoa-Tapia and Whitaker [16]. It complements the mapping
of the viscous forces by taking into account also the spatial
variations of s. It is worth noting that this term is not present
in the Navier-Stokes equations and it is thus a consequence of
the averaging process. This characteristic is also shared by the
term f.e in which all the contributions involving deviations, as
defined in Eqs. (6) and (14), are gathered. As it will be shown
later, all the terms involving spatial variations of the porosity
and macroscopic velocity vanish in the porous medium bulk;
however, the same is not true for f.e because the deviations of
the averages from their pore-scale counterparts are still present
in the bulk. As a matter of fact, only in single-phase systems
can this term be safely discarded. 

It should be noted that, up to this point, no scaling postulates
have been introduced for the derivation of the average model,
being consistent with the one-domain approach route depicted
in Fig. 2. On the one hand, we have gained generality in the
sense that the average model is applicable everywhere in the
system; on the other hand, the complexity of this model may
prevent its use in practical applications. Indeed, it appears to be
simpler to perform direct numerical simulations from which
the f.e term can be computed than using the solutions given
in Eqs. (16). Motivated by this, we will systematically adopt
scaling postulates with the aim of reducing the complexity of
the one-domain approach model in the rest of this section. 

D. Scaling postulates 1 and simplified closure problem

From the scheme illustrated in Fig. 2, a first set of
scaling postulates can be imposed to simplify the closure
problem (number 2 in Fig. 2). Therefore, as a first point
of simplification, let us constrain the size of the averaging
volume, r0, to obey the inequality 

e « ro « L, (19)

where e represents the largest of the characteristic lengths
associated to the pore scale while L denotes the smallest
of the characteristic lengths associated to the macroscale.
In this way, e = max(e.e ,ea- ), where e.e and ea- denote the
characteristic lengths associated to each phase as sketched in
Fig. 1. It is worth mentioning that, using a phase-indicator
function, it is possible to define additional relevant quantities
such as the variance and the autocorrelation function, which
allow determining the characteristic length scales in a more
precise manner as explained by Wood and Valdes-Parada
[12]. The interested reader is referred to this work for further
details. Moreover, it is crucial pointing out that if there is no
separation of length scales, then it is not possible to define a
representative averaging domain and no further simplifications
can be applied to the derivations. As explained by Quintard and
Whitaker [17], for disordered media it is reasonable to assume
that the size of the averaging domain must be several orders
of magnitude larger than the characteristic length associated

to the pore scale. However, there may be situations, such
as fractal media, in which this assumption can fail. The
remainder of this work is thus limited to systems in which
it is reasonable to assume that the separation of length scales
given in (19) is applicable. Under these conditions, we may
refer to the averaging domain as a representative elementary
volume (REV) [2]. 

Analyzing Eq. (18), taking into account the definitions
given in Eq. (17), we observe that the one-domain approach
model contains average quantities evaluated at r and at x.
Actually, one may use Taylor-series expansions in order to
express average quantities evaluated at r only in terms of
average quantities evaluated at x [10], that is, 

(i/J.e ) .B lr =(i/J.e ) .B lx + y. V (i/J.e ).B lx

+ ½YY : VV (i/;.e ) .e Ix+··· .

(20)

Performing an order-of-magnitude analysis to the second and
third terms on the right-hand side of this result leads to 

y · V(i/J.e ) .e lx = o(�(i/J.e ).e lx), (21a)
(1/rp)P 

yy: VV(i/;.e ) .e lx = o(L rJL (i/J.e ) .e lx), (21b)
V(i/rp)P (1/rp)P 

where L; is the characteristic length associated to the spatial
variations of the i quantity (i = (i/J.e ) .B, V (i/J.e ) .B). To avoid
oversimplifications for the problem under consideration, we
associate the characteristic lengths Lv(,trp)P and L(t/ip)P to the
width of the transition zone near the porous medium boundary,
say, Owry

· As determined by Valdes-Parada et al. [18], the width
of this zone is roughly 20r0, indicating that there is at least one
order of magnitude of difference between 8wry 

and r0. On this
basis, we may accept the approximation 

(22)

This implies that the average term on the right-hand side of the
spatial decomposition given in Eq. (6) can now be evaluated
at x. This allows us to consider average quantities as constants
within (surface or volumetric) integrals. A direct consequence
of this approximation is the following average constraint for
the deviations fields: 

(23)

Under these conditions, the closure problem can be signifi­
cantly reduced. The details of this simplification are given in
Appendix, and it suffices here to present the simplified closure
problem as 

V · v.e = 0, (24a)

PV.e · Vv.e = -V f5.e + µ,V2v.e 

I

(24c)

At this point, we reduce the domain of solution of the closure
problem to a periodic unit cell instead of the entire macroscopic
domain. Actually, this simplification is more a convenience
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than a necessity and by no means constrains the use of the 
resulting average model to periodic systems, which are rarely 
encountered in practice. In this way, at the entrances and exits 
of the unit cell we can impose the following periodic boundary 
condition: 

(24d) 

where I; denotes the lattice vectors of the unit cell. Finally, it is 
worth recalling that the pressure deviations fields are bounded 
by the integral constraint 

(24e) 

Indeed, the velocity deviations satisfy a similar constraint, but 
such a constraint is unnecessary to have a well-posed problem 
in which the only remaining source term can be taken to be 
constant within the unit cell domain. 

The formal solution of this problem can once again 
be obtained using integral equations formulations based on 
Green's functions, and for the sake of simplicity in notation, 
we express the solution as 

VfJ = BfJ · (vfJ )fJ l x, 

Pf3 = f,lbfJ · (v fJ )fJ Ix-

(25a) 

(25b) 

Notice that this solution is a simplified version of the formal 
solution given in Eqs. (16); however, since now there are 
no volumetric sources and the boundary conditions at the 
entrances and exits are homogeneous, the only remaining 
source is the one located at the interface. In this way, the 
so-called closure variables BfJ and bfJ can be conceived as 
integrals of the corresponding Green's functions associated to 
the velocity and pressure, respectively. These closure variables 
solve the following boundary-value problem: 

V · BfJ =0 

!!...vfJ · V BfJ = -VbfJ + V2 BfJ , 
f,l 

BfJ = - I, at dfJa, 
lffJ(r) = lffJ(r + I;); lffJ = BfJ ,bfJ , 

(bfJ )fJ l x = 0. 

(26a) 

(26c) 
(26d) 

(26e) 

Note that these equations correspond to Eqs. (2.22) in 
Ref. [19]. 

It is now opportune to return to the average momentum 
equation by first noticing that, under the assumptions adopted 
so far, ffJ can now be reduced to 

ffJ(x) = - pV · (.s(VfJVfJ )fJ l x) 

+� f n-[-lh+µ,VvfJ]dA. (27)
yE.0fp0 (X) 

Substitution of the formal closure problem solution as given 
by Eqs. (25) into the above expression and subsequently into 

the momentum transport equation [Eq. (18)] yields 

!!...v · (.s(vfJ )fJ lx · JfJ · (vfJ )fJ l x) 
8 

= -V (pfJ )fJ lx +pg+ t: v'2(VfJ ) Ix 
8 

- µV ln .s · V(.s-1 (vfJ )l x) - Hi 1 
· (vfJ )lx - (28)

In this result, we introduced the fourth-order tensor J 
fJ and 

the second-order tensor HfJ , which are defined in terms of the 
closure variables as follows: 

JfJ = II+ (Br BfJ )fJ l
x
' (29a) 

-1 
1 

.sH =--
fJ v

fJ 
f n · (- lbfJ + V BfJ)dA. (29b) 

yEJdp0 (x) 

From a physical viewpoint, the fourth-order tensor J 
fJ helps 

grouping all the macroscopic inertial contributions in a single 
term. Furthermore, the term ( sr BfJ )fJ Ix 

is an inertial filter 
(in the sense of Whitaker [10]) that corrects the traditional 
inertial term by taking into account the contributions from the 
pore scale. In addition, the second-order tensor HfJ , which is a 
stress filter, may be regarded as an apparent permeability tensor 
that corresponds to a position-dependent Darcy-Forchheimer 
tensor. The introduction of these effective-medium coefficients 
is quite convenient because it allows us to separate the 
macroscopic inertial and viscous contributions in Eq. (28). 

Before moving on, it should be noted that the closure 
problem given by Eqs. (26) is quite complicated because 
it involves an integrodifferential equation. With the aim of 
deriving a purely differential closure problem, we make the 
following changes of variables as suggested by Whitaker [19]: 

EfJ = .s-1(sfJ +I)· HfJ , 

efJ = .s-1bfJ 
• HfJ . 

(30a) 

(30b) 

These variables solve the following differential closure 
problem: 

V · EfJ = 0, 

!!...vfJ · VEfJ = -VefJ + V2EfJ + I,
f,l 

EfJ = 0, at tzlfJa, 

lffJ(r) = lffJ(r + I;); lffJ = EfJ ,efJ , 

(efJ )fJ Ix = 0. 

(31a) 

(31b) 

(3 lc) 

(31d) 

(3le) 

From the above, it may appear that the closure problem 
requires the solution of the pore-scale problem in order to 
obtain the pointwise velocity that is present in the inertial term 
of Eq. (31b), making this boundary-value problem unclosed. 
However, it has been recently shown [20] that this is not the 
case, because one may use Eqs. (6) and (25a) in order to obtain 
a closed form of this problem. 

In addition, from the constraint that the intrinsic average of 
the velocity deviations is zero, it follows that 

(3lf) 
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This final form of the closure problem was recently solved by 
Lasseux et al. [21] for several flow angles and Reynolds num­
ber values on some model structures. Furthermore, following 
the derivations shown in Appendix from the study of gas-slip 
flow in porous media by Lasseux et al. [22], it is not hard to 
deduce that the H,g tensor can be split into a symmetric and a 
skew-symmetric part, when restricted to the porous medium 
bulk (i.e., at x = xw), as follows: 

symmetric contribution from viscous dissipation 

+ (32) 

skew-symmetric contribution from inertial effects 

In the first term on the right-hand side of the above equation 
the superscript T3 permutes the first and third indices of a 
third-order tensor, i.e., A�i = Akji. 

E. Scaling postulates 2 and closed upscaled model

With the simplifications to the closure problem adopted 
above, we have reached the reduced solution given by Eqs. (25) 
and, consequently, the effective-medium coefficients J,g and 
H,g can now be readily computed from the knowledge of 
closure variables fields. Despite the progress gained so far, 
the one-domain approach, as given in Eq. (28), still involves 
position-dependent macroscopic coefficients. Nevertheless, 
the scaling postulates introduced in the previous section have 
led to a considerable loss of information from the pore 
scale. Therefore, from the scheme in Fig. 2, we shall refer 
to this simplified version of the one-domain approach as a 
closed upscaled model with position-dependent coefficients. 
Actually, this simplified version of the one-domain approach 
has been used in the past for the derivation of jump conditions 
between a porous medium and a fluid under noninertial 
conditions [23]. However, in practice, it is more common 
to use effective-medium equations involving constant coef­
ficients and to account for this simplification by introducing 
appropriate jump conditions. This motivates the introduction 
of additional scaling postulates that are directed to further 
simplify the closed upscaled model and, as indicated in Fig. 2, 
we will refer to the resulting model as a simplified upscaled 
model. 

With the above goal in mind, we first note that Eq. (28) 
involves three effective-medium coefficients, namely the 
volumetric fraction of the fluid-phase within the averaging 
volume, c(x), the apparent permeability tensor H,g(x), and, 
finally, the tensor J,g(x) that modifies the dyadic product of the 
average velocities in the inertial term. Outside the transition 
region that is located near the porous medium boundaries, i.e., 
in the porous medium bulk, these coefficients are constants 
and we denote the last position where this assumption is valid 
as Xw. In the transition region, we thus propose the following 
Taylor-series expansion of the coefficients about xw: 

rp(x) = rp(xw) + (x - Xw) · V rp(xw) 

+ ½(x - Xw)(X - Xw) : VV <p(Xw) + · · · , (33) 

where <p = £, H,g , J ,g . From this expansion, we note that if we 
truncate it at the first term, all the effective-medium coefficients 
in Eq. (28) can be replaced by their corresponding values 
at the porous medium bulk, which are position independent. 
Consequently, this equation reduces to the DBF equation with 
the inclusion of the inertial term: 

pV · ((v,g),'l
lx · J,g(Xw) · (v,g Ji'l lx) 

-V (p,g),'l Ix+ pg+ µV2(v,g ji'l Ix - µHfi 1 (xw) · (v,g) lx­
(34) 

Despite the drastic simplifications that we have imposed 
in order to obtain this equation, it may still be used near the 
porous medium boundaries as long as the errors induced by 
these approximations are compensated. One way to achieve 
this compensation is by taking more terms in the expansion 
given in Eq. (33) and another way is by the introduction 
of appropriate jump boundary conditions, which is the most 
common approach. 

Finally, in the porous medium bulk, the velocity is position 
invariant and Eq. (34) is reduced to the form of the Darcy­
Forchheimer equation deduced by Whitaker [see Eqs. (2.50) 
and (4.8) in Ref. 19]: 

(v,g)k = -

H,g(xw) 
· (V(p,g),'l

lxw - pg). (35) 
f,l 

The main difference between the simplified upscaled models 
given in Eqs. (34) and (35) is that the first one may be used near 
the porous medium boundaries while the latter is constrained 
to the porous medium bulk. Before moving on, it is pertinent 
to point out that, even though the macroscopic viscous and 
inertial terms have been dropped, the pore-scale inertial and 
viscous forces contributions are still present in the above 
equation through the Darcy-Forchheimer term H,g as it can 
be deduced from the analysis of Eqs. (31 ). 

Now that we have completed our analysis of the macro­
scopic momentum transport equation, we are in position to 
derive the average and upscaled versions of the mechanical 
energy equation, which is one of the main results of this article. 
This is the objective of the following section. 

V. UPSCALING THE MECHANICAL ENERGY EQUATION

As mentioned in the Introduction, one of the objectives of
this work is to derive a form of the macroscopic mechanical 
energy equation that is applicable both in the porous medium 
bulk and near its boundaries. This analysis raises interesting 
questions such as is the resulting expression equal to the inner 
product of the one-domain approach for momentum transport 
and the Darcy velocity? Is the result reported by Zhu et al. [9] 
in the bulk applicable? To this end, we will follow a similar 
structure of developments as the one used in the previous sec­
tion with the difference that we will not derive the one-domain 
approach version of the mechanical energy equation. Instead, 
we will first derive the closed upscaled version of this equation 
that is applicable at the porous medium boundaries and contrast 
it with the result of taking the inner product of the seepage 
velocity with Eq. (34). Finally, we will verify that when the 
simplified upscaled model for the mechanical energy equation 
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is used in the bulk, the result is the one reported by Zhu 
et al. [9]. 

Let us commence our derivations by applying the superficial 
averaging operator to Eq. (2) to obtain 

� (V · (v�v ,g))lx = -(V · ( p,g v ,g))lx +pg· (v ,g)lx 

+ �µ(V2v�)lx - µ(vvr: Vv,,;)lx· (36)

Using the spatial averaging theorem and taking into account 
the nonslip boundary condition, we can interchange spatial 
integration and differentiation in order to express the above 
result as follows: 

�v. (v�v ,,; )lx = -V. (p,g v ,g)lx +pg. (v ,g)lx

+ �µV2(v�)lx - µ(vvr: Vv,,;)lx' (37)

or, after using the Dupuit-Forchheimer relation [Eq. (4)], 

 +pg· .s(v ,,; llx + �µV2(.s(v�tu

- µ.s(vvr : Vv ,5 t Ix· (38) 

To make further progress, let us adopt the scaling postulates I, 
so the formal closure problem solution given by Eqs. (25) 
is applicable. Therefore, taking into account the spatial 
decomposition in Eq. (6) and the changes of variables indicated 
in Eqs. (30), we can express the pore-scale velocity and 
pressure as follows: 

v ,g = 0 ,g · (v ,g )
,g 

Ix, (39a) 

p,g = µ d,g · (v ,g),g lx + (p,g),g lx, (39b) 

where, for the sake of simplicity, we have introduced the 
following closure variables: 

O,g = .sE,g . Hi 1
' 

d,g = .se,g • Hi 1
. 

(40a) 

(40b) 

Using the definitions given in Eqs. (39), it can be easily deduced that 

(v�tlx = (v ,g),g lx(v ,g),g lx: (or . O,g tlx' 

(v�v ,g tlx = (v ,g),g lx(v ,g),g lx: ((or . O,g)O,g nx . (v ,g),g lx,

(p,g v ,g),glx = (p,g),g !x(v ,g),g lx + µ(v ,g),g lx · (d,g O,g),glx · (v ,g),g lx, 

(vv;: Vv ,g ),glx = (v ,g),g lx(V,g),g lx: ( (VO,,; l3: VO,g tlx·

(41a) 

(41b) 

(41c) 

(41d) 

In the last equation, we have taken into account the separation of length scales that allows us to assume that V (v ,g )iB Ix • o; «
VO,g · (v ,g),g lx-

Substitution of these results into Eq. (38) yields 

�v. (.s(v ,g),g lx(v ,g),g lx: ((or. O,g)O,,; tlx . (v ,g),g lx) 

rate of transport of kinetic energy by convection 

-V · (.s(p,g),g lx(V,g),g lx)+ pg· E(V,g),g lx
�

rate of pressure work rate of volume-force work 

rate of work due to nonnal stress 

rate of kinetic energy loss due to viscous dissipation 

rate of work due to shear stress 

(42) 

where the physical meaning of each term has been clearly identified. As it was done with momentum transport, let us now 
adopt the second set of scaling postulates, that are focused to the upscaled model. From the previous section, we recall that 
the truncation of the expansion defined in Eq. (33), at the first term, allows us to approximate all the terms involving integrals 
of closure variables to their corresponding values in the bulk, i.e., at xw. Under these conditions, we may consider the volume 
fraction as a constant and divide both sides of the above equation by £ in order to obtain 

= -V. ((p,g),g lx(v ,g),g lx) +pg. (v ,g),g lx - µV. ((v ,g),g lx .  (d,g O,g),g k. (v ,g),g lx)

+ !µV2((v ,g),g lx(v ,g llx: (or. O,g ),5 1 ) - µ(v ,g),g lx(V,g),g lx: ((VO,,; l3
: VO,,; llxw-2 p � 

(43)
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This equation is clearly not equal to the result of taking the 
inner product of Eq. (34) with the seepage velocity. Certainly, 
the above equation is the analog, in terms of mechanical 
energy, to the DBF equation, i.e., this equation can be used 
near the porous medium boundaries as along as there is an 
appropriate boundary condition that compensates the errors 
induced by the approximations involved in its derivation. 

As a final point of analysis, it is necessary to verify if 
the upscaled model for the mechanical energy equation, when 
constrained to the porous medium bulk, does agree with Zhu 
et al. 's [9] result stating that the macroscopic mechanical 
energy balance is obtained from the dot product of the 
macroscopic momentum equation with the seepage velocity. 
With this in mind, let us fix the centroid of the averaging 
volume to values that lie in the porous medium bulk, i.e., 
x = xw , so the velocity can be assumed to be a constant, thus: 

0 = - V(p,'l),'llxw · (v,'l),'llXm +pg· (v,'l),'llxw 

- µ,(v,'l),'llx,,,(v,'l),'llx,,: ((VD,'ll3
: VD,'lllxw , (44) 

or, after a little rearrangement, 

Q = (-V(p,'l),'llxw + pg 

- µ,(vtJ)tl lXm · ((VDtlf3
: VDtJ)tl lXm ) · (vtJ )tl lxw · (45)

Directing the attention to the last integral term of the above 
equation and substituting the definitions given in Eqs. (40), 
one obtains: 

((VD,'l)T3 : VD,'lllxw 

= c(H� 1 f • ((VE,'lf3 
: VE,'l) k • H� 1

, 
(46) 

or, using Eq. (32), 

((VD,'lf3 
: VD,'l),'l lxw 

cHt - c(H� 1f. �(Er. [V . (v,'lE,'l)])lxw
. H� 1

. 

(47) 

Substitution ofEq. (47) into Eq. (45) leads to 

0 = (-v (PtJlk, + pg - f,lc(v,'l),'lk ·Ht)· (v,'l),'llxw 

+ pc(s,'ls,'l : (Er· [V · (v,'lE,'l)])lxJ' (48) 

where, for the sake of brevity in notation, we introduced: 

(49) 

As indicated in Eq. (32), the second-rank tensor 
(Er· [V · (vtJEtJ)])I is skew-symmetric and, since the dyad 

"'" 

s,'ls,'l is a symmetric second-order tensor, we can readily 
conclude that the last term on the right-hand side of Eq. (48) 
is zero. After multiplication by the porous medium porosity, 
this equation is simplified to 

which clearly is the inner product of Darcy's law with the 
seepage velocity, thus verifying the result from Zhu et al. [9] 
in the porous medium bulk. 

VI. DISCUSSIONS AND CONCLUSIONS

In this work, we addressed the question about the 
correspondence between the upscaled version of the mechan­
ical energy equation and the inner product of the macroscopic 
momentum balance equation with the seepage velocity. The 
following points of discussion and conclusions are hence in 
order: 

(i) Using the method of volume averaging, without the
imposition of any length-scale constraints or assumptions, we 
derived an average model for momentum transport [Eq. (18)]. 
This one-domain approach, which is valid everywhere in the 
system (i.e., near the porous medium bulk and its boundaries), 
was the cornerstone for the derivation of upscaled models 
for momentum transport. By imposing a first set of scaling 
postulates, the one-domain approach gave rise to an upscaled 
model in which the effective-medium coefficients can be 
readily computed from the solution of ancillary closure 
problems in representative unit cells. Then a second set of 
more severe scaling postulates was imposed that lead to a 
version of the DBF equation that includes inertial contributions 
[Eq. (34)]. Finally, in the porous medium bulk, this last model 
reduces to the Darcy-Forchheimer model [Eq. (35)]. The 
approach for the derivation of these last two upscaled models 
differs from the classical applications of the volume averaging 
method reported by Whitaker [19]. 

(ii) Traditionally, Brinkman's correction to Darcy's law is
regarded as an ad hoc addition to Darcy's law that allows 
the velocity to change with position near the porous medium 
boundaries, while keeping the effective medium coefficients 
constant. Actually, this is a contradiction, because, in general, 
the velocity and the effective-medium coefficients are both 
functions of position near the porous medium boundaries. This 
controversy can be solved by the inclusion of the second set of 
scaling postulates that give rise to the DBF model. Notice that, 
contrary to Whitaker [19], we have not imposed additional 
constraints dealing with the Reynolds number, so Eq. (34) 
maintains the macroscopic inertial contribution term. 

(iii) The upscaled model for the mechanical energy equa­
tion resulting from applying the volume averaging method [Eq. 
( 43)] was found not to be the result of taking the inner product 
of the DBF equation with the seepage velocity. However this 
expression of the macroscopic mechanical energy equation 
shares the same limitations (in terms of upscaling) as the 
DBF transport model. To the best of our knowledge, this 
complete form of the mechanical energy equation has not been 
previously reported in the literature. If this equation is to be 
used to compute the power required to reach a certain fluid 
flow near porous media boundaries through which momentum 
transport can occur, then it is necessary to acknowledge 
that the errors that are involved in its derivation should be 
compensated. There are at least two routes for achieving this 
goal: one way is to relax the scaling postulates involved in 
its derivation. For example, one may take more terms in the 
expansion of effective-medium properties defined in Eq. (33). 
An alternative is to derive the corresponding jump boundary 
conditions that incorporate coefficients that account for the 
information that was lost in the upscaled transport model. 

(iv) Finally, in the porous medium bulk, it is not necessary
to average the mechanical energy equation at the pore scale, 
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because the upscaled model is simply the result of taking the 
inner product between the Darcy equation with the seepage 
velocity as shown in Eq. (50). This result may have not 
been achieved without knowledge of the symmetric and 
skew-symmetric parts of the apparent permeability tensor HtJ , 
as indicated in Eq. (32). Our analysis complements and verifies 
the result from Zhu et al. [9]. 

As mentioned in the Introduction, the derivation in this 
work can surely be extended to other more complicated 
situations such as multiphase flow, compressible flow, and 
even to nonisothermal flow in porous media. As a final 
note, it is worth mentioning that the framework used in the 
present analysis, consisting of the derivation of a one-domain 
approach, which may be further simplified by the imposition 
of scaling postulates, is indeed extensible to other practical 
applications beyond porous media systems. Actually, the main 
message from this work is that the analysis in terms of 
energy balance near the boundaries of multiscale systems 
is incomplete if it deals only with the study of mass and 
momentum transport, because it is necessary to also consider 
the upscaled mechanical energy equation. 
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APPENDIX: SIMPLIFICATIONS OF THE CLOSURE 

PROBLEM 

Our goal in this section is to detail the simplifications that 
are applicable to the closure problem associated to the one­
domain approach. On the basis of the separation of scales 
given in (19) and the corollaries presented in Sec. IV, the 
following simplifications are applicable to Eq. (15b ): 

(a) The last term on the left-hand side is reduced to

V · ((vtJ llz(vtJ llz + (vtJ llzVtJ + VtJ(VtJ),'i lz + VtJVtJ)lr 

� V · (E(vtJ llx(VtJ),'i lx) + V · (VtJVtJ)lx-

(b) The last term on the right-hand side of this equation
vanishes. 

In this way, Eq. (15b) reduces to 

pV · [(VtJ),'i lxVtJ + VtJ(VtJ),'i lx + VtJ VtJ] 

- pV In E • (vtJ),'i lx(VtJ),'i lx - E- 1 pV · (VtJVtJ)lx

To further simplify this equation, we use orders-of-magnitude 
estimates of the several terms that it contains. In performing 
this analysis, we take into account the interfacial boundary 

condition given by Eq. (15c), which indicates that the order 
of magnitude of the velocity deviations can be taken to be the 
same as the one for the intrinsic average velocity. Under these 
conditions, we have the following estimates: 

V · (vtJvtJ) = V lnE · (vtJ)ti lxVtJ + VtJ · Vvti , (A2) 

0[
((v

;�
ti)2

] 0[
((vtJt)2

] 

where we have taken r0 to be a reasonable estimate of the 
characteristic length scale of the spatial variations of the 
porosity. Since we have accepted the separation of length 
scales ,f, « r0, the above expression can be reduced to 

(A3a) 

In a similar way, we have the following order-of-magnitude 
estimates: 

V lnE . V(v,'J),'i lx = o(
(vtJ)fi

)·
ro8w� 

(A3b) 

(A3c) 

(A3d) 

(A3e) 

(A3f) 

In this way, on the basis of the length-scale constraints, 

l « ro; l « Ow�, (A4) 

it is reasonable to assume that 

V lnE · (vtJ),'i lx(VtJ),'i lx « V · (VtJ VtJ), (A5a) 

E- 1 V · (vtJvtJ)lx « V · (vtJvtJ), (A5b) 

I 2 ti 2 -v' E(VtJ) Ix « V VtJ , (A5c) 
E 

V lnE · V (v,'J),'i lx « V2v,'i · (A5d) 

Under these conditions, we can reduce Eq. (Al) to 

pV · [(v,'J),'i lxVtJ + VtJ(VtJ),'i lx + VtJVtJ] 

(A6) 

Directing the attention to the left-hand side term of the above 
equation, we have 

V · [(v,'J),'i lxVtJ + VtJ(VtJ),'i lx + VtJ VtJ] 

= V lnE . (vtJ),'i lx(VtJ),'i lx + VtJ
. V (v,'J),'i lx + VtJ

. Vv,'i .
(A7) 
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Once again, with the intention of simplifying this result, we 
make use of the following orders-of-magnitude estimates: 

V In£. (v.B).Blx(V.B).Blx = o[
((v

��
.B)2

l 

- n( ).el - o [((v.B).8)2
] VtJ · V VtJ x - , 

8wry 

V.B. Vv.B = o[
((v.Bt

)2
l 

(A8a) 

(A8b) 

(A8c) 

Therefore, on the basis of the length-scale constraints given 
in (A4), we may assume that 

V In£. (v ,e llx(V ,e ) .B lx « V ,e
. Vv ,e ,

".B
. V (v.B).Blx « V.B. Vv.B.

(A9a) 

(A9b) 

Under these conditions, Eq. (A6) reduces to its final form: 

pv .B · V v .B = -V fJ.B + µ V2
v .B

�.B f
yEdfrr(X) 

[1] R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena

(John Wiley, New York, 2007).
[2] J. Bear and A. Cheng, Modeling Groundwater Flow and

Contaminant Transport (Springer, Berlin, 2010).
[3] J. Nordbotten and M. Celia, Geological Storage of CO2: 

Modeling Approaches for Large-Scale Simulation (Wiley, New
York, 2012).

[4] W. Chen, X. Tan, H. Yu, G. Wu, and S. Jia, J. Rock Mech.
Geotech. Eng. 1, 31 (2009).

[5] Z. Xu and M. J. Buehler, Phys. Rev. E 81, 061910 (2010).
[6] J. Cushman, The Physics of Fluids in Hierarchical Porous

Media: Angstroms to Miles (Springer, Berlin, 2010).
[7] W. Gray and C. Miller, introduction to the Thermodynamically

Constrained Averaging Theory for Porous Medium Systems,

Advances in Geophysical and Environmental Mechanics and
Mathematics (Springer, Berlin, 2014).

[8] R. Borja, Int. J. Solids Struct. 43, 1764 (2006).
[9] T. Zhu, C. Waluga, B. Wohlmuth, and M. Manhart,

Transp. Porous Media 104, 161 (2014 ).
[10] S. Whitaker, The Method of Volume Averaging (Kluwer, Ams­

terdam, 1999).

It is worth noting that this equation no longer contains 
volumetric sources. In fact, the only volumetric source that 
remains in the closure problem is given in the right-hand side 
of Eq. (15a). The order of magnitude of this source is 

V 
(A 11 a) 

This estimate can be contrasted with the order of magnitude 
of the interfacial source, which is 

I 
V f (v.B).BlxdA = oCv�).B ). 

yEdfrr(X) 

(Al lb) 

From these estimates, we may assume that, due to the length­
scale constraint £ « r0, the interfacial source is much larger 
than the volumetric source. Under these conditions, the closure 
problem can be expressed as stated in Eqs. (24) in the main 
text. 

[11] B. Wood, Adv. Water Res. 32, 723 (2009).
[12] B. Wood and F. Valdes-Parada, Adv. Water Res. 51, 139 (2013).
[13] B. Goyeau, D. Lhuillier, D. Gobin, and M. Velarde, Int. J. Heat

Mass Transf. 46, 4071 (2003).
[14] F. Howes and S. Whitaker, Chem. Eng. Sci. 40, 1387 (1985).
[15] W. Gray, Chem. Eng. Sci. 30,229 (1975).
[16] J. Ochoa-Tapia and S. Whitaker, Int. J. Heat Mass Transf. 38,

2635 ( 1995).
[17] M. Quintard and S. Whitaker, Transp. Porous Media 14, 163

(1994).
[18] F. Valdes-Parada, C. Aguilar-Madera, J. Ochoa-Tapia, and B.

Goyeau, Adv. Water Res. 62, 327 (2013).
[19] S. Whitaker, Transp. Porous Media 25, 27 (1996).
[20] F. Valdes-Parada, D. Lasseux, and F. Bellet, Adv. Water Res. 90,

70 (2016).
[21] D. Lasseux, A. A. Abbasian-Arani, and A. Ahmadi, Phys. Fluids

23, 073103 (2011).
[22] D. Lasseux, F. Valdes-Parada, and M. Porter, J. Fluid Mech. 805,

118(2016).
[23] F. Valdes-Parada, J. Alvarez-Ramirez, B. Goyeau, and J. Ochoa­

Tapia, Transp. Porous Media 78, 439 (2009).


